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Perfect Space-Time Codes with Minimum and
Non-Minimum Delay for Any Number of Antennas

Petros Elia, B. A. Sethuraman and P. Vijay Kumar

Abstract— Perfect space-time codes were first introduced by
Oggier et. al. to be the space-time codes that have full rate,full
diversity-gain, non-vanishing determinant for increasing spectral
efficiency, uniform average transmitted energy per antennaand
good shaping of the constellation. These defining conditions
jointly correspond to optimality with respect to the Zheng-Tse
D-MG tradeoff, independent of channel statistics, as well as to
near optimality in maximizing mutual information. All the a bove
traits endow the code with error performance that is currently
unmatched. Yet perfect space-time codes have been constructed
only for 2, 3, 4 and 6 transmit antennas. We construct minimum
and non-minimum delay perfect codes for all channel dimensions.

I. I NTRODUCTION

A. Definition of Perfect Codes

In [1, Definition 1], the concept of perfect codes is intro-
duced to describe then× n space-time codes that satisfy all
of the following criteria:

• Full rate. This corresponds to the ability of the code
to transmitn symbols per channel use from adiscrete
constellation such as the QAM or the HEX constellation.

• Full diversity. This corresponds to having all∆X∆X†,
∆X a difference matrix of the code, be non-singular.

• Non vanishing determinant for increasing spectral effi-
ciency. The determinant of any difference matrix, prior
to SNR normalization, is lower bounded by a constant
that is greater than zero and independent of the spectral
efficiency.

• Good shaping of the constellation. When the code is
based on cyclic division algebras (CDA) ([8], [14], [1],
[2]), the condition requires that the signalling set, in
the form of the layer-by-layer vectorization of the code-
matrices, be isomorphic to QAMn

2

or HEXn
2

, where the
isomorphism is givenstrictly by some unitary matrix.

• Uniform average transmitted energy per antenna. The
condition requires that the expected value of the transmit-
ted power is the same for all antennas. In fact we will see
that the structure of the code will allow for equal average
power across the antennas as well as across time.

The term perfect, coined in [1], was in reference to the
ability of the codes to satisfy all the above criteria, as well as in
reference to the codes having the best observed performance.
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B. New results

1) Additional properties satisfied by perfect codes:In ad-
dition to the defining properties, perfect codes also satisfy

• Approximate universality. This property was introduced
in [18] to describe a code that is D-MG optimal [3]
irrespective of channel statistics. Such codes exhibit high-
SNR error performance that is given by the high-SNR
approximation of the probability of outage of any given
channel, and allow for the probability of decoding error
given no outage to vanish faster than the probability
of outage. Currently, the only family of approximately
universal codes is that of cyclic-division algebras with
non-vanishing determinant, the generalization of which
was presented in [2]. Consequently perfect codes are also
approximately universal.

• D-MG optimality for any spacial correlation of the fading
or the additive noise. This can be immediately concluded
by post-multiplying the received signal matrix with the
covariance matrix of the additive noise vectors and then
using the approximate universality property of the code
over channels with uncorrelated additive white noise.

• Residual approximate universality. Any truncated code
version resulting from deletion of rows maintains approx-
imate universality over the corresponding channel.

• Gaussian-like signalling.This is an empirical observation
and it relates to a Gaussian-like signalling set with a
covariance matrix that tends to maximize mutual infor-
mation.

• Information losslessness. This property relates to having
full rate as well as unitary linear dispersion matrices [22],
[20], and guarantees that the mutual information is not
reduced as a result of the code’s structure.

• Scalable sphere decoding complexity. This property guar-
antees that as the number of receive antennas becomes
smaller, the structure of the code allows for substantial
reductions in sphere decoding complexity without essen-
tial loss in performance. For MISO channels, the structure
of the code will allow for reduction of sphere decoding
complexity, fromO(n2) to O(n).

2) Summary of presented contributions:In this paper we
introduce explicit constructions of minimum-delay perfect
space-time codes for any numbern of transmit antennas
and any numbernr of receive antennas. Non-minimum delay
perfect codes are constructed for any delayT that is a multiple
of n. We also generalize the defining conditions in [1] to be in-
dependent of the channel topology, thus directly providingfor
joint maximization of the mutual information and approximate
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universality. For channels with a smaller number of receive
antennas, this information theoretic approach allows for the
construction of efficient variants of perfect codes which exhibit
almost the same error performance as standard perfect codes
but with substantially reduced sphere decoding complexity.

II. SATISFYING THE PERFECT-CODE CONDITIONS

A. The general CDA structure

Our constructions of the perfectn × n space-time block
codes will be based on cyclic division algebras.

As shown in other related works such as [8], [14], [1],
[2], the basic elements of a CDA space-time code are the
number fieldsF,L, with L a finite, cyclic Galois extension of
F of degreen. For σ being the generator of the Galois group
Gal(L/F), we letz be some symbol that satisfies the relations

ℓz = zσ(ℓ) ∀ ℓ ∈ L and zn = γ (1)

for some ‘non-norm’ elementγ ∈ F> := F\{0} such that the
smallest positive integert for which γt is the relative norm
NL/F(u) of some elementu in L>, is n. The cyclic division
algebra is then constructed as a rightL space

D = L⊕ zL⊕ . . .⊕ zn−1L. (2)

A space-time codeX can be associated toD by selecting
the set of matrices corresponding to the representation by left
multiplication onD of elements from a finite subset ofD.
For an arbitrary choice ofscaledintegral basis{βi}n−1

i=0 of L
over F (by a scaled integral basiswe mean a set of numbers
obtained by multiplying all the elements of an integral basis
by the same nonzero real number), then-tuple{fi,j}n−1

i=0 maps
to

ℓj =

n−1∑

i=0

fi,jβi,∈ L, fi,j ∈ OF (3)

whereOF is the ring of integers ofF. Consequently, prior
to SNR normalization, the code-matrixX representing the
division algebra elementx =

∑n−1
j=0 z

jℓj, ℓj ∈ L, is given
by the defining equations (1-2) to be

X =

ℓ0 γσ(ℓn−1) γσ2(ℓn−2) · · · γσn−1(ℓ1)
ℓ1 σ(ℓ0) γσ2(ℓn−1) · · · γσn−1(ℓ2)
...

...
ℓn−2 σ(ℓn−3) σ(ℓn−4) · · · γσn−2(ℓn−1)
ℓn−1 σ(ℓn−2) σ(ℓn−3) · · · σn−1(ℓ0)

(4)

or equivalently

X =

n−1∑

j=0

Γj
(

diag
(
f
j
·G

)
)

(5)

with f
j
= [fj,0 fj,1 · · · fj,n−1] where

G =

β0 · · · σn−1(β0)
...

βn−1 · · · σn−1(βn−1)

(6)

Γ =

0 0 · · · 0 γ
1 0 · · · 0 0
0 1 · · · 0 0

...
0 0 · · · 1 0

. (7)

For this setup, it was shown in [14][9][2], that ifγ is inde-
pendent of SNR and thefi,j are from a discrete constellation
such as QAM, then the code achieves

1) full diversity
2) full-rate
3) non-vanishing determinant.

1) Requirements for achieving equal power sharing and
good constellation:Based on the above setup, we now show
that using a unit-magnitude, algebraic, non-norm elementγ,
and a unitaryG, renders the code perfect.

Let B := {β0, · · · , βn−1} be a basis forL/F such that the
matrix

G(B) =
β0 · · · σn−1(β0)

...
βn−1 · · · σn−1(βn−1)

is unitary. Furthermore, we assume that|γ| = 1.
Let F = Q(ı) and let the{fi,j} be restricted to belong to

theM2-QAM constellation:

fi,j ∈ AQAM = {a+ıb | −(M−1) ≤ a, b ≤M−1, a, b both odd}.

