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SPECTRAL APPROACH TO LINEAR PROGRAMMING BOUNDS ON CODES

ALEXANDER BARG* AND DMITRY NOGIN'

ABSTRACT. We give new proofs of asymptotic upper bounds of coding thebtained within the frame

of Delsarte’s linear programming method. The proofs relytlom analysis of eigenvectors of some finite-
dimensional operators related to orthogonal polynomiHitee examples of the method considered in the paper
include binary codes, binary constant-weight codes, sphlerodes, and codes in the projective spaces.

1. Introduction. Let X be a compact metric space with distance functiorA codeC is a finite subset

of X. Define the minimum distance 6f asd(C) = min, yec 24y d(x,y). A variety of metric spaces that
arise from different applications include the binary Hamggpace, the binary Johnson space, the sphere
in R™, real and complex projective spaces, Grassmann manificlsEstimating the maximum size of the
code with a given value of is one of the main problems of coding theory. Lt be the cardinality of

C'. A powerful technique to bound/ above as a function of(C') that is applicable in a wide class of
metric spaces including all of the aforementioned examigl&elsarte’s linear programming methad [2].
The first such examples to be considered were the binary Haghspace,, = {0, 1}" and the Johnson
spaceJ™" C H, which is formed by all the vectors df,, of Hamming weightw, with the distance given

by the Hamming metric. The best currently known asymptasiingates of the size of binary codes and
binary constant weight codes were obtained in McEliece grodh, Rumsey, Welch[l11] and are called the
MRRW bounds. Shortly thereafter, Kabatiansky and LevexisHf] established an analogous bound for
codes on the unit sphere Ri* with Euclidean metric and some related spaces. This papeiirgroduced a
general approach to bounding the code size in distanceHikgnmetric spaces based on harmonic analysis
of their isometry group. This approach was furthered in paj [10] which also explored the limits of
Delsarte’s method.

In this paper we suggest a new proof method for linear progriag upper bounds of coding theory.
Our approach, which relies on the analysis of eigenvectbsame finite-dimensional operators related to
orthogonal polynomials arguably makes some steps of thefpomnceptually more transparent then those
previously known. We also consider some of the main examplestioned above, The linear-algebraic
ideas that we follow were introduced in a recent paper by Bagti] in which a similar approach has been
taken to establish an asymptotic bound for codes in the resdsBnann manifold.

2. A bound on thecodesize. We assume thaX is a distance-transitive space which means that its isgmetr
groupG acts doubly transitively on ordered pairs of points at amigistance. In this case the zonal spher-
ical kernelsK;(x,y) associated with irreducible regular representation§ afepend only on the distance
betweenx andy. In all the examples mentioned above, except for the Grassmmamifold, K;(x,y) can
be expressed as a univariate polynomidl:) of degree;, wherex = 7(d) is some function of the distance
d(x,y).

Let D be the (finite or infinite) set of the possible values of thaagise inX. We will assume that
7(d(x,y)) is a monotone function that sendsto a segmenja, b]. For instance, for the Hamming space,
D = {0,1,...,n} and7 can be taken the identity function. For the sph&fe(R), D = [0,2]. In this
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case it is convenient to take(d) = 1 — d?/2 to be the scalar produck,y) = 3, z;y;. The invariant
measure oir induces a measurg: on [a, b]. For instance, foX = {0, 1}", the measurédy corresponds to

the binomial probability distribution of0, 1, ..., n}, sofD dp = 1. We will assume that the last condition
holds in general and normalizewhen this is not the case.
The kernelsK;(x,y),i =0, 1,. .., are positive semidefinite which means t@,yec K;(x,y) > 0for

any finite setC' C X. This property together with the fact thaf;(x, y) can be expressed as a polynomial
of one variable gives rise to the following set of inequati

(1) > pi(rd(x,¥)) =0, i=0,1,...

x,yeC

called the Delsarte inequalities in coding theory.

The functionT can be chosen in such a way that the polynomigds = 0,1, ..., are orthogonal on
[a, b] with respect to the scalar produ¢f,g) = [ fgdu. Below we denote by the spacely(du) of
square-integrable functions ¢ b)].

