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Perfect Space-Time Codes with Minimum and
Non-Minimum Delay for Any Number of Antennas

Petros Elia, B. A. Sethuraman and P. Vijay Kumar

Abstract— Perfect space-time codes were first introduced by B. New results

Oggier et. al. to be the space-time codes that have full ratéull
diversity-gain, non-vanishing determinant for increasing spectral

1) Additional properties satisfied by perfect codds:ad-

efficiency, uniform average transmitted energy per antennaand dition to the defining properties, perfect codes also satisf

good shaping of the constellation. These defining conditien
jointly correspond to optimality with respect to the Zheng-Tse
D-MG tradeoff, independent of channel statistics, as well & to
near optimality in maximizing mutual information. All the a bove
traits endow the code with error performance that is currently
unmatched. Yet perfect space-time codes have been constred
only for 2,3,4 and 6 transmit antennas. We construct minimum
and non-minimum delay perfect codes for all channel dimensins.

I. INTRODUCTION
A. Definition of Perfect Codes

In [1, Definition 1], the concept of perfect codes is intro-
duced to describe the x n space-time codes that satisfy all
of the following criteria:

o Full rate. This corresponds to the ability of the code
to transmitn symbols per channel use fromdiscrete
constellation such as the QAM or the HEX constellation.

« Full diversity. This corresponds to having alkXAXT,
AX a difference matrix of the code, be non-singular.

« Non vanishing determinant for increasing spectral effi-

ciency The determinant of any difference matrix, prior |,
to SNR normalization, is lower bounded by a constant
that is greater than zero and independent of the spectral
efficiency.

« Good shaping of the constellatioWhen the code is
based on cyclic division algebras (CDA) ([8], [14], [1],
[2]), the condition requires that the signalling set, in
the form of the layer-by-layer vectorization of the code-
matrices, be isomorphic to QA’IK7I or HEX"Q, where the o
isomorphism is giverstrictly by some unitary matrix

« Uniform average transmitted energy per antenide
condition requires that the expected value of the transmit-
ted power is the same for all antennas. In fact we will see
that the structure of the code will allow for equal average
power across the antennas as well as across time.

« Approximate universalityThis property was introduced

in [18] to describe a code that is D-MG optimal [3]
irrespective of channel statistics. Such codes exhibt-hig
SNR error performance that is given by the high-SNR
approximation of the probability of outage of any given
channel, and allow for the probability of decoding error
given no outage to vanish faster than the probability
of outage. Currently, the only family of approximately
universal codes is that of cyclic-division algebras with
non-vanishing determinant, the generalization of which
was presented in [2]. Consequently perfect codes are also
approximately universal.

D-MG optimality for any spacial correlation of the fading
or the additive noiseThis can be immediately concluded
by post-multiplying the received signal matrix with the
covariance matrix of the additive noise vectors and then
using the approximate universality property of the code
over channels with uncorrelated additive white noise.
Residual approximate universalitAny truncated code
version resulting from deletion of rows maintains approx-
imate universality over the corresponding channel.
Gaussian-like signallingThis is an empirical observation
and it relates to a Gaussian-like signalling set with a
covariance matrix that tends to maximize mutual infor-
mation.

Information losslessnes3his property relates to having
full rate as well as unitary linear dispersion matrices [22]
[20], and guarantees that the mutual information is not
reduced as a result of the code’s structure.

Scalable sphere decoding complexitpis property guar-
antees that as the number of receive antennas becomes
smaller, the structure of the code allows for substantial
reductions in sphere decoding complexity without essen-
tial loss in performance. For MISO channels, the structure
of the code will allow for reduction of sphere decoding
complexity, fromO(n?) to O(n).

The termperfect coined in [1], was in reference to the 2) summary of presented contributionst this paper we
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universality. For channels with a smaller number of receiweith f = [f;0 fj1 -+ fjn—1] Where

antennas, this information theoretic approach allows fer t -

construction of efficient variants of perfect codes whichibit Bo -+ " Y Bo)

almost the same error performance as standard perfect codes G = : (6)
but with substantially reduced sphere decoding complexity :

0 0

Il. SATISFYING THE PERFECFCODE CONDITIONS 10
r — o1 --- . @)

A. The general CDA structure :
o0 --- 10

Our constructions of the perfeet x n space-time block

codes will be based on cyclic division algebras. For this setup, it was shown in [14][9][2], that if is inde-
As shown in other related works such as [8], [14], [1]pendent of SNR and thé ; are from a discrete constellation

[2], the basic elements of a CDA space-time code are tBgch as QAM, then the code achieves

number fielddF, IL, with L a finite, cyclic Galois extension of

IF of degreen. For o being the generator of the Galois group

Gal(L/F), we letz be some symbol that satisfies the relations

1) full diversity
2) full-rate
3) non-vanishing determinant.

1) Requirements for achieving equal power sharing and
lz = zo(f) ¥ el and z"=r (1) good constellation:Based on the above setup, we now show
that using a unit-magnitude, algebraic, non-norm element
for some ‘non-norm’ element € F* := I\ {0} such that the and a unitaryG, renders the code perfect.

smallest positive integer for which ~* is the relative norm  Let B := {5, -, Bn—1} be a basis foiL./F such that the
Nyr(u) of some element, in L*, is n. The cyclic division matrix
algebra is then constructed as a rifihspace Bo - " 1(Bo)
G(B) = :
D=LozLd...®z""'L. 2) Boit - 0" (Bar)

A space-time codeY can be associated t® by selecting IS unitary. Furthermore, we assume that= 1.

the set of matrices corresponding to the representatioefby | Let F = Q(z) and let the{f; ;} be restricted to belong to
multiplication on D of elements from a finite subset d@p. the M2-QAM constellation:

For an arbitrary choice cfcaledintegral basis{3;}/'~, of L

over F (by a scaled integral basigie mean a set of numbers/fi; € Aeam = {a+wb | —(M—-1) < a,b < M—1, a,bboth odd.
obtained by multiplying all the elements of an integral basi:

by the same nonzero real number), theuple{ f; ; ;‘:‘01 maps or

o 1 i:: [f0,0 fO,l "'fO,n—l fl,O"'fl,n—l"'fn—l,n—l]
l; = Zfi,jﬂi, cel, fi;€0F (3) we denote the code-matriX in @) as X (f) to emphasize
i=0 that it is a function of the QAM vectof. If g is any function
. ) ) . of the {f;;}, we useE[g({f:,})] to denote the average
where Oy is the ring of integers off. Consequently, prior _1_ g({f:;})- Then forky € {0,1}, it is the case

to SNR normalization, the code-matriX representing the Agml . .2
. 1 . ) - fij€ QAM
division algebra element = Zj:o 2;, £; € L, is given that
by the defining equation§l(3-2) to be
E[lv* 0" (¢;)?)

