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Abstract

Performance of reliable communication over a coherent slow fading MIMO channel at
high SNR is succinctly captured as a fundamental tradeoff between diversity and multiplex-

ing gains. We study the problem of designing codes that optimally tradeoff the diversity
and multiplexing gains. Our main contribution is a precise characterization of codes that

are universally tradeoff-optimal, i.e., they optimally tradeoff the diversity and multiplexing

gains for every statistical characterization of the fading channel. We denote this charac-
terization as one of approximate universality where the approximation is in the connection

between error probability and outage capacity with diversity and multiplexing gains, re-
spectively. The characterization of approximate universality is then used to construct new

coding schemes as well as to show optimality of several schemes proposed in the space-time

coding literature.

1 Introduction

Reliable communication over slow fading point-to-point channels, where the (random) channel

realization is fixed over the time scale of communication, is characterized by the tradeoff between

data rate and error probability: typical fading distributions have a nonzero probability of being

very small and thus arbitrarily reliable communication is not possible at any non-zero rate. The

tradeoff between the data rate and the error probability is captured by the outage capacity, the

largest rate of reliable communication for a fixed error probability. The information theoretic

view is that of a compound channel: the slow fading channel is composed of a class of channels

parameterized by the different channel realizations that are not in outage. The outage capacity

is achieved by universal codes, those that work reliably over every one of the channel realizations

not in outage.

At high SNR, the precise (but too involved to derive code design principles) tradeoff between

error probability and data rate is coarsely captured in terms of a tradeoff between diversity and

multiplexing gains [1]: these are the rate of decay of error probability and the increase of data

rate with increasing SNR. Since the tradeoff is captured at a coarser scale, we shall denote
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codes that optimally tradeoff diversity and multiplexing gains for every slow fading channel

as approximately universal; the approximation here refers to the coarseness in the definition of

diversity and multiplexing gains as opposed to studying error probability and data rate directly.

Our main result is a precise characterization of approximately universal codes. We use this

characterization to show the approximate universality of some codes proposed in the literature

and to also construct new space-time codes that are approximately universal. These codes

are robust to statistical channel modeling errors, hence their engineering appeal is clear. This

approach of using compound channel viewpoint to construct robust codes for MIMO channels

has also been taken in a series of works in [2, 3, 4].

We are interested in codes that achieve reliable communication over all channel realizations

not in outage: this suggests, as done in [3], asking for the performance of the code for the

worst channel not in outage. This is in contrast to the traditional performance analysis where

the error probability is averaged over the statistics of the fading channel. In particular, if the

worst-case pairwise error probability decays exponentially with increasing SNR then such a

code is approximately universal. For a parallel channel, the worst channel for a given pair of

codewords is “inverse waterfilling” over the pairwise squared codeword differences. For a MIMO

channel, the worst channel (derived in [3]) aligns its singular vectors in the same directions as

those of the pairwise codeword difference matrix and then the singular values inverse waterfill

the singular values of the pairwise codeword difference matrix. While the exact expression of

the worst-case pairwise error is somewhat involved, a simple worst-case code design criterion

emerges at high SNR for both the parallel channel and the MIMO channel.

For a parallel channel, somewhat surprisingly, the worst-case code design criterion at high

SNR simplifies to the product distance criterion which was derived initially for the i.i.d. Ricean

fading channel [5], though is better known for the i.i.d. Rayleigh fading channel (see Chapter 3

of [6]). In a compound channel setting the criterion was heuristically derived in [2], here we

give a more precise statement for the criterion. In particular, we show that if the products of

all normalized squared codeword differences is larger than 2−R where R is the communication

rate, then the code is approximately universal. This design criterion suggests a class of codes

based on permutations of the QAM (quadrature amplitude modulation) constellation that we

call permutation codes. Even random permutation codes are approximately universal and we

provide examples of simple and explicit permutation codes that are approximately universal.

We show that a code based on a rotated QAM constellation proposed in the literature [7] also

satisfies the desired product distance property and is hence approximately universal.

For a MIMO channel, the worst-case code design criterion is in general not simply to max-

imize the determinant of the codeword difference matrix, the criterion derived for the i.i.d.

Rayleigh fading channel [8]. This can be explicitly seen in the case of the multiple transmit

but single receive antenna (MISO) channel: the worst channel chooses the most susceptible

direction to confuse between a pair of codeword matrices – this is the direction of the smallest

singular value of the codeword difference matrix. Thus the worst-case code design criterion

for the MISO channel is to maximize the smallest singular value of the codeword difference

matrix; different from the determinant criterion derived for the i.i.d. Rayleigh fading channel.

More generally, the worst-case code design criterion at high SNR for a MIMO channel (with

nt transmit and nr receive antennas) is to maximize the product of the smallest min(nt, nr)

singular values of the codeword difference matrix. With more receive than transmit antennas,
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the worst-case code design criterion reduces to the determinant criterion derived for the i.i.d.

Rayleigh fading channel.

An important implication of our worst-case code design criterion is the following: if a code is

approximately universal on an nt×nt MIMO channel, then it is also approximately universal for

nt×nr MIMO channel for every nr. Several space-time codes proposed in the literature satisfy

the worst-case code design criterion and are hence approximately universal. In particular, the

QAM rotation codes in [7, 9] are approximately universal for every MIMO channel with two

transmit antennas. The recently proposed codes in [10, 11, 12] that are derived from cyclic

division algebra are also approximately universal.

