
ar
X

iv
:c

s/
05

12
01

8v
2

 [c
s.

N
E

]
21

 M
ar

 2
00

6 DAMNED: A Distributed And Multithreaded Neural Event Driven
simulation framework

Anthony MOURAUD & Didier PUZENAT

GRIMAAG, Université Antilles-Guyane
Pointe-à-Pitre - Guadeloupe - France
{amouraud, dpuzenat}@univ-ag.fr

Hélène PAUGAM -MOISY

Institute for Cognitive Science, UMR CNRS 5015
67 bld Pinel, F-69675 Bron cedex - Lyon - France

hpaugam@isc.cnrs.fr

ABSTRACT
In a Spiking Neural Networks (SNN), spike emissions are
sparsely and irregularly distributed both in time and in the
network architecture. Since a current feature of SNNs is
a low average activity, efficient implementations of SNNs
are usually based on an Event-Driven Simulation (EDS).
On the other hand, simulations of large scale neural net-
works can take advantage of distributing the neurons on
a set of processors (either workstation cluster or parallel
computer). This article presents DAMNED, a large scale
SNN simulation framework able to gather the benefits of
EDS and parallel computing. Two levels of parallelism
are combined: Distributed mapping of the neural topol-
ogy, at the network level, and local multithreaded alloca-
tion of resources for simultaneous processing of events,
at the neuron level. Based on the causality of events, a
distributed solution is proposed for solving the complex
problem of scheduling without synchronization barrier.

KEY WORDS
Spiking Neural Networks, Event-Driven Simulations,
Parallel Computing, Multi-threading, Scheduling.

Accepted in : IASTED- PDCN 2006, International
conference on Parallel and Distributed Computing and
Networks

1 Introduction

Advancing the knowledge on cognitive functions, simu-
lations of Spiking Neural Networks (SNNs) represent a
bridge between theoretical models and experimental mea-
surements in neuroscience. Unlike usual threshold or sig-
moid neurons, models of spiking neurons take into ac-
count the precise times of spike emissions. Therefore,
SNNs help to simulate biologically plausible interactions
between neurons and to study the influence of local pa-
rameters, at the neuron level, on the network global be-
havior, at the functional level. Results of very large scale
SNN simulations can be analyzed the same way as ex-
periments on animal or human, e.g. LFP [1] or EEG [2]
recording, thus helping to understand how the brain works
[3, 4]. From a complementary point of view, theoretical
studies [5, 6] give large hope in the computational power
of SNNs. Subject to the discovery of convenient learning
rules [7, 8], simulations of large scale SNNs would pro-
vide efficient new solutions for many applications such as
computer vision [9], adaptive control, real-time systems
or autonomous robotics.

For developing very large scale SNNs, supporting a
wide variety of spiking neuron models, a general pur-
pose and fast running simulation framework is necessary.
The well known GENESIS [10] and NEURON [11] are
good for simulating precise biophysical models of neu-

http://arxiv.org/abs/cs/0512018v2

rons, but based on time driven simulation, i.e. scrolling
all the neurons and synapses of the network at each time
step, they are not specifically designed for fast simulation
of very large scale SNNs. In accordance with biologi-
cal observations, the neurons of an SNN are sparsely and
irregularly connected in space (network topology), and
the variability of spike flows implies they communicate
irregularly in time (network dynamics) with a low aver-
age activity. Since the activity of an SNN can be fully
described by emissions of dated spikes from pre-synaptic
neurons towards post-synaptic neurons, an Event-Driven
Simulation (EDS) is clearly suitable for sequential sim-
ulations of spiking neural networks [12, 13, 14, 15, 16].
More generally, event-driven approaches substantially re-
duce the computational charge of simulators that control
exchanges of dated events between event-driven cells EC,
without checking each cell at each time step. On the other
hand, since parallelism is an inherent feature of neural
processing in brain, simulations of large scale neural net-
works could take advantage of parallel computing [17, 18]
or hardware implementations [19, 20, 21]. A few studies
coupled parallel computing and EDS, for general purpose
systems [22], and for SNN simulation [23, 24, 25].

