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A BOUND ON GRASSMANNIAN CODES

A. BARG* AND D. NOGIN

ABSTRACT. We give a new asymptotic upper bound on the size of a codeeiGtlassmannian space. The
bound is better than the upper bounds known previously iretitee range of distances except very large
values.

1. Introduction. Let Gy ,(R) be the Grassmann manifold, i.e., the setcgilanes passing through the
origin in R™. Our focus is the packing problem @, ,,, i.e., the problem of estimating the number of planes
whose pairwise distances are bounded below by some givaaddbr a suitably defined distance function
d(p,q). This problem has attracted attention in the recent yearsefeeral reasons. As a coding-theoretic
(geometric) problem, it is a natural generalization of theing problem for the projective spadgeR™ !
and a closely related case of the spher®' both having long history in coding theoily [4]. This problem
arises also in engineering applications related to trassion of signals with multiple antennas in wireless
environmentl[l]. Finally,[IP] introduced a construction®fassmannian packings which is closely related
to the construction of quantum stabilizer codes, anothigjestiof interest in recent years.

There are several possibilities to define a metricthn, [5]. We consider the so-called chordal metric
(projection 2-norm in the terminology dfl[5]), which can befidhed in two equivalent ways. By a well-
known fact [6], given two planeg, ¢ € G}, , one can definé principal angles between them. This is done
recursively as follows: take unit vectors € p,y; € ¢ with the maximum possible angular separation
and denote this angle . In stepi = 2,..., k, take the unit vectors € p,z; L (z1,...,z;—1) and
Yy € q,y; L (y1,-...,y:—1) with the maximum possible angle between them and denotetigke by6,.

In this way we obtain the set of principal angleés< 6, < --- < 6; < =/2; moreover,(z1, ..., x;) and
(y1,...,yx) form orthonormal bases imandgq, respectively.

Letsing = (sin6s,...,sindy). For a matrix (vector)” let [|P|| = />, . P/ denote its Euclidean

2-norm. Define thehordal distancebetweenp andq as follows: d(p, q) = || sin#||. It turns out [4] that
the Grassmannian space with the chordal metric affordsandsic embedding in a sphef of radius

r = /k(n —k)/nin R-D0+2)/2 To describe it, letd,, be a “generator matrix” of, i.e., ak x n matrix
whose rows form an orthonormal basispofThen the orthogonal projection froRi* onp can be written as
II, = A;Ap. Define amagp : Gy, — S, as®(p) = I, — ¥/al, (the plane is mapped to the traceless part
of the projection on it). For any, the norm of®(p) equals||II, — #/nl,|| = r. The main result of 4] is that
the mapping? is an isometry in the sense that

(1) dz(% q) = 1/2|1L, — Hquz'

We call a collection of\/ points inG, ,, with pairwise distances at leastan (), §) codein the Grass-
mannian space and callthe distance of the code. BJI(1) such a code gives rise tal&n/24) code
C C S,, so any upper bound on the distanc&afives an estimate on the distance®f,,. In particular, by
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FIGURE 1. Bounds onR(9) for k = 3 (top to bottom): upper estimatds p [2], Rr
(Theorem 1); lower bound&gy [3].

Rankin’s bounds(18] for anyM, §) codeg,

s [ M <n(n+1)/2
=) Ak if M > n(n+1)/2.

These bound are tight in the sense that there exist codemé®tthem with equality [9]4]. However, in the
majority of cases, particularly, for codes of the large siigect application of bounds on spherical codes to
codes inG, ,, gives poor results because the imagé&gf, on .S, forms a very sparse subset of it.

We will be concerned with asymptotic bounds &h for a given value of the code distanée Let
R = R(4) = limsup,,_,..(1/n)In M be the largest possiblate of a sequence of codes with distarici
Gy . Itis possible to compute the volume bounds/®analogous to the Gilbert-Varshamov and Hamming

bounds of coding theory [10]. Namely, it is proved|in [3] thatall 0 < § < V%,
(2) Rev(0) < R < Ry(9),
where

Rav(0) = —kn(6/ V),

R

The upper bound was subsequently improvedlin [2] relying els&rte’s linear programming method in the
form developed in([7]. The result dfl[2] is as follows:

R < Rip(0) :=k[(1+s)In(1+s)— slns],

wheres = (k/2)(@ — 1). This bound coincides with the result i [7] fér= 1 (codes in the projective
space) and can be viewed as its generalization.kFer1, R p(d) < Ru(J) forall 0 < 6 < 1. However,
for greaterk the inequalityR, p(8) < Ry(8) holds only fors close tov/k and thus the linear programming
bound provides a better estimate ®fonly for large values of the distance. For instance,ifet 2,3 the
crossing point i$ = 0.74, 1.31 respectively. We note thd p(+/k) = 0 showing that the lower bounBgy

is tight for 6 = v/k. In this note we establish an improved upper bound stateukifiailowing theorem.

R < Rp(6) := —k:ln< 1— @)

Theorem 1.
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Clearly Rr(6) < Rp(6) for all § € (0,vk] andRr(vVk) = 0. Moreover, Rg(6) < Rip(0) for most
values ofs except for values in a small neighborhoodydE. The intersection poini, of the curvesRg and
Ry p is given in the following table.

k2 3 4 5 10
0, 1.37 1717 1.992 2.231 3.161

The behavior of the bounds fér= 3 is shown in the figure.