B[ fiso' (B £ 0" (B0
] k

lo A0(lnr) 0% (laz) - o™ M (ly) i
b olte) 4% (lar) e 40T (b) = ED_1fiilPlo' (5P
X=| : 4) g
los  0(ln-z)  0(lns) Yo" 2 (ln) = D _Ellfisllo (5]
gnfl U(£n72) U(énfii) Unil(é()) !
= E[fi ;1Y 1" (B
or equivalently ) i
= E[fi;l].
n—1
X = Z v (dz’ag(f_ . G)) (5) It follows that the average energy per transmitted elemént o
- the code matrix is the same.

Jj=0



With respect to the constellation shaping, let us now denoteEquivalently, for any set ok; € {0, 1},

the layer-by-layer vectorization of (f) as:

2 2

= Yo, ¢ fo.j
‘% YMo(l;) e | S
o (bo) : B : I
Inxn 0n><n e Onxn anilanil(gj) Un_l(ﬂj) fn—l,j
A R T o1 (Lo) allowing for
veq X (f)) := ' 9 T
: : Tr(XTX) = |ved X ()|? = ||f]|?
o o peen || e (X1) = |ved X (1)) = ||
: and making the collection
' 2
0" (ln-1) {ved X (f)) | f € Agam}
where represent a cubic constellation im?-dimensional complex
space that is isometric MS;M'
1 0 0 0 1 0 00 - . : i
We proceed to find a proper unit-magnitude non-norm
rm — : T = : elementy, and then a proper unitary matriX.
0 0 1 0 0 0 v 0
00 0 ~ 0 0 0 v | B. Uniform average transmitted energy per antenna
We now provide algebraic, unit-magnitude ‘non-norm’ ele-
10 . 0 0 mentsy for suitable cyclic Galois extensiofig'IF, independent
0 ~v . 00 of SNR. We will henceforth denote th& primitive root of
(n—1) unity aswy, i.e. w; = ¢*™/!, and byk* we will denote the
I - complex conjugate of € C. We directly state the construction
00 7 0 method for the different cases of interest, depending on
00 0 v whether the base field i = Q(z) (QAM) or F = Q(ws)

. (HEX).
We tob_se;ye th?t each (\j/ectortr_esultl_ng tfrogrll\lge Iayerl—_yed_ay Proposition 1: (Construction of the non-norm element for
vectorization of any code-matrix, prior to normalipati QAM codp Let n — 2°n; wheren, is odd. Then there

is exactly the linear transformation of thé-tuplei from exists a primep congruent tol mod n;. Furthermore, there

n2 'n.2 1 1 . . .
QAM™ or HEX" , by the unitary matrix exists a primeg that is congruent ta. mod 4, as well as
congruent tds mod2°+2, and which has order o(ql)|z§ =m

0 N Gonf?n gnxn gnxn and splits inZ[2] asq = m 7} for a suitable primer; € Z[1).
Oan 0 G .nli?g) O"X” The fieldsQ(w,) and Q(z) are linearly disjoint overQ. Let
Ry =| Trxn T o K be the unique subfield d(:)(w,) of degreen; overQ(z)
: and letl = K- Q(wqs+2). ThenL is a cyclic extension of
Onxn  Onxn Onxn - - G-T®D Q(2), and the element
As a result the signalling set prior to SNR normalization is v = W—i
from the lattice ™

) is an (algebraic) unit-magnitude element that is a non-norm
Asignar= {fRo, f € QAM™ } (9) element for the extensidh/Q(z) and is indepe?degt of SNR.
(Whenn; = 1, we takel = Q(wqs+2) andy = + Z.) The

1—
n x n matrices arising from equationEl (511 (6) a?ﬁﬁl (7) with
the above choice df, L and~, and with any choice of scaled
integral basis{s,;}7-, hence yield a full-diversity, full-rate

or Asignat = {fRv, [ € HEX"Z}. Modifying f by hor-
izontally stacking its real and imaginary partﬁRe and

. respectively, and transforming the resulting vecibrz

fre £ €227 by code over QAM with non-vanishing determinant satisfying th
additional equal power sharing constraint.
n —| Bore Boim (10) Proof: See Appendifll u
N —Roy1m Ro.Re Proposition 2: (Construction of the non-norm element for

e HEX codg Let n = 2°n4y, s € {0,1}, wheren; is odd.
hen there exists a primg > 3 congruent tol mod n;.
Furthermore, there exists a priméhat is congruent ta mod
A;ignaI: {f/R;, f ez, R.RT = Ipp2y0,: (11) 3 and which has or(_jer o(ql)|_Z§ = ny and splits inZ[ws]
- - asq = mn; for a suitable primer; € Z[ws]. If s =1 then
exactly satisfying the good constellation shaping cooditas ¢ should also be congruent ® mod 4. The fieldsQ(w,)
described in [1, Definition 1]. andQ(ws) are linearly disjoint ovefQ. Let K be the unique

we get the real and imaginary stacking of the signalling set
be from



subfield ofQ(ws)(w,) Of degreen; over Q(ws) and letL = The steps for constructing am;-dimensional orthogonal
K- Q(wys+1). ThenL is a cyclic extension of)(ws), and the lattice in Ok are as follows:

element ™ o pick a guarantz)eed to exist odd prime= 1 (modn4)
7= o letw=w,=¢7
« find a guaranteed to exist primitive elemenof Z.
o for m = 231, createa = [[},'(1 — w™") where
rPl =1
. o ’ «» Find a guaranteed to exiatsuch that\(r—1) = 1 (mod
) Then xn matrices arising from equations ) and letz = wra (1 — w)

T

is an (algebraic) unit-magnitude element that is a non-norm

element for the extensiofi.,/Q(ws) and is independent of

SNR. (Whenn; = 1, sos = 1, we takeL = Q(ws)(z),

34 w3

34w’ bt

@), @ and l{f) with the above choice @f I and~, and e Foro(w)=uw", letz = ZTT ok (2)

with any choice of scaled integral badis; }"—,' hence yield ] . =l ' )

a full-diversity, full-rate code over HEXZvvliTr(lJ non-vanisiy The element: is hence in the fieldk’, the subfield ofQ(w)
Y fixed by o™, of degreen; over Q. It is then the case that

determinant satisfying the additional equal power Sha”?ﬁe following lattice generator matri&,,, is unitary and the

constraint. resulting lattice (which arises from the canonical embeddi

Proof: See Appendixl|
Consequently, we have constructed algebraic, unﬂ]f tb? freeZ.moduI.e generated by /\/p, o(z)/V/p: -,
q" (z)//p in RY) is orthogonal.