V-BLAST [13] and D-BLAST [14] are classical architectures for communication over a

MIMO channel. While they are not approximately universal, we show that they are tradeoff

optimal in some rate regime universally over a (restricted) class of channels which are rotation-

ally invariant. In particular, this class of channels includes the i.i.d. Rayleigh fading channel: we

show that V-BLAST with simple QAM constellations as the independent data streams achieves

the last segment of the tradeoff curve for the n × n i.i.d. Rayleigh fading MIMO channel and

D-BLAST achieves the first segment of every nt×2 i.i.d. Rayleigh fading MIMO channel. These

results are illustrated in the context of a 2×2 i.i.d. Rayleigh fading MIMO channel in Figure 1.
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Figure 1: Tradeoff curves: nt = nr = 2

We have organized this paper into two distinct parts: first, we present a precise charac-

terization of approximate universal codes for the general MIMO channel. In the second part,

we discuss explicit approximately universal codes, starting with simpler channel models and

moving on to the more involved ones. In particular, we start with the scalar channel and show

that a simple QAM is approximately universal (this is done in Section 4). Next, we study the

parallel channel and the MISO channel in Sections 5 and 6, respectively. Finally we consider the

general MIMO channel in Section 7 by demonstrating the approximately universality of some

codes proposed in the literature, and then analyzing the approximately universal performance

of V-BLAST and D-BLAST in Sections 8 and 9, respectively.
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2 Channel Model and The Outage Formulation

The main focus of this paper is on the slow fading (point-to-point) MIMO channel

y[m] = Hx[m] +w[m], (1)

where m is the time index and y and x denote the output and the input vectors respectively.

The complex nr × nt matrix H of fading gains is randomly picked, but stays constant over

the time-scale of communication; we suppose that the exact realization of H is known at the

receiver. The additive noise w has i.i.d. complex Gaussian (CN (0, 1)) entries. We are interested

in one-shot communication over this channel over a (small) length of time T . There is a transmit

power constraint of TntSNR for any transmit codeword of length T .

In this paper, we focus on the scaling at high SNR introduced in [1]: the data rate is

measured on a scale of log SNR and the decay rate of error probability is measured on a scale

which is a negative exponent of SNR. All logarithms in this paper are to the base 2. More

precisely, the multiplexing and diversity gains are defined as follows. A sequence of coding

schemes (sequence in SNR) achieves a multiplexing rate of r and diversity gain of d if

lim
SNR→∞

R(SNR)

log SNR
= r, and lim

SNR→∞
log Pe(SNR)

log SNR
= −d,

where R(SNR) is the rate of the scheme and Pe(SNR) is the probability of error with maximum

likelihood (ML) decoding for the scheme. For a given multiplexing gain r, the largest diversity

gain supported by any coding scheme is denoted by d∗(r). The goal is to find a characterization

of this optimal diversity-multiplexing tradeoff, d∗(r), for any correlated channel and then to

find (simple) coding schemes with as small a block length (T ) as possible that achieve this

optimal tradeoff curve.

The outage event turns out to be closely related to the problem of characterizing d∗(r). It

is defined as the set of channel realizations for which the mutual information is below the data

rate:

{H : I (x;Hx+w|H) < R} , (2)

where the input distribution is independent of the realization of H. It is shown in [1] that, in

the scale of interest, the input distribution Px can be taken to be i.i.d. complex Gaussian for the

Rayleigh fading channel; a similar argument for any fading distribution shows that the input

distribution can be taken to be i.i.d. complex Gaussian. This means that the outage curve can

be defined as:

dout(r) := lim
SNR→∞

− logP {H : log det (I+ SNRHH∗) < r log SNR}
log SNR

. (3)

The outage curve dout(r) is an upper bound to d∗(r) [1]. On the other hand, the set

of channel realizations that are not in outage constitute a compound channel, the capacity of

which is r log SNR. The compound channel coding theorem guarantees the existence of universal

codes: codes that achieve reliable communication over every MIMO channel realization that is

not in outage. This means, that by coding over possibly long block lengths, one can actually

achieve the outer bound of dout(r). Therefore for the rest of this paper, we identify the outage

curve with the optimal diversity-multiplexing tradeoff curve. Note that, we are mainly interested
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in fading distributions such that the eigen-values are not bounded away from zero (e.g. AWGN

channel can be considered as a fading channel). Otherwise, the outage curve will be infinite,

and an approximately universal code will achieve it. But, the diversity-multiplexing tradeoff is

not the right setup to study this problem.

We are interested in universal codes that achieve the upper bound of dout(r) only to the

extent that they are tradeoff-optimal; we call such codes approximately universal. Our main

focus is on a characterization of approximately codes with small block-length.

3 Main Result

Our main result is a precise characterization of approximately universal codes.

Theorem 3.1. A sequence of codes of rate R(SNR) bits/symbol is approximately universal over

the MIMO channel if and only if, for every pair of codewords,

λ21λ
2
2 · · ·λ2min(nr ,nt)

≥ 1

2R(SNR)+o(log(SNR))
, (4)

where λ1, . . . , λmin(nr ,nt) are the smallest min (nr, nt) singular values of the normalized (by
1√
SNR

) codeword difference matrix.

For nr ≥ nt, (4) turns out to be the same as the “nonvanishing determinant” criterion

introduced in the context of i.i.d. Rayleigh fading channels in [15]. This criterion was also

studied in [7, 10], also in the context of i.i.d. Rayleigh fading channels. In [7], it was shown that

for two transmit antennas, if a code satisfies this nonvanishing determinant criterion, then it is

tradeoff-optimal for the i.i.d. Rayleigh fading channel; this result has been recently generalized

for artibtrary number of transmit antennas in [10].

Our result is much stronger: if a code satisfies the nonvanishing determinant criterion,

then it is tradeoff-optimal for every fading distribution. Thus, our result gives the well-known

determinant criterion a precise operational interpretation in terms of approximate universal-

ity. Through this characterization, we will see that codes with small block lengths can be

approximately universal. We start with a few implications of this criterion and then prove the

sufficiency part of the criterion. The necessity part is proved in Appendix A.

3.1 Approximately Universal Codes in the Downlink

Some interesting observations follow from our characterization of approximately universal codes.