For

f := [f0,0 f0,1 · · · f0,n−1 f1,0 · · · f1,n−1 · · · fn−1,n−1]

we denote the code-matrixX in (4) asX(f) to emphasize
that it is a function of the QAM vectorf . If g is any function
of the {fi,j}, we useE[g({fi,j})] to denote the average

1

|An2
QAM |

∑

fi,j∈An2

QAM

g({fi,j}). Then fork0 ∈ {0, 1}, it is the case

that

E[|γk0σt(ℓj)|2] = E[(
∑

i

fi,jσ
t(βi))(

∑

k

f∗
k,jσ

t(β∗
k))]

= E[
∑

i

|fi,j|2|σt(βi)|2]

=
∑

i

E[|fi,j |2|σt(βi)|2]

= E[|fi,j |2]
∑

i

|σt(βi)|2

= E[|fi,j |2].

It follows that the average energy per transmitted element of
the code matrix is the same.



With respect to the constellation shaping, let us now denote
the layer-by-layer vectorization ofX(f) as:

vec(X(f)) :=

In×n 0n×n · · · 0n×n
0n×n ·Γ(1) · · · 0n×n

...
0n×n 0n×n · · · ·Γ(n−1)

ℓ0
σ(ℓ0)

...
σn−1(ℓ0)

...
ℓn−1

...
σn−1(ℓn−1)

where

Γ(1) =

1 0 .. 0 0
...

0 0 .. 1 0
0 0 .. 0 γ

, Γ(2) =

1 0 .. 0 0
...

0 0 .. γ 0
0 0 .. 0 γ

...

Γ(n−1) =

1 0 .. 0 0
0 γ .. 0 0

...
0 0 .. γ 0
0 0 .. 0 γ

.

We observe that each vector resulting from the layer-by-layer
vectorization of any code-matrix, prior to SNR normalization,
is exactly the linear transformation of then2-tuple f from

QAMn2

or HEXn
2

, by the unitary matrix

Rv =

G 0n×n 0n×n · · · 0n×n
0n×n G · Γ(1) 0n×n · · · 0n×n
0n×n 0n×n G · Γ(2) · · · 0n×n

...
0n×n 0n×n 0n×n · · · G · Γ(n−1)

. (8)

As a result the signalling set prior to SNR normalization is
from the lattice

Λsignal= {fRv, f ∈ QAMn2} (9)

or Λsignal = {fRv, f ∈ HEXn
2}. Modifying f by hor-

izontally stacking its real and imaginary parts,f
Re

and

f
Im

respectively, and transforming the resulting vectorf
′

=

[f
Re

f
Im

] ∈ Z2n2

by

R
′

v =
Rv,Re Rv,Im
−Rv,Im Rv,Re

(10)

we get the real and imaginary stacking of the signalling set to
be from

Λ
′

signal= {f ′

R
′

v, f
′ ∈ Z2n2}, R

′

vR
′T
v = I2n2×2n2 (11)

exactly satisfying the good constellation shaping condition as
described in [1, Definition 1].

Equivalently, for any set ofki ∈ {0, 1},

γk0ℓj
γk1σ(ℓj)

...
γkn−1σn−1(ℓj)

2

=

ℓj
σ(ℓj)

...
σn−1(ℓj)

2

=

f0,j
f1,j

...
fn−1,j

2

allowing for

Tr(X†X) = ‖vec(X(f))‖2 = ‖f‖2

and making the collection

{vec(X(f)) | f ∈ An2

QAM}
represent a cubic constellation inn2-dimensional complex
space that is isometric toAn2

QAM .
We proceed to find a proper unit-magnitude non-norm

elementγ, and then a proper unitary matrixG.

B. Uniform average transmitted energy per antenna

We now provide algebraic, unit-magnitude ‘non-norm’ ele-
mentsγ for suitable cyclic Galois extensionsL/F, independent
of SNR. We will henceforth denote thelth primitive root of
unity asωl, i.e. ωl = e2πı/l, and byk∗ we will denote the
complex conjugate ofk ∈ C. We directly state the construction
method for the different cases of interest, depending on
whether the base field isF = Q(ı) (QAM) or F = Q(ω3)
(HEX).

Proposition 1: (Construction of the non-norm element for
the QAM code) Let n = 2sn1 wheren1 is odd. Then there
exists a primep congruent to1 mod n1. Furthermore, there
exists a primeq that is congruent to1 mod 4, as well as
congruent to5 mod2s+2, and which has order ord(q)|

Z
>

p
= n1

and splits inZ[ı] asq = π1π
∗
1 for a suitable primeπ1 ∈ Z[ı].

The fieldsQ(ωp) andQ(ı) are linearly disjoint overQ. Let
K be the unique subfield ofQ(ı)(ωp) of degreen1 overQ(ı)
and letL = K · Q(ω2s+2). ThenL is a cyclic extension of
Q(ı), and the element

γ =
π1
π∗
1

is an (algebraic) unit-magnitude element that is a non-norm
element for the extensionL/Q(ı) and is independent of SNR.

(Whenn1 = 1, we takeL = Q(ω2s+2) andγ =
1 + 2ı

1− 2ı
.) The

n × n matrices arising from equations (5), (6) and (7) with
the above choice ofF,L andγ, and with any choice of scaled
integral basis{βi}n−1

i=0 hence yield a full-diversity, full-rate
code over QAM with non-vanishing determinant satisfying the
additional equal power sharing constraint.

Proof: See Appendix I
Proposition 2: (Construction of the non-norm element for

the HEX code) Let n = 2sn1, s ∈ {0, 1}, wheren1 is odd.
Then there exists a primep > 3 congruent to1 mod n1.
Furthermore, there exists a primeq that is congruent to1 mod
3 and which has order ord(q)|Z>

p
= n1 and splits inZ[ω3]

as q = π1π
∗
1 for a suitable primeπ1 ∈ Z[ω3]. If s = 1 then

q should also be congruent to3 mod 4. The fieldsQ(ωp)
andQ(ω3) are linearly disjoint overQ. Let K be the unique



subfield ofQ(ω3)(ωp) of degreen1 overQ(ω3) and letL =
K ·Q(ω2s+1). ThenL is a cyclic extension ofQ(ω3), and the
element

γ =
π1
π∗
1

is an (algebraic) unit-magnitude element that is a non-norm
element for the extensionL/Q(ω3) and is independent of
SNR. (Whenn1 = 1, so s = 1, we takeL = Q(ω3)(ı),

andγ =
3 + ω3

3 + ω2
3

.) Then× n matrices arising from equations

(5), (6) and (7) with the above choice ofF,L and γ, and
with any choice of scaled integral basis{βi}n−1

i=0 hence yield
a full-diversity, full-rate code over HEX with non-vanishing
determinant satisfying the additional equal power sharing
constraint.

Proof: See Appendix I
Consequently, we have constructed algebraic, unit-

magnitude ‘non-norm’ elements, valid for use in perfect
codes, for anyn. Some examples are given in Table I.

TABLE I

NON-NORM ELEMENTS

No. of Antennas Non-norm ‘γ’
2 (2 + ı)/(1 + 2ı)

(1 + 4ı)/(1 − 4ı)
3 (3 + ω3)/(3 + ω∗

3
)

(1 + 9ω3)/(9 + ω3)
4 (2 + ı)/(2 − ı)
5 (3 + 2ı)/(3 − 2ı)
6 (3 + 7ω3)/(3 + 7ω∗

3
)

7 (8 + 5ı)/(5 + 8ı)
8 (2 + ı)/(1 + 2ı)
9 (3 + ω3)/(1 + 3ω3)

(4 + 9ı)/(9 + 4ı)

C. Good Constellation shaping

For any dimensionn, we now proceed to describe the con-
struction of the unitary matrixG that complies with the cyclic
Galois requirements of the division algebra. The construction
method will involve the embedding of the scaled integral basis
of a submodule ofOL over the ring of integersOF of F, where
F,L are as in Propositions 1 and 2.