Our simulator belongs to the latter family and is close
to Grassmann’s work [23, 25], with some additional char-
acteristics. Although it is known for long [26] that a
fine grain mapping of the network (e.g. one neuron per
processor) is dramatically inefficient, due to high com-
munication overhead, we think that a multithreaded im-
plementation of neurons as event-driven cells EC is effi-
cient. Unlike several simulators [22, 24, 25], we avoid
the implementation of a unique controller or farmer pro-
cessor for scheduling the network simulation. We pro-
pose to direct the timing of execution through the times of
events, without an explicit synchronization barrier. Hence
we propose DAMNED, a “Distributed And Multithreaded
Neural Event Driven” simulation framework that gathers
the benefits of EDS and distributed computing, and com-
bines two levels of parallelism (multiprocessor and multi-
thread) for taking full advantage of the specific features of
SNNs, whatever the models of spiking neurons to be im-
plemented. Designed for efficient simulations either on
workstation cluster or on parallel computer, the simula-
tor is written in the object-oriented language C++, with
the help of the MPI library to handle communications be-
tween distant processors. Section 2 develops the speci-

ficity of temporal events in SNNs. Section 3 defines the
distributed multiprocessor architecture and specifies the
role of the multithreaded processes. Section 4 details the
algorithms and addresses the synchronization problem. In
section 5, we conclude with an outlook on DAMNED ex-
ploitation.

2 Temporal events in SNNs

In a typical neural network, at any time, each neuron can
receive on its dendritic tree some signals emitted by other
neurons. An incoming signal arrives with a delaydij and
is weighted by a synaptic strengthwij to be processed by
the soma. The values ofdij andwij are specific to a given
connection, from a presynaptic neuronNi to a postsynap-
tic neuronNj . The membrane potential of a neuron varies
in function of time and incoming signals. The neuron
emits a spike, i.e. an outgoing signal on its axon, when-
ever its membrane potential overcomes a given threshold
θ. In experimental setting, and thus for simulations, fir-
ing times are measured with some resolution∆t, yielding
a discrete time representation. Hence each spike can be
considered as an event, with a time stamp, and each neu-
ron can be considered as an event-driven cellECj , able
to forecast its next spike emission time, as result from the
integration of incoming spikes.

Ni4

Ni3

Ni2

i1N

N j0 1 2 3 4 5 6 7

incoming spikes, from
four presynaptic neurons :

postsynaptic neuron Nj
and delayed impacts on

excitatory from Ni at t = 01

inhibitory from Ni at t = 43

excitatory from Ni at t = 12
excitatory from Ni at t = 34

d =2
i j2

Exc2(1)
d =4

i j4

Exc3(3)
d =1

i j1 i j3
d =1

Exc1(0)

by neuron Nj at time 8,

outgoing spike

Threshold

Membrane Potential

Time (ms)
incoming spikes

(forecast to be emitted

Inhib(4)

Potential (mV)

cancelled afterwards)

Figure 1: Variations of membrane potential for a postsynap-
tic neuronNj . Three successive incoming Excitatory spikes let
forecast an outgoing spike that must be cancelled afterwards,
due to a further incoming Inhibitory spike, with a smaller delay
di3j .

However, the way to compute the future time of spike
emission can be complex, depending on the model of neu-
ron. For instance, ifECj manages the incoming delays, a

2

further incoming spike, with inhibitory synapse, can can-
cel the forecast of an outgoing spike before the stamp as-
sociated to this event (see Figure 1). Hence we have to
address the delayed firing problem (see [23, 14, 13]).

Since the activity in the network is unpredictable, in or-
der to preserve the temporal order of events, for the sake
of biological plausibility, we ought to control the uncer-
tainty of spike prediction. In the context of C++ language
programming, we have chosen the following data struc-
ture for classes of “events objects” :

CM event (resulting fromComMunication)
= incoming spike, to be computed

label of label of time stamp of
target neuron source neuron spike emission
Nj (integer) Ni (integer) sti (integer)

CP event (resulting fromComPutation)
= outgoing spike, to be emitted

label of time stamp of certification
source neuron spike emission flag
Ni (integer) sti (integer) crt (boolean)

wherecrt is true only if the typical time of local run, on
the processor implementing the neuronNi, is high enough
to guarantee that no further incoming spike could ever
cancel the CP event (see section 4 for further details).

Each class of “event-driven cells” EC objects is in
charge of the computation methods associated to a model
of spiking neuron, e.g. Integrate-and-Fire (IF, LIF), Spike
Response Model (SRM), or other (see [27, 28]), so that
different neuron types can be modeled in an heteroge-
neous SNN. Classically, anECj object modeling a neu-
ronNj has among its attributes the firing thresholdθj of
the neuron, the synaptic weightswij and the delaysdij of
the connections from all the presynaptic neuronsNi able
to emit a spike towardsNj .