• If a code is approximately universal over an nt×nr MIMO channel with nr ≥ nt, i.e., the

number of receive antennas is equal to or larger than the number of transmit antennas,

then it is also approximately universal for an nt × l MIMO channel with l ≥ nt.

• The singular values of the normalized codeword difference matrices are upper bounded

by a fixed number (
√
ntT ). Thus, a code that is approximately universal over an nt × nr

MIMO channel is also approximately universal over an nt× l MIMO channel with l ≤ nr.

• Consider the downlink of a cellular system where the base stations are equipped with

multiple transmit antennas. Suppose we want to broadcast common information to all
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the users in the cell. We would like our transmission scheme to not depend on the

number of receive antennas at the users: each user could have a different number of

receive antennas, depending on the model, age, and type of the mobile device. Universal

MIMO codes provide an attractive solution to this problem. Suppose we broadcast the

common information at rate R using an approximately universal space time code over an

nt×nt MIMO channel. Since this code is approximately universal for every nt×nr MIMO

channel, the diversity seen by each user is simultaneously the best possible at rate R. To

summarize: the diversity gain obtained by each user is the best possible with respect to

both,

– the number of receive antennas the user has, and

– the statistics of the fading channel the user is currently experiencing.

3.2 Characterization of approximately universal codes

Towards our goal of characterizing approximately universal codes, we first calculate the pairwise

error probability for a pair of codewords based on the worst channel realization not in outage,

i.e., we consider the realization (not in outage) as a function of the specific pair of codewords

so as to yield the worst pairwise error probability. If this worst-case pairwise error probability

decays exponentially with SNR for every pair of codewords (we allow the worst channel to change

as a function of the pair of codewords), then a simple union bound argument shows that the

error probability conditioned on the channel realization not in outage decays exponentially with

SNR: the total number of codewords is only polynomial in SNR; for example if the multiplexing

rate is r, the rate is R = r log SNR and the total number of codewords is SNRr. Since the error

probability is lower bounded by the outage probability, we arrive at a sufficient condition for

approximate universality of a code:

the worst-case (over channels not in outage) pairwise error probability for every pair

of codewords should decay exponentially with SNR.

It turns out that this condition is necessary as well; thus we have an exact characterization of

approximately universal codes.

In Section 3.2.1 we derive an expression for the worst-case pairwise error for a pair of

codewords. This derivation allows us to explicitly characterize approximate universality of a

code in terms of a condition on its pairwise difference codewords. It is fruitful to contrast

our approach with the traditional “code design criterion” for space-time codes in the literature

where the pairwise error probability is averaged over the channel statistics. This criterion

indeed depends on the specific channel statistics being considered. This is in stark contrast to

the worst-case analysis we have proposed; the corresponding “universal code design criterion”

does not depend on the channel statistics and characterizes properties of a universal code: the

engineering appeal of the universal code design criterion is natural; modeling channel statistics

is a bit of an “art” in practice and it is useful to have a code that is robust to a variety of

channel statistics.

The classical code design criterion for the i.i.d. Rayleigh fading channel is the determinant

criterion; as we will see in Section 3.2.1, the universal code design criterion at any specific SNR

is quite different from the determinant criterion. However, it is also somewhat involved and
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is not directly suited to verify or to design approximately universal codes. In Section 3.2.3

we derive a simplified condition for approximate universality taking the high SNR scaling into

consideration and this high SNR criterion is indeed very closely related to the determinant

criterion.

3.2.1 Worst-case Pairwise Error Probability

Our approach is to study the worst-case pairwise error probability of the code over MIMO chan-

nel realizations not in outage. The pairwise error probability between two codeword matrices

XA and XB (of length T ≥ nt), conditioned on a specific realization of the MIMO channel H,

is

Q

(
√

SNR

2
‖HD‖2

)

, (5)

where D is the normalized codeword difference matrix

D =
1√
SNR

(XA −XB) .

Expanding the channel and codeword difference matrices using the singular value decomposition

(SVD),

H := U1ΨV∗
1 and D := U2ΛV∗

2, (6)

the pairwise error probability in (5) can be rewritten as

Q

(
√

SNR

2
‖ΨV∗

1U2Λ‖2
)

. (7)

Suppose the singular values are increasingly ordered in Λ and decreasingly ordered in Ψ:

Ψ := diag
{

ψ1, . . . , ψmin(nr ,nt), 0, . . . , 0
}

, and Λ := diag {λ1, . . . , λnt} .

Then the worst-case rotation can be determined and it turns out to be the one that aligns the

weaker singular values of the channel matrix with the stronger singular values of the codeword

difference matrix [3]. More precisely, the channel eigen-directionsV1 that maximize the pairwise

error probability in (7) is [3]

V1 = U2. (8)

Now, the no-outage condition is only a condition on the non-zero min (nr, nt) singular values

of the fading matrix and is given by:

min(nr ,nt)
∑

ℓ=1

log
(

1 + SNR|ψℓ|2
)

≥ R. (9)

Hence the worst-case pairwise error probability for the MIMO channel reduces to the optimiza-

tion problem

min
ψ1,...,ψmin(nr,nt)

SNR

2

min(nr ,nt)
∑

ℓ=1

|ψℓ|2|λℓ|2, (10)

7



subject to the constraint in (9).

If we define Qℓ := SNR · |ψℓ|2|λℓ|2, then the optimization problem can be rewritten as

min
Q1≥0,...,Qmin(nr,nt)

≥0

1

2

min(nr ,nt)
∑

ℓ=1

Qℓ

subject to the constraint
min(nr,nt)
∑

ℓ=1

log

(

1 +
Qℓ
|dℓ|2

)

≥ R.