We proceed to first construct lattices for any odd dimension
n1, then lattices of dimension2s, s ∈ Z+, and then proceed
to combine them in order to give the final desired lattices for
any dimensionn over Q(ı) or any dimension that is not a
multiple of 4 overQ(ω3). Without any loss of generality, we
will be analyzing the QAM case, corresponding toF = Q(ı).
Unless we state otherwise, the same results will also hold for
F = Q(ω3).

1) Orthogonal Lattices in a Cyclic Galois Extension over
Q of Odd Degree : Recently, the authors in [12], Section
V, give a detailed exposition of a previous result in [10] of
an explicit construction ofq-dimensional orthogonal lattices
that belong in aq-degree cyclic Galois extensionK′ overQ,
with the restriction thatq be an oddprime integer. We here
show that the same construction actually givesn1-dimensional
orthogonal lattices inO′

K, for any odd integern1. Moreover,
the fieldK′(ı) will be precisely the fieldK of Proposition 1.

The steps for constructing ann1-dimensional orthogonal
lattice inOK are as follows:

• pick a guaranteed to exist odd primep ≡ 1 (modn1)
• let ω = ωp = e

2πı
p

• find a guaranteed to exist primitive elementr of Z>
p

• for m = p−1
2 , createα =

∏m−1
k=0 (1 − ωr

k

) where
rp−1 = 1

• Find a guaranteed to existλ such thatλ(r−1) ≡ 1 (mod
p) and letz = ωλα(1 − ω)

• For σ(ω) = ωr, let x =
∑ p−1

n1

k=1 σ
kn1 (z).

The elementx is hence in the fieldK′, the subfield ofQ(ω)
fixed by σn1 , of degreen1 over Q. It is then the case that
the following lattice generator matrixGn1 is unitary and the
resulting lattice (which arises from the canonical embedding
of the freeZ module generated byx/

√
p, σ(x)/

√
p, . . . ,

σn1−1(x)/
√
p in Rn1 ) is orthogonal.

Gn1 =
1

p

x σ(x) · · · σn1−2(x) σn1−1(x)
σ(x) σ2(x) · · · σn1−1(x) x
σ2(x) σ3(x) · · · x σ(x)

...
...

σn1−1(x) x · · · σn1−3(x) σn1−2(x)

(12)

SinceQ(ω) and Q(ı) are linearly disjoint overQ, the field
K = K′(ı) will be cyclic overQ(ı), and the elementsx/

√
p,

σ(x)/
√
p, . . . , σn1−1(x)/

√
p will be a scaled integral basis

for K/Q(ı).
Proof: See Appendix II.

More specifically the first row ofGn1 is given by

Gn1(0, j) =
1

p
ωλα

p−1
n1∑

k=1

(−1)kN+j(1−ωrkN+j

), j = 0, .., n1−1

and the rest of the circulant matrix by:

Gn1(i+ 1, j) = Gn1(i, j + 1 mod n1), i = 0, · · · , n1 − 2.

Example1: The first row of the 9-dimensionalG9 is
1
19

(

−2.831 7.298 − 1.435 4.149 − 8.688 − 8.451 −
6.414 5.355 − 7.983

)

and every next row is obtained by
a single left cyclic shift of the previous row. The matrix
was obtained by settingn1 = 9, p = 19, r = 3 and
λ = 10. Similarly the first row of the15-dimensionalG15

is 1
31

(

−2.242 6.361 − 10.78 − 8.071 7.253 − 9.45 1.127 −
3.334 8.806 −4.391 10.442 5.404 −11.12 −11.004 −9.989

)

obtained by settingn1 = 15, p = 31, r = 3 andλ = 16.
2) Lattices of dimensionm = 2s [13]: For when the

information set is QAM, thenF = Q(ı) and we consider
K = Q(ωM ) whereM = 2s+2 andωM = ω = e2πı/M the
M th primitive root of unity.Q(ω) is a cyclic Galois extension
overQ(ı). Considering that the order of5 in Z>

M =̃Gal(K/Q)

is m = 2s = φ(M)
2 , we see that forσ ∈ Gal(Q(ω)/Q)

such thatσ(ω) = ω5, it is the case thatσ(ı) = σ(ω2s) =

ω2s5 = ω(1+4)2s = ω2sω2s+2

= ω2s = ı which gives that
Gal(K/Q(ı)) =< σ >. Taking {ω0, ω1, ω2, · · · , ωm−1} to



be the integral basis overQ(ı), the canonical embedding then
gives the lattice generator matrix

Ge =
1√
m

[

σk(ωi)

]

i,k

=
1√
m

[

ωi·5
k

]

i,k

(13)

The fact that the lattice corresponds to the ring of integers
of the m-dimensional cyclic Galois extensionK over Q(ı),
allows forGe to be directly used in (5) to construct them×m
space-time code.

Now for ri = [1 ω5i ω5i2 ω5i3 · · · ω5i(n−1)], i =
0, 1, · · · ,m − 1, being theith row of

√
mGTe in (13), we

have thatrir
†
j =

∑m−1
k=0 ω

5ikω5jk =
∑m−1

k=0 ωk(5
i−5j). Since

5 has orderM4 = φ(M)
2 in Z>

M , then5i 6= 5j ∀i 6= j, i, j =
0, 1, · · · , M4 −1. This combines with the fact thatk(5i−5j) =
k5j(5i−j − 1) ≡ 0 (mod 4) so that each summand pairs with
another summand in the summation so that their ratio isω4.
This symmetry, the fact thatM2 ≡ 0 (mod4) and the fact that
ω5i +(ω5i)

M
2 = 0, means that each summandω5i has another

summand as its additive inverse. Together with the fact that
the complex conjugate ofω is ω−1, results inrir

†
j = mδi,j

and in the desired orthogonalityGeG†
e = I. The lattices apply

only for codes over QAM.
3) Combining lattices:We will need the following, which

is an easy modification of Proposition 6 in [12] and which
eventually guarantees for the creation of lattices over a cyclic
Galois extension for any dimensionn over Q(ı), and any
dimension that is not a multiple of4 overQ(ω3).

Lemma 3:Let L be the compositum ofl Galois extensions
Ki over Q of co-prime degreesni. Assuming that there
exists an orthogonalOKi

-lattice generator matrixGi for all
i = 1, 2, · · · , l then the Kronecker product of these matrices
is a unitary generator matrix of ann-dimensional lattice in
OL, n =

∏l
i=1 ni.

For this, the discriminants are not required to be coprime
since the involved fields already have coprime degrees, so
their composite is their tensor product overQ. Specifically, for
F = Q(ı), for any n = n12

s, n1 odd, the orthogonal lattice
generator matrixG is the Kronecker product of the generator
matrix of then1-dimensional lattice from Section II-C.1 and
that of the cyclotomic lattice of dimension2s. ForF = Q(ω3),
for n = n1 odd we again use then1-dimensional lattice from
Section II-C.1, and forn = 2n1, n1 odd, the orthogonal lattice
generator matrixG is the Kronecker product of the generator
matrix of then1-dimensional lattice from Section II-C.1 and

matrix C2 =
1 ı
1 −ı .