We will assume that the polynomials are orthonormal, i.el|p;||> = (p;, p;) = 1. Note that this implies
thatpy = 1. Another assumption used below is that the progipt for all ¢, 5 > 0 expands into the basis
{pi} with nonnegative coefficients, i.e.,

2) ppi =Y dpe  (qf;>0).
k

This property is again implied by the fact that the zonal sighékernels are positive semidefinite, see [7].
Since the polynomial$p; } are orthogonal, they satisfy a three-term recurrence [il2jeoform

(3) TPk = OkPi+1 + BrPk + VkPr—1 (k=0,1,...;p-1 =0).

Let P, = ep1, wheree > 0 is some constant. We will write this recurrence in the form

4) Pipy, = agpry1 + bipr + ckPr—1,

which follows from [3) upon noticing thaP; is a linear function. By[{2), the coefficients;, by, ¢, are
nonnegative.

Let C' C X be a code of sizd/ and distance. Denote byA(C) = {r(d(x,y)), x,y € C,x # y} the
set of values that the functiontakes on the distances between distinct code pointsroLetr(0).

The main theorem of the linear-programming method asdsetfotiowing.

Theorem 1. [2,[4] LetC C X be acode of siz&/. Let F(t) = > " , F;p;(x) be a polynomial that satisfies
(i) Fo >0,F; >0,i=1,2,...,m;
(79) F(z) < 0forz e A(C).

ThenM < F(To)/Fo.

The proof is obvious because on the one hand, by assumpgdion (i
Y F(r(d(x,y))) < MF(r);
x,yeC
on the other hand, because [df (1), assumption (i) and thé¢haigi, = 1,
Y Fr(d(x,y) = Y FE Y pi(r(d(x,y))) = FyM>.
x,yeC 7 X,y

This theorem is equivalent to a duality theorem for a lineagpamming problem whose variables are
the coefficients of the distance distribution of the céad@nd whose constraints are given by the Delsarte
inequalities. For this reason, estimates obtained frogtti@orem are called the linear programming bounds.
Our objective in this section is to present a new method ddialstg bounds o/ based on this theorem.



LP BOUNDS ON CODES 3

We shall use a generic notatioty (¢;, b;, a;) for a tridiagonal matrix of the form

bo ap 0 0 0
C1 bl al 0 0
Ak: C2 b2 a 0
Qp_—1
0 0 ... ... ¢ by,

The largest eigenvalue of a square symmetric matfiwill be denoted by, (M).

Throughout the paper we use bold letters to denote operattirsg onV" and regular letters to denote
their matrices in the basi®; }. Let V. be the space of polynomials of degree: considered as a subspace
of V. Let E;, be the orthogonal projection froi to V.. Consider the operator

S, =EpoP,:V, — Vg,

i.e., multiplication byP; followed by projection ori/,.. The argument that follows relies on the fact that this
operator is self-adjoint (with respect to the bilinear fafm) ). Indeed, both multiplication by a function and
the orthogonal projection are self-adjoint operators.réfuee, the matrixS;, = Ax(c;, b;, a;) is symmetric.

In other words,

a; = (P1pi, pit1) = (i, Pipiv1) = cit1-

A p x pmatrix A > 0 (i.e., a matrix with nonnegative entries) is called irrablecif for any partition of
the set of indiceq1,2, ..., p} into two disjoint subset$ andJ, || + |J| = p, the matrix(a; ;)icr jes IS
nonzero (in other words, a directed gra@twith vertices{1,2, ..., p} and edge$:, j) whenever4;; > 0
is strongly connected). For instance, the mafijxs nonnegative and irreducible.

In the next lemma we collect the properties of irreduciblerioas used below.

Lemmal. Let A > 0 be ap x p irreducible symmetric matrix.

(a) Its largest eigenvalug,,.« (A) is positive and has multiplicity one. There exists a vegtor 0 such
that Ay = Apax(A4)y.