magnitude ‘non-norm’ elements, valid for use in perfec

and~y =

codes, for any:. Some examples are given in Table I. x o(x) - o™ 2(z) o™~ L(x)
TABLE | 1 Uz(x) Uz(x) SR € z
NON-NORM ELEMENTS Ghn, =5 o*(z)  o*z) - t o(z) (12)
No. of Antennas Non-norm %’ )
2 R (e omNa) oz - o™MTa) o™ ()
(14 42)/(1 — 4) ) _ . )
3 Bt ws)/BFwl) Since Q(w) and Q(z) are linearly disjoint overQ, the field
(1 +9w3)/(9 +w3) K = K'(z) will be cyclic overQ(z), and the elements/,/p,
: (322:23%:’2)0 o(x)//P, -, e '(x)/,/p will be a scaled integral basis
6 (3 + 7w3) /(3 + Tw3) for K/Q(2).
7 B8+50)/(5 + ) Proof: See AppendiXdl. [ ]
8 (2Z+9/(1+2) More specifically the first row ofy,,, is given by
9 (3 +w3)/(1 4 3w3)
(44 90)/(9 + 4)

PN+

p—1
1, - .
G, (0,5) = Ew*a S (=D (-0, = 0,.,m1—1
k=1

C. Good Constellation shaping and the rest of the circulant matrix by:

For any dimensiom, we now proceed to describe the con- , , . ,
struction of the unitary matrik that complies with the cyclic Gy (i+1,§) = Gn, (6,5 +1 mod ), i=0,---,n1 —2.
Galois requirements of the division algebra. The consitnct
method will involve the embedding of the scaled integrai®as Example1: The first row of the 9-dimensional Gy is
ofasubmodyle 0Dy, over the ring of integer®y of F, where L(—2.831 7998 — 1435 4149 — 8688 — 8451 —
IF,LL are as in Propositiord 1 af#l 2. 19

We proceed to first construct lattices for any odd dimensiénd14 5.355 — 7.983) and every next row is obtained by
n1, then lattices of dimensio2®, s € Z*, and then proceed a single left cyclic shift of the previous row. The matrix
to combine them in order to give the final desired lattices favas obtained by settingy, = 9, p = 19, » = 3 and
any dimensionn over Q(z) or any dimension that is not aX = 10. Similarly the first row of thel5-dimensionalGs
multiple of 4 over Q(ws). Without any loss of generality, we s L (—2.242 6.361 —10.78 —8.071 7.253 —9.45 1.127 —
will be analyzing the QAM case, correspondingRe= Q(2).

Unless we state otherwise, the same results will also hald f&334 8-806 —4.39110.4425.404 —11.12 —11.004 _9'989)
F = Q(ws). obtained by setting.; = 15, p =31, r =3 and A = 16.

1) Orthogonal Lattices in a Cyclic Galois Extension over 2) Lattices of dimensionn = 2° [13]: For when the
Q of Odd Degree :Recently, the authors in [12], Sectioninformation set is QAM, therF = Q(z) and we consider
V, give a detailed exposition of a previous result in [10] oK = Q(was) Where M = 2°%2 andwy = w = ™/M the
an explicit construction of-dimensional orthogonal lattices M primitive root of unity.Q(w) is a cyclic Galois extension
that belong in a-degree cyclic Galois extensid’ over @, overQ(:). Considering that the order &fin Z};=Gal(K/Q)
with the restriction thay be an oddprime integer. We here is m = 2° = @, we see that forr € Gal(Q(w)/Q)
show that the same construction actually givgsdimensional such thato(w) = w®, it is the case that(:) = o(w?’) =
orthogonal lattices ir0Y, for any odd integem;. Moreover, w25 = w(1+92° = ,2°,2""" = )2 = 4 which gives that
the field K’(z) will be precisely the fieldK of Propositiofdl. Gal(K/Q(z)) =< o >. Taking {w% w!,w?, -+ ,w™ 1} to



be the integral basis ovéb(:), the canonical embedding thengenerator matrix and the choice bf/F and~ as in Propo-

gives the lattice generator matrix sitions[1 andR, the code defined by equatidd§l (3-7) form
1 1 X perfect codes satisfying full-diversity, full-rate, neanishing
G = — [Uk(wi)] = — {w”” ] (13) determinant, equal power sharingnd good constellation
\/ﬁ i,k \/E i,k Shaping_

The fact that the lattice corresponds to the ring of integers

of the m-dimensional cyclic Galois extensidll over Q(z), |||, | NFORMATION THEORETIC INTERPRETATION AND

allows f_orGe to be directly used ir[{5) to construct thex m GENERALIZATION OF THE PERFECT CODE CONDITIONS

space-time code. ,

Now for r; = [l w% w32 w53 ... W=D 4 = The D-MG tradeoff [3] bounds the optimal performance of

3 - L] - . . .

0,1,---,m — 1, being thei” row of v/mGT in (@3), we 2 space-time cod&’ operating at rate? bpcu, corresponding

) ’ ’ - . e \ ! . . .

have thatn-r;f. _ ZZZJ WOk, — Z;n;gl O-Jk(sl_s)])' Since 0 a multiplexing gain

5 has order® = ‘z’_(é”) in Z;, then5! # 57 Vi # j, i,j = - R

0,1,---, 2 —1. This combines with the fact th&(5'—57) = log,(SNR)

k57(57=9 — 1) = 0 (mod 4) so that each summand pairs wit
another summand in the summation so that their ratio*is
This symmetry, the fact thall = 0 (mod4) and the fact that ~ fim log(Fe)
w® +(w5)® = 0, means that each summané has another SNR—oc log(SNR)”

summand as its additive inverse. Together Wit? the fact thihere P, denotes the probability of codeword error. For the
the complex conjugate af is w ,Tresults in7;r; = mdi;  Rayleigh fading channel, Zheng and Tse [3] described the
and in the desired orthogonalify.G! = I. The lattices apply qgptimal tradeoff between these two gains by showing that for

only for codes over QAM. _ ~ a fixed integer multiplexing gain, the maximum achievable
3) Combining lattices:We will need the following, which gjyersity gain is

is an easy modification of Proposition 6 in [12] and which
eventually guarantees for the creation of lattices overgicy dir) = (n—7r)(n, — 7). (14)
Galois extension for any dimensiom over Q(z), and any
dimension that is not a multiple af over Q(ws).

Lemma 3:Let L be the compositum df Galois extensions
K; over Q of co-prime degrees:;. Assuming that there

exists an orthogonalg_-lattice generator matrixz; for all generalizing the CopFiitions th"f‘t define perfect-codes.
i =1,2,---,1 then the Kronecker product of these matrices 4) Full rate condition: Consider am x T' code X where

is a unitary generator matrix of an-dimensional lattice in €ach code-matrix carries information symbols per channel
Oun— Hz " use from a discrete constellatiof such as QAM. It is then
y = i=1 Ti-

ge case that

hThe diversity gaincorresponding to a given, is defined by

d(r) =

The function for non-integral values is obtained through
straight-line interpolation.
We use this D-MG approach as a basis for interpreting and

For this, the discriminants are not required to be coprirﬁ
since the involved fields already have coprime degrees, so |X| = 2RT = 9rTlog2 SNR — gNR'T = | 4|7
their composite is their tensor product o¥gr Specifically, for
F = Q(:), for anyn = n12%, ny odd, the orthogonal lattice which implies that|.A|=SNR and since the constellation
generator matrixG is the Kronecker product of the generatois discrete, we have thdk[||a € AJ|?]=|A|. The fact that
matrix of then;-dimensional lattice from SectidnII=G.1 andeach elemenk; ; of a code matrix is a linear combination of
that of the cyclotomic lattice of dimensi@i. ForF = Q(ws), elements ofA, gives that
for n = n; odd we again use the;-dimensional lattice from 91 . o
SectioII=C1, and fon. = 2n,, n; 0odd, the orthogonal lattice Efl X1 = [A] = SNRe=.
generator matri>G_ is the_ Kronecker product of the generatofrhe SNR normalizing factorv that guarantees that
matrix of then;-dimensional lattice from Sectidn 1=G.1 andIE[HuHXH%] = E[||vX||2]=SNR is then given by

matrix Cy = i _zl .

