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A BOUND ON GRASSMANNIAN CODES

A. BARG∗ AND D. NOGIN†

ABSTRACT. We give a new asymptotic upper bound on the size of a code in the Grassmannian space. The
bound is better than the upper bounds known previously in theentire range of distances except very large
values.

1. Introduction. Let Gk,n(R) be the Grassmann manifold, i.e., the set ofk-planes passing through the
origin inR

n. Our focus is the packing problem inGk,n, i.e., the problem of estimating the number of planes
whose pairwise distances are bounded below by some given valueδ, for a suitably defined distance function
d(p, q). This problem has attracted attention in the recent years forseveral reasons. As a coding-theoretic
(geometric) problem, it is a natural generalization of the coding problem for the projective spacePR

n−1

and a closely related case of the sphere inR
n, both having long history in coding theory [4]. This problem

arises also in engineering applications related to transmission of signals with multiple antennas in wireless
environment [1]. Finally, [9] introduced a construction ofGrassmannian packings which is closely related
to the construction of quantum stabilizer codes, another subject of interest in recent years.

There are several possibilities to define a metric onGk,n [5]. We consider the so-called chordal metric
(projection 2-norm in the terminology of [5]), which can be defined in two equivalent ways. By a well-
known fact [6], given two planesp, q ∈ Gk,n one can definek principal angles between them. This is done
recursively as follows: take unit vectorsx1 ∈ p, y1 ∈ q with the maximum possible angular separation
and denote this angle byθ1. In stepi = 2, . . . , k, take the unit vectorsx ∈ p, xi ⊥ 〈x1, . . . , xi−1〉 and
y ∈ q, yi ⊥ 〈y1, . . . , yi−1〉 with the maximum possible angle between them and denote thisangle byθi.
In this way we obtain the set of principal angles0 ≤ θk ≤ · · · ≤ θ1 ≤ π/2; moreover,(x1, . . . , xk) and
(y1, . . . , yk) form orthonormal bases inp andq, respectively.

Let sin θ = (sin θ1, . . . , sin θk). For a matrix (vector)P let ‖P‖ =
√

∑

i,j P
2
ij denote its Euclidean

2-norm. Define thechordal distancebetweenp andq as follows: d(p, q) = ‖ sin θ‖. It turns out [4] that
the Grassmannian space with the chordal metric affords an isometric embedding in a sphereSr of radius
r =

√

k(n− k)/n in R
(n−1)(n+2)/2. To describe it, letAp be a “generator matrix” ofp, i.e., ak×n matrix

whose rows form an orthonormal basis ofp. Then the orthogonal projection fromRn onp can be written as
Πp = At

pAp. Define a mapΦ : Gk,n → Sr asΦ(p) = Πp − k/nIn (the plane is mapped to the traceless part
of the projection on it). For anyp, the norm ofΦ(p) equals‖Πp − k/nIn‖ = r. The main result of [4] is that
the mappingΦ is an isometry in the sense that

(1) d2(p, q) = 1/2‖Πp −Πq‖2.

We call a collection ofM points inGk,n with pairwise distances at leastδ an(M, δ) codein the Grass-
mannian space and callδ the distance of the code. By (1) such a code gives rise to an(M,

√
2δ) code

C ⊂ Sr, so any upper bound on the distance ofC gives an estimate on the distance ofGk,n. In particular, by
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FIGURE 1. Bounds onR(δ) for k = 3 (top to bottom): upper estimatesRLP [2], RR

(Theorem 1); lower boundRGV [3].

Rankin’s bounds [8] for any(M, δ) codeG,

δ ≤
{

k(n−k)
n

M
M−1 if M ≤ n(n+ 1)/2,

k(n−k)
n if M > n(n+ 1)/2.

These bound are tight in the sense that there exist codes thatmeet them with equality [9, 4]. However, in the
majority of cases, particularly, for codes of the large size, direct application of bounds on spherical codes to
codes inGk,n gives poor results because the image ofGk,n onSr forms a very sparse subset of it.