For F = Q(ω3), for n = n1 odd we again use then1-
dimensional lattice from Section II-C.1, and forn = 2n1, n1

odd, the orthogonal lattice generator matrixG is the Kronecker
product of the generator matrix of then1-dimensional lattice

from Section II-C.1 and the matrixC2 =
1 ı
1 −ı , coming

from the fieldQ(ı).
The above orthogonal lattice generator matrices correspond

to a suitable scaled integral basis of then-dimensional cyclic
Galois extensionL/F, defined (respectively) in Propositions
1 and 2. As discussed above, these matrices allow for good
constellation shaping. Consequently, with this choice of lattice

generator matrix and the choice ofL/F and γ as in Propo-
sitions 1 and 2, the code defined by equations (3-7) form
perfect codes satisfying full-diversity, full-rate, non-vanishing
determinant, equal power sharing,and good constellation
shaping.

III. I NFORMATION THEORETIC INTERPRETATION AND

GENERALIZATION OF THE PERFECT CODE CONDITIONS

The D-MG tradeoff [3] bounds the optimal performance of
a space-time codeX operating at rateR bpcu, corresponding
to a multiplexing gain

r =
R

log2(SNR)
.

The diversity gaincorresponding to a givenr, is defined by

d(r) = − lim
SNR→∞

log(Pe)

log(SNR)
,

wherePe denotes the probability of codeword error. For the
Rayleigh fading channel, Zheng and Tse [3] described the
optimal tradeoff between these two gains by showing that for
a fixed integer multiplexing gainr, the maximum achievable
diversity gain is

d(r) = (n− r)(nr − r). (14)

The function for non-integral values is obtained through
straight-line interpolation.

We use this D-MG approach as a basis for interpreting and
generalizing the conditions that define perfect-codes.

4) Full rate condition: Consider ann × T codeX where
each code-matrix carriesm information symbols per channel
use from a discrete constellationA such as QAM. It is then
the case that

|X | = 2RT = 2rT log2 SNR = SNRrT = |A|mT

which implies that|A|=̇SNR
r
m and since the constellation

is discrete, we have thatE[‖α ∈ A‖2]=̇|A|. The fact that
each elementXi,j of a code matrix is a linear combination of
elements ofA, gives that

E[‖Xi,j‖2] =̇ |A| = SNR
r
m .

The SNR normalizing factor ν that guarantees that
E[‖νHX‖2F ] = E[‖νX‖2F ]=̇SNR is then given by

ν2 =̇ SNR1− r
m . (15)

Without loss of generality we can assume that there exist
two code-matricesX1, X2 ∈ X , with eachXi mapping the
information nm-tuple {αi, 0, 0, · · · , 0}, whereαi =̇ SNR0.
As a result, the determinant and trace of the difference matrix
∆X , is a polynomial of degree less thann over α = α1 −
α2 =̇ SNR0, with coefficients independent of SNR, i.e.

det(∆X∆X†) =̇ Tr(∆X∆X†) =̇ SNR0

and thus with all its eigenvalues

li
.
= SNR0.



The corresponding pairwise error probability PEP(X1 → X2),
in the Rayleigh fading channel [4], [7], then serves as a lower
bound to the codeword error probabilityPe, i.e.,

Pe ≥ PEP(X1 → X2)
.
=

1
∏n
j=1[1 +

θ2

4 lj]
nr

.
= SNR−nrn(1−

r
m

)

which results in a diversity gain of

d(r) ≤ nrn
(

1− r

m

)

.

What this means is thatm discrete information symbols per
channel use can potentially sustain reliable communication for
up to rateRmax ≈ m log2(SNR).

For large SNR, the outage capacity over ann×nr Rayleigh
fading channel is given byCout ≈ min{n, nr} log2(SNR),
implying a maximum achievable multiplexing gain of
rmax = min{n, nr}. Consequently the relation betweenRmax

andCout, allows for the interpretation that the full rate defin-
ing condition is necessary for reliable transmission at rates
close to the outage capacity of the Rayleigh fading channel,
independent of the channel topology. Equivalently, given some
rateR, the full rate defining condition is necessary for reliable
transmission at the smallest allowable SNR

SNRmin =̇ 2
R

min(n,nr,m)

again independent of the channel topology. Let us now re-
examine the full-rate condition, in conjunction with the deter-
minant condition.

5) Non-vanishing determinant condition:We consider the
n × T truncated codeX , T ≥ n, constructed by deleting
the sameT − n rows from all the code-matricesX

′

of a
T × T perfect codeX ′

. We have seen that for ann× n code
mappingn2 information symbols from a discrete constellation
(n information symbols per channel use), the standardn-
dimensional ‘folding’ (|X | = |A|n2

) forces a normalizing
factor ofν2 = SNR1− r

n , whereas in the truncatedn×T code
mappingT 2 information symbols (T

2

n information symbols
per channel use), the constellation is folded inT dimensions
(|X | = |A|T 2

), requiring for

ν2 = SNR1− r
T .

This scenario accentuates the fact that in essence, we are
limited by a lower bound on the determinant of the energy-
normalized difference matrixν2∆X∆X†. As a result, for the
n-dimensional case, the defining condition of non-vanishing
determinant for the non-normalized matrix∆X∆X† ≥ SNR0,
translates to

det[ν2∆X∆X†] ≥ (ν2)nSNR0 = (SNR1− r
n )n

= SNRn−r

which, for then× T case withT -dimensional folding, trans-
lates back to the determinant bound

det(∆X∆X†) ≥ SNR− r
T
(T−n)

for the non-normalized code-matrices. But from [2], [16],
we see that the above determinant bound is the best that

any code can attain, thus allowing us to generalize the full-
rate, full-diversity and non-vanishing determinant perfect code
conditions, to the general condition of having

det[ν2∆X∆X†] ≥̇ SNRn−r, 0 ≤ r ≤ min(n, nr). (16)

In regards to non-minimum delay perfect codes, let us
briefly note that codes resulting from row deletion of perfect
codes essentially maintain all the conditions of the original
minimum-delay perfect code constructions except that now the
vectorization of the code-matrices is not isometric to QAMT 2

.
Non-minimum delay perfect codes can be constructed though
for delaysT = nk, k ∈ Z+ that are multiples ofn, by
the horizontal stacking construction found in [2], [16] which
maintains the non-vanishing determinant property as well as
the isometry of the code matrices with QAMn

2k.
Let us now incorporate all the perfect-code defining condi-

tions in order to provide an information theoretic interpretation
that spans both the high and the low SNR regimes.

6) Approximate universality, information losslessness and
Gaussian-like signalling:We begin with:

Theorem 4:Perfect codes are both approximately universal
as well as information lossless.

Proof: See Appendix IV.
The code’s information losslessness, shown in the proof to be
the result of the CDA structure and the last two conditions, es-
sentially allows for the code to maintain the maximum mutual
information corresponding to the channel and signalling set
statistics. This mutual information is empirically related to the
Gaussian-like signalling set and its good covariance properties,
observed in Figure 1. The expedited rate with which the
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Fig. 1. Gaussian nature of the signalling set of the3 × 3 perfect code,
compared to QAM and random Gaussian signalling (left). Covariance of
columns of perfect codes (center) compared to covariance ofrandom Gaussian
vectors (right).

signalling becomes Gaussian, relates to the high-dimensional
and orthogonal nature of the lattice generator matrix which
together with a unit-magnitude non-norm element, jointly
allow equal magnitudes for the diagonal elements of the
covariance matrix of the signalling set.

Let us now draw from the information theoretic interpreta-
tion of the defining conditions and provide variants of perfect
codes that are specifically tailored for channels with a smaller
number of receive antennas, and which manage to maintain
good performance at a considerably reduced sphere decoding
complexity.