For F = Q(ws), for n = ny; odd we again use the;-
dimensional lattice from Sectidn 1I=Q.1, and far= 2n,, n; Without loss of generality we can assume that there exist
odd, the orthogonal lattice generator matfis the Kronecker two code-matricesY;, X> € X, with eachX; mapping the

product of the generator matrix of the -dimensional lattice information nm-tuple {a;,0,0,---,0}, wherea; = SNR’.
. . . As a result, the determinant and trace of the differenceirmatr
from Section[d[=C]L and the matrig, = ‘ ! _zz ‘ coming

1 AX, is a polynomial of degree less thanover o = oy —
from the fieldQ(2). as = SNR, with coefficients independent of SNR, i.e.
The above orthogonal lattice generator matrices corraspon ) )
to a suitable scaled integral basis of tix&imensional cyclic det(AXAXT) = Tr(AXAXT) = SNR’
Galois extensiorL/IF, defined (respectively) in Propositions, 4 thus with all its eigenvalues
@ and[2. As discussed above, these matrices allow for good
constellation shaping. Consequently, with this choiceatifde l; = SNR.

v? = SNR' . (15)



The corresponding pairwise error probability RER — X,), any code can attain, thus allowing us to generalize the full-
in the Rayleigh fading channel [4], [7], then serves as a towgate, full-diversity and non-vanishing determinant petigode
bound to the codeword error probability, i.e., conditions, to the general condition of having

P. > PERX; — X) = ! det[?’AXAXT] > SNR'™", 0 <r < min(n,n,). (16)

H;'L:1[1 + %lj]m i
B In regards to non-minimum delay perfect codes, let us
= SNR =) briefly note that codes resulting from row deletion of petfec
codes essentially maintain all the conditions of the oggin
minimum-delay perfect code constructions except that v t
d(r) <nmn (1 - 1) ) vectorization of the code-matrices is not isometric to GAM
m Non-minimum delay perfect codes can be constructed though
What this means is that discrete information symbols perfor delaysT = nk, k € Z* that are multiples ofs, by

channel use can potentially sustain reliable communiodto the horizontal stacking construction found in [2], [16] whi

which results in a diversity gain of

Up to rateRmax ~ mlogy(SNR). ~ maintains the non-vanishing determinant property as well a
For large SNR, the outage capacity overann, Rayleigh  the isometry of the code matrices with QAR
fading channel is given by'ost ~ min{n,n,}log,(SNR), | et us now incorporate all the perfect-code defining condi-

implying a maximum achievable multiplexing gain ofions in order to provide an information theoretic intetat®n
rmax = min{n, n, }. Consequently the relation betwef..x  that spans both the high and the low SNR regimes.

and Cou, allows for the interpretation that the full rate defin- ) Approximate universality, information losslessness an
ing condition is necessary for reliable transmission aésatgayssian-like signallingWe begin with:

close to the outage capacity of the Rayleigh fading channel.Theorem 4:Perfect codes are both approximately universal
independent of the channel topology. Equivalently, giveme 55 well as information lossless.

rate R, the full rate defining condition is necessary for reliable  prgof: See AppendiKTV. -
transmission at the smallest allowable SNR The code’s information losslessness, shown in the proogto b
SNR,;, = O i ) the result of the CDA structure and the last two conditioss, e
m —

sentially allows for the code to maintain the maximum mutual

again independent of the channel topology. Let us now rgformation corresponding to the channel and signalling se
examine the full-rate condition, in conjunction with thetele statistics. This mutual information is empirically reldt® the
minant condition. Gaussian-like signalling set and its good covariance ptgse

5) Non-vanishing determinant conditioe consider the observed in Figurd]l. The expedited rate with which the
n x T truncated codeY, T' > n, constructed by deleting
the sameT' — n rows from all the code-matriceX”’ of a
T x T perfect codeX’. We have seen that for anx n code
mappingn? information symbols from a discrete constellatiorz*
(n information symbols per channel use), the standasd
dimensional ‘folding’ (X| = |.A|"") forces a normalizing
factor of 2 = SNR' ™=, whereas in the truncatedx 7' code _ —

. 9 . 2 . . Fig. 1. Gaussian nature of the signalling set of thex 3 perfect code,
mapping T’ information Symb0|s % information Symb0|s compared to QAM and random Gaussian signalling (left). @enae of
per channel use), the constellation is foldedlirdimensions columns of perfect codes (center) compared to covariancandom Gaussian
(x| = |A|T2), requiring for vectors (right).

v =SNR" T,

mpdnenid © real

signalling becomes Gaussian, relates to the high-dimeakio
This scenario accentuates the fact that in essence, we amné orthogonal nature of the lattice generator matrix which
limited by a lower bound on the determinant of the energyegether with a unit-magnitude non-norm element, jointly
normalized difference matrix? AX AXT. As a result, for the allow equal magnitudes for the diagonal elements of the
n-dimensional case, the defining condition of non-vanishingvariance matrix of the signalling set.
determinant for the non-normalized matX A Xt > SNR’, Let us now draw from the information theoretic interpreta-
translates to tion of the defining conditions and provide variants of petfe
_r codes that are specifically tailored for channels with a Emal
det[? AXAXT] > (v*)"SNR’ = (SNR™7)" number of receive antennas, and which manage to maintain
= SNR'"" good performance at a considerably reduced sphere decoding

which, for then x T' case withT-dimensional folding, trans- complexity.

lates back to the determinant bound

det(AXAXT) > SN o (T—n) A. Channel topology and efficient variants of perfect codes
e > T

We have seen thaitx n perfect codes utilize different lay-
for the non-normalized code-matrices. But from [2], [16]ers to achieve approximate universality for a)l. Each layer
we see that the above determinant bound is the best thas non-vanishing product distance and majgtements from



a discrete constellation, thus maintaining two properties 10 T [== 2-layer perfectin 22 chamnel (abpou)
were shown in [18, Theorem 4.1] to guarantee for optimality ol S| e et in o channet (oo |
over the statistically symmetric parallel channel, i.eharmel

with a diagonal fading coefficient matrix, as well as potaihi 1072 N\

allowing for optimality over the statistically symmetricx 1 "

