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SPECTRAL APPROACH TO LINEAR PROGRAMMING BOUNDS ON CODES

ALEXANDER BARG∗ AND DMITRY NOGIN†

ABSTRACT. We give new proofs of asymptotic upper bounds of coding theory obtained within the frame
of Delsarte’s linear programming method. The proofs rely onthe analysis of eigenvectors of some finite-
dimensional operators related to orthogonal polynomials.The examples of the method considered in the paper
include binary codes, binary constant-weight codes, spherical codes, and codes in the projective spaces.

1. Introduction. Let X be a compact metric space with distance functiond. A codeC is a finite subset
of X. Define the minimum distance ofC asd(C) = minx,y∈C,x 6=y d(x, y). A variety of metric spaces that
arise from different applications include the binary Hamming space, the binary Johnson space, the sphere
in R

n, real and complex projective spaces, Grassmann manifolds,etc. Estimating the maximum size of the
code with a given value ofd is one of the main problems of coding theory. LetM be the cardinality of
C. A powerful technique to boundM above as a function ofd(C) that is applicable in a wide class of
metric spaces including all of the aforementioned examplesis Delsarte’s linear programming method [2].
The first such examples to be considered were the binary Hamming spaceHn = {0, 1}n and the Johnson
spaceJn,w ⊂ Hn which is formed by all the vectors ofHn of Hamming weightw, with the distance given
by the Hamming metric. The best currently known asymptotic estimates of the size of binary codes and
binary constant weight codes were obtained in McEliece, Rodemich, Rumsey, Welch [11] and are called the
MRRW bounds. Shortly thereafter, Kabatiansky and Levenshtein [7] established an analogous bound for
codes on the unit sphere inRn with Euclidean metric and some related spaces. This paper also introduced a
general approach to bounding the code size in distance-transitive metric spaces based on harmonic analysis
of their isometry group. This approach was furthered in papers [8, 10] which also explored the limits of
Delsarte’s method.

In this paper we suggest a new proof method for linear programming upper bounds of coding theory.
Our approach, which relies on the analysis of eigenvectors of some finite-dimensional operators related to
orthogonal polynomials arguably makes some steps of the proofs conceptually more transparent then those
previously known. We also consider some of the main examplesmentioned above, The linear-algebraic
ideas that we follow were introduced in a recent paper by Bachoc [1] in which a similar approach has been
taken to establish an asymptotic bound for codes in the real Grassmann manifold.

2. A bound on the code size. We assume thatX is a distance-transitive space which means that its isometry
groupG acts doubly transitively on ordered pairs of points at a given distance. In this case the zonal spher-
ical kernelsKi(x,y) associated with irreducible regular representations ofG depend only on the distance
betweenx andy. In all the examples mentioned above, except for the Grassmann manifold,Ki(x,y) can
be expressed as a univariate polynomialpi(x) of degreei, wherex = τ(d) is some function of the distance
d(x,y).

Let D be the (finite or infinite) set of the possible values of the distance inX. We will assume that
τ(d(x,y)) is a monotone function that sendsD to a segment[a, b]. For instance, for the Hamming space,
D = {0, 1, . . . , n} andτ can be taken the identity function. For the sphereSn−1(R), D = [0, 2]. In this
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2 A. BARG AND D. NOGIN

case it is convenient to takeτ(d) = 1 − d2/2 to be the scalar product(x,y) =
∑

i xiyi. The invariant
measure onG induces a measuredµ on [a, b]. For instance, forX = {0, 1}n, the measuredµ corresponds to
the binomial probability distribution on{0, 1, . . . , n}, so

∫
D dµ = 1. We will assume that the last condition

holds in general and normalizeµ when this is not the case.
The kernelsKi(x,y), i = 0, 1, . . . , are positive semidefinite which means that

∑
x,y∈C Ki(x,y) ≥ 0 for

any finite setC ⊂ X. This property together with the fact thatKi(x,y) can be expressed as a polynomial
of one variable gives rise to the following set of inequalities

(1)
∑

x,y∈C
pi(τ(d(x,y))) ≥ 0, i = 0, 1, . . .