3 Distributed architecture and
threads

The neural network topology must be distributed onP

processors according to a static mapping, to be defined as
convenient for the application to be simulated. Each pro-
cessorPrp implements a certain amount of EC objects,
labelled by their neuron numberNi. Each processorPrp

runs simultaneously two main threads so called CMC and
CPC, for “ComMunication Controller” and “ComPuta-
tion Controller” respectively and as many extra threads as
simultaneously computing neurons (see Figure 2). Incom-
ing spikes intended to be computed by every neuronsNi

belonging to processorPrp are stored in a priority queue
of CM events, ordered by their spike time stamp. Out-
going spikes resulting from computations of neuronsNi

belonging to processorPrp are stored in a priority queue
of CP events, ordered by their spike time stamp. They
are intended to be sent by the CMC process to all the tar-
get neuronsNj of Ni, whatever they belong toPrp or
to another processor. ProcessorPrp knows the tables of
postsynaptic neurons (neuron numbersNj and numberm
of processorPrm implementingNj) for all its neurons
Ni. For local target neurons, i.e.Nj ∈ Prp, a CP event
[Ni, sti, crt] from the CPC queue generates CM events
[Nj , Ni, sti] in the CMC queue of the same processor.
For distant target neurons, each CM event[Nk, Ni, sti]
is packeted into a message to be sent to processorPrm
implementingNk.

As illustrated by Figure 2, each processor runs in paral-
lel: two main threads, CMC and CPC, with mutual exclu-
sion for accessing each other priority queue. The CMC
and CPC threads continuously run each an infinite loop,
on the following procedures

CMC, ComMunication Controller
1. message reception: If messages from other proces-

sors are available, then place all the received CM
events[Nj , Ni, sti] inside the CMC priority queue,
ordered by their time stampsti (or by arrival time, if
equal time stamps exist),

2. emission control: If the next outgoing spike
[Ni, sti, crt], at the top of the CPC queue, is autho-
rized, then look at the table of target neurons ofNi,
create the CM events[Nj , Ni, sti] for all the postsy-
naptic neuronsNj and place them either in the local
CMC queue, ifNj ∈ Prp, or in packets prepared for
further message sending,

3. message sending: If packets are ready, then send
them to the target processors.

All messages are sent and received according to MPI
communication protocols. Thereceiveand sendproce-
dures do not stall waiting for effective messages at each

3

i ijN N st

CM event

?

Nj stj ctr

CP event

ECj

CMC CPC

launch thread

(step CPC 2)

process top CP event (step CMC 2)

process top CM event (step CPC 1)

queue queue

for neuron Nj

compute the

jneuron N

CMC ComMunication Controller CPC ComPutation Controller

spikes coming from an

other processor (step CMC 1)

spikes leaving to

others processors
(step CMC 2)

potential new spike
dynamics of

?

Figure 2: Architecture of a processorPrp, for p 6= 0. Several threads run simultaneously: A CMC thread, a CPC thread and
as many threads as currently computing neurons. CMC receives spike events coming from other processors (step CMC 1). CMC
inserts the incoming events in the CM priority queue according to their time stampsti. CPC checks if the top CM event is
authorized for computation (step CPC 1). If authorisation is granted, the thread associated toECj processes the [Nj ,Ni,sti] CM
event. IfNj triggers, the resulting spike generates a new CP events thatare inserted in the CPC priority queue (step CPC 2). CMC
checks if the top CP event is authorized for emission. If so, the spike event is dispatched towards all the target neurons,generating
CM events that are inserted either in the CMC queue or in packets to be sent to other processors.

loop step. They only check if messages are present in
their communication buffers. They process them if rele-
vant, otherwise the loop goes on.