MISO channel. To offer intuition, we observe that the sum- LN

capacity of then,. independent MISO channels relates to the ol

full rate condition, whereas the achieved full diversitjates

to the CDA structure and the discreteness of the poweis$ of 107

which manage to translate the non-vanishing product distan

to an overall non-vanishing determinant, and thus to keep O 15 20 2 @ 3%

the different layers independent and at some non-vanishing *®

distance from e_aCh other. T_he full rate condition comes wi i .ilar error performance as the 2-layer (standard) pedede. This changes
a sphere decoding complexity 6f(n?), but as the number of when a second receive antenna is added.
MISO channels reduces with., so does the required decoding

complexity. Codes over such channels can have the form

Forn = 2,n, = 1, the single-layer perfect code variant exhibits

n-1 channel at the intermediate relays. This was achieved for th
X = Z 7 <diag (ij T G)> most general network topology and statistical characédn.
j=0 Perfect codes and some perfect-code variants, provided for
where T(i,j) = 1, i = j € [1,.,n,] andT(i,j) = the first ever optimal encoding method [47], [48], [49], [50]
0 otherwise, or can have the form in several cooperative-diversity schemes such as the non-
S dynamic linear-processing (receive-and-forward) schpiig
. s the non-dynamic selection-decode-and-forward schemg [45
X = M (d . . . - .
jz::o ( g (ij G)> and finally for the dynamic receive-and-forward scheme .[46]
Note here that the above codes have not been proven to\})e
D-MG optimal. . EXAMPLES OF NEW PERFECT CODES AND SIMULATIONS

Motivated by the down-link requirements and by the coopef. Examples of new perfect codes

ative diversity uses of space-time coding in wireless net&i0 o A 2 x 2 perfect code can be chosen to have code-matrices
we will concentrate on the MISO case,(= 1), for which a \ynich prior to SNR normalization, are of the form
D-MG optimal perfect code variant

L | foo+ foaw§ (fro+ frao(wg))

Xg = {diag(z) = diag(f - G), Vf € QAM"}. 17 X = V2| fio+ fiawd  foo+ foao(wd) ‘

with sphere decoding complexity @?(n) was recently con-

1 3 7
structed in [49], [50] for alln, together with the code — foo+ foawg  Y(f1,0 + firiwg) ‘

V2| fio+ fiaws  foo+ foawd
27

n—1
X ={X = Z fiIk, Vfi € QAM-HEX} (18) Wwheref; ; are from the desired QAM constellatians := s

k=0 andy = 12431- Matrices mapn? = 4 information elements

that corresponds to the center of the division algebra. WiffPm QAM. Furthermore the signalling set, in the form of the
the exception ofr = 2, X, has not yet been proven to pdayer-by-layer vectorization of the code-matrices, befSNR

D-MG optimal. Figurd® provides a performance comparisgiPrmalization, comes from the lattice
between the single dimensional perfect code variant with th Ao R
equivalent standard perfect-code. = {lfoo Joux fro fralRy

V[fo,05 fo.1, f1,0, f1.1] € QAan}

IV. RECENT DEVELOPMENTS INVOLVING PERFECT CODES

The proposed high-dimensional perfect codes have hadV\a!\rr]\ere 1 1 0 0
impact on establishing outage-based optimality expressio o ljwd w0 0
for wireless networks where independently distributedraise Ry = ﬁ 0o 0 1 y
utilize different parts of space-time schemes to relay agss 0 0 wi Hywi

for one another, hence improving the overall quality of gerv L - .

([43] etc). Up to now, outage-based optimality results wertct*fmey'ng the defining condition of

known only for infinite time duration networks in which R,R! = I,.

the assisting relays required full knowledge of the channel

Encoding was based on random Gaussian codes. Using perf¥et find the smallest possible determinant, prior to SNR
codes as an information theoretic tool, it was shown in [47)ormalization, to be

[49] that the same optimality can be achieved, for finite 1

and minimum delay, and without requiring knowledge of the det(AXAXT)pin = 20



which is larger than some previously constructedx 2 <.
perfect codes. The code’s performance improves if theiagist
1. . . 0.5257  0.8507
= is substituted wit =
¢ 3wy G2 =1 08507 —0.5257 ‘
taken from [12]. Lo
Other examples: &%
« The5 x 5 perfect space-time code is given by 107}
4
. full di i
o {X = U (diag(f; - Gs)), 1, € QAM5} ] —
7=0 —s— optimal constellation
) . ) . —— optimal power sharing ) ) )
for T given in [) based ony = gig; and generator matrix R
—0.3260  0.5485  —0.4557  —0.5969  —0.1699 Fig. 3.  Performance improvements attributed to achieving different
0.5485  —0.4557  —0.5969  —0.1699  —0.3260 criteria for the perfect codes
G5 =| —0.4557 —0.5969 —0.1699 —0.3260 0.5485
—0.5969 —0.1699 —0.3260  0.5485  —0.4557
—0.1699 —0.3260 0.5485 —0.4557 —0.5969
« The7 x 7 perfect space-time code is given by design whereas one of the perfect codes does not always
6 il . do so. For higher rates, all considered perfect codes perfor
X=1X= ZF (dmg(ij -G7)), ij € QAM substantially better than the orthogonal design. At aisand
=0 all SNR, the perfect code constructed here has performance
for I based ony = 8+5Z , and generator matrig,; = very close to that of the Golden code. In Figlle 6 we show the
performance of the newly construct&edimensional perfect
—0.681 0.163 —0.449 0.077 0.082 0.276 —0.469 . .
0163 —0.449 0.077  0.082  0.276 —0469 —0.681 code and compare that with the corresponding 5 single-
70-44;9 0-07; 0»282 0-226 70-46? 70i681 0»12‘3 dimensional commutative perfect codel(18). As expectesl, th
00k 0oms  oaes oo ougs otse  oom former utilizes fully then, = n = 5 channel and is thus able
0.276  —0.469 —0.681  0.163  —0.449  0.077  0.082 to transmit with a small probability of error at high ratesdan
—0.469 —0.681 0.163 —0.449 0.077 0.082 0.276
low SNR.
« The25 x 25 integral restriction code
is given by

24
X, = {X = sl s € QAM}
k=0

with v = 3+2¢. This code has the same sphere decoding

complexity of O(25) as theb x 5 standard perfect code in the
example above, and is expected to have the same performance,

whenn, = 1, as the25 x 25 perfect code whose sphere 10" = Unified perfect 4-8 bpcu
decoding complexity i€(625). )
_s|| ==+ Alamouti 4-8bpcu ) )
10 5 10 15 20 25 30