called the Delsarte inequalities in coding theory.
The functionτ can be chosen in such a way that the polynomialspi, i = 0, 1, . . . , are orthogonal on

[a, b] with respect to the scalar product〈f, g〉 =
∫
fgdµ. Below we denote byV the spaceL2(dµ) of

square-integrable functions on[a, b].
We will assume that the polynomialspi are orthonormal, i.e.,‖pi‖2 = 〈pi, pi〉 = 1. Note that this implies

thatp0 ≡ 1. Another assumption used below is that the productpipj for all i, j ≥ 0 expands into the basis
{pi} with nonnegative coefficients, i.e.,

(2) pipj =
∑

k

qki,jpk (qki,j ≥ 0).

This property is again implied by the fact that the zonal spherical kernels are positive semidefinite, see [7].
Since the polynomials{pi} are orthogonal, they satisfy a three-term recurrence [12] of the form

(3) xpk = αkpk+1 + βkpk + γkpk−1 (k = 0, 1, . . . ; p−1 = 0).

Let P1 = εp1, whereε > 0 is some constant. We will write this recurrence in the form

(4) P1pk = akpk+1 + bkpk + ckpk−1,

which follows from (3) upon noticing thatP1 is a linear function. By (2), the coefficientsak, bk, ck are
nonnegative.

LetC ⊂ X be a code of sizeM and distanced. Denote by∆(C) = {τ(d(x,y)), x,y ∈ C,x 6= y} the
set of values that the functionτ takes on the distances between distinct code points. Letτ0 = τ(0).

The main theorem of the linear-programming method asserts the following.

Theorem 1. [2, 7] LetC ⊂ X be a code of sizeM. LetF (t) =
∑m

i=0 Fipi(x) be a polynomial that satisfies
(i) F0 > 0, Fi ≥ 0, i = 1, 2, . . . ,m;
(ii) F (x) ≤ 0 for x ∈ ∆(C).

ThenM ≤ F (τ0)/F0.

The proof is obvious because on the one hand, by assumption (ii)
∑

x,y∈C
F (τ(d(x,y))) ≤ MF (τ0);

on the other hand, because of (1), assumption (i) and the factthatp0 = 1,
∑

x,y∈C
F (τ(d(x,y))) =

∑

i

Fi

∑

x,y

pi(τ(d(x,y))) ≥ F0M
2.

This theorem is equivalent to a duality theorem for a linear programming problem whose variables are
the coefficients of the distance distribution of the codeC and whose constraints are given by the Delsarte
inequalities. For this reason, estimates obtained from this theorem are called the linear programming bounds.
Our objective in this section is to present a new method of obtaining bounds onM based on this theorem.
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We shall use a generic notationAk(ci, bi, ai) for a tridiagonal matrix of the form

Ak =




b0 a0 0 0 . . . 0
c1 b1 a1 0 . . . 0

c2 b2 a2 . . . 0
. . . . . . . . . . . . . . . ak−1
0 0 . . . . . . ck bk


 .

The largest eigenvalue of a square symmetric matrixM will be denoted byλmax(M).
Throughout the paper we use bold letters to denote operatorsacting onV and regular letters to denote

their matrices in the basis{pi}. Let Vk be the space of polynomials of degree≤ k considered as a subspace
of V . LetEk be the orthogonal projection fromV to Vk. Consider the operator

Sk = Ek ◦ P1 : Vk → Vk,

i.e., multiplication byP1 followed by projection onVk. The argument that follows relies on the fact that this
operator is self-adjoint (with respect to the bilinear form〈·, ·〉). Indeed, both multiplication by a function and
the orthogonal projection are self-adjoint operators. Therefore, the matrixSk = Ak(ci, bi, ai) is symmetric.
In other words,

ai = 〈P1pi, pi+1〉 = 〈pi, P1pi+1〉 = ci+1.

A p× p matrixA ≥ 0 (i.e., a matrix with nonnegative entries) is called irreducible if for any partition of
the set of indices{1, 2, . . . , p} into two disjoint subsetsI andJ , |I| + |J | = p, the matrix(ai,j)i∈I,j∈J is
nonzero (in other words, a directed graphG with vertices{1, 2, . . . , p} and edges(i, j) wheneverAij > 0
is strongly connected). For instance, the matrixSk is nonnegative and irreducible.