(b) )‘maX(A) < maxi<i<p Zj Aij-

() For anyy # 0, Aax(4) > (728,

v,y)
(d) If 0 < B < A for some matrix3, or if B is a principal minor ofA, then|Anax(B)| < Amax(A).

Here claims (a),(b),(d) form a part of the Perron—Frobetiesry (see, e.g..]5]), and claim (c) is obvious
and holds true for any symmetric matrix.
The suggested method for deriving upper bounds is basedednltbwing theorem.

Theorem 2. LetC' C X be an(M, d) code and lepy, = arpi+1(70)/pr(70). Then

M < 4prpi(T0)
Pl (TO) - )\maX(Sk)
for all £ such that\yax(Sx—1) > Pi(z) forall x € A(C).
Proof : Letg = Ele gip; € Vi. Fix somep > 0 (its value to be chosen later). Consider the operator
T : Vi, — V;, defined by
(5) Trg = Skg — PIkDks

and letd;, be its largest eigenvalue. Recall tifatis the matrix of this operator in the badis; }. (7} is the
same asSj, except that Ty )rr1,k+1 = (Sk)k+1,k+1 — p.) We may “shift” the matrixT, by a multiple of
the identity matrix/ to make all of its elements nonnegative. For instance, wecoagiderT, + prl > 0.
Therefore, by Lemmi 1(d) we have

Amax(sk—l + PI) < ek +p < Amax(sk + PI),
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whence we get

(6) )\max(Sk—l) < ek < )\maX(Sk)-
Moreover, the eigenvalug, is of multiplicity one. Denote byf = (fo, f1,-.., fx) € Vi the eigenvector
that corresponds to it. Bjl(5) we have

Pif =0kf + pfipk + frakpr+1,

SO N
PPL T QkPk+1
f= b0, k-
Consider the polynomial’ = (ppx + arpr+1)f. By Lemmall(a),f can be chosen to have positive coor-
dinates. Therefore byl(2), the coefficients of the expanefoh into the basigp;} are nonnegative. Next,
if Amax(Sk—1) > Pi(z) for z € A(C), then by [6) we havé’(z) < 0 for z € A(C), i.e., F(x) satisfies
condition (ii) of TheorenIl. Since multiplication kyis a self-adjoint operator, we compute

Fo = {(ppr + axprs1) f, 1) = {ppx + arprs1, f) = pfe > 0
and

(ppr(10) +akpk+1(7'0))2f - (ppr(T0) +akpk+1(7'0))2f
Pi(19) — 0% P1(19) = Amax(Sk)
provided that\,,.x(Sk) < n. Thus,

F(m) =

F(r0) _ (ppi(10) + arpri1(10))?
Fo P(P1(70) = Amax(Sk))
The value ofp minimizing the left-hand side is = p,. The claimed estimate is obtained by using the
polynomial F' = (pgpi + agpr+1)f in TheorentIL.x

Remark 1 Note that by LemmEl1(d), thf\nax(Sk)} form a monotone increasing sequence. Therefore,
the last condition of the theorem holds for algreater than some valug.
Next let us estimate the largest eigenvalues pf

Lemma?2. Leta;+1 > a;,b;41 > b;,i =0,1,.... Thenforalls=1,... ., k+ 1,
1
2(2(3 — D)ag—st1 + 5bp—s+1) < Amax(Sk) < ag—1 + max(ag—1 + bp—1, by).
Proof : By Lemmd(b)
Amax (Sk) < max(ag—g +bp—1 + ax_1,ax_1 + by),

hence the upper bound. On the other hand, iake (0*~5+11°)* wheret denotes transposition. Then by
part (c) of the same lemma,

max Sk Z%( Zak p+zbk p)

Since we assumed that the coefficients; are monotone mcreasmg @rhis implies the lower bounds

Remark 2.In effect, LemmdR provides an estimate of the extremal zéng.0;. Indeed, consider the
operatorX; = E; oz : Vi — Vj. Itis self-adjoint, so its matrix in the bas{p; } is tridiagonal symmetric
and is given byX; = Ax(v, 5, i), where the elements;, 8;,~; are the coefficients in the three-term
recurrencel(3).