B. Simulations o

. 4. Low rate comparison of the unified perfect code witlo tperfect
All the simulations assum&N (0, 1) fading and thermal codes from [1] and with the Alamouti code

noise. A sphere decoder was used. We begin with Figure 3 to

indicate the performance improvement as the different ohefin

conditions are satisfied one-by-one. The first curve from

the top corresponds to satisfying the full-diversity cdioai VI. CONCLUSION

(commutative CDA code - orthogonal design). The secondWe have explicitly constructed perfect space-time codes fo
curve now includes the full-rate condition (random, fidte, any numbem of transmit antennas, any number of receive
linear-dispersion codes). The third curve correspondshéo tantennas and any deldythat is a multiple ofx. Achieving all
family of D-MG optimal but not information lossless CDAthe defining conditions from [1], allows for perfect codes to
codes presented in [2], which achieve the first three caiteexhibit performance that is currently unmatched. The imigr

of full-diversity, full-rate, and non-vanishing deterraimt. The tion theoretic interpretation of the exhibited good perfance
performance transition from the CDA codes to perfect codésth for low and high SNR, is that the defining conditions
is described by the next two curves. Figukés 4 Bnd 5 showaintly endow the code with approximate universality and th
comparison of the x 2 unified perfect code presented heregbility to provide for near optimal mutual information.

with some perfect codes from [1] and with the Alamouti code High dimensional perfect codes cover a much needed re-
(n, = 2). The Golden code [15] performs best among atjuirement for optimal codes in multi-user cooperative diitg
existing2 x 2 perfect codes. When rates are lower, the unifiagireless networks, where each user acts as a transmit antenn
perfect and the Golden code perform better than the ortredgoBpecifically, perfect codes have already been used to edtabl



{a,a+m,a+2m,...,a+ km,...} contains infinitely many
primes.

We will now proceed to establish the exact methodology
that will give unit-magnitude non-norm elemenis for the
different cases of interest.

LS50 a) Unit-magnitude, non-norm elements Br= Q(z):
Let
10% . r
— Y _ s e; __ s

= D towes no= 2 ]]pf = 2 (say)
perf-37 16 bpcu i=1

_4|| == Alamouti 16 bpcu ) ) ) ) L. . .

050 25 30 3 40 45 50 55 60 wherep; are distinct odd primes. Assume first that > 1.

® Let p be the smallest odd primg such thatn, | (p — 1).

The cyclic groupZ contains an element whose order equals
(p — 1). Let a denote this element. Our first goal is to find a
prime ¢ such that

Fig. 5. High rate comparison of the unified perfect code witl perfect
codes from [1] and with the Alamouti code

10°

= 5 (mod 2°"?)
107} ] g = a (mod p).
. Note that
10 1
Qg g = 1 (mod4).
o Since (2°%2,p) = 1, we can, by the Chinese Remainder
ol ] Theorem, find an integer such that
—— 5x5 perfect 10bpcu b = 5 (mod 28+2)
_s|| — 5x5 integral restirction ) )
10 5 10 15 Sg 25 30 35 b - a (InOd p)

Fig. 6. Comparison of thex 5 perfect code with thé x 5 single dimensional  Note that such an integer is relatively prime to25+2p.
integral restriction coder(, = 5). Consider the arithmetic progression

b+1(25%%p), 1=0,1,2,...

the high-SNR outage region of unknown channels, and haB¥ Dirichlet's _theore_m, this grithmetic p_rogression i_s 077
provided the first ever optimal schemes for a plethora &#€d to contain a prime having the desired properties. Now

Let K be the subfield ofY(w,) that is a cyclic extension

of Q of degreen;. Let K be the compositum ok’ andQ(2)
and letL be the compositum of the field§ and Q(wqs+2).
Note thatl is cyclic overQ(z), since it is a composite of the
cyclic extensionQ(wss+2)/Q(z) of degree2® and the cyclic

We will prove here Propositiod[1-2. extensionK/Q(z) of ny (note that2® and n, are relatively

For future reference, we first recall three results thatteela?rime). Now consider the decomposition of the prime ideal
to identifying a “non-norm” element, i.e, an element € F*  (¢) in the extensiorL/Q. _ _
satisfying~’ ¢ Ny x(L), 0 < i < n for somen-dimensional ~ Sinceéq =1 (mod 4) we have thay splits completely in
field extensiorl. of F. Q(2)/Q. Sinceq has order(p — 1) in Z, it follows that ¢

Lemma 5:[9] Let L. be a degree: Galois extension of a remains inertirQ(w,)/Q. Sinceg = 5 (mod 2°*?) and5 has
number fieldF and letp be a prime ideal in the rin@y below ©rder2® in Z.., it follows that in the extensio@(ws:+2)/Q,
the prime ideat ¢ Op with norm given by||3| = [|p||f, ¢ splits cor_npletely in(x)/Q b_ut remains inert thereafter.
wheref is the inertial degree of overp. If ~ is any element L€t ¢ splitin Q(z)/Q according to
of p\ p?, theny’ ¢ Ny p(L) foranyi=1,2,---, f — 1.

In order to find a “non-norm” elementin F = Q(z) (F = )
Q(ws)), it is sufficient to find a prime ideal iZ[s] (Z[ws]) Wherém = (a+1b) andxi = (a — b). Now by using the
whose inertial degreg in L/F is f = [L : F] = n. Such an fact that in a field toweE : K : F] of field extensions,
ideal is said to be inert ifL/F. fepp = fo/xfese, 98¢ = 9/xgx/ms [E 2 Fl = fo/r g5 /r,

Lemma 6:[38] Let p be any odd prime. Then for arly e it follows that m remains inert in the ext_ensdn/_@(z).

Z, 7%, is cyclic of orderg(p*). For any integerf dividing To now find a non-norm element of unit magnitude, we note
¢ that since the units oZ[:] belong to the se{+1, +:}, the
associates of

APPENDIX |
PROOF OF CONSTRUCTION METHODOLOGY FOR
NON-NORM ELEMENTS

*
q = Ty

#(p*) there exists am € Z*, such thatz has orderf in L.
Theorem 7:(Dirichlet’s theorem) Let, m be integers such
that 1 < a < m,ged(a,m) = 1. Then the progression m = a+1 belong to the set



guarantee that the primgremains inert in the ring of integers
O of the cyclotomic fieldl.” = K(wss+1), whereK is the
unique subfield of degree; in the extensior)(w,)/Q. The
S= Q(wz« ») field L is cyclic overQ of degre€2®n,. Sinceqg = 1 (mod3),
the primeg splits into two distinct primesry, w2 in Z[ws]
which are conjugates of each other. llet= L'(ws), which
is cyclic overQ(ws) of degree2°n;. Thenw; will remain
inert in the extensior./Q(ws). The elementy = 7t = =
will then be a unit-magnitude (algebraic) non- norm element
for the extensiorL/Q(ws), and the codes constructed with
this data will then be full-diversity, full-rate, and havem
vanishing determinant, and of course, will satisfy the équa
power-sharing constraint asis of unit-magnitude.