In the next lemma we collect the properties of irreducible matrices used below.

Lemma 1. LetA ≥ 0 be ap× p irreducible symmetric matrix.
(a) Its largest eigenvalueλmax(A) is positive and has multiplicity one. There exists a vectory > 0 such

thatAy = λmax(A)y.
(b) λmax(A) ≤ max1≤i≤p

∑
j Aij.

(c) For anyy 6= 0, λmax(A) ≥ (Ay,y)
(y,y) .

(d) If 0 ≤ B ≤ A for some matrixB, or if B is a principal minor ofA, then|λmax(B)| ≤ λmax(A).

Here claims (a),(b),(d) form a part of the Perron–Frobeniustheory (see, e.g., [5]), and claim (c) is obvious
and holds true for any symmetric matrix.

The suggested method for deriving upper bounds is based on the following theorem.

Theorem 2. LetC ⊂ X be an(M,d) code and letρk = akpk+1(τ0)/pk(τ0). Then

M ≤ 4ρkp
2
k(τ0)

P1(τ0)− λmax(Sk)

for all k such thatλmax(Sk−1) ≥ P1(x) for all x ∈ ∆(C).

Proof : Let g =
∑k

i=1 gipi ∈ Vk. Fix someρ > 0 (its value to be chosen later). Consider the operator
Tk : Vk → Vk defined by

(5) Tkg = Skg − ρgkpk,

and letθk be its largest eigenvalue. Recall thatTk is the matrix of this operator in the basis{pi}. (Tk is the
same asSk except that(Tk)k+1,k+1 = (Sk)k+1,k+1

− ρ.) We may “shift” the matrixTk by a multiple of
the identity matrixI to make all of its elements nonnegative. For instance, we mayconsiderTk + ρkI ≥ 0.
Therefore, by Lemma 1(d) we have

λmax(Sk−1 + ρI) < θk + ρ < λmax(Sk + ρI),
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whence we get

(6) λmax(Sk−1) < θk < λmax(Sk).

Moreover, the eigenvalueθk is of multiplicity one. Denote byf = (f0, f1, . . . , fk) ∈ Vk the eigenvector
that corresponds to it. By (5) we have

P1f = θkf + ρfkpk + fkakpk+1,

so

f =
ρpk + akpk+1

P1 − θk
fk.

Consider the polynomialF = (ρpk + akpk+1)f. By Lemma 1(a),f can be chosen to have positive coor-
dinates. Therefore by (2), the coefficients of the expansionof F into the basis{pi} are nonnegative. Next,
if λmax(Sk−1) ≥ P1(x) for x ∈ ∆(C), then by (6) we haveF (x) ≤ 0 for x ∈ ∆(C), i.e.,F (x) satisfies
condition (ii) of Theorem 1. Since multiplication byf is a self-adjoint operator, we compute

F0 = 〈(ρpk + akpk+1)f, 1〉 = 〈ρpk + akpk+1, f〉 = ρfk > 0

and

F (τ0) =
(ρpk(τ0) + akpk+1(τ0))

2

P1(τ0)− θk
fk <

(ρpk(τ0) + akpk+1(τ0))
2

P1(τ0)− λmax(Sk)
fk

provided thatλmax(Sk) < n. Thus,

F (τ0)

F0
<

(ρpk(τ0) + akpk+1(τ0))
2

ρ(P1(τ0)− λmax(Sk))
.

The value ofρ minimizing the left-hand side isρ = ρk. The claimed estimate is obtained by using the
polynomialF = (ρkpk + akpk+1)f in Theorem 1.

Remark 1.Note that by Lemma 1(d), the{λmax(Sk)} form a monotone increasing sequence. Therefore,
the last condition of the theorem holds for allk greater than some valuek0.

Next let us estimate the largest eigenvalue ofSk.

Lemma 2. Letai+1 > ai, bi+1 > bi, i = 0, 1, . . . . Then for alls = 1, . . . , k + 1,

1

s
(2(s − 1)ak−s+1 + sbk−s+1) ≤ λmax(Sk) ≤ ak−1 +max(ak−1 + bk−1, bk).