This is the dual of the problem of minimizing the total power required to support a target rate

R bits/symbol per sub-channel over a parallel Gaussian channel; the solution is just standard

waterfilling, and is given by

Qℓ := SNR · |ψℓ|2|λℓ|2 =
(

1

λ
− |λℓ|2

)+

, ℓ = 1, . . . ,min (nr, nt) . (11)

Here λ is the Lagrange multiplier chosen such that the channel in (11) satisfies (9) with equality.

The worst-case pairwise error probability is

Q







√

√

√

√

1

2

min(nr ,nt)
∑

ℓ=1

(

1

λ
− |λℓ|2

)+






, (12)

where λ satisfies:

min(nr,nt)
∑

ℓ=1

[

log

(

1

λ|λℓ|2
)]+

= R. (13)

For convenience, we denote the argument of the Q

(

√

(·)
2

)

function at the worst-case channel

realization as the universal code construction criterion for the given difference codeword pair.

In general, the goal is to maximize this universal code construction criterion:

min(nr,nt)
∑

ℓ=1

(

1

λ
− |λℓ|2

)+

. (14)

3.2.2 A Closer Look at the Universal Criterion

To get a feel for the universal criterion in (14), consider the simple case when codeword differ-

ence eigenvalues have the same magnitude, i.e., |λ1| = · · · = |λnt |. Then λ can be explicitly

calculated:
1

λ
= 2R/min(nr ,nt)|λ1|2.

Thus the universal criterion is given by

min (nr, nt)
(

2R/min(nr,nt) − 1
)

|λ1|2,

8



a simple function of the magnitude of the normalized codeword difference. To understand the

situation in general, let us suppose without any loss of generality that |λ1| ≤ · · · ≤ |λmin(nr ,nt)|.
Now consider the largest k such that

|λk|2 ≤ 2R/k |λ1 · · ·λk|2/k ≤ |λk+1|2, (15)

with |λmin(nr ,nt)+1| defined as +∞. Then λ can be calculated explicitly:

1

λ
= 2R/k|λ1 · · ·λk|2/k, (16)

satisfies (13). Thus the universal code design criterion turns out to be

(

k
(

2R|λ1λ2 · · ·λk|2
)1/k −

k
∑

ℓ=1

|λℓ|2
)

, (17)

a combination of the geometric and arithmetic means of the magnitudes of the k smallest

singular values of normalized codeword differences. While this calculation sheds some insight

into the nature of the universal code design criterion, it still does not lend itself to designing

or verifying approximately universal codes. Towards making this expression more amenable to

code design, we would like to develop a high SNR approximation; this is done next.

3.2.3 Proof of Theorem 3.1

Our goal here is to show that for a sequence of codes satisfying (4), the probability of error

has the same decay rate as that of the outage probability for all fading distributions. The

probability of error can be upper bounded using a smart union bound (as in [1]):

Pe ≤ P {O}+ P(error, Oc). (18)

Here we have denoted the outage event by O. Similar to the union bound, the second term

can be upper bounded by a sum of pairwise errors averaged over all channel realizations not

in O. This sum can be further upper bounded by the sum of the worst-case (over all channel

realizations not in O) pairwise error probabilities. For the probability of error to behave like

the probability of outage for every fading distribution, we require the second term in (18) to

decay exponentially in SNR (= e−SNR
δ
for some δ > 0). One way to do this is to make every

worst-case pairwise error decay exponentially in SNR.

Instead of considering a single outage event, we consider a sequence of outage events Oǫ,

parameterized by ǫ > 0: the channel realizations not in Oǫ are those that are strictly inside the

no-outage region:
min(nr ,nt)
∑

ℓ=1

log
(

1 + |ψℓ|2SNR
)

≥ R(1 + ǫ).

For a pair of codewords, the worst-case pairwise error probability is (12)

Q





√

∑min(nr,nt)
ℓ=1

(

1
λ − |λℓ|2

)+

2



 ,

9



where λ satisfies (see (13))

min(nr,nt)
∑

ℓ=1

[

log

(

1

λ|λℓ|2
)]+

= R(1 + ǫ). (19)

Since the codeword differences satisfy the condition in (4), λ can be explicitly calculated (see

(15) and (16))
1

λ
= 2R(1+ǫ)

(

|λ1| · · · |λmin(nr ,nt)|
) 2

min(nr,nt) . (20)

Thus the worst-case pairwise error probability can be upper bounded by (see (17)):

Q





√

min (nr, nt) 2R(1+ǫ)
(

|λ1| · · · |λmin(nr,nt)|
) 2

min(nr,nt) −∑min(nr ,nt)
ℓ=1 |λℓ|2√

2



 . (21)

Again using the supposition in (4), the first term in (21) is growing unbounded with increasing

SNR, while the second term in (21) is bounded above by 2ntT (a constant) because of the

power constraint. Thus, the second term can be ignored for increasing SNR and we can write

the following upper bound to the worst-case pairwise probability of error (using (4))

Q

(

2Rǫ√
2

)

< exp

(−2Rǫ

2

)

.

With R = r log SNR, we conclude that the pairwise error probability conditioned on the channel

realization not in Oǫ decays exponentially with SNR. Since the number of codewords is poly-

nomial in SNR, the overall error probability conditioned on the channel realization not in Oǫ

decays exponentially with SNR. Thus the error probability decays at the same rate as P {Oǫ}.
Letting ǫ become arbitrarily close to zero, this decay rate can be made arbitrarily close to

that of the outage probability. Thus the sequence of codes achieves the optimal tradeoff curve,

and further for every fading distribution, we conclude that the sequence of codes satisfying (4)

is approximately universal. This completes the sufficiency part of Theorem 3.1; necessity is

proved in Appendix A. Next, we discuss some explicit schemes that are approximately uni-

versal, starting with the simple scalar channel and then moving onto more complex channel

models.

4 QAM is Approximately Universal for the Scalar Channel

The single antenna (transmit and receive) channel model can be written as (dropping the time

index):

y = hx+ w.