CPC, ComPutation Controller
1. computation starter: If the next incoming spike

[Nj , Ni, sti] at the top of the CMC queue, is autho-
rized, then launch the thread associated toECj that
implements neuronNj

2. result collector: If a new spike[Nj , stj , crt] has
been generated byECj , then place the event inside
the CPC priority queue, ordered by its time stampstj
(or default, arrival time if some other time stamps are
equal)

Each time an incoming spike is computed by a neu-
ronNj , the associated thread is activated. Since the CPC
runs an infinite loop on thecomputation starterand re-
sult collectorprocedures, several other threads, on EC
objects, can be active simultaneously, thus implement-
ing concurrent computation of several neurons, locally on
processorPrp (Figure 2). On each processor,nbthp rep-
resents the number of active threads onPrp. The variable
nbthp is incremented by thecomputation starterproce-
dure each time a thread is activated for an EC object, and
decremented by theresult collectorprocedure each time

a thread ends. The EC object keeps a pointer to every CP
event it has generated as far as the event is present in the
CPC queue. Hence the EC object can modify some certifi-
cation flags if a new information allows it to authenticate
some old-queued events that have not yet been emitted.
For complete explanation of how to manage the delayed
firing problem, let us define two other local variables:

etp is the currentemission timeon processorPrp
ptp is the currentprocessing timeon processorPrp

The variableetp switches to its opposite negative value if
the CPC queue (spikes to be emitted) becomes empty, and
switch back to opposite positive value when new events
arrives in CPC queue. Same behavior for the variableptp
according to the state of the CMC queue (spikes to be
processed). Those two variables play a fundamental role
for controlling the scheduling on the set of processors and
for defining the conditions of emission and computation
authorizations, as detailed in section 4.

A last point about the distributed architecture: The neu-
ral network topology is spread ontoP processors. How-
ever, a realistic simulation requires an interaction with the
environment. Hence an extra processorPr0 is necessary
to send the environment stimuli to input neurons (dis-
tributed on severalPrp, with p ≥ 1) and to receive the

4

response from output neurons (also distributed on several
Prq, with q ≥ 1). We prevent the processorPr0 to be a
controller or a farmer, but the way it helps the scheduling
of the whole simulation is also fundamental, as explained
in next section.

4 Synchronization control methods

The main point is to keep an exact computation of firing
times for all the neurons of the network, and to prevent
all the processors from deadlock situations, despite of the
may-be irregularly distributed firing dynamics that can re-
sult from the environment data. The processorPr0 is in
charge to send to the neural network all the input stimuli
generated by the environment (e.g. translation in tempo-
ral coding of an input vector) and to receive all the spikes
emitted by the output neurons of the network.
Pr0 knows the actual timeT of the environment, and

its currentemission timeet0. At initial time, all the pro-
cessors emission timesetp are set to0. While the sim-
ulation runs, each processor, includingPr0, may have a
partial and obsolete view of the clocks of the other pro-
cessors. Each processorPrm, 0 ≤ m ≤ P , owns a local
clock arrayClk(m) storing the emission times it currently
knows, for all the processorsPrp, 0 ≤ p ≤ P

Clk(m) = et0(m) et1(m) ... etP (m)

Each time a processorPrp sends a packet of events
(spike emissions) to a processorPrm, the message is en-
capsulated with the local clockClk(p). Hence the clock
Clk(m) can be updated each timePrm receives a mes-
sage. We assess that the whole network scheduling can be
achieved this way, due to the local management of event
causality. Since this way of controlling synchronization
does not require “look-ahead” query-messages, we pro-
pose a more flexible method than the “safe window” so-
lution described in [23].

Environment processor ProcessorPr0 is the only one
that is not subject to the delayed firing problem since the
environment processor relays all the input stimuli towards
the neural network. HencePr0 knows exactly the dates
of all the external spikes that will trigger the input neurons
of the SNN. Each timePr0 increments the actual time to

T , all the packets with time stampsT−1 are ready for im-
mediate sending. Messages are sent to all the processors
Prm, m ≥ 1, with the following information:

• the current update of the clockClk(0), whereet0
has just been incremented toT

• if relevant, all the CM events[Nj , Ext, T − 1] that
will generate spike emissions at timeT onNj input
neurons owned by processorPrm

Even if a processorPrm does not own input neurons,
or if it owns input neurons that do not trigger at time
T , it will receive a message with the clockClk(0).
Note that the environment processorPr0 is the only
one that can send messages reduced to the clock. Since
all the processors are aware of the last update ofet0
“immediately”, or as soon as the message can be trans-
mitted [we assume reliable communication channels],
the argument(m) will be next omitted in notationet0(m).