A. Channel topology and efficient variants of perfect codes

We have seen thatn×n perfect codes utilizen different lay-
ers to achieve approximate universality for allnr. Each layer
has non-vanishing product distance and mapsn-elements from



a discrete constellation, thus maintaining two propertiesthat
were shown in [18, Theorem 4.1] to guarantee for optimality
over the statistically symmetric parallel channel, i.e. a channel
with a diagonal fading coefficient matrix, as well as potentially
allowing for optimality over the statistically symmetricn× 1
MISO channel. To offer intuition, we observe that the sum-
capacity of thenr independent MISO channels relates to the
full rate condition, whereas the achieved full diversity relates
to the CDA structure and the discreteness of the powers ofΓ
which manage to translate the non-vanishing product distance
to an overall non-vanishing determinant, and thus to keep
the different layers independent and at some non-vanishing
distance from each other. The full rate condition comes with
a sphere decoding complexity ofO(n2), but as the number of
MISO channels reduces withnr, so does the required decoding
complexity. Codes over such channels can have the form

X =

n−1∑

j=0

Γj
(

diag
(
f
j
· T ·G

)
)

where T (i, j) = 1, i = j ∈ [1, .., nr] and T (i, j) =
0 otherwise, or can have the form

X =

nr−1∑

j=0

Γj
(

diag
(
f
j
·G

)
)

.

Note here that the above codes have not been proven to be
D-MG optimal.

Motivated by the down-link requirements and by the cooper-
ative diversity uses of space-time coding in wireless networks,
we will concentrate on the MISO case (nr = 1), for which a
D-MG optimal perfect code variant

Xd = {diag(x) = diag(f ·G), ∀f ∈ QAMn}. (17)

with sphere decoding complexity ofO(n) was recently con-
structed in [49], [50] for alln, together with the code

Xir = {X =

n−1∑

k=0

fkΓ
k, ∀fk ∈ QAM-HEX} (18)

that corresponds to the center of the division algebra. With
the exception ofn = 2, Xir has not yet been proven to be
D-MG optimal. Figure 2 provides a performance comparison
between the single dimensional perfect code variant with the
equivalent standard perfect-code.

IV. RECENT DEVELOPMENTS INVOLVING PERFECT CODES

The proposed high-dimensional perfect codes have had an
impact on establishing outage-based optimality expressions
for wireless networks where independently distributed users
utilize different parts of space-time schemes to relay messages
for one another, hence improving the overall quality of service
([43] etc). Up to now, outage-based optimality results were
known only for infinite time duration networks in which
the assisting relays required full knowledge of the channel.
Encoding was based on random Gaussian codes. Using perfect
codes as an information theoretic tool, it was shown in [47],
[49] that the same optimality can be achieved, for finite
and minimum delay, and without requiring knowledge of the
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Fig. 2. Forn = 2, nr = 1, the single-layer perfect code variant exhibits
similar error performance as the 2-layer (standard) perfect code. This changes
when a second receive antenna is added.

channel at the intermediate relays. This was achieved for the
most general network topology and statistical characterization.

Perfect codes and some perfect-code variants, provided for
the first ever optimal encoding method [47], [48], [49], [50]
in several cooperative-diversity schemes such as the non-
dynamic linear-processing (receive-and-forward) scheme[44],
the non-dynamic selection-decode-and-forward scheme [45]
and finally for the dynamic receive-and-forward scheme [46].

V. EXAMPLES OF NEW PERFECT CODES AND SIMULATIONS

A. Examples of new perfect codes

• A 2×2 perfect code can be chosen to have code-matrices
which prior to SNR normalization, are of the form

X =
1√
2

f0,0 + f0,1ω
3
8 γ(f1,0 + f1,1σ(ω

3
8))

f1,0 + f1,1ω
3
8 f0,0 + f0,1σ(ω

3
8)

=
1√
2

f0,0 + f0,1ω
3
8 γ(f1,0 + f1,1ω

7
8)

f1,0 + f1,1ω
3
8 f0,0 + f0,1ω

7
8

wherefi,j are from the desired QAM constellation,ω8 := e
2πı
8

and γ = 2+ı
1+2ı . Matrices mapn2 = 4 information elements

from QAM. Furthermore the signalling set, in the form of the
layer-by-layer vectorization of the code-matrices, before SNR
normalization, comes from the lattice

Λ =
{
[f0,0 f0,1 f1,0 f1,1]Rv :

∀[f0,0, f0,1, f1,0, f1,1] ∈ QAMn2}

where

Rv =
1√
2

1 1 0 0
ω3
8 ω7

8 0 0
0 0 1 γ
0 0 ω3

8 γω7
8

satisfying the defining condition of

RvR
†
v = I4.

We find the smallest possible determinant, prior to SNR
normalization, to be

det(∆X∆X†)min =
1

20



which is larger than some previously constructed2 × 2
perfect codes. The code’s performance improves if the existing

G =
1 1
ω3
8 ω7

8
is substituted withG2 =

0.5257 0.8507
0.8507 −0.5257

taken from [12].
Other examples:

• The 5× 5 perfect space-time code is given by

X =

{

X =

4∑

j=0

Γj
(
diag

(
f
j
·G5

))
, f

j
∈ QAM5

}

for Γ given in (7) based onγ = 3+2ı
2+3ı , and generator matrix

G5 =

−0.3260 0.5485 −0.4557 −0.5969 −0.1699
0.5485 −0.4557 −0.5969 −0.1699 −0.3260
−0.4557 −0.5969 −0.1699 −0.3260 0.5485
−0.5969 −0.1699 −0.3260 0.5485 −0.4557
−0.1699 −0.3260 0.5485 −0.4557 −0.5969

• The 7× 7 perfect space-time code is given by

X =

{

X =

6∑

j=0

Γj
(
diag

(
f
j
·G7

))
, f

j
∈ QAM7

}

for Γ based onγ = 8+5ı
8−5ı , and generator matrixG7 =

−0.681 0.163 −0.449 0.077 0.082 0.276 −0.469
0.163 −0.449 0.077 0.082 0.276 −0.469 −0.681
−0.449 0.077 0.082 0.276 −0.469 −0.681 0.163
0.077 0.082 0.276 −0.469 −0.681 0.163 −0.449
0.082 0.276 −0.469 −0.681 0.163 −0.449 0.077
0.276 −0.469 −0.681 0.163 −0.449 0.077 0.082
−0.469 −0.681 0.163 −0.449 0.077 0.082 0.276

• The 25× 25 integral restriction code

is given by

Xir =

{

X =

24∑

k=0

skΓ
k, sk ∈ QAM

}

with γ = 3+2ı
2+3ı . This code has the same sphere decoding

complexity ofO(25) as the5× 5 standard perfect code in the
example above, and is expected to have the same performance,
when nr = 1, as the25 × 25 perfect code whose sphere
decoding complexity isO(625).

B. Simulations

All the simulations assumeCN (0, 1) fading and thermal
noise. A sphere decoder was used. We begin with Figure 3 to
indicate the performance improvement as the different defining
conditions are satisfied one-by-one. The first curve from
the top corresponds to satisfying the full-diversity condition
(commutative CDA code - orthogonal design). The second
curve now includes the full-rate condition (random, full-rate,
linear-dispersion codes). The third curve corresponds to the
family of D-MG optimal but not information lossless CDA
codes presented in [2], which achieve the first three criteria
of full-diversity, full-rate, and non-vanishing determinant. The
performance transition from the CDA codes to perfect codes
is described by the next two curves. Figures 4 and 5 show a
comparison of the2 × 2 unified perfect code presented here,
with some perfect codes from [1] and with the Alamouti code
(nr = 2). The Golden code [15] performs best among all
existing2×2 perfect codes. When rates are lower, the unified
perfect and the Golden code perform better than the orthogonal
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Fig. 3. Performance improvements attributed to achieving the different
criteria for the perfect codes

design whereas one of the perfect codes does not always
do so. For higher rates, all considered perfect codes perform
substantially better than the orthogonal design. At all rates and
all SNR, the perfect code constructed here has performance
very close to that of the Golden code. In Figure 6 we show the
performance of the newly constructed5-dimensional perfect
code and compare that with the corresponding5 × 5 single-
dimensional commutative perfect code (18). As expected, the
former utilizes fully thenr = n = 5 channel and is thus able
to transmit with a small probability of error at high rates and
low SNR.
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Fig. 4. Low rate comparison of the unified perfect code with two perfect
codes from [1] and with the Alamouti code

VI. CONCLUSION

We have explicitly constructed perfect space-time codes for
any numbern of transmit antennas, any numbernr of receive
antennas and any delayT that is a multiple ofn. Achieving all
the defining conditions from [1], allows for perfect codes to
exhibit performance that is currently unmatched. The informa-
tion theoretic interpretation of the exhibited good performance
both for low and high SNR, is that the defining conditions
jointly endow the code with approximate universality and the
ability to provide for near optimal mutual information.