Proof : By Lemma 1(b)

λmax(Sk) ≤ max(ak−2 + bk−1 + ak−1, ak−1 + bk),

hence the upper bound. On the other hand, takey = (0k−s+11s)t wheret denotes transposition. Then by
part (c) of the same lemma,

λmax(Sk) ≥
1

s

(
2
s−1∑

p=1

ak−p +
s−1∑

p=0

bk−p

)
.

Since we assumed that the coefficientsai, bi are monotone increasing oni this implies the lower bound.

Remark 2.In effect, Lemma 2 provides an estimate of the extremal zero of pk+1. Indeed, consider the
operatorXk = Ek ◦ x : Vk → Vk. It is self-adjoint, so its matrix in the basis{pi} is tridiagonal symmetric
and is given byXk = Ak(γi, βi, αi), where the elementsαi, βi, γi are the coefficients in the three-term
recurrence (3).

It is well known (e.g., [6]) that the spectrum ofXk coincides with the set of zeros ofpk+1. [A proof goes
as follows: letpk+1(λ) = 0. Consider the action ofXk on the polynomialf = pk+1/(λ− x) ∈ Vk :

λf −Xkf = λf −Ek(xf) = Ek((λ− x)f) = Ekpk+1 = 0.
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Conversely, iff ∈ Vk, f 6≡ 0, and0 = λf −Xkf = Ek((λ− x)f), this implies that(λ− x)f is a constant
multiple ofpk+1. Therefore,pk+1(x) is proportional1 to det(xIk+1 −Xk).] Then the largest zerox+k+1 of
pk+1 can be found asx+k+1 = λmax(Xk) = max‖y‖=1(Xky, y), or more concretely as

x+k+1 = max
‖y‖=1

{ k∑

i=0

βiy
2
i + 2

k−1∑

i=0

αiyiyi+1

}
.

This formula was first published in [10, p.580] with a different proof.
We note that the relation between the extremal zero ofpk+1 and the largest eigenvalueλmax(Xk) makes

the task of finding the zero computationally much easier thatthe direct approach because of the existence
of very efficient iterative algorithms for the symmetric eigenvalue problem. This property is helpful for
computing linear programming bounds on codes such as the bounds considered in the next section and other
similar results for codes of moderate or even large length (on the order of several thousands).

3. Examples. In this section we consider a few examples of interest to coding theory.

3.1. Binary codes. LetX = {0, 1}n be the binary Hamming space. It is known [2, 7] that the polynomialspi
are given by the (normalized) Krawtchouk polynomials{K̃k(x), k = 0, 1, . . . , n}. We haveµ(i) = 2−n

(n
i

)
,

so the bilinear form can be written as〈f, g〉 = ∑n
i=0 µ(i)f(i)g(i). Let C be a binary code of lengthn, size

M and minimum Hamming distanced = d(C). We chooseτ(k) = k to obtain∆(C) ⊂ {d, d + 1, . . . , n}.
This inclusion may be proper depending on the codeC, but we will ignore this and assume that∆(C) =
{d, d + 1, . . . , n} since this assumption can only relax the linear programmingbound onM .

The polynomialsK̃k satisfy a three-term recurrence relation [12]

(7) 2xK̃k(x) = −
√
(n− k)(k + 1)K̃k+1(x) + nK̃k(x)−

√
(n− k + 1)kK̃k−1(x),

K̃0 = 1, K̃i(x)K̃j(x) =
∑

k q
k
i,jK̃k(x) with qki,j ≥ 0, and

(8) K̃k(0) =

√(
n

k

)
.

Choose in (4)P1 =
√
np1 = n − 2x. From (7) we then obtainSk = Ak(ai−1, 0, ai), whereai =√

(i+ 1)(n − i), i = 0, 1, . . . , or more explicitly,

Sk =




0
√
n 0 . . . . . . 0√

n 0
√
2(n − 1) . . . . . . 0

0
√

2(n − 1) 0 . . . . . . 0
. . . . . . . . . . . . . . . . . .