2. Proof. The proof combines the isometric embeddingdf,, in S, with an application of Blichfeldt’s
density method similar to the arguments of Rankin [8]. Theifion behind this method is as follows.
Consider an(M, §) codeG C G, . Denote byBs = Bs(x) a metric ball inGy, ,, with center atc. Open
balls of radiusy/2 centered at code points do not intersect, so no poiid;0f can be contained in more
than one such ball. The idea is to extend the radjizsto some radiug so that while one point can belong
to several balls, we can control the way the balls intersedtuse some type of the volume argument to
derive an upper bound al/. This idea, first suggested by Blichfeldt, can be viewed aseaypsor to the
well-known Elias bound of coding theory (see elg.][10, .61

Formally this idea is developed as follows. Under the maggn: G, — S, an (M, ) codeg is
mapped to a spherical codewith minimum angular distancgy, whered = v/2r sin a.. Let 3 be the angle
given bysin 3 = v/2sin o and letp = +/2r sin 5/2. We compute

(3) p:r\/l—\/l—sinﬁz:r\ll—\ll—f—z.

Let p € G be fixed and ley € G}, be a point (plane) whose principal anglespt@re given byd =
(01,...,0;). Letd = || sin @] be the value of the distance betwgeandq. Consider the function oty ,,
defined by

[EmG o) itasy
m(q) = .
0 if d > p.

In other wordsg,,(¢) can be viewed as a “density” defined on the metric BallC G, , with center at a
point p € G and radius. It depends only on the distance to the center (is spherisgtliymetric).

Let us project the spherg. radially on the unit sphere ifi € R(»~1)("+2)/2 and denote the image of the
codeA by C. Applying @ followed by the projection to the balf, with center ap transforms it into a cap
on S with angular radiug3 and center at: = (1/r)®(p) on the surface of the sphere. The linear radius of
the cap equal® = 2sin 8/2. Letting ¢ be a plane at distane&from p, we observe that the distance between
r andz = ®(q) equalss = v/2d/r. The functionr induces a functiorr on this cap defined with respect to
x by

o.(2) = %

for s < P ando,(z) = 0 otherwise. A point can belong to several caps with centers at points of the code
C. The following lemma, whose proof is included for completss) is due td [8].

(P% — %)

Lemma 2. For any pointz € S, its total density satisfies

Z ox(2) < 1.

zeC

Proof : LetC C S be a code with distanc&and letz € S be a point. Denote by, ...z, € C the code
points whose distance tois at mostP and letd,, .. ., d,,, be the values of these distances. We have

ZH: Zm: (w45 —l"z'k:)Q = Zn: {mzj:xi - (inﬂ)z}

i=1 j k=1 i=1 k

%m(m —1)6% <

N =
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= z:; {méxil - (§$32)2}
= (=) 4 (Y - (Sa))
J J i=2

j j
Without loss of generality let = (1,0,0,...,0). Since
di=(1—zj)’ +aly+ - +al, =2(1—xj)

we obtain the inequality

2 n
yrtn =08 0 2= (£5) 2 (S
J J i=2 j
which implies
(4) (Zd§)2—4m2d§+2m(m—1)(§2 <0.
j j

Leta, =377, 04;(2). We have

~ cosf3 9 2
@z = sinzﬁ(mP - Zdj)
Then
1
Zd? _ 4msin2 6/2 _ azsinﬂtanﬂ = 4Sin2 B/2<m — %ssﬁﬁaz>

Using this in [#) we obtain
16sin? B/2(m — 1/2(1 + sec B)a,)? — 16m sin® B/2(m — 1/2(1 + sec §)a,)

+2m(m —1)§% < 0.
This inequality reduces tom (1 — a.,) > «, tan? 3 which implies the claim of the lemma.

> g <1

peC

Letm(B,) be the total mass of the ball computed with respect to theityens=rom the last inequality we
obtain

(5) Mm(B,) < Vol(Gyn)

whereVol(Gy, ,,) is the total volume of the space. LetB,) = m(B,)/ Vol(G, ) be the normalized mass.
We assume thdt < n/2. The volume form on (the open part @), ,, induces a distribution on the simplex
of principal angle® = {(0;....,0;) : ©/2 > 61 > --- > 0, > 0} given by
k
win = K(k,n) H(sin g, 2k H (sin?0; — sin? 0;)d0 . .. dOy,
i=1 1<i<j<k

Therefore also for any pointe Gy, ,,

whereK (k,n) is a constant chosen from the normalization condiy“gkn wr.n = 1 (see, e.g..16]). Then

j(B,) = / (150 6] )
0:] sin 6| <p

Asymptotic evaluation of an integral very similar to thissomas performed iri.[3]. We state the result in the
following lemma whose proof is analogous ko [3].
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Lemma3. Letk be fixed andv — oco. Then

u(B,) = (%)"’”"“’.

Substituting the last formula ifiJ(5) and taking logarithms ebtain

1
~InM < —kIn 2 4+ o(1).

Vk

Finally, using [B) and noting that— \/k asn — oo, we obtain the bound of the theorem.

The result of Theorem 1 can be also extended to the compless@eamnian space similarly to an ex-
tension to this case of the boun@$ (2)[ih [3]. These estinwrsalso be extended to the quaternionic case
according to the results df [iL1].
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