We will be concerned with asymptotic bounds onM for a given value of the code distanceδ. Let
R = R(δ) = lim supn→∞(1/n) lnM be the largest possiblerate of a sequence of codes with distanceδ in
Gk,n. It is possible to compute the volume bounds onR analogous to the Gilbert-Varshamov and Hamming
bounds of coding theory [10]. Namely, it is proved in [3] thatfor all 0 ≤ δ ≤

√
k,

(2) RGV(δ) ≤ R ≤ RH(δ),

where

RGV(δ) = −k ln(δ/
√
k),

RH(δ) = −k ln

(

√

1−
√

1− δ2

2k

)

.

The upper bound was subsequently improved in [2] relying on Delsarte’s linear programming method in the
form developed in [7]. The result of [2] is as follows:

R ≤ RLP(δ) := k[(1 + s) ln(1 + s)− s ln s],

wheres = (k/2)
(

√
k
δ − 1

)

. This bound coincides with the result of [7] fork = 1 (codes in the projective
space) and can be viewed as its generalization. Fork = 1, RLP(δ) < RH(δ) for all 0 < δ ≤ 1. However,
for greaterk the inequalityRLP(δ) < RH(δ) holds only forδ close to

√
k and thus the linear programming

bound provides a better estimate ofR only for large values of the distance. For instance, fork = 2, 3 the
crossing point isδ = 0.74, 1.31 respectively. We note thatRLP(

√
k) = 0 showing that the lower boundRGV

is tight for δ =
√
k. In this note we establish an improved upper bound stated in the following theorem.

Theorem 1.

R ≤ RR(δ) := −k ln

(

√

1−
√

1− δ2

k

)

.
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ClearlyRR(δ) < RH(δ) for all δ ∈ (0,
√
k ] andRR(

√
k ) = 0. Moreover,RR(δ) < RLP(δ) for most

values ofδ except for values in a small neighborhood of
√
k. The intersection pointδ∗ of the curvesRR and

RLP is given in the following table.
k 2 3 4 5 10
δ∗ 1.37 1.717 1.992 2.231 3.161

The behavior of the bounds fork = 3 is shown in the figure.

2. Proof. The proof combines the isometric embedding ofGk,n in Sr with an application of Blichfeldt’s
density method similar to the arguments of Rankin [8]. The intuition behind this method is as follows.
Consider an(M, δ) codeG ⊂ Gk,n. Denote byBδ = Bδ(x) a metric ball inGk,n with center atx. Open
balls of radiusδ/2 centered at code points do not intersect, so no point ofGk,n can be contained in more
than one such ball. The idea is to extend the radiusδ/2 to some radiusρ so that while one point can belong
to several balls, we can control the way the balls intersect and use some type of the volume argument to
derive an upper bound onM . This idea, first suggested by Blichfeldt, can be viewed as a precursor to the
well-known Elias bound of coding theory (see e.g., [10, p.61]).

Formally this idea is developed as follows. Under the mapping Φ : Gk,n → Sr an (M, δ) codeG is
mapped to a spherical codeA with minimum angular distance2α, whereδ =

√
2r sinα. Let β be the angle

given bysinβ =
√
2 sinα and letρ =

√
2r sin β/2. We compute

(3) ρ = r

√

1−
√

1− sin β2 = r

√

1−
√

1− δ2

r2
.

Let p ∈ G be fixed and letq ∈ Gk,n be a point (plane) whose principal angles top are given byθ =
(θ1, . . . , θk). Let d = ‖ sin θ‖ be the value of the distance betweenp andq. Consider the function onGk,n

defined by

τp(q) =

{

2 cos β
r2 sin2 β

(ρ2 − d2) if d ≤ ρ

0 if d > ρ.

In other words,σp(q) can be viewed as a “density” defined on the metric ballBρ ⊂ Gk,n with center at a
point p ∈ G and radiusρ. It depends only on the distance to the center (is sphericallysymmetric).

Let us project the sphereSr radially on the unit sphere inS ∈ R
(n−1)(n+2)/2 and denote the image of the

codeA by C. Applying Φ followed by the projection to the ballBρ with center atp transforms it into a cap
onS with angular radiusβ and center atx = (1/r)Φ(p) on the surface of the sphere. The linear radius of
the cap equalsP = 2 sin β/2. Letting q be a plane at distanced from p, we observe that the distance between
x andz = Φ(q) equalss =

√
2d/r. The functionτ induces a functionσ on this cap defined with respect to

x by

σx(z) =
cos β

sin2 β
(P 2 − s2)

for s ≤ P andσx(z) = 0 otherwise. A pointz can belong to several caps with centers at points of the code
C. The following lemma, whose proof is included for completeness, is due to [8].