It is well known (e.qg.,[[B]) that the spectrum &f;, coincides with the set of zeros pf . [A proof goes
as follows: letp,1(A\) = 0. Consider the action aX;, on the polynomialf = px11/(A — z) € Vi :

M =X f =Af —Eg(zf) = Ex((A —2)f) = Expg+1 = 0.
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Conversely, iff € Vi, f #0,and0 = A\f — X f = Ex((A — ) f), this implies that A\ — x) f is a constant
multiple of py.1. Thereforep, 1 (z) is proportional® to det (21,1 — Xj).] Then the largest zermkﬂ of
pr+1 can be found a:B;Jrl = Amax(Xk) = maXHyﬂzl(Xky, y), or more concretely as

7y = max { Z Biyi +2 Z azyzym}

This formula was first published i [LO, p.580] W|th a dlffateproof.

We note that the relation between the extremal zeng.of and the largest eigenvalug, .« (X} ) makes
the task of finding the zero computationally much easier tiatdirect approach because of the existence
of very efficient iterative algorithms for the symmetric eiyalue problem. This property is helpful for
computing linear programming bounds on codes such as thels@onsidered in the next section and other
similar results for codes of moderate or even large lengttttfe order of several thousands).

3. Examples. In this section we consider a few examples of interest torgpthieory.

3.1. Binarycodes. LetX = {0, 1}" be the binary Hamming space. Itis knowh([2, 7] that the potgiadsp;
are given by the (normalized) Krawtchouk polynomiéls; (z), k = 0,1,...,n}. We haveu(i) = 27 (1),
so the bilinear form can be written &8, g) = > , (i) f(¢)g(4). Let C be a binary code of length, size
M and minimum Hamming distaneé= d(C'). We chooser (k) = k to obtainA(C) C {d,d+1,...,n}.
This inclusion may be proper depending on the c6féut we will ignore this and assume tha{C') =
{d,d+1,...,n} since this assumption can only relax the linear programroomghd on)\/.

The ponnomiaIsK;‘C satisfy a three-term recurrence relation [12]

(7 25L'Kk -/ (n—=Fk)(k+1 ch—i—l +nKk —vVn—k+1) Kk 1(x

Ky=1, KZ(;L')KJ({L') => qMKk(:U) with qﬁj >0, and

®) Ki(0) = <Z>

Choose in[W)P, = /np1 = n — 2z. From [) we then obtait, = Ax(a;_1,0,a;), wherea; =
(i 4+1)(n—1),i=0,1,..., or more explicitly,

0 Ji0 0 7
Vn 0 2(n-1) 0
0 2m-1) 0 0

S, =
’ 0 VE=1)m—-k+2) 0
Vk=1)(n—k+2) 0 k(n—k+1)
e 0 0 k(n —k+1) 0 i

The monotonicity assumption of Lemiiak 2 clearly holds beeays> a;_; as long as < n/2. Therefore
for the largest eigenvalue &f, we obtain the following estimate:
2(s—1)
S
Lettingn — oo, s — oo, s = o(n), we obtain the exact asymptotic behavior of the main term:
(9) lim /\max(sk)

n—oo, k/n—t n

VkE—5+2)(n—k+s—1) < Anax(Sk) <2Vk(n —k+1).

=2+/7(1—1).

IThe coefficient equalspas . .. ax—1 and can be found recursively frofd (3) and the equality= 1.
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Sincery = 0 andp, = n — k, the bound of Theoreld 2 takes the form

dn—k) (n
@0 Rl ()

for all k& such that\;,.x(Sx—1) > Pi1(d) = n — 2d. This estimate together withl(9) leads to the following
asymptotic result (the asymptotic MRRW bound for binaryeL1]):

%logM < h(Y/2—=+/0(1 = 0))(1+ o(1)).

Hereh(z) = xlogy z — (1 —x)logs(1—x) is the binary entropy function. Indeed, lah % = § and assume
thatd < 1/2. We need to chooske so that% > (1-20)(1+o0(1)) asn — oo. In the limit, this amounts

to taking 7 that satisfie2/7(1 —7) > 1 — 26, or 7 > /2 — /6(1 — §). The result now follows by the
Stirling approximation.