The criterion for approximate universality (cf. Theorem 3.1) simply translates into a minimum

distance one for the code:

d2min >
1

2R(SNR)+o(log SNR)
, (22)
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where dmin is the normalized minimum distance over all the codeword pairs for the coding

scheme. Now, consider a simple coding scheme with unit block length: QAM of size 2R. The

normalized minimum distance of this QAM has the property

d2min ≈ 1

2R
,

and is therefore approximately universal for the scalar fading channel.

5 The Parallel Channel

The parallel fading channel with L diversity branches at time m is

yℓ[m] = hℓxℓ[m] + wℓ[m], ℓ = 1, . . . , L. (23)

Here w1[m], . . . , wL[m] are i.i.d. CN (0, 1). The approximate universality criterion for the par-

allel channel is stated in the following theorem. The proof is very much similar to the general

approximate universality proof in 3.2.3, hence we omit it here.

Theorem 5.1. A sequence of codes with rate R(SNR) bits/symbol is approximately universal

if and only if, for every pair of codewords, the normalized codeword differences d1, . . . ,dL (the

rows of the difference codeword matrix) satisfy

‖d1‖2 · ‖d2‖2 · · · ‖dL‖2 >
1

2R(SNR)+o(log SNR)
. (24)

In the rest of the section, we study a simple class of codes that are approximately universal.

Our main focus is on unit block length codes based on permutations of a QAM constellation

that we call permutation codes.1 We show in Section 5.2 that even a random permutation code

is approximately universal; thus space-only approximately universal codes exist. Finally, we

demonstrate simple examples of approximately universal permutation codes: these codes are

easy to represent (so the storage complexity is low) and very easy to encode and decode (so the

run time complexity is small as well). The parallel channel with two sub-channels is studied

in Section 5.3 where a bit-reversal permutation is shown to be approximately universal; this

scheme also provides an operational interpretation to the outage condition (defined based on

an information theoretic underpinning) of the parallel channel. Simple permutation codes for

the parallel channel with more than two sub-channels are the topic of Section 5.4.

5.1 Approximate Universality of Codes Based on Rotation of PAM

The criterion of maximizing the product-distance has been known in the context of the i.i.d.

Rayleigh fading channel. A code construction based on rotations of PAM constellations is

discussed in [16]: the transmit codeword vector x := [x1, · · · , xL] is defined as

x = uM, (25)

where u1, . . . , uL are independent PAM constellations and M is an orthonormal matrix. [16]

shows existence of M such that the code has the maximum diversity possible, i.e., a non-zero
1These codes are intimately related to interleaver designs in turbo codes.
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product distance. The problem of explicitly maximizing the minimum product distance was

later considered in [17]: it was treated as an optimization problem over M for fixed input

constellations. For L = 2, the M that maximizes the product distance was explicitly found

using computer simulations. Later, a similar idea of rotating QAM constellations was proposed

in [7] as a part of the 2× 2 code construction. It follows from Theorem 2 in [7] that these codes

are also in fact approximately universal for the parallel channel.

Unfortunately, no generalizations of the rotation based codes exist when there are more

than two sub-channels. Further, these codes are hard to decode for large constellation sizes.

Therefore, we propose another approach: QAM constellations are the basis of the code design

but we consider mappings that utilize the algebraic structure of the constellation; these map-

pings are nonlinear with respect to the Euclidean vector space in which the QAM constellations

are embedded – this is in contrast to the rotation operation which is a linear mapping.

5.2 Permutation Codes

We would like to construct simple space-only (i.e., unit block length) approximately universal

codes. As a step towards simple encoding and decoding, suppose the QAM constellation to be

the alphabet for each sub-channel. We need to protect every codeword by coding it across every

sub-channel: for the code to have any chance of being approximately universal, it should allow

reliable communication for every channel realization not in outage and, in particular, over the

parallel channel where all but one sub-channel is zero. Two design implications are suggested:

1. With a rate of R bits/symbol, each of the QAM constellations on the sub-channels has

2R points.

2. With 2R-point QAM as the alphabet for each sub-channel, the points in the constellation

over each sub-channel can be identified one-one with points in the constellation of the

other sub-channels. In other words, the QAM constellation over one sub-channel is a

permutation of the points in the QAM constellation over any other sub-channel.

Mathematically, the permutation code can be represented as

C =

{
√

SNR

2R
(q, f2(q), ..., fL(q)) |q ∈ QZ

}

,

where

QZ =

{

(a+ ib) : −2
R
2

2
≤ a, b ≤ 2

R
2

2

}

(26)

is the integer-QAM with 2R points, and f2, ..., fL are permutations of QZ .

5.2.1 Examples

Repetition coding is a simple example of a permutation code: the permutations are just the

identity. Figure 2 illustrates the permutation code with identity permutation for L = 2. Here

QZ is the QAM with 16 points.

For L = 2, Figure 3 shows a permutation code with 16 codewords that is designed to

maximize the minimum product distance. Product distance of this code is an improvement over

12
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Figure 2: Repetition coding: L = 2, R = 4.
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Figure 3: Permutation code: L = 2, R = 4

the repetition code in Figure 2 by a factor of 4. The code in Figure 3 and its generalization

to larger L is discussed in [18] using the theory of spreading transforms. The focus in [18] is

on finding codes that have a non-zero product distance and can be efficiently constructed from

smaller constellations (QPSK) using spreading transforms.

5.2.2 A Random Permutation Code Ensemble

Our search for permutation codes that are approximately universal leads us to study permuta-

tions with large QAM alphabet sizes. To get a feel for whether there indeed exist permutation

codes with large enough product distance, we can look at an appropriate random permutation

ensemble and see if the product distance averaged over this ensemble of permutation codes has

the desired property. If this is the case, then there must have been at least one permutation

code in the ensemble that is approximately universal. Averaging the product-distance itself is

not good enough; we look at the inverse of the product distance and average it over all possible

permutation codes with the uniform measure. Our main result is the demonstration of existence

of permutation codes that are approximately universal:

Theorem 5.2. There exists a sequence of permutation codes that is approximately universal

over the parallel channel.