{lat+b, —a—1b, wa+b), —ia+tbd)}. What is left is to findp andg. The primep is found using
It follows that sinceab # 0, a — b does not belong to the setDirichlet as in the case wheie = Q(:). To find ¢, first find

Q(w )

F= Q(')

Fig. 7. The inertial degrees for the maximal field of the CDA

of associates of 4 0. Our goal now is to show that an intege that is simultaneously congruent to(mod 3), to
) m (modp), wherem is a generator oZ,«, and (ifs = 1) to 3
7= (mod4). This is possible by the Chinese Remainder Theorem.
, i ! Next, find the primey by applying Dirichlet’'s theorem to the
is @ non-norm element, i.e., that the smallest expokeftr  ,iihmetic sequence+1(3p), 1 = 0,1,2, ... if s =0 and the
which +* is the norm of an element if, is n. This is the sequence + 1(12p), [ = 0 1’2 it s =1
case since if Whenn; =1 (so0 s = 1), we takeL to be Q(ws)(z), and
AR = Ny p(f) somel €L the primegq to be 7.. Si_nceq is congruent tol .(mod 3) and
to 3 (mod4), ¢ splits into 3 + w3 and 3 + w3 in Q(ws) but
then — remains inert in the extensidd(z)/Q. It follows that each of
b= gk H ol (0) 34+ ws and 3 + w3 remain inert in the extensioh/Q(ws).
=0 The element
3+ w3
whereo is the generator of the cyclic Galois group ofF. T3 Tl
For/ = ¢, a,b € Oy, we have, in terms of ideals @y,

will then be a non-norm element for this extension, for the
nt nt same reasons as above. This concludes the proof of Prapositi

(m)" TT('®) = @D [](o'(a)). . O

1=0 1=0
Sinceo(m;) = m we have that if(m) divides (o!(z)) for APPENDIX I
somel andx € Oy, it must divide(o!(x)), for all . This in ORTHOGONAL LATTICES IN Ox, WHEREK /Q IS CYCLIC

turn implies that the power dfr ) in the prime decomposition GALOIS OF ODD DEGREE

of (m)*I1=, '(6!(b)) is k mod n whereas the power of o i
n_l(al(a)) is a We here show that the construction in [10] (of which a

(1) in the prlme decomposition ofr})* IT,, . " : . :
detailed exposition has been provided in [12, Section 5]) of

multiple of n. Equivalentlyk must be a multiple of. ! . . ) ] .
Whenn, = 1, it is sufficient to takeg to equal5, and lattices that belong in a cyclic Galois extensighof prime

L = Q(wye+2). The prime5 splits inQ(z) as (1 + 20)(1 — ) degreeq over _Q, actually gives without any modification
and then each ofl + 2:) and (1 — 2:) remain inert in the orthog.qnalllattlceéor any odd_dggreez. We will foII.ow the
extensionL/Q(+). The element exposition in [12] closely, retaining even the notatlc_m 2],
and show that the proofs there only use the fact thist odd,
— 1+2 and not that it is an odd prime.

L=2 To this end, letn > 3 be a given odd integer, and fix a
is then a non-norm element for this extension, for the sarpeme p = 1 (mod n). Note that the existence of suchpa
reasons as above. This concludes the proof of Propogitionislguaranteed since the sequedder dn, d = 1,2,---}, as
O shown by Dirichlet, contains infinitely many primes. Lete

b) Unit-magnitude, non-norm elements 6= Q(ws3):  a primitive p-th root of unity. ThusQ(w) is cyclic of degree
Let n = 2°ny, s € {0,1} wheren; is odd. The proof is p—1 overQ, and contains the real subfiel{w +w 1) which
similar to whenF = Q(z). Assume first thatr; > 1. We s cyclic of degree(p — 1)/2 over Q. Sincen dividesp — 1,
find a primep = 1 (mod n;), p > 3 and a primeg € Z, there is a unique fiel& contained inQ(w) which is cyclic of
g = 1 (mod 3), with ord(g)|z , = ni. If s =1, we also degreen overQ. This is the field we will work with. Note that
require thaly = 3 (mod4). Assume that we have found suctsincen is odd,n divides(p —1)/2 as well, soK is contained
a p and ¢. The argument for the rest of the statements im the real subfieldd(w + w™1).
this paragraph are all exactly as in the case whea Q(z): Recall that we are following the notation in [12]. Lét=
The conditions orth)|z , = ni andg =3 (mod4) (if s =1) Gal(Q(w)/Q), with generatorr, chosen so that(w) = w",




Ta+cn )

where in turn,r is a generator of;. We letm = p2 and Now the term Z§i}1)/”(—1)j(1 - w can be

observe that™ = —1 (mod p). We also choose\ so that rewritten as (1 — wr““”)z(,ﬁl)/"(_l)j. Since n is
J=
A(r = 1) =1 (modp). . . odd, (p — 1)/n is even, and hence, there are as many
We definea by o = [T}, (1 —w""). The following result positive as negative terms in the expressﬁﬁ” Dim(_1)d,

iS just a combination of Lemmas 3 and 4 of [12], and sinGgnqg thus, the sum becomes zero. S|m|IarIy, the term
they have to do purely with the cyclotomic extensi@fw)/Q Zp 1)/n( 1)° ( Z(p 1)/n( 1) (w" a*'ﬂ“)

and have nothing to do with, their proofs remain valid: becomes 7er10: thls is because the terms in
Lemma 8: The following equalities hold: S ( Z(p 1) /n( 1)7 (w" a+*+fn) are independent of
_ -1
1) o(a) = —wP o ¢, while the termz(” D/m(_1)e =0 as(p—1)/n is even

2) o(wra) —wra

3) (W a)? = (~1)"p

We now definez = w*a(1 — w) € Og.,), and

and there as many positive as negative terms. We thus find

(p—1)/n
(P*l)/" Tr t _ (_1\ttm
in k/o(zo’ () = (=1)"""p
x :TTQ(M)/K(Z) = Z " (2). Z
j:1 nol p 1)/n + +t+
Note thatz is in Ok, asz is in Og,,. Observing that Z Z Yer AT

GGy (i) = Tri oo’ (x)o? (z)),

we are interested iffi'rg ;o (zo’ (x)). The following, which is  We now have the following:
Proposition 2 of [12], gives us the key to constructing the | emma 10:
orthogonal lattice.