. . . . . . . . . 0
√

(k − 1)(n − k + 2) 0

. . . . . . . . .
√

(k − 1)(n − k + 2) 0
√

k(n− k + 1)

0 0 . . . 0
√

k(n− k + 1) 0




.

The monotonicity assumption of Lemma 2 clearly holds because ak > ak−1 as long ask < n/2. Therefore
for the largest eigenvalue ofSk we obtain the following estimate:

2(s − 1)

s

√
(k − s+ 2)(n − k + s− 1) ≤ λmax(Sk) ≤ 2

√
k(n− k + 1).

Lettingn → ∞, s → ∞, s = o(n), we obtain the exact asymptotic behavior of the main term:

(9) lim
n→∞, k/n→τ

λmax(Sk)

n
= 2

√
τ(1− τ).

1The coefficient equalsα0α1 . . . αk−1 and can be found recursively from (3) and the equalityp0 ≡ 1.
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Sinceτ0 = 0 andρk = n− k, the bound of Theorem 2 takes the form

(10) M ≤ 4(n − k)

n− λmax(Sk)

(
n

k

)

for all k such thatλmax(Sk−1) ≥ P1(d) = n − 2d. This estimate together with (9) leads to the following
asymptotic result (the asymptotic MRRW bound for binary codes [11]):

1

n
logM ≤ h(1/2 −

√
δ(1− δ))(1 + o(1)).

Hereh(x) = x log2 x−(1−x) log2(1−x) is the binary entropy function. Indeed, letlim d
n = δ and assume

thatδ ≤ 1/2. We need to choosek so thatλk−1

n ≥ (1− 2δ)(1 + o(1)) asn → ∞. In the limit, this amounts
to takingτ that satisfies2

√
τ(1− τ) ≥ 1 − 2δ, or τ ≥ 1/2 −

√
δ(1 − δ). The result now follows by the

Stirling approximation.

Remark 3.Specializing Remark 2 to the case at hand, we observe from (7)that

Xk = 1/2(nIk+1 − Sk) = 1/2Ak(−
√

i(n− i+ 1), n,−
√

(i+ 1)(n − i)).

Therefore we obtain the following expression for the largest root of K̃k+1 :

x+k+1 =
n

2
+ max

‖y‖=1

k−1∑

i=0

yiyi+1

√
(i+ 1)(n − i).

This result is originally due to [9]. Although more accurateestimates of the extremal zeros are available in
the literature [10, 4], our Lemma 2 suffices to compute the correct value of the main term.

Remark 4. The bound (10) is close to the previously known estimates obtained within the frame of
Delsarte’s method. In particular, Levenshtein [8, 10] constructed a sequence of polynomials that are optimal
in the Delsarte problem (with some qualifiers). His results imply that the above estimate does not improve
the known bounds onM . The result of [11] is also of the form similar to (10).

Remarks 2–4, modified appropriately, apply also to the otherexamples in this section.

3.2. Constant-weight codes. Now let X ⊂ Jn,w the binary Johnson space, i.e., the set of vectors in
{0, 1}n of Hamming weightw. We taked to be the Hamming metric so thatD = {0, 2, . . . , 2w} and
put τ(d) = d/2. The relevant family of orthogonal polynomials is given by the Hahn polynomialsHk(x)

[2]. They are orthogonal onτ(D) = {0, 1, . . . , w} with respect to the weightµ
J
(i) =

(w
i
)(n−w

i
)

(n
w
)

according

to
∫
HkHmdµ

J
= n−2k+1

n−k+1

(n
k

)
δkm and satisfy a three-term recurrence

(11) (k + 1)(w − k)(n − w − k)(n − 2k + 2)(n − 2k + 3)Hk+1(x) =

(n− 2k − 1)(n− 2k + 3)[(n + 2)w(n − w)− nk(n− k + 1)− (n− 2k)(n − 2k + 2)x]Hk(x)

− (n− 2k − 1)(n − 2k)(w − k + 1)(n − w − k + 1)(n − k + 2)Hk−1(x).