Remark 3Specializing Remark 2 to the case at hand, we observe fibthd¥)

X = 1/2(nIk+1 1/2Ak —\/1 n—z—i—l —/ (z+1)(n—z))

Therefore we obtain the foIIowing expression for the largest of K. k1 :

Ty = 5 P Zyzym +1)(n —i).
This result is originally due td_[9]. Although more accuratgimates of the extremal zeros are available in
the literature[[10,}4], our Lemnid 2 suffices to compute theembivalue of the main term.

Remark 4. The bound[(ID) is close to the previously known estimatesiogtl within the frame of
Delsarte’s method. In particular, Levenshtein 8, 10] ¢arted a sequence of polynomials that are optimal
in the Delsarte problem (with some qualifiers). His resutiply that the above estimate does not improve
the known bounds ofn/. The result of[[T11] is also of the form similar 10{10).

Remarks 2—4, modified appropriately, apply also to the acgRamples in this section.

3.2. Constant-weight codes. Now let X < J™" the binary Johnson space, i.e., the set of vectors in
{0,1}"™ of Hamming weightw. We taked to be the Hamming metric so thd@ = {0,2,...,2w} and
put7(d) = d/2. The relevant family of orthogonal polynomials is given bg tHahn polynomialdiy (x)

[2]. They are orthogonal on(D) = {0, 1,...,w} with respect to the weight, (i) = % according

to [ HyHpmdp, = ijk’“jll (1) 8km and satisfy a three-term recurrence

(11) (k+1)(w—k)(n—w—k)(n —2k+2)(n — 2k + 3)Hp11(x) =
(n—2k—1)(n—2k+3)[(n+2)w(n —w) —nk(n—k+1) — (n —2k)(n — 2k + 2)x]Hi(z)
—(n=2k—-1)(n—-2k)(w—k+1)(n—w—k+1)(n—k+2)H,_1(z).

Note that " 4, (i) = L. Let us normalizef}, by settingF;, = (Z=2:H (Z))_l/QHk. As above, we have

=2 ai(@) (a2 0)
k=0

o = 22520,

Pi(z)=(n—-1)""H(z)=1—

and

Let us take
nr

w(n —w)’
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Let us write out the matrix of the operat&, = E; o P; in the orthonormal basis. We havg, =
Ag(ai—1,b;,a;), where the matrix elements can be computed fiath (11). Werobtai

‘:n(w—i)(n—w—z‘)\/ (i4+1)(n—i+1)
i w(n —w)(n — 2i) (n—2i+1)(n—2i—1)

— (n —2w)?i(n —i+1) o
w(n —w)(n — 2i)(n — 2i + 2)
LetC' C J™* be a code of sizé/ and distanced. Let us apply Theorerf 2 to bounding as a function
of d. We havery =0, Hy = 1,
Hpi1(0) n(w—k)(n—w—k)(n—k+1)
Pr = O ——= = )
H;,(0) w(n —w)(n —2k)(n — 2k + 1)
andA(C) ={0,1,...,d}. Thus, we obtain the following estimate.

Theorem 3.

dn(w —k)(n —w —k) n
M S TG win — w)(n — 2k) (k)

for all & such that\pax (Sk—1) > 1 — —24

(n—w)"

Let us find the minimunk that satisfies the required condition. First we use Lerfimaciopute the
asymptotic behavior ok, (Sk)-

Lemma 3.

2w(l — V(1 — %
nh_{%o A (S) = w w) + T) )
w/n—w,k/n—T 1 - w 1 +2 VT 1 - T
Proof : Note that for the upper bound in Lemiiila 2 is suffices to provettievaluea; + b; + a;—1 grows
oni. Letting o = -, we compute
2w —a)(1 —w—a)y/al —a) + (1 — 2w)?a(l — a)
w(l—w)(1—2a)?

ai_1+b;+a; = (1+0(1))

_ 2w(l —w)y/a(l —a)+a(l —a)

1+o0(1)).
w(l—w)(1+2y/a(l —a)) (L+o(1))

The main term on the right-hand side of the last expressiargi®wing function ofv. Indeed,\/a(1 — «)
grows ona for a < 1/2, so we only need to check that the functidBw(1 — w) +¢)/(1 + 2t) increases on
t for 0 < ¢t < 1/2 which is straightforward. Thus we put= k& — 1 and obtain for\,,.x(Sx) an upper bound
of the form claimed. Lemmid 2 also implies a matching lowemabuNamely, from its proof,

Amax (Sk) > ( Zakp—l—Zbk p) (s=1,....,k+1).