Proposition 9: T'r g(zo' (z)) = p*do, fort =0,...,n— (p—1)/n

n—1(p—1)/n
1. - a+cn+Ta+t+jn
Remark 1:Note  that Trg,g(c"(z)o? (z)) = ; (;) z;
Trgg(xo?’~"(z)). Thus, if we embedOx in R" via ’
1 . (p—1)/n n—1(p—1)/n
a — wv(a) = Ja,o(a),...,0" (a)] (note thatK is Z Z Z T etk
a real field), this Proposition says that the vectors et pr Sl
[v(x),v(0(x),...,v(c" 1 (x))] are orthogonal to one (p—1)/n 771 L (p—1)/n
another. e ()
Proof: Forn being odd, we have ; ;) z_:
Proof: See Appendixdll [ |
Tryg g(zo’(z)) = Z o (za'(z)) As in [12], we write
"Zl pzl):/" (-1 L (r-1)/
= 0,(1+C’r7, a+t+7n(z) - " = " a+kn ndJr t
)
a=0 c,j=1 Z Z Z
d=1 a=0 k=1
and from Lemmdl8 (r—1)/n (r—1)
n—1(p=1)/n hon = > Z Wiz
Tri o zot Z Z Dot —w™ ) d=1
a=0 c¢,j=1
(—1)EFIR A (1 — Y wherewg, = w4 and of course,
We observe that sincer is odd, (—1)* = (—1)¢ and (r—1) _
(=1)" = (—~1)7. Moreover, (—-1)%(=1)* = 1, and (1) Z oo Pl if wa,e =1,
is common to the sums above. By Lemfla 8, we may replace dt = otherwise
(wM)? by (—1)™p. Thus we find, after rearranging the sums,
that To determine whewy,: = 1, note that this happens (as in
p—1)/n whent =nd—m+ki(p—1). Sincen IS odd,n divides
(r-1)/ [12]) wh d k 1). Si is odd,n divid
Trgg(zot(z)) = (=1)(=1)"p Z (—1)% m, son must dividet. This forcest = 0.
=1 We now havew,; = 1 implies 7"¢ = —1 (mod p), and
1 )/n . paten writing —1 asr™, yieldsnd —m = I(p — 1) for somel. This
[Z > -t then givesd = (p — 1)(2l + 1)/2n, which we may write as
a=0 j=1 (20 + 1) times(p — 1)/2n) (note again that since is odd,n

n—1(p—1)/n Criigm wtem s ettt divides(p—1)/2). Sinced varies in the rangg, . .., (p—1)/n,
=3 > (Y —wt )} we find that! must be zero, that is] = (p — 1)/2n. Thus,
a=0 j=1 wq, = 1 precisely whent = 0 andd = (p — 1)/2n.



In particular, whert # 0 thenw, ¢ # 1 and we have that

(p—1)/n (p—1)
Tresglac'(@) = (~1)""p S (-1 Y Wi,
d=1 s=1
(p—1)/n

=D Y (=141
d=1

Once again, since is odd, (p — 1)/n is even, so the term

= D/m(_1)d = 0. Thus, fort # 0, Trg g(zot(x)) = 0.
Whent = 0, we find

(p—1)/n

>

d=1,d#(p—1)/2n

() mp(—1) D 1>]

TTK/Q(,TO't(SC)) =(-1)"p [(_1)d(_1)

and the right side then yields+ p(p — 1) = p?. To see this
last fact, consider first the case whepe— 1)/2 is even (i.e.,
p =1 mod4). Then, since: is odd,(p — 1)/2n is also even.

—-1)/n —-1)/n
The sungilyzl;(pfl)/%(—l)d equals D/ (—1) —

(—1)»=1/2" and we have already seen that, again becausg,,

d=c—k=c+k (mod2). As the pair(c, k) varies over all
of (Z,, x Z.,), so does the paifd, k). We thus have

n—1
DD IEIED I
CELm kEZL, a=0
n—1
DICID 35 3
d€lLm a=0 k€Z,
n—1
_ Z (_1)dz Z w(rnd+rt)(ra+nk)
d€ZLm a=0 kEZp,
Lo n—17"
DICID I N
d=1 a=0 k=1
O
APPENDIX IV

PROOF OFAPPROXIMATE UNIVERSALITY AND
INFORMATION LOSSLESSNESS OPERFECTCODES
(THEOREMH)

The approximate universality part of the proof, is based on
e derivation of the approximate universality conditians

: (=1)/n_17d - ide i -
is odd, >>;”; """ (~1)% = 0. Thus the right hand side in the[1g) |t is reproduced here for completeness.

equation above fofl'rk ;q(zo’(z)) indeed yieldsp? in this
case. We can similarly deal with the case whgn— 1)/2

Proof: Let A\ < X < --- < )\, andly > 1y > --- >, be
the ordered eigenvalues ¢fTH and AXAXT respectively.

is odd (i.et.,p =3 TOd 4), to find that in both cases, indeeqregpective of the statistics of the channel, in the higtRS
Trg q(zo’(z)) = p* whent = 0. This proves the Proposition. regime, the probability of no-outage at multiplexing gairis

APPENDIXIII
PrRoOOF oFLEMMA [I0

We wish to prove:

Ry
Z(_]‘)C Z Z(_l)ijQ+C7l+Ta+t+jn
c=1 a—0 j:l

p—1 b1

n n—1"5" o t) e

= (_1)d Z Zw(r +rt)r
d=1 =0 b1
Setm = 21 and denoteZ/mZ by Z,. In the above

equation, the dependence onj, d, k is only through their
values(modm) or through their valuegmod?2). If we assume
2|m, which follows from the assumption thatis odd, we can
then treate, j, d, k as elements of,,. We thus have

p—1 p—1
n n—1 "5 )
PIEI D) B
c=1 a=0 j=1
n—1
SISV DD DEC LT
CELim a=0kEZm
n—1
DI EIE0 D
CELp, kKELm, a=0

We now make the change of variables= d + k£ (mod m)

shown in [3] to satisfy

Pr(no-outagg = Pr {ZL In(1 + SNR);) > 1n(SNF¥)},
where n/ min(n,n,). Through the Lagrange multiplier
technique we determine

’
n

inf lz)\z

d? =
E,worst Héoutage4 -
P

by writing the functional as
T, Aw) =Y Lidi+p Y In(1+SNRA;) - ur In SNR

i=1 i=1
and differentiating w.r.tA;, we obtain\; = (u/l; —SNITl).
We then use the Kuhn-Tucker conditions to verify that the so-
lution \; = (u/1; — SNR™)* is what gives the worst possible
d% worsp fOr 11 such that

> In(1+ SNR(u/l; = SNR)T) = rIn SNR
i=1
Solving the above, we obtain that

G
b ——
— e’

p=sNR (=) J[1r  and thus A = ve 1
=1

li  SNR
Substituting this value of; in d% .« and settingdy, ors; >

SNR for somee > 0, we obta}in a conditiqn on the smallest
n’ eigenvalues of the codE[!" , /; > SNR" ", a condition

which implies, since|m, thate = d + k (mod 2) and hence satisfied by CDA codes with non-vanishing determinant. [16]



Now moving to perfect codes, we follow the approach if4]
[22] to show that the linear dispersion matrices are unitary
This property, together with the full rate condition, edistb [15]
the information losslessness and the entire theorem.

As the code maps? information elements, we consider
n linear dispersion matrice§A, }”_, of dimensionn? x n.

- A [16]
Starting with
Ap i =diag (G(i),4p, i=1,---,n
[17]
whereG (i) represents thé" row of G in (@), we recursively
create
Ay =T""A, ., uv=1,2--- n. [18]
Finally A, is constructed as
[19]
Au,O
Ay = : [20]
Aun—1 [21]

It is easy to see that the unitary naturelohndG makes each

of the A, unitary (22]
Al A, =1,.
[23]
|
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