The details of the proof are relegated to Appendix B.
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5.3 Two Sub-channels: Bit-Reversal Permutation Code

While it is encouraging to know the existence of permutation codes that are approximately

universal, it is of engineering interest to actually construct simple approximately universal

codes from this ensemble. It turns out that an operational interpretation of the outage condition

(which was defined based on an information theoretic understanding of the compound channel)

suggests natural permutation codes that are approximately universal. In this section, we focus

on the special case when the parallel channel has just two sub-channels, i.e., L = 2.

5.3.1 Operational Interpretation to the Outage Condition

If we communicate at a rate of R bits/symbol over the parallel channel, the no-outage condition

is

log(1 + |h1|2SNR) + log(1 + |h2|2SNR) > R. (27)

One way of interpreting this condition is as though the first sub-channel provides log(1 +

|h1|2SNR) bits of information and the second sub-channel provides log(1 + |h2|2SNR) bits of

information, and as long as the total number of bits provided exceed the target rate, then

reliable communication is possible. In the high SNR regime, we exhibit below a permutation

code that makes the outage condition concrete.

Suppose we independently code over the I and Q channels of the two sub-channels. So we

can focus on only one of them, say, the I channel. We wish to communicate R/2 bits over two

uses of the I-channel. Analogous to the typical event analysis for the scalar channel, we can

exactly recover all the R/2 information bits from the first I sub-channel alone if:

1

2
log
(

1 + |h1|2SNR
)

>
R

2
.

However, we do not need to use just the first I sub-channel to recover all the information bits:

the second I sub-channel also contains the same information and can be used in the recovery

process. Indeed, if we create xI1 by treating the ordered R/2 bits as the binary representation

of the points xI1, then one would intuitively expect that if

1

2
log
(

1 + |h1|2SNR
)

> k1, (28)

then one should be able to recover at least k1 of the most significant bits of information. Now,

if we create xI2 by treating the reversal of the R/2 bits as its binary representation, then one

should be able to recover at least k2 of the most significant bits, if

1

2
log
(

1 + |h2|2SNR
)

> k2. (29)

But due to the reversal, the most significant bits in the representation in the second I sub-

channel are the least significant bits in the representation in the first I sub-channel. Hence, as

long as k1 + k2 ≥ R/2, then we can recover all R/2 bits. This translates to the condition

log(1 + |h1|2SNR) + log(1 + |h2|2SNR) > R, (30)

which is precisely the no-outage condition (27). Thus, the bit-reversal scheme gives an opera-

tional meaning to the outage condition.
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5.3.2 Bit-Reversal Permutation Code

To make this idea concrete, first we need to define bit reversal. A QAM can be thought of

as two independent PAMs, and using I and Q channels separately is equivalent to taking the

QAM permutation as two independent PAM permutations. Therefore we concentrate on one

of the PAMs and define the bit-reversal permutation for it. For a PAM with 2R/2 points, we

number the points from left to right by 0 to 2R/2 − 1. Based on this numbering, a canonical bit

sequence of length R represents each point in the PAM constellation. Bit reversals are defined

based on this representation. The bit-reversal map for the 4-PAM is illustrated in Figure 4.

11100100

11100100
♠♥♦♣

♠♥ ♦♣

Figure 4: The bit-reversal map for a 4-PAM.

5.3.3 Product Distance and Bit Reversals

To show that the bit reversal scheme is approximately universal, we have to show that it

satisfies the criterion in (24). However, the plain bit-reversal is not approximately universal.

The problem is the inherent assumption in the operational interpretation that if two points

have different MSB, then they are far apart geometrically and hence cannot be confused with

each other. This, however, is not true. Consider the points with the binary representations:

011 · · · 10 and 100 · · · 01.

Even though their MSB is different, they are separated by a fixed distance of 3 independent of

the length R/2 of the binary representation. The same is true for their bit-reversals. Thus, the

product distance between this codeword pair is 9
22R

and it does not satisfy (24) for large R.

Even though the simple bit-reversal is not optimal, it can be modified so that it essentially

retains the operational interpretation (so it is still easy to decode) and is approximately univer-

sal. We discuss two such modifications here: irregularly spaced PAM and alternate-bit-flipping.

5.3.4 Irregularly Spaced PAM Permutation Code

We have seen that the problem with the bit-reversal scheme is the inherent assumption that

the two points having different MSB are geometrically far apart. A simple way to get around

this problem is to put gaps in the PAM constellation. That is, we introduce a gap of g2R/2

between 011 · · · 1 and 100 · · · 0 so that any two points with different MSB are indeed far apart.
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More precisely, to retain the operational interpretation, one has to put a gap of g2m for every

mth bit-change to ensure that the product distance condition is met. The PAM constellation

is now irregularly spaced.2

Consider any two points in the irregularly spaced PAM constellation. Suppose the first

MSB they differ in their bit representation is the mth one: then by construction the normalized

distance between the two points is lower bounded by

g2−m

The bit-reversals of these two points must have the same m− 1 LSBs but a different mth LSB;

so the normalized distance between the bit-reversals of these two points is lower bounded by

2m−R/2.

Putting these two together, we conclude that the normalized product distance between a pair

of codewords in the bit-reversed irregularly spaced permutation code is lower bounded as

|d1d2| ≥ g2−m2m−R/2

=
g

2R/2
.

Comparing this with (24), we conclude that the code is approximately universal.

A potential drawback of this approach is that the extra gaps translate into an increase in

the amount of power used for the same rate. Thus, for a PAM of size 2R/2, the normalized

increase in size is given by

R/2
∑

m=1

g2m−R/2(number of mth bit-changes) =

R/2
∑

m=1

g2m−R/2(2R/2−m),

= gR/2.