For large values of the parameters, we can write

)\max(sk) > (ak—s + bk—s—i—l + ak—s—i—l)(l + 0(1))
The proof is completed by letting— oo, s = o(n). 1

Let us use this lemma in Theordh 3. Assume that co,d = dn. The condition ork in this theorem
will be fulfilled for any £ = 7/n that satisfies
2w(l — (1-—
w(l—w)+ /7 T) \/7 o1_ 1)
1+ m/ﬁ w(l—w)
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or
(w—1)(1-w-—r1)
N

We conclude that Theorelth 3 implies the following estimateafo(n, M, 26n) codeC' C J™" (the asymp-
totic MRRW bound for constant weight codés[11]):

6>

%1ogM < h(1)(1 4 o(1)),

whered = (w—7)(1 —w —7)/(1 +2+/7(1 — 7)).

3.3. Spherical codes. Consider codes on the unit sphefe! in R™. The polynomialg; in this case belong
to the family of Gegenbauer polynomials,(x) [12, pp.80ff]. We have
(n+?—3)

A ARV
T

1
/ Ci(z)Cj(x)(1 — w2)n773dw =
-1
7' (n—2)
2n721"2(n7*2)
Ck(l) — (n+llz—3)‘
Normalizing the measure, we obtaip(z) = "w—‘nz(l — xz)(”‘?’)/zdac. The normalized Gegenbauer poly-

nomials are then given by
~ n+2k—2
Cyp=,—————Ck.
k \/(TL _ 2) (n+ll:—3) k

The polynomial<’), satisfy a three-term recurrence of the form

wherew,, = , and in particular foi = j = 0, f_ll(l - xz)angda: = wy/(n — 2). We also have

wé’k(ac) = akék+1(x) + ak_lék_l(x),

wherea; = /ARG G — o andC_; = 0,Cy = 1. Further,C;C; = 3, ¢¥,Cr wheregl', > 0

(nt2i)(nt+2i-2)°
and
~ n+2k—2(n+k—3
Cel) = \/W( : )

LetC(n, M, t) denote a code in which the angle between any two distincoveet, x; satisfiescos(x;, x;)
< t. As remarked above, we taked) = 1 — d*/2. We haveD = [0,2],7(D) = [-1,1],A(C) C
[—1,t],70 = 1. ChooseP; (z) = n‘l/QCl(x) = z, then the matrixS, has the formdy(a;—1,0,a;), SO

Crpa(1) _ n+k—2

PE=ORTE ) nt2k—2
From Theorenill2 we obtain
Theorem 4.
4 n+k—2
12 M< —
( ) - 1- )\max(Sk) < k >

for all £ such that\ax(Sk—1) > t.
This coincides with the original bound afi [7].

Lemmad. Foranys =2,....k

2(s—1) m+k—s—1)(k—s+2) (n+k—3)k
s \/(n+2k—2s—|—2)(n—|—2k‘—2s) S/\max(sk)é2\/(n—|—2k‘—2)(n—|—2k‘—4)'
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In particular,
Amax (S, 1
lim ma; ( k) —9 p( +p)
n—o00 ﬁ—)p n 1 + 2p

n

Proof : We only need to check that > a;,1. Forn > 5,

22 (n—2)(n—4) 50

L T 20 (n 20— 2)(n+ 2 —4) ~

s0a; is an increasing function af The inequalities in the claim now follow directly from Lenaf. Letting
s — 00, s = o(n) and taking the limit gives the asymptotic behavion\Qf,,(Si). 1