The simulation starts running by the incrementation of
T to 1. Since spike events communication must respect a
causal order, the following conditions are always true, on
every processorPrm (arguments have been omitted):

T > 0 andet0 > 0 all along the run, after simulation start
(∀p ≥ 1) et0 ≥ |etp|

T and(∀p ≥ 0) |etp| are never decreasing
(∀p ≥ 0) |ptp| is never decreasing
(∀p ≥ 1) et0 ≥ |ptp|

The links betweenemission timeetp andprocessing time
ptp are clarified below, where algorithms that govern
emission and computation authorizations are detailed.

Each timePr0 receives an output event packet, it for-
wards all the CM events[Ext,Ni, sti] to environment
manager for further external processing, it updates its
clockClk(0), from the received clockClk(q), as follows:

(∀p ≥ 1) if |etp(q)| ≥ |etp(0)| thenetp(0)← etp(q);
if (∃j ≥ 1) |etj(q)| = T thenT ← T + 1; et0 ← T ;

If T has been incremented, thenPr0 sends the appropri-
ate messages to all thePrm. Note thatPr0 may receive
several output spike events, coming from different pro-
cessors, between two successive increments ofT . Con-
versely, it is possible that no output neuron send spike
emission, at a given timeT , and thenPr0 does not re-
ceive any message and does not update its clock. Such a

5

case would result quickly in stalling all the processors, by
blocking their emission and computation authorizations.
For preventing the system from deadlock, we assume that
a time-out is running onPr0 and thatT is incremented
when time-out expired, which is coherent with the notion
of actual time represented byT . Henceet0 is updated to
T and, provided that the time-out is sufficiently long, all
the etp(0) can be set up toT − 1. Messages are sent to
all the processors, with updated clockClk(0) and possi-
bly new spike events generated by external stimuli. This
time-out is rarely activated but it prevents the system to
fall into deadlock when the dynamics of the SNN is re-
duced to very low overall activity or activity loops that
risk to be localized on a single processor or on a cluster
with no output spikes.

CMC algorithms for emission authorization

On each processorPrp, for p ≥ 1, the CMC runs an
infinite loop on the successive procedures of message
reception,emission controland message sending (see
section 3).

At each message sending, processorPrp checks if a
packet of required size (minimal packet sizeminpak

is a parameter) is ready to be sent to another processor
Prm. In case of successful checking, processorPrp
encapsulates the ready-to-be-sent packet with its current
clock arrayClk(p) and sends it to the target processor. At
each message reception from a processorPrq, the CMC
of Prp inserts the incoming CM events in its priority
queue, sets back the processing time to a positive value:
ptp ← |ptp|, and updates its local knowledge of theetm
on other processors as follows:
(∀m 6= p) if |etm(q)| ≥ |etm(p)| thenetm(p)← etm(q);

The emission controlprocedure picks up a new CP
event [Ni, sti, crt] form the top of the CPC priority
queue. This event has been computed by a local thread
activated by the neuronNi and has generated a spike
emission forecasted for timesti. In order to respect the
causality of events, the CMC process has to check the
authorization to communicate this event, by the following
algorithm:
if sti = etp then emission is authorized;

else ifcrt then emission is authorized;
else ifsti ≤ ptp then emission is authorized;

else ifnbthp = 0 then
if ptp < 0 and(∀m 6= p)[sti ≤ etm or etm ≤ 0]

then emission is authorized;
else emission is delayed;

else emission is delayed;
If the emission is authorized, the CMC process updates
the local emission time: etp ← sti

If the CP event is authorized then it is removed from
the CPC queue. Each time the CPC queue becomes
empty, the local emission time is changed to its opposite
etp ← −etp in order to indicate that there are no more
spike emissions to communicate, at present time, on
processorPrp. If the emission authorization generates,
from the postsynaptic table of neuronNi, new CM events
to be further processed by one or more neurons local to
Prp, then the processing timeptp takes back a positive
value:ptp ← |ptp|.

The present algorithm controls that an authorization
to be emitted can not be delivered to a spike event
[Ni, sti, crt] before its validity has been assured, regard-
ing to the overall run of the simulated SNN. The emis-
sion of the spike event is authorized if we are sure that
all the further computations of neuronNi can not invali-
date the present spike, either due to other computations lo-
cally running on processorPrp (controls onetp, ptp and
nbthp) or to distant spike events further incoming from
other processors (controls onetm, for all m 6= p). Even if
a spike emission has been delayed only because the local
clockClk(p) was not correctly updated, we avoid to over-
load the communication network with query messages,
since the possible idle state is guaranteed to be ended by
the reception of either new incoming events from other
processors or clock messages coming fromPr0.

