
ar
X

iv
:c

s/
05

12
05

6v
1

 [
cs

.M
S]

 1
4

D
ec

 2
00

5

PURRS: Towards Computer Algebra Support

for Fully Automatic

Worst-Case Complexity Analysis⋆

Roberto Bagnara, Andrea Pescetti, Alessandro Zaccagnini, and Enea Zaffanella

Department of Mathematics, University of Parma, Italy
{bagnara,pescetti,zaffanella}@cs.unipr.it, zaccagni@math.unipr.it

Abstract. Fully automatic worst-case complexity analysis has a number
of applications in computer-assisted program manipulation. A classical
and powerful approach to complexity analysis consists in formally de-
riving, from the program syntax, a set of constraints expressing bounds
on the resources required by the program, which are then solved, pos-
sibly applying safe approximations. In several interesting cases, these
constraints take the form of recurrence relations. While techniques for
solving recurrences are known and implemented in several computer al-
gebra systems, these do not completely fulfill the needs of fully automatic
complexity analysis: they only deal with a somewhat restricted class of
recurrence relations, or sometimes require user intervention, or they are
restricted to the computation of exact solutions that are often so complex
to be unmanageable, and thus useless in practice. In this paper we briefly
describe PURRS, a system and software library aimed at providing all the
computer algebra services needed by applications performing or exploit-
ing the results of worst-case complexity analyses. The capabilities of the
system are illustrated by means of examples derived from the analysis of
programs written in a domain-specific functional programming language
for real-time embedded systems.

Key words: Complexity analysis, recurrences, approximation.

1 Introduction

Complexity analysis aims at the derivation of bounds to the complexity of al-
gorithms, processes and data structures. In particular, the results of partly or
wholly automated worst-case complexity analyses can be used, e.g., to decide
whether mobile agents should be allowed to run in a given context, prove that
the code for an embedded system satisfies the space and time constraints of the
target hardware platform, assist programmers in reasoning about the behavior

⋆ The work of R. Bagnara, A. Pescetti and E. Zaffanella has been partly supported
by PRIN project “AIDA — Abstract Interpretation: Design and Applications.” The
work of A. Zaccagnini has been partly supported by PRIN project “Zeta and L
Functions and Diophantine Problems in Number Theory.”

http://arxiv.org/abs/cs/0512056v1

of programs, guide applications of optimized program transformations, and dis-
cover efficiency bugs that are otherwise very difficult to detect. Note that here
we restrict attention to worst-case complexity: average-case complexity analysis
is also a very interesting, but rather different research topic [9]. Moreover, we
are interested in deriving proper upper and lower bounds, which are valid for all
possible inputs, rather than asymptotic bounds.

Recurrence relations play an important role in the field of complexity analy-
sis, since worst-case complexity measures of programs can often be very elegantly
expressed by means of such relations. This is especially the case for the functional
[3,4,14] and logic programming paradigms [6,7,8]. Therefore there is significant
demand for efficient software systems capable, in a completely automatic way,
of solving or approximating the solutions to systems of recurrence relations, yet
providing results that are usable in practice. Up to now, this demand has been
fulfilled only in a quite unsatisfactory way. In the systems described in [6,7,8]
only recurrences belonging to a very restricted class are handled, essentially by
pattern-matching.1 The implementation of [3,4] is based on Mathematica, a re-
markably powerful tool, which however is reported to sometimes exhaust all the
available system memory in the attempt of finding closed-form exact solutions
[3]. In these cases approximate solutions (in the form of upper and lower bounds
for the exact solution) should be preferred, since their precision is sufficient for
most practical purposes; moreover, often exact solutions are too complex to be
useful. By resorting to approximations it is also possible to deal with classes
of (generalized) recurrence relations that do not always admit closed-form solu-
tions, such as the recurrences arising from the complexity analysis of divide and

conquer algorithms. However, no computer algebra system we know of provides
adequate support for the computation of upper or lower approximations of the
solutions of recurrence relations.