TheorenT# and Lemnid 4 together enable us to recover the asyeripbund of [7]. Namely, using the
Stirling approximation we obtain

a

1
—log M < ((1+ p)log(1 + p) — plog p)(1 + 0(1))
under the condition < Amax(Xy—1) which in the limit ofn — oo, £ — p translates intp > 12‘#1:32.
3.4. Codesin projective spaces. A class of spaces related to the real sphere is given by thegtke spaces
PL" ! whereL = R or C of H. The zonal spherical functions in these spaces are giveneyahobi
polynomialsP™" (z) [12], wherea = o(n — 1) — 1, 3 = o — 1, ando = 1/2, 1, 2, respectively.
The polynomialsP{’ () satisfy
/1 208+ (k + a)l(k + B)!

a,f3 a,3 o a B _ .
B (@) B (@)1 = 2)7(1 +@)"dw = Ck+a+B+1)k(k+a+p)

Pi(1) = (k N a>>

[0
where by definition:! = T'(z + 1). The coefficients of three-term recurrenEk (3) have the form

2k+1)(k+a+p+1) 5, = B% —a?
Qk+a+B+0)2k+a+8+2)" " Qk+ta+B)k+a+pB+2)
_ 2(k + a)(k + 8)
T @k tat Bk tatptl)
Define the bilinear form o by (f, g) = f_ll fgdu, where

a ath
dpi() = & +ijﬁfa)u—xwu+me.

. —

Then the squared norm &}, is equal to
(a+ B+ 1) (a+ BNk + a)l(k+ )
2k +a+ B+ 1)a!plkl(k +a+ B)

Denote byP;, = P™” /|| P | the normalized Jacobi polynomials.
We will take in [4)

|PP 1% =

Pi(w) = PP7() = 5((a+ 8 + D)+ a— ),

then the coefficients of the recurrence are found to be

 a+p+2 k+a+D)E+B8+D)k+1D)(k+a+B+1)

2%kt a+pB+2 k+a+B+3)2k+a+p+1) ’
2o — Bk(k+a+ 5 +1)

(2k + o+ B) 2k +a+B+2)

ar

b, =
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andc, = ap_1.

Let C C X be a code of sizé/ in which |(x;,x;)| < t for any two distinct vectors;, x;. We have
D = [0,+/2], so choosing-(d) = 2(1 — d?/2)? — 1 we obtainT(D) = [-1,1],A(C) C [-1,2t%> — 1]. We
compute
(2k +a+B8+1) (20 (*137)

RO =" 151 R
_ P (a4 B49(k+a+ D(ktatB+1)
PRTUTR()  @kta+BrDktarpr2)

Using these expressions in Theorgm 2 we obtain

Theorem 5.
MatB+2)(k+at1) (5T
St B0 D ()

Let us use Lemm@l 2 to derive the asymptotic behaviok,of. (Sx) ask — oo, = ak, = bk,a >
0,b > 0. We obtain

Amax (Sk) . 2((@a+b)y/(a+1)(b+1)(a+b+ 1)+ (a—b)(a+b+1))
k (a+b+2)?
The condition for Theoreid 2 to be applicable is
(13) Amax(Sg) > P1(2t* — 1) = (a+ B+ 2)t2 — B — 1.

For instance, let us derive a bound for the c&se- PR"~!. Lettingk = sn/2,a = (n—3)/2,8 = —1/2,
we obtaina = 1/s,b = 0,

Amax (Sk) N 4(1 + s)
k (1+2s5)%
Therefore, for large values of the parameters condifiol f€8omes
A1+s)
(14+2s)2 s’
ors =1/2((1/+/1 —t?) — 1). From Theoreni]2 we obtain the asymptotic bound_bf [7] on theize:

1
ElogM < (14 s)log(1l+s)—slogs.

In a similar way we can recover the asymptotic bound§lof [Thaother cases mentioned.

The method presented is a linear-algebraic alternativieet@nalytic methods of [1L] [7,110]. It is equiva-
lent to them in the sense that it gives the same asymptotidtsealthough for finite parameters the bounds
derived by these two approaches generally do not coincide.
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