CPC algorithms for computation authorization On
each processorPrp, the CPC runs an infinite loop on
the successive procedurescomputation starterandresult
collector(see section 3).

The computation starterprocedure picks up the top
CM event [Nj , Ni, sti] of the CMC process priority
queue. This event notifies that the neuronNi has emitted

6

a spike at timesti towards neuronNj . The CPC process
is in charge to deliver the computation authorization,
according to the following algorithm:
if the thread associated toECj is already active

then{ ECj gets priority status [for further computation];
computation is delayed;}

else ifsti = ptp then computation is authorized;
else ifnbthp = 0 then

if (∀m)[sti ≤ etm or etm ≤ 0]

then computation is authorized;
else if local deadlock is detected then

if sti ≤ stl(next event top of CPC queue)

then computation is authorized;
else computation is delayed;

with the following condition for local deadlock detection:
if etp < sti and(∀m 6= p)[sti ≤ etm or etm ≤ 0]

If the computation is authorized, the CPC updates both
the local processing time: ptp ← sti

and the number of locally active threadsnbth++
p . Each

time the CMC queue becomes empty, the local processing
time is changed to its oppositeptp ← −ptp.

The present algorithm authorizes the computation
of only one event at a time by a given neuronNj (the
computation is delayed if the thread ofECj is active)
and regulates the computations, via the variableptp,
according to the whole network advancement state,
known by way of the clockClk(p) (controls on all the
etm). Once again, we avoid communication overhead,
even if computation is delayed for a moment, due to
an obsolete clock, since the problem will be solved
by further reception of messages coming from other
processors.

The result collectorscans the active threads, first for
an EC with priority status (if relevant) or in a loop on the
number of the currently active threads. If a neuronNj

computation of an event is over (i.e. thread ended), then
the number of active threads is decrementednbth−−

p . The
result of the computation is either null or a new outgoing
spike event[Nj , stj, crt] that theresult collectorinserts
in the CPC queue. If the CPC queue was previously
empty, then the emission timeetp takes back a positive
value:etp ← |etp|.

Moreover, the computation of an event for a neuronNj

induces the certification of old events[Nj , stj , crt] still
present in the CPC queue.crt ← “true” each timestj is
less or equal to the currently processedsti plus the mini-
mal delaydmin

j = mini(dij) of neuronNj .

5 Conclusion

We have designed a framework dedicated to event-driven
simulation of very large neural networks of biologically
plausile spiking neurons. The DAMNED simulator is
based on two levels of parallelism: At a coarse grain
level, the SNN is distributed on several processors; At a
fine grain level, local computations of neurons are mul-
tithreaded on each processor. Since local clock updates,
based on event causality, are managed via spike events
message passing, both time-consuming synchronization
barrier and centralized farmer processor can be avoided.

Presently, the simulator has been successfully tested on
a toy SNN, with a basic model of spiking neuron. Further
work will include implementation of large heterogeneous
SNNs. Time measurements and speed-up evaluations will
be performed both on workstation clusters and on parallel
computers (e.g. at IN2P3 and C3I computation centers).

References

[1] W. Singer. Neural synchrony: A versatile code for the
definition of relations?Neuron, 24:49–65, 1999.

[2] C. Tallon-Baudry, O. Bertrand, and C. Fischer. Oscillatory
synchrony between human extrastriate areas during visual
short-term memory maintenance.J. Neuroscience, 21:1–5,
2001.

[3] E.M. Izhikevich, J.A. Gally, and G.M. Edelman. Spike-
timing dynamics of neuronal groups.Cerebral Cortex,
14:933–944, 2004.

[4] D. Meunier and H. Paugam-Moisy. Inhibition and spike-
time-dependent plasticity govern the formation and disrup-
tion of a distributed synchronized neural assembly. (sub-
mitted), 2005.

[5] W. Maass. Networks of spiking neurons: The third
generation of neural network models.Neural Networks,
10(9):1659–1671, 1997.

[6] J.J. Hopfield and C.D. Brody. What is a moment? tran-
sient synchrony as a collective mechanism for spatiotem-

7

poral integration.Proc. Natl. Acad. Sci., 98(3):1282–1287,
2001.

[7] R. Legenstein, C. Naeger, and W. Maass. What can a neu-
ron learn with spike-time-dependent plasticity?Neural
Computation, 17(11):2337–2382, 2005.