With R = r log SNR, the SNR of this scheme is increased by a factor of (1 + gr log SNR/2). In

the diversity-multiplexing scaling of our interest, this is an insignificant increase and thus the

code is still approximately universal.

5.3.5 Alternate-Bit-Flipping Permutation Code

Another modification of the plain bit-reversal scheme is to flip every alternate bit after reversing.

For example, the point in the PAM constellation with bit representation 111111 is mapped to

the point in the PAM constellation with bit representation 010101. The scheme is illustrated

for the 4-PAM constellation in Figure 5.

In general, consider the R/2-bit representation of integers a1 and a2 between 0 and 2R/2 − 1:

a1 = b1R/2 · · · b11,
a2 = b2R/2 · · · b21.

2The same idea of introducing gaps is also present in the Cantor set based representation in [19].
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Figure 5: Bit Reversals with alternate bits flipped.

The the alternate-flip bit-reversal map B is defined as (assuming R is even):

B(a1) = b11b
1
2 · · · b1R/2−1b

1
R/2,

B(a2) = b21b
2
2 · · · b2R/2−1b

2
R/2.

An easy observation is that this scheme maintains the integrity of the operational interpretation

since the decoder can always flip the bits back after estimating the flipped bits. Further, this

scheme turns out to be approximately universal:

Theorem 5.3. For every a1 and a2 between 0 and 2R/2 − 1:

|a1 − a2|
2R/2

|B(a1)−B(a2)|
2R/2

≥ 1

8 · 2R/2 . (31)

The details of the proof are somewhat involved and are relegated to Appendix C.

5.4 Explicit Permutation Codes for General Parallel Channel

In an effort to generalize the bit-reversal scheme consider the following alternative, but equiv-

alent, view of the same scheme (for L = 2).

5.4.1 Bit-Reversal as a Linear Operation

Each codeword in the bit-reversal permutation code is represented by a sequence of, say 2n

bits. The first n bits correspond to a point in a 2n-PAM constellation. The corresponding PAM

constellation point is then transmitted over the I channel of the first sub-channel. The last n

bits similarly correspond to a point in another 2n-PAM constellation which is then transmitted

over the Q channel of the first sub-channel. The transmissions over the I and Q channels of the

second sub-channel are the points in the PAM constellation that correspond to bit-reversals of

the first and last n bits, respectively, of the total 2n bits that define the codeword.

If we fix the mapping between the sequence of bits and points in a PAM constellation, the

bit-reversal scheme can be viewed entirely as an operation on the 2n bits that represent the

codeword. Further more, if we decide to do the same operation over both the I and Q channels
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(as in the bit-reversal scheme), then we only need to consider operations over the first n bits

that represent the codeword. In the rest of this discussion, we consider only the operation on

the first n bits representing the codeword. The operation involved in bit-reversal is particularly

simple: it is a linear operation on the vector of bits (over the field F2). Linear operations can be

represented by matrices and the bit reversal scheme corresponds to two matrices: the identity

matrix (In) for the first sub-channel and the cross-diagonal matrix with unit entries on the

cross diagonal (Dn) for the second sub-channel.

The outage interpretation implies that the decoder can deduce k1 most significant bits

from the first sub-channel (see (28)) and k2 most significant bits from the second sub-channel

(see (29)). Because of the simple mappings in this case, the k1 bits from the first sub-channel

correspond to the first k1 bits of the vector of n bits representing the codeword and k2 bits from

the second sub-channel that correspond to the last k2 bits of the vector of n bits representing

the codeword. As long as k1 + k2 ≥ n, the decoder can determine the codeword correctly.

5.4.2 Universally Decodable Matrices

This view of the bit-reversal scheme suggests a natural generalization to more than two sub-

channels. We first generalize the bit representation of the integers points of the PAM constel-

lation: we allow q-digit representation over a finite field Fq. Next we consider a (sequence of)

collection of L matrices
{

A
(n)
1 , . . . ,A

(n)
L

}

n
of size n×n with entries selected from the finite field

Fq. These matrices naturally generate a sequence of permutation codes: for a permutation code

conveying 2n q-digits of information, we transmit over the I channel of the ℓth sub-channel the

point in the 2n-PAM constellation that corresponds to the q-digit sequence that results from

the linear operation of A
(n)
ℓ over the first n q-digits of the 2n information q-digits. This is done

for each of the ℓ = 1, . . . , L sub-channels. Further, the same linear operations are used on the

last n information q-digits to transmit points from the PAM constellation on the Q channels of

the L sub-channels.

We say that this collection of matrices is universally decodable if for any k1, . . . , kL such that

kℓ ≥ 0, ℓ = 1, . . . , L and

L
∑

ℓ=1

kℓ ≥ n, (32)

the collection of the first k1, . . . , kL rows of the matrices A
(n)
1 , . . . ,A

(n)
L respectively is full rank,

i.e., spans the vector space F
n
q .

Universally decodable matrices (UDMs) provide an operational interpretation to the in-

formation theoretically defined outage condition. The number kℓ can be interpreted as the

amount of q-digits provided by the ℓth sub-channel; this depends on the corresponding channel

amplitude |hℓ|. If the channel is not in outage, then (32) holds. The full rank condition implies

that a unique codeword can be decoded whenever the channel is not in outage. We formally

state the implication of this operational interpretation to outage below; the proof is relegated

to Appendix D.

Theorem 5.4. A sequence of UDMs leads to an approximately universal permutation code

sequence.
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Observe that the encoding and decoding complexity of the code based on UDMs is simply

linear in the number of bits n and the number of sub-channels L. The representation of the

code involves storing the L matrices with a total of Ln2 entries, again a very small number.