High dimensional perfect codes cover a much needed re-
quirement for optimal codes in multi-user cooperative diversity
wireless networks, where each user acts as a transmit antenna.
Specifically, perfect codes have already been used to establish
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Fig. 6. Comparison of the5×5 perfect code with the5×5 single dimensional
integral restriction code (nr = 5).

the high-SNR outage region of unknown channels, and have
provided the first ever optimal schemes for a plethora of
cooperative diversity methods.

APPENDIX I
PROOF OF CONSTRUCTION METHODOLOGY FOR

NON-NORM ELEMENTS

We will prove here Propositions 1-2.
For future reference, we first recall three results that relate

to identifying a “non-norm” elementγ, i.e, an elementγ ∈ F>

satisfyingγi /∈ NL/F(L), 0 < i < n for somen-dimensional
field extensionL of F.

Lemma 5: [9] Let L be a degreen Galois extension of a
number fieldF and letp be a prime ideal in the ringOF below
the prime idealP ⊂ OL with norm given by‖P‖ = ‖p‖f ,
wheref is the inertial degree ofP overp. If γ is any element
of p \ p2, thenγi /∈ NL/F(L) for any i = 1, 2, · · · , f − 1.

In order to find a “non-norm” elementγ in F = Q(ı) (F =
Q(ω3)), it is sufficient to find a prime ideal inZ[ı] (Z[ω3])
whose inertial degreef in L/F is f = [L : F] = n. Such an
ideal is said to be inert inL/F.

Lemma 6: [38] Let p be any odd prime. Then for anyk ∈
Z, Z>

pk
is cyclic of orderφ(pk). For any integerf dividing

φ(pk) there exists ana ∈ Z>

pk
such thata has orderf in Z>

pk
.

Theorem 7:(Dirichlet’s theorem) Leta,m be integers such
that 1 ≤ a ≤ m, gcd(a,m) = 1. Then the progression

{a, a+m, a+ 2m, . . . , a+ km, . . .} contains infinitely many
primes.

We will now proceed to establish the exact methodology
that will give unit-magnitude non-norm elementsγ, for the
different cases of interest.

a) Unit-magnitude, non-norm elements forF = Q(ı):
Let

n = 2s
r∏

i=1

peii = 2sn1 (say)

wherepi are distinct odd primes. Assume first thatn1 > 1.
Let p be the smallest odd primep such thatn1 | (p − 1).
The cyclic groupZ>

p contains an element whose order equals
(p− 1). Let a denote this element. Our first goal is to find a
prime q such that

q = 5 (mod 2s+2)

q = a (mod p).

Note that

q = 1 (mod 4) .

Since (2s+2, p) = 1, we can, by the Chinese Remainder
Theorem, find an integerb such that

b = 5 (mod 2s+2)

b = a (mod p).

Note that such an integerb is relatively prime to2s+2p.
Consider the arithmetic progression

b+ l(2s+2p), l = 0, 1, 2, . . .

By Dirichlet’s theorem, this arithmetic progression is guaran-
teed to contain a primeq having the desired properties. Now
let us verify that this leads to a CDA.

Let K
′

be the subfield ofQ(ωp) that is a cyclic extension
of Q of degreen1. Let K be the compositum ofK

′

andQ(ı)
and letL be the compositum of the fieldsK andQ(ω2s+2).
Note thatL is cyclic overQ(ı), since it is a composite of the
cyclic extensionQ(ω2s+2)/Q(ı) of degree2s and the cyclic
extensionK/Q(ı) of n1 (note that2s and n1 are relatively
prime). Now consider the decomposition of the prime ideal
(q) in the extensionL/Q.

Sinceq = 1 (mod 4) we have thatq splits completely in
Q(ı)/Q. Since q has order(p − 1) in Zp it follows that q
remains inert inQ(ωp)/Q. Sinceq = 5 (mod 2s+2) and5 has
order2s in Z2s+2 , it follows that in the extensionQ(ω2s+2)/Q,
q splits completely inQ(ı)/Q but remains inert thereafter.

Let q split in Q(ı)/Q according to

q = π1π
∗
1

whereπ1 = (a + ıb) and π∗
1 = (a − ıb). Now by using the

fact that in a field tower[E : K : F] of field extensions,
fE/F = fE/KfK/F, gE/F = gE/KgK/F, [E : F] = fE/F gE/F,
it follows that π1 remains inert in the extensionL/Q(ı).

To now find a non-norm element of unit magnitude, we note
that since the units ofZ[ı] belong to the set{±1, ±ı}, the
associates of

π1 = a+ ıb belong to the set
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{a+ ıb, −a− ıb, ı(a+ ıb), −ı(a+ ıb)}.
It follows that sinceab 6= 0, a− ıb does not belong to the set
of associates ofa+ ıb. Our goal now is to show that

γ =
π1
π∗
1

is a non-norm element, i.e., that the smallest exponentk for
which γk is the norm of an element inL, is n. This is the
case since if

γk = NL/F(ℓ) someℓ ∈ L

then

πk1 = π∗k
1

n−1∏

l=0

σl(ℓ)

whereσ is the generator of the cyclic Galois group ofL/F.
For ℓ = a

b , a, b ∈ OL, we have, in terms of ideals ofOL,

(π1)
k
n−1∏

l=0

(σl(b)) = (π∗
1)
k
n−1∏

l=0

(σl(a)).

Sinceσ(π1) = π1 we have that if(π1) divides (σl(x)) for
somel andx ∈ OL, it must divide(σl(x)), for all l. This in
turn implies that the power of(π1) in the prime decomposition
of (π1)

k
∏n−1
l=0 (σ

l(b)) is k mod n whereas the power of
(π1) in the prime decomposition of(π∗

1)
k
∏n−1
l=0 (σ

l(a)) is a
multiple of n. Equivalentlyk must be a multiple ofn.