Note that
∑w

i=1 µJ
(i) = 1. Let us normalizeHk by settingH̃k =

(
n−2k+1
n−k+1

(
n
k

))−1/2
Hk. As above, we have

H̃i(x)H̃j(x) =

w∑

k=0

qki,jH̃k(x) (qki,j ≥ 0)

and

H̃k(0) =

√
n− 2k + 1

n− k + 1

(
n

k

)
.

Let us take
P1(x) = (n− 1)−1/2H̃1(x) = 1− nx

w(n −w)
.
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Let us write out the matrix of the operatorSk = Ek ◦ P1 in the orthonormal basis. We haveSk =
Ak(ai−1, bi, ai), where the matrix elements can be computed from (11). We obtain

ai =
n(w − i)(n −w − i)

w(n− w)(n − 2i)

√
(i+ 1)(n − i+ 1)

(n− 2i+ 1)(n − 2i− 1)
,

bi =
(n− 2w)2i(n− i+ 1)

w(n− w)(n − 2i)(n − 2i+ 2)
, i ≥ 0.

Let C ⊂ Jn,w be a code of sizeM and distance2d. Let us apply Theorem 2 to boundingM as a function
of d. We haveτ0 = 0, H̃0 = 1,

ρk = ak
H̃k+1(0)

H̃k(0)
=

n(w − k)(n − w − k)(n− k + 1)

w(n − w)(n − 2k)(n − 2k + 1)
,

and∆(C) = {0, 1, . . . , d}. Thus, we obtain the following estimate.

Theorem 3.

M ≤ 4n(w − k)(n − w − k)

(1− λmax(Sk))w(n − w)(n − 2k)

(
n

k

)

for all k such thatλmax(Sk−1) ≥ 1− nd
w(n−w) .

Let us find the minimumk that satisfies the required condition. First we use Lemma 2 tocompute the
asymptotic behavior ofλmax(Sk).

Lemma 3.

lim
n→∞

w/n→ω,k/n→τ

λmax(Sk) =
2ω(1− ω) +

√
τ(1− τ)

ω(1− ω)(1 + 2
√

τ(1− τ))

√
τ(1− τ).

Proof : Note that for the upper bound in Lemma 2 is suffices to prove that the valueai + bi + ai−1 grows
on i. Lettingα = i

n , we compute

ai−1 + bi + ai =
2(ω − α)(1− ω − α)

√
α(1 − α) + (1− 2ω)2α(1 − α)

ω(1− ω)(1− 2α)2
(1 + o(1)).

=
2ω(1− ω)

√
α(1 − α) + α(1− α)

ω(1− ω)(1 + 2
√

α(1 − α))
(1 + o(1)).

The main term on the right-hand side of the last expression isa growing function ofα. Indeed,
√

α(1− α)
grows onα for α < 1/2, so we only need to check that the functiont(2ω(1− ω) + t)/(1 + 2t) increases on
t for 0 ≤ t ≤ 1/2 which is straightforward. Thus we puti = k − 1 and obtain forλmax(Sk) an upper bound
of the form claimed. Lemma 2 also implies a matching lower bound. Namely, from its proof,

λmax(Sk) ≥
1

s

(
2

s−1∑

p=1

ak−p +

s−1∑

p=0

bk−p

)
(s = 1, . . . , k + 1).

For large values of the parameters, we can write

λmax(Sk) ≥ (ak−s + bk−s+1 + ak−s+1)(1 + o(1)).

The proof is completed by lettings → ∞, s = o(n).

Let us use this lemma in Theorem 3. Assume thatn → ∞, d = δn. The condition onk in this theorem
will be fulfilled for anyk = τ/n that satisfies

2ω(1− ω) +
√

τ(1− τ)

ω(1− ω)(1 + 2
√

τ(1− τ))

√
τ(1− τ) > 1− δ

ω(1− ω)
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or

δ >
(ω − τ)(1 − ω − τ)

1 + 2
√

τ(1− τ)
.

We conclude that Theorem 3 implies the following estimate for an(n,M, 2δn) codeC ⊂ Jn,w (the asymp-
totic MRRW bound for constant weight codes [11]):

1

n
logM ≤ h(τ)(1 + o(1)),

whereδ = (ω − τ)(1 − ω − τ)/(1 + 2
√

τ(1− τ)).