The objective of the PURRS project (Parma University’s Recurrence Relation

Solver, see http://www.cs.unipr.it/purrs/) is the development of techniques
and tools to provide all the computer-algebra services needed for efficiently com-
puting the exact solution or manageable approximations of the solution of recur-
rence relations that arise when performing fully automated worst-case complex-
ity analysis. A software library, also called PURRS, is actively being developed
and is the subject of this paper. Space reasons do not allow to give more than
a sketchy description of its features, but PURRS is free software released under
the GNU General Public License: code and documentation can be downloaded
at http://www.cs.unipr.it/purrs/. Concerning applications, PURRS is being
integrated with a complexity analyzer (written by Pedro Vasconcelos, Univer-
sity of St Andrews, UK) aimed at deriving (possibly tight) upper bounds to
the amount of stack and heap space consumed by programs written in Hume

(http://www.hume-lang.org/), a functionally-inspired language for resource
critical applications, including real-time embedded and safety-critical systems.

1 These systems also use floating point numbers without controlled rounding so that
correctness is, in general, compromised.

http://www.cs.unipr.it/purrs/
http://www.cs.unipr.it/purrs/
http://www.hume-lang.org/

Several examples reported in the sequel come from the analysis of Hume pro-
grams: see also [14].

2 The PURRS Library

The PURRS library, which is written in C++, includes a number of mathematical
tools that provide the functionalities required for both solving and approximat-
ing recurrence relations and to manipulate the results thus obtained. These tools
include a solver for algebraic equations with rational coefficients and a sophis-
ticate simplification apparatus that can handle, among other things, binomial
coefficients and exponentials, as well as symbolic sums and products and includ-
ing the Gosper’s algorithm and a generalization of Zeilberger’s algorithm [11,12]
(the full implementation of all algorithms deriving from holonomy theory [12]
is work in progress). PURRS also includes very efficient algorithms for proving
statements of the form ∀n ∈ N : f(n) = 0, where f belongs to a quite large
family of functions [1].

We will first sketch the techniques used to (approximately) solve recurrence
relations in one argument. We will touch later the case of recurrences in more
than one argument, often arising in a concrete complexity analysis, as well as
the use of more aggressive approximation techniques. The solution process im-
plemented by PURRS consists in an initial classification phase, where recurrences
are categorized into one of five classes: these classes, which are characterized
by different solution or approximation techniques, are briefly described in the
following paragraphs.

Linear recurrences of finite order with constant coefficients (e.g., xn = 5xn−1−
6xn−2+n2) are very important for complexity analysis. Notice that, while single
recurrences occurring in practice seldom have an order greater than 2, recur-
rences of higher order arise from transformation techniques mapping the reso-
lution of a system of recurrences into the resolution of a single recurrence. The
method employed in PURRS to solve these recurrences is an elaboration of the
ideas proposed in [10] and [5], supplemented by order-reduction and other tech-
niques that extend the class of recurrences that can be solved in a completely
algorithmic way. All the details about the resolution of such recurrences are
available in [2].

Linear recurrences of finite order with variable coefficients (e.g., xn = nxn−1+
2). While no general solution method is known, PURRS currently solves recur-
rences of this kind that are (possibly after the order-reduction step) of the first
order. For higher-order recurrences, work is in progress to incorporate other
methods (based, among other things, on Zeilberger’s algorithm) that can be
applied to find polynomial and hypergeometric solutions [12].

Non-linear recurrences of finite order (e.g., xn = 3x2
n−1) are known not to be

generally solvable. PURRS handles some special cases by linearizing the recurrence
using range transformations so as to obtain a recurrence belonging to one of the
previous classes.

Infinite order recurrences (e.g., xn = n/2+n
∑n−1

k=0 xk). Here xn depends on
all previous values, and not only on a fixed number of them. Neither Mathemat-
ica nor other computer algebra systems we know of directly support this kind of
recurrences. PURRS is able to transform and solve a class of such recurrences.