When n1 = 1, it is sufficient to takeq to equal5, and
L = Q(ω2s+2). The prime5 splits inQ(ı) as(1 + 2ı)(1− 2ı)
and then each of(1 + 2ı) and (1 − 2ı) remain inert in the
extensionL/Q(ı). The element

γ =
1 + 2ı

1− 2ı

is then a non-norm element for this extension, for the same
reasons as above. This concludes the proof of Proposition 1.
�

b) Unit-magnitude, non-norm elements forF = Q(ω3):
Let n = 2sn1, s ∈ {0, 1} wheren1 is odd. The proof is
similar to whenF = Q(ı). Assume first thatn1 > 1. We
find a primep ≡ 1 (mod n1), p > 3 and a primeq ∈ Z,
q ≡ 1 (mod 3), with ord(q)|Z

p>
= n1. If s = 1, we also

require thatq ≡ 3 (mod 4). Assume that we have found such
a p and q. The argument for the rest of the statements in
this paragraph are all exactly as in the case whenF = Q(ı):
The conditions ord(q)|Z

p>
= n1 andq ≡ 3 (mod4) (if s = 1)

guarantee that the primeq remains inert in the ring of integers
OL′ of the cyclotomic fieldL′ = K(ω2s+1), whereK is the
unique subfield of degreen1 in the extensionQ(ωp)/Q. The
field L′ is cyclic overQ of degree2sn1. Sinceq ≡ 1 (mod3),
the primeq splits into two distinct primesπ1, π2 in Z[ω3]
which are conjugates of each other. LetL = L′(ω3), which
is cyclic overQ(ω3) of degree2sn1. Then π1 will remain
inert in the extensionL/Q(ω3). The elementγ = π1

π2
= π1

π∗

1

will then be a unit-magnitude (algebraic) non-norm element
for the extensionL/Q(ω3), and the codes constructed with
this data will then be full-diversity, full-rate, and have non-
vanishing determinant, and of course, will satisfy the equal
power-sharing constraint asγ is of unit-magnitude.

What is left is to findp andq. The primep is found using
Dirichlet as in the case whereF = Q(ı). To find q, first find
an integerb that is simultaneously congruent to1 (mod3), to
m (modp), wherem is a generator ofZp> , and (ifs = 1) to 3
(mod4). This is possible by the Chinese Remainder Theorem.
Next, find the primeq by applying Dirichlet’s theorem to the
arithmetic sequenceb+ l(3p), l = 0, 1, 2, . . . if s = 0 and the
sequenceb+ l(12p), l = 0, 1, 2, . . . if s = 1.

Whenn1 = 1 (so s = 1), we takeL to beQ(ω3)(ı), and
the primeq to be 7. Sinceq is congruent to1 (mod 3) and
to 3 (mod 4), q splits into 3 + ω3 and 3 + ω2

3 in Q(ω3) but
remains inert in the extensionQ(ı)/Q. It follows that each of
3 + ω3 and 3 + ω2

3 remain inert in the extensionL/Q(ω3).
The element

γ =
3 + ω3

3 + ω2
3

will then be a non-norm element for this extension, for the
same reasons as above. This concludes the proof of Proposition
2. �

APPENDIX II
ORTHOGONAL LATTICES IN OK, WHEREK/Q IS CYCLIC

GALOIS OF ODD DEGREE

We here show that the construction in [10] (of which a
detailed exposition has been provided in [12, Section 5]) of
lattices that belong in a cyclic Galois extensionK of prime
degreeq over Q, actually gives without any modification
orthogonal latticesfor any odd degreen. We will follow the
exposition in [12] closely, retaining even the notation in [12],
and show that the proofs there only use the fact thatn is odd,
and not that it is an odd prime.

To this end, letn ≥ 3 be a given odd integer, and fix a
prime p ≡ 1 (mod n). Note that the existence of such ap
is guaranteed since the sequence{1 + dn, d = 1, 2, · · · }, as
shown by Dirichlet, contains infinitely many primes. Letω be
a primitive p-th root of unity. Thus,Q(ω) is cyclic of degree
p−1 overQ, and contains the real subfieldQ(ω+ω−1) which
is cyclic of degree(p− 1)/2 overQ. Sincen dividesp − 1,
there is a unique fieldK contained inQ(ω) which is cyclic of
degreen overQ. This is the field we will work with. Note that
sincen is odd,n divides(p− 1)/2 as well, soK is contained
in the real subfieldQ(ω + ω−1).

Recall that we are following the notation in [12]. LetG =
Gal(Q(ω)/Q), with generatorσ, chosen so thatσ(ω) = ωr,



where in turn,r is a generator ofZ>
p . We letm = p−1

2 , and
observe thatrm ≡ −1 (mod p). We also chooseλ so that
λ(r − 1) ≡ 1 (mod p).

We defineα by α =
∏m−1
k=0 (1−ωr

k

). The following result
is just a combination of Lemmas 3 and 4 of [12], and since
they have to do purely with the cyclotomic extensionQ(ω)/Q
and have nothing to do withn, their proofs remain valid:

Lemma 8:The following equalities hold:
1) σ(α) = −ωp−1α
2) σ(ωλα)− ωλα
3) (ωλα)2 = (−1)mp
We now definez = ωλα(1− ω) ∈ OQ(ω), and

x = TrQ(ω)/K(z) =

(p−1)/n
∑

j=1

σjn(z).

Note thatx is in OK, asz is in OQ(ω). Observing that

GNG
T
N (i, j) = TrK/Q(σ

i(x)σj(x)),

we are interested inTrK/Q(xσt(x)). The following, which is
Proposition 2 of [12], gives us the key to constructing the
orthogonal lattice.

Proposition 9: TrK/Q(xσt(x)) = p2δ0,t, for t = 0, . . . , n−
1.

Remark 1:Note that TrK/Q(σ
i(x)σj(x)) =

TrK/Q(xσ
j−i(x)). Thus, if we embedOK in Rn via

a 7→ v(a) = [a, σ(a), . . . , σn−1(a)] (note that K is
a real field), this Proposition says that the vectors
[v(x), v(σ(x), . . . , v(σn−1(x))] are orthogonal to one
another.

Proof: For n being odd, we have

TrK/Q(xσ
t(x)) =

n−1∑

a=0

σa(xσt(x))

=

n−1∑

a=0

(p−1)/n
∑

c,j=1

σa+cn(z)σa+t+jn(z)

and from Lemma 8

TrK/Q(xσ
t(x)) =

n−1∑

a=0

(p−1)/n
∑

c,j=1

(−1)a+cnωλα(1 − ωr
a+cn

)

· (−1)a+t+jnωλα(1 − ωr
a+t+jn

)

We observe that sincen is odd, (−1)cn = (−1)c and
(−1)jn = (−1)j . Moreover,(−1)a(−1)a = 1, and (−1)t

is common to the sums above. By Lemma 8, we may replace
(ωλ)2 by (−1)mp. Thus we find, after rearranging the sums,
that

TrK/Q(xσ
t(x)) = (−1)t(−1)mp

(p−1)/n
∑

c=1

(−1)c·

·
[n−1∑

a=0

(p−1)/n
∑

j=1

(−1)j(1− ωr
a+cn

)

−
n−1∑

a=0

(p−1)/n
∑

j=1

(−1)j(ωr
a+t+jn − ωr

a+cn+ra+t+jn

)

]

Now the term
∑(p−1)/n

j=1 (−1)j(1 − ωr
a+cn

) can be

rewritten as (1 − ωr
a+cn

)
∑(p−1)/n

j=1 (−1)j . Since n is
odd, (p − 1)/n is even, and hence, there are as many
positive as negative terms in the expression

∑(p−1)/n
j=1 (−1)j,

and thus, the sum becomes zero. Similarly, the term
∑(p−1)/n
c=1 (−1)c

∑n−1
a=0 (−

∑(p−1)/n
j=1 (−1)j(ωr

a+t+jn

)
becomes zero: this is because the terms in
∑n−1
a=0 (−

∑(p−1)/n
j=1 (−1)j(ωr

a+t+jn

) are independent of

c, while the term
∑(p−1)/n

c=1 (−1)c = 0 as (p − 1)/n is even
and there as many positive as negative terms. We thus find

TrK/Q(xσ
t(x)) = (−1)t+mp

(p−1)/n
∑

c=1

(−1)c·

·
n−1∑

a=0

(p−1)/n
∑

j=1

(−1)jωr
a+cn+ra+t+jn

We now have the following:
Lemma 10:

(p−1)/n
∑

c=1

(−1)c
n−1∑

a=0

(p−1)/n
∑

j=1

(−1)jωr
a+cn+ra+t+jn

=

(p−1)/n
∑

d=1

(−1)d
n−1∑

a=0

(p−1)/n
∑

k=1

ωr
a+nd+nk+ra+t+nk

=

(p−1)/n
∑

d=1

(−1)d
n−1∑

a=0

(p−1)/n
∑

k=1

ωr
a+kn(rnd+rt)

Proof: See Appendix III

As in [12], we write

(p−1)/n
∑

d=1

(−1)d
n−1∑

a=0

(p−1)/n
∑

k=1

ωr
a+kn(rnd+rt)

=

(p−1)/n
∑

d=1

(−1)d
(p−1)
∑

s=1

ωsd,t

whereωd,t = ω(rnd+rt), and of course,

(p−1)
∑

s=1

ωsd,t =

{

p− 1 if ωd,t = 1,

−1 otherwise

To determine whenωd,t = 1, note that this happens (as in
[12]) whent = nd−m+k1(p− 1). Sincen is odd,n divides
m, son must dividet. This forcest = 0.