3.3. Spherical codes. Consider codes on the unit sphereSn−1 in R
n. The polynomialspi in this case belong

to the family of Gegenbauer polynomialsCk(x) [12, pp.80ff]. We have
∫ 1

−1
Ci(x)Cj(x)(1 − x2)

n−3

2 dx =

(n+i−3
i

)

n+ 2i− 2
ωnδi,j ,

whereωn = πΓ(n−2)

2n−2Γ2(n−2

2
)
, and in particular fori = j = 0,

∫ 1
−1(1− x2)

n−3

2 dx = ωn/(n − 2). We also have

Ck(1) =
(
n+k−3

k

)
.

Normalizing the measure, we obtaindµ(x) = n−2
ωn

(1− x2)(n−3)/2dx. The normalized Gegenbauer poly-
nomials are then given by

C̃k =

√
n+ 2k − 2

(n− 2)
(n+k−3

k

)Ck.

The polynomialsC̃k satisfy a three-term recurrence of the form

xC̃k(x) = akC̃k+1(x) + ak−1C̃k−1(x),

whereai =
√

(n+i−2)(i+1)
(n+2i)(n+2i−2) , i = 0, . . . , andC̃−1 = 0, C̃0 = 1. Further,C̃iC̃j =

∑
k q

k
i,jC̃k whereqki,j ≥ 0

and

C̃k(1) =

√
n+ 2k − 2

n− 2

(
n+ k − 3

k

)
.

LetC(n,M, t) denote a code in which the angle between any two distinct vectorsxi,xj satisfiescos(xî,xj)
≤ t. As remarked above, we takeτ(d) = 1 − d2/2. We haveD = [0, 2], τ(D) = [−1, 1],∆(C) ⊂
[−1, t], τ0 = 1. ChooseP1(x) = n−1/2C̃1(x) = x, then the matrixSk has the formAk(ai−1, 0, ai), so

ρk = ak
C̃k+1(1)

C̃k(1)
=

n+ k − 2

n+ 2k − 2
.

From Theorem 2 we obtain

Theorem 4.

(12) M ≤ 4

1− λmax(Sk)

(
n+ k − 2

k

)

for all k such thatλmax(Sk−1) ≥ t.

This coincides with the original bound of [7].

Lemma 4. For anys = 2, . . . , k

2(s − 1)

s

√
(n+ k − s− 1)(k − s+ 2)

(n+ 2k − 2s+ 2)(n + 2k − 2s)
≤ λmax(Sk) ≤ 2

√
(n + k − 3)k

(n+ 2k − 2)(n + 2k − 4)
.



LP BOUNDS ON CODES 9

In particular,

lim
n→∞, k

n
→ρ

λmax(Sk)

n
= 2

√
ρ(1 + ρ)

1 + 2ρ
.

Proof : We only need to check thatai ≥ ai+1. Forn ≥ 5,

a2i − a2i−1 =
(n− 2)(n − 4)

(n+ 2i)(n + 2i− 2)(n + 2i− 4)
> 0,

soai is an increasing function ofi. The inequalities in the claim now follow directly from Lemma 2. Letting
s → ∞, s = o(n) and taking the limit gives the asymptotic behavior ofλmax(Sk).

Theorem 4 and Lemma 4 together enable us to recover the asymptotic bound of [7]. Namely, using the
Stirling approximation we obtain

1

n
logM ≤ ((1 + ρ) log(1 + ρ)− ρ log ρ)(1 + o(1))

under the conditiont ≤ λmax(Xk−1) which in the limit ofn → ∞, kn → ρ translates intoρ ≥ 1−
√
1−t2

2
√
1−t2

.

3.4. Codes in projective spaces. A class of spaces related to the real sphere is given by the projective spaces
PLn−1 whereL = R or C of H. The zonal spherical functions in these spaces are given by the Jacobi
polynomialsPα,β

k (x) [12], whereα = σ(n− 1)− 1, β = σ − 1, andσ = 1/2, 1, 2, respectively.

The polynomialsPα,β
k (x) satisfy

∫ 1

−1
Pα,β
i (x)Pα,β

j (x)(1 − x)α(1 + x)βdx =
2α+β+1(k + α)!(k + β)!