Divide-and-conquer recurrences (e.g., xn = 2xn/2 + n − 1). As closed-form
solutions may not exist for this kind of generalized recurrences, approximations
are, in this case, unavoidable. PURRS, unlike any computer algebra system we
are aware of, is able to derive upper and lower bounds for the solution, under
the hypotheses described below, that are valid for each n ∈ N \ {0} for which
the recurrence is well-defined. Recurrences of the general form xn = αxn/β +
g(n) are approximated by PURRS when α and β are rational numbers such that
α > 0, β > 1 and g(n) is a non-negative, non-decreasing function. All these
hypotheses are generally satisfied for the recurrences arising from worst-case
complexity analysis. As an example of the capabilities of PURRS, from the analysis
of Strassen’s algorithm [13] we get xn = 7xn/2 + 9n2/2, with x1 = 1, which is

approximated by n(log 7)/ log 2− 3
2n

2 ≤ xn ≤ 7n(log 7)/log 2−6n2. Another example
comes from the analysis of the mergesort algorithm: xn = 2xn/2 + n − 1 is

approximated by PURRS with h(n)− 3n+3+ 1
2nx1 ≤ xn ≤ h(n)− 1

2n+1+nx1,
where h(n) = n(logn)/log 2. Notice that PURRS has correctly determined the
asymptotic formula xn ∼ n(logn)/log 2.

Multivariate recurrences. Up to now, we have only dealt with univariate re-
currence relations. However, automatic complexity analysis frequently leads to
the synthesis of multivariate recurrence relations. While multivariate recurrences
are really hard to solve in general, in many cases they can be converted into uni-
variate recurrences so that all the techniques presented above become applicable.
PURRS is often able to automatically perform such a rewriting step. A very fre-
quent and interesting case happens when the difference between the arguments
of the unknown function x is constant among all its occurrences in the multivari-
ate recurrence relation. For instance, this happens for any recurrence relation
having the form xm,n = f(xm−1,n−1), where the difference between the first
and second argument of x is always m − n. Such a recurrence can be rewritten
as yt = f(yt−1), where yt−k = xm−k,n−k, for all k ∈ N. Another interesting
case, similar to the one above, is when the sum of the arguments of the un-
known function x is constant. For instance, multivariate recurrences of the form
xm,n = f(xm+1,n−1) can be rewritten as yt = f(yt−1), where yt−k = xm+k,n−k,
for all k ∈ N. These rewriting techniques extend to recurrences involving more
than two variables. As an example, the recurrence xm,n = a + xm−1,n+1 with
initial conditions x0,n = 9 results from the analysis of required stack depth for a
Hume program for reversing a list using an accumulating parameter. PURRS can
find the exact result xm,n = 9 + am.

We are currently extending PURRS with approximation techniques that allow
to determine simple yet precise upper and lower bounds to the solution of recur-
rences. Experience is suggesting that this is what is required by most of the appli-
cations in automatic, worst-case complexity analysis. These new approximation
techniques can deal with all the recurrences defined above satisfying suitable non-

negativity properties, and can also approximate recurrences that do not admit a
closed-form solution. More specifically, without actually solving the recurrence,
we determine functions f, g

−
, g+ : N → R, all of the form c · nd · αn for suitable

c, d, α ∈ R where d ≥ 0 and α > 0, such that f(n)− g
−
(n) ≤ xn ≤ f(n) + g+(n)

for all n ∈ N. The method employed in the approximation depends on the detec-
tion of the asymptotically leading term of the solution, as described in a different
context in [1]. For example, the recurrence xn = xn−1 +xn−3 +2n +n− 1 arises
from the manipulation of the system

xn = xn−1 + yn−1 + 2n,

yn = zn−1 + n− 1,

zn = xn−1 + 1.