[8] J. Sima and J. Sgall. On the nonlearnability of a single
spiking neuron.Neural Computation, 17(12):2635–2647,
2005.

[9] A. Delorme, J. Gautrais, R. Van Rullen, and S. Thorpe.
SpikeNET: A simulator for modeling large networks of in-
tegrate and fire neurons.Neurocomputing, 26-27:989–996,
1999.

[10] J.M. Bower and D. Beeman.The Book of GENESIS: Ex-
ploring Realistic Neural Models with the GEneral SImula-
tion System. Springer, 1998. 2nd edition.

[11] M.L. Hines and N.T. Carnevale. The NEURON simulation
environment.Neural Computation, 9:1179–1209, 1997.

[12] L. Watts. Event-driven simulation of networks of spiking
neurons. In J. D. Cowan, G. Tesauro, and J. Alspector, ed-
itors, Advances in Neural Information Processing System,
volume 6, pages 927–934. MIT Press, 1994.

[13] M. Mattia and P. Del Giudice. Efficient event-driven simu-
lation of large networks of spiking neurons and dynamical
synapses.Neural Computation, 12:2305–2329, 2000.

[14] T. Makino. A discrete event neural network simulator for
general neuron model.Neural Computation and Applic.,
11(2):210–223, 2003.

[15] O. Rochel and D. Martinez. An event-driven frame-
work for the simulation of networks of spiking neurons.
In ESANN’03, European Symposium on Artificial Neural
Network, pages 295–300, 2003.

[16] J. Reutimann, M. Giugliano, and S. Fusi. Event-driven
simulation of spiking neurons with stochastic dynamics.
Neural Computation, 15(4):811–830, 2003.

[17] Y. Boniface, F. Alexandre, and S. Vialle. A library to im-
plement neural networks on MIMD machines. InProc. of
Euro-Par, pages 935–938, 1999.

[18] P.A. Estévez, H. Paugam-Moisy, D. Puzenat, and
M. Ugarte. A scalable parallel algorithm for training a
hierarchical mixture of neural networks.Parallel Comput-
ing, 28:861–891, 2002.

[19] A. Jahnke, T. Schoneauer, U. Roth, K. Mohraz, and
H. Klar. Simulation of spiking neural networks on dif-
ferent hardware platforms. InICANN’1997, Int. Conf. on
Artificial Neural Networks, pages 1187–1192, 1997.

[20] U. Seiffert. Artificial neural networks on massively par-
allel computer hardware.Neurocomputing, 57:135–150,
2004.

[21] H. H. Hellmich, M. Geike, P. Griep, M. Rafanelli, and
H. Klar. Emulation engine for spiking neurons and adap-
tive synaptic weights. InIJCNN’2005, Int. Joint Conf. on
Neural Networks, pages 3261–3266. IEEE-INNS, 2005.

[22] A. Fersha. Parallel and distributed simultation of discret
event systems. In A. Y. Zomaya, editor,Parallel and Dis-
tributed Computing Handbook. McGraw-Hill, 1995.

[23] C. Grassmann and J. K. Anlauf. Distributed, event-driven
simulation of spiking neural networks. InNC’98, Inter-
national ICSC/IFAC Symposium on Neural Computation,
pages 100–105. ICSC Academic Press, 1998.

[24] R. Preis, K. Salzwedel, C. Wolff, and G. Hartmann. Ef-
ficient parallel simulation of pulse-coded neural networks
(pcnn). InPDPTA’2001, International Conference on Par-
allel and Distributed Processing Techniques and Applica-
tions, 2001.

[25] C. Grassmann, T. Schoenauer, and C. Wolff. Pcnn neu-
rocomputeurs - event driven and parallel architectures. In
ESANN’02, European Symposium on Artificial Neural Nrt-
work, pages 331–336, 2002.

[26] H. Paugam-Moisy. Multiprocessor simulation of neural
networks. In M. Arbib, editor,The Handbook of Brain
Theory and Neural Networks, pages 605–608. MIT Press,
1995.

[27] W. Gerstner and W. Kistler.Spiking Neuron Models: Sin-
gle Neurons, Populations, Plasticity. Cambridge Univer-
sity Press, 2002.

[28] W. Maass and C.M. Bishop, editors.Pulsed Neural Net-
works. MIT Press, 1999.

8

	Introduction
	Temporal events in SNNs
	Distributed architecture and threads
	Synchronization control methods
	Conclusion