(2k + α+ β + 1)k!(k + α+ β)!
δi,j,

Pk(1) =

(
k + α

α

)
,

where by definitionx! = Γ(x+ 1). The coefficients of three-term recurrence (3) have the form

αk =
2(k + 1)(k + α+ β + 1)

(2k + α+ β + 1)(2k + α+ β + 2)
, βk =

β2 − α2

(2k + α+ β)(2k + α+ β + 2)
,

γk =
2(k + α)(k + β)

(2k + α+ β)(2k + α+ β + 1)
.

Define the bilinear form onV by 〈f, g〉 =
∫ 1
−1 fgdµ, where

dµ(x) =
(α+ β + 1)

(α+β
α

)

2α+β+1
(1− x)α(1 + x)βdx.

Then the squared norm ofPk is equal to

‖Pα,β
k ‖2 = (α+ β + 1)(α + β)!(k + α)!(k + β)!

(2k + α+ β + 1)α!β!k!(k + α+ β)!
.

Denote byP̃k = Pα,β
k /‖Pα,β

k ‖ the normalized Jacobi polynomials.
We will take in (4)

P1(x) = Pα,β
1 (x) =

1

2
((α+ β + 2)x+ α− β),

then the coefficients of the recurrence are found to be

ak =
α+ β + 2

2k + α+ β + 2

√
(k + α+ 1)(k + β + 1)(k + 1)(k + α+ β + 1)

(2k + α+ β + 3)(2k + α+ β + 1)
,

bk =
2(α− β)k(k + α+ β + 1)

(2k + α+ β)(2k + α+ β + 2)
,
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andck = ak−1.
Let C ⊂ X be a code of sizeM in which |(xi,xj)| ≤ t for any two distinct vectorsxi,xj . We have

D = [0,
√
2], so choosingτ(d) = 2(1− d2/2)2 − 1 we obtainτ(D) = [−1, 1],∆(C) ⊂ [−1, 2t2 − 1]. We

compute

P̃ 2
k (1) =

(2k + α+ β + 1)

α+ β + 1

(
k+α
α

)(
k+α+β

k

)
(
k+β
β

) .

ρk = ak
P̃k+1(1)

P̃k(1)
=

(α+ β + 2)(k + α+ 1)(k + α+ β + 1)

(2k + α+ β + 1)(2k + α+ β + 2)
,

Using these expressions in Theorem 2 we obtain

Theorem 5.

M ≤ 4(α + β + 2)(k + α+ 1)

(2k + α+ β + 2)(1 − λmax(Sk)

(k+α
α

)(k+α+β+1
k

)
(
k+β
β

) .

Let us use Lemma 2 to derive the asymptotic behavior ofλmax(Sk) ask → ∞, α = ak, β = bk, a >
0, b ≥ 0. We obtain

λmax(Sk)

k
→ 2

(
(a+ b)

√
(a+ 1)(b+ 1)(a+ b+ 1) + (a− b)(a+ b+ 1)

)

(a+ b+ 2)2
.

The condition for Theorem 2 to be applicable is

(13) λmax(Sk) > P1(2t
2 − 1) = (α+ β + 2)t2 − β − 1.

For instance, let us derive a bound for the caseX = PR
n−1. Lettingk = sn/2, α = (n−3)/2, β = −1/2,

we obtaina = 1/s, b = 0,
λmax(Sk)

k
→ 4(1 + s)

(1 + 2s)2
.

Therefore, for large values of the parameters condition (13) becomes

4(1 + s)

(1 + 2s)2
=

t2

s
,

or s = 1/2((1/
√
1− t2)− 1). From Theorem 2 we obtain the asymptotic bound of [7] on the code size:

1

n
logM ≤ (1 + s) log(1 + s)− s log s.

In a similar way we can recover the asymptotic bounds of [7] inthe other cases mentioned.
The method presented is a linear-algebraic alternative to the analytic methods of [11, 7, 10]. It is equiva-

lent to them in the sense that it gives the same asymptotic results, although for finite parameters the bounds
derived by these two approaches generally do not coincide.
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