Assuming that the initial conditions x0, x1 and x2 are all non negative, and
letting X = max{x0, x1, x2}, we obtain

8

3
2n −

35

3

λ

λ− 1
λn ≤ xn ≤

8

3
2n + λn λ

(λ − 1)2
(X + 1),

where λ is any upper bound for the positive root of x3 − x2 − 1 = 0.

Acknowledgments The authors are grateful to Tatiana Zolo who did so much
for the development of PURRS and to Pedro Vasconcelos for the work done on
the interface between PURRS and his analyzer and for the interesting and fruitful
discussions we had on the subject of this paper and on related matters.

References

1. R. Bagnara and A. Zaccagnini. Checking and bounding the solutions of some
recurrence relations. Quaderno 344, Dipartimento di Matematica, Università di
Parma, Italy, 2004. Available at http://www.cs.unipr.it/Publications/.

2. R. Bagnara, A. Zaccagnini, and T. Zolo. The automatic solution of recurrence
relations. I. Linear recurrences of finite order with constant coefficients. Quaderno
334, Dipartimento di Matematica, Università di Parma, Italy, 2003. Available at
http://www.cs.unipr.it/Publications/.

3. R. Benzinger. Automated complexity analysis of Nuprl extracted programs. Jour-

nal of Functional Programming, 11(1):3–31, 2001.
4. R. Benzinger. Automated higher-order complexity analysis. Theoretical Computer

Science, 318(1–2):79–103, 2004.
5. J. Cohen and J. Katcoff. Symbolic solution of finite-difference equations. ACM

Transactions on Mathematical Software, 3(3):261–271, 1977.
6. S. Debray and N.-W. Lin. Cost analysis of logic programs. ACM Transactions on

Programming Languages and Systems, 15(5):826–875, 1993.
7. S. K. Debray, P. López-Garćıa, M. V. Hermenegildo, and N.-W. Lin. Estimating

the computational cost of logic programs. In B. Le Charlier, editor, Static Analysis:

Proceedings of the 1st International Symposium, volume 864 of Lecture Notes in

Computer Science, pages 255–265, Namur, Belgium, 1994. Springer-Verlag, Berlin.

http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/

8. S. K. Debray, P. López-Garćıa, M. V. Hermenegildo, and N.-W. Lin. Lower bound
cost estimation for logic programs. In J. Ma luszyński, editor, Logic Programming:

Proceedings of the 1997 International Symposium, MIT Press Series in Logic Pro-
gramming, pages 291–305, Port Washington, NY, USA, 1997. The MIT Press.

9. P. Flajolet, B. Salvy, and P. Zimmermann. Automatic average-case analysis of
algorithms. Theoretical Computer Science, 79(1):37–109, 1991.

10. G. S. Lueker. Some techniques for solving recurrences. ACM Computing Surveys,
12(4):419–436, 1980.

11. A. Pescetti. L’algoritmo di Zeilberger per la risoluzione automatica di ricorrenze.
M.Sc. dissertation, University of Parma, October 2004. In Italian.

12. M. Petkovšek, H. S. Wilf, and D. Zeilberger. A = B. A. K. Peters, Natick, MA,
1996.

13. V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354–
356, 1969.

14. P. B. Vasconcelos and K. Hammond. Inferring cost equations for recursive, poly-
morphic and higher-order functional programs. In P. Trinder, G. Michaelson,
and R. Peña, editors, Implementation of Functional Languages: 15th International

Workshop, IFL 2003, Edinburgh, UK, September 8–11, 2003. Revised Papers, vol-
ume 3145 of Lecture Notes in Computer Science, pages 86–101. Springer-Verlag,
Berlin, 2004.

	PURRS: Towards Computer Algebra Support for Fully Automatic Worst-Case Complexity Analysis
	Roberto Bagnara (University of Parma), Andrea Pescetti (University of Parma), Alessandro Zaccagnini (University of Parma), Enea Zaffanella (University of Parma)