We now haveωd,t = 1 implies rnd ≡ −1 (mod p), and
writing −1 asrm, yieldsnd−m = l(p− 1) for somel. This
then givesd = (p − 1)(2l + 1)/2n, which we may write as
(2l+ 1) times(p− 1)/2n) (note again that sincen is odd,n
divides(p−1)/2). Sinced varies in the range1, . . . , (p−1)/n,
we find thatl must be zero, that is,d = (p − 1)/2n. Thus,
ωd,t = 1 precisely whent = 0 andd = (p− 1)/2n.



In particular, whent 6= 0 thenωd,t 6= 1 and we have that

TrK/Q(xσ
t(x)) = (−1)t+mp

(p−1)/n
∑

d=1

(−1)d
(p−1)
∑

s=1

ωsd,t

= (−1)t+mp

(p−1)/n
∑

d=1

(−1)d(−1)

Once again, sincen is odd, (p − 1)/n is even, so the term
∑(p−1)/n

d=1 (−1)d = 0. Thus, fort 6= 0, TrK/Q(xσt(x)) = 0.
When t = 0, we find

TrK/Q(xσ
t(x)) = (−1)mp

(p−1)/n
∑

d=1,d 6=(p−1)/2n

[

(−1)d(−1)

+ (−1)mp(−1)(p−1)/2n(p− 1)

]

and the right side then yieldsp+ p(p− 1) = p2. To see this
last fact, consider first the case where(p− 1)/2 is even (i.e.,
p ≡ 1 mod 4). Then, sincen is odd,(p− 1)/2n is also even.
The sum

∑(p−1)/n
d=1,d 6=(p−1)/2n(−1)d equals

∑(p−1)/n
d=1 (−1)d −

(−1)(p−1)/2n, and we have already seen that, again becausen

is odd,
∑(p−1)/n
d=1 (−1)d = 0. Thus the right hand side in the

equation above forTrK/Q(xσt(x)) indeed yieldsp2 in this
case. We can similarly deal with the case when(p − 1)/2
is odd (i.e.,p ≡ 3 mod 4), to find that in both cases, indeed
TrK/Q(xσ

t(x)) = p2 whent = 0. This proves the Proposition.
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We wish to prove:

p−1
n∑

c=1

(−1)c
n−1∑

a=0

p−1
n∑

j=1

(−1)jωr
a+cn+ra+t+jn

=

p−1
n∑

d=1

(−1)d
n−1∑

a=0

p−1
n∑

k=1

ω(rnd+rt)ra+nk

Set m = p−1
n and denoteZ/mZ by Zm. In the above

equation, the dependence onc, j, d, k is only through their
values(modm) or through their values(mod2). If we assume
2|m, which follows from the assumption thatn is odd, we can
then treatc, j, d, k as elements ofZm. We thus have

p−1
n∑

c=1

(−1)c
n−1∑

a=0

p−1
n∑

j=1

(−1)jωr
a+cn+ra+t+jn

=
∑

c∈Zm

(−1)c
n−1∑

a=0

∑

k∈Zm

(−1)kωr
a+cn+ra+t+kn

=
∑

c∈Zm

∑

k∈Zm

(−1)c+k
n−1∑

a=0

ωr
a+cn+ra+t+kn

.

We now make the change of variables:c = d + k (modm)
which implies, since2|m, that c = d+ k (mod 2) and hence

d = c− k = c+ k (mod 2). As the pair(c, k) varies over all
of (Zm × Zm), so does the pair(d, k). We thus have

∑

c∈Zm

∑

k∈Zm

(−1)c+k
n−1∑

a=0

ωr
a+cn+ra+t+kn

=
∑

d∈Zm

(−1)d
n−1∑

a=0

∑

k∈Zm

ωr
a+(d+k)n+ra+t+kn

=
∑

d∈Zm

(−1)d
n−1∑

a=0

∑

k∈Zm

ω(rnd+rt)(ra+nk)

=

p−1
n∑

d=1

(−1)d
n−1∑

a=0

p−1
n∑

k=1

ω(rnd+rt)ra+nk

.

�

APPENDIX IV
PROOF OFAPPROXIMATE UNIVERSALITY AND

INFORMATION LOSSLESSNESS OFPERFECTCODES

(THEOREM 4)

The approximate universality part of the proof, is based on
the derivation of the approximate universality conditionsin
[18]. It is reproduced here for completeness.
Proof: Let λ1 ≤ λ2 ≤ · · · ≤ λn and l1 ≥ l2 ≥ · · · ≥ ln be
the ordered eigenvalues ofH†H and∆X∆X† respectively.
Irrespective of the statistics of the channel, in the high-SNR
regime, the probability of no-outage at multiplexing gainr, is
shown in [3] to satisfy
Pr(no-outage) = Pr

{
∑n′

i=1 ln(1 + SNRλi) > ln(SNRr)
}

,

where n′ := min(n, nr). Through the Lagrange multiplier
technique we determine

d2E,worst = inf
H/∈outage

n′

∑

i=1

liλi

by writing the functional as

J(λ1, . . . , λn′) =

n′

∑

i=1

liλi+µ

n′

∑

i=1

ln(1+SNRλi)−µr lnSNR

and differentiating w.r.t.λi, we obtainλi = (µ/li−SNR−1).
We then use the Kuhn-Tucker conditions to verify that the so-
lution λi = (µ/li − SNR−1)+ is what gives the worst possible
d2E,worst, for µ such that

n′

∑

i=1

ln(1 + SNR(µ/li − SNR−1)+) = r lnSNR.

Solving the above, we obtain that

µ =

ψ
︷ ︸︸ ︷

SNR−(1− r

n′ )

G
︷ ︸︸ ︷

n′

∏

i=1

l
1
n

i and thus λi =
ψG

li
− 1

SNR
.

Substituting this value ofλi in d2E,worst and settingd2E,worst>
SNRǫ for someǫ > 0, we obtain a condition on the smallest
n′ eigenvalues of the code

∏n′

i=1 li > SNRn
′−r, a condition

satisfied by CDA codes with non-vanishing determinant. [16].



Now moving to perfect codes, we follow the approach in
[22] to show that the linear dispersion matrices are unitary.
This property, together with the full rate condition, establish
the information losslessness and the entire theorem.

As the code mapsn2 information elements, we consider
n linear dispersion matrices{Au}nu=1 of dimensionn2 × n.
Starting with

An,i = diag (G(i))n×n , i = 1, · · · , n
whereG(i) represents theith row of G in (6), we recursively
create

Au,i = Γn−uAn,i, u = 1, 2, · · · , n.
Finally Au is constructed as

Au =

Au,0
...

Au,n−1

It is easy to see that the unitary nature ofΓ andG makes each
of theAu unitary

A†
uAu = In.
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