Lemma 2. For any pointz ∈ S, its total density satisfies
∑

x∈C
σx(z) ≤ 1.

Proof : Let C ⊂ S be a code with distancẽδ and letz ∈ S be a point. Denote byx1, . . . xm ∈ C the code
points whose distance toz is at mostP and letd1, . . . , dm be the values of these distances. We have

1

2
m(m− 1)δ̃2 ≤ 1

2

n
∑

i=1

m
∑

j,k=1

(xij − xik)
2 =

n
∑

i=1

{

m
∑

j

x2ji −
(

∑

k

xki

)2}
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=

n
∑

i=1

{

m

m
∑

j=1

x2j,i −
(

m
∑

j=1

xji

)2}

= m
∑

j

(1− xj1)
2 −

(

m−
∑

j

xj1

)2
+

n
∑

i=2

(

m
∑

j

x2ji −
(

∑

j

xji

)2)

Without loss of generality letz = (1, 0, 0, . . . , 0). Since

d2j = (1− xj1)
2 + x2j2 + · · ·+ x2jn = 2(1− xj1)

we obtain the inequality

1

2
m(m− 1)δ̃2 ≤ m

∑

j

d2j −
(

∑

j

d2j
2

)2
−

n
∑

i=2

(

∑

j

xji

)2

which implies

(4)
(

∑

j

d2j

)2
− 4m

∑

j

d2j + 2m(m− 1)δ̃2 ≤ 0.

Let αz =
∑m

j=1 σxj
(z). We have

αz =
cos β

sin2 β
(mP 2 −

∑

d2j )

Then
∑

d2j = 4m sin2 β/2 − αz sin β tan β = 4 sin2 β/2
(

m− 1 + cos β

2 cos β
αz

)

.

Using this in (4) we obtain

16 sin4 β/2(m− 1/2(1 + sec β)αz)
2 − 16m sin2 β/2(m− 1/2(1 + sec β)αz)

+2m(m− 1)δ̃2 ≤ 0.

This inequality reduces to4m(1− αz) ≥ αz tan
2 β which implies the claim of the lemma.

Therefore also for any pointq ∈ Gk,n
∑

p∈C
τp(q) ≤ 1.

Letm(Bρ) be the total mass of the ball computed with respect to the density τ. From the last inequality we
obtain

(5) Mm(Bρ) ≤ Vol(Gk,n)

whereVol(Gk,n) is the total volume of the space. Letµ(Bρ) = m(Bρ)/Vol(Gk,n) be the normalized mass.
We assume thatk < n/2. The volume form on (the open part of)Gk,n induces a distribution on the simplex
of principal anglesΘ = {(θ1. . . . , θk) : π/2 > θ1 > · · · > θk > 0} given by

ωk,n = K(k, n)

k
∏

i=1

(sin θi)
n−2k

∏

1≤i<j≤k

(sin2 θi − sin2 θj)dθ1 . . . dθk,

whereK(k, n) is a constant chosen from the normalization condition
∫

Gk,n
ωk,n = 1 (see, e.g., [6]). Then

µ(Bρ) =

∫

θ:‖ sin θ‖≤ρ
τ(‖ sin θ‖)ωk,n.

Asymptotic evaluation of an integral very similar to this one was performed in [3]. We state the result in the
following lemma whose proof is analogous to [3].
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Lemma 3. Letk be fixed andn → ∞. Then

µ(Bρ) =
( ρ√

k

)nk+o(n)
.

Substituting the last formula in (5) and taking logarithms we obtain
1

n
lnM ≤ −k ln

ρ√
k
+ o(1).

Finally, using (3) and noting thatr →
√
k asn → ∞, we obtain the bound of the theorem.

The result of Theorem 1 can be also extended to the complex Grassmannian space similarly to an ex-
tension to this case of the bounds (2) in [3]. These estimatescan also be extended to the quaternionic case
according to the results of [11].
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