In the rest of this subsection, we focus on explicit construction of UDMs. First, we show

how UDMs can be easily constructed from maximum-distance separable codes (MDS) (though

these constructions require a field size that grows with n). In section 5.4.4, we present fixed

field size constructions for L = 3 and then discuss a recent construction [20], for arbitrary L.

5.4.3 Reed-Solomon Codes are Approximately Universal

In general, some progress on the search for universally decodable matrices can be made by

strengthening the requirement on the collection of matrices by requiring the collection of any

n rows from the matrix

A(n) =
[

A
(n)t

1 A
(n)t

2 · · · A
(n)t

L

]

,

to be full rank. Note that such a collection of matrices is still universally decodable. This

problem is same as designing a maximum distance separable (MDS) codes with A(n) as its

parity check matrix. The condition universal decodability condition is the same as requiring

that the minimum distance of the code to be at least n + 1. Since A(n) is an n × Ln matrix,

such a code has length Ln and rate Ln−n. A simple singleton bound shows that then the code

must be [Ln,Ln− n, n+ 1]3

Simple examples of such a code exist and this allows us to explicitly construct the parity

check matrix A(n). For a finite field Fq, a [q + 1, k, q − k+ 2] extended Reed-Solomon code can

be explicitly constructed for every k ≤ q + 1 (see Chapter 6.8 of [21] for the exact parity check

matrix). For the extended Reed-Solomon codes, the field size grows with the block-length. In

fact, the field size is at least Ln−1. In our setting, n grows as log SNR, thus the field size grows

like log SNR. As noted in the proof of Theorem 5.4, this still gives an approximately universal

code.

Next, we focus on the situation of practical and theoretical interest: constructing UDMs

with a field size not growing with n. With L = 2, we have already seen an example: {In,Dn}n,
where In is the n × n identity matrix and Dn is the n× n cross-diagonal matrix with all unit

entries on the cross diagonal; here the field size q = 2.

5.4.4 L = 3: Universally Decodable Matrices

Consider the following collection of binary matrices (i.e., the field size q = 2): {In,Dn,Tn},
where In and Dn are, as before, the n × n identity and cross-diagonal matrix with unit cross

diagonal entries, respectively. Tn is defined using the recursive definition:

T2n :=

[

Tn Tn

0 Tn

]

, (33)

3An [n, k, d] code over Fq is a linear, length-n code with qk codewords and a minimum Hamming distance of

d. Its parity check matrix is a n− k×n matrix over Fq. Codes for which d = n− k+1 meet the singleton bound

(see Chapter 3.2 in [21]) and are called MDS codes. These codes are well-studied in coding theory and explicit

codes like the Reed-Solomon codes are MDS codes.
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with T1 = [1]. Equivalently, T2n = T2⊗Tn, where ⊗ denotes the tensor or Kronecker product

operation between two matrices (cf. Chapter 4.2 in [22]). For 2m−1 < n < 2m, we define Tn to

be the principal sub-matrix of T2m . We omit our original proof of this result (it is still available

in an earlier version of this paper [23]), in light of a crisper proof that follows from a more

general result in [20]; this generalization was motivated by the present construction for L = 3.

For L = 4, q = 3 computer simulations are used in [24] to justify the conjecture that the

following collection of matrices is universally decodable: {In,Dn,Tn,Rn}n where the first two

matrices are, as before, the n × n identity and cross-diagonal matrix with unit cross diagonal

entries, respectively. With n = 3, define

T3 :=





1 2 1

0 1 1

0 0 1



 and R3 :=





1 1 1

0 1 2

0 0 1



 . (34)

For n a power of 3, we define, recursively, T3n = T3 ⊗ Tn and R3n = R3 ⊗ Rn, with the

multiplication operations in the context of the field F3. For 3
m−1 < n < 3m, we define Tn and

Rn to be the principal sub-matrices of T3m and R3m , respectively. This conjecture has now

been verified as a special case of the general result in [20].

5.4.5 A Complete Characterization of UDMs

Motivated by the results in the previous two subsections, the authors in [20], have recently

completely solved the problem of constructing UDMs. They show for any n the condition

L ≤ q + 1 is both necessary and sufficient. They construct UDMs based on Pascal’s triangle.

We state their construction (see Proposition 9, [20]), for completeness:

Theorem 5.5. Let q be a prime power and let L ≤ q + 1. Suppose α is a primitive element

over Fq. Then the following matrices are UDMs:

A1 = In,

A2 = Dn,

[Aℓ](j,k) =
(

k
j

)

α(ℓ−2)(k−j), for 1 ≤ j, k ≤ n and 3 ≤ ℓ ≤ L,

where (kj ) is defined as the natural mapping to prime subfield of Fq of the natural number

(

k
j

)

:=
k(k − 1) · · · (k − j + 1)

j(j − 1) · · · 1 .

6 The MISO Channel

The parallel channel allowed us to study approximately universal codes on channels with solely

multiplexing gain. We now turn to study channels that offer solely diversity gain: the MISO

and SIMO channels, with multiple transmit (receive) and single receive (transmit) antennas,

respectively. The SIMO channel can be reduced to a scalar channel by considering a scalar

sufficient statistic: receive beamformed vector. Therefore, any approximately universal scheme

for the scalar channel, such as the QAM scheme (see Section 4), will also be approximately
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universal for the SIMO channel. In this section, we focus on the MISO channel and understand

properties of approximately universal codes over this channel.

The scalar output of a MISO channel with nt transmit antennas at time m can be written

as

y[m] = htx[m] + w[m],

where x[m] is an nt dimensional vector input and h is the nt-dimensional vector of fading gains

his.

6.1 Characterization of Approximately Universal Codes

The approximate universality criterion for the MISO channel can be stated as (see Theorem

3.1), for every codeword difference matrix:

λ21 >
1

2R(SNR)+o(log SNR)
, (35)

where λ1 is the minimum singular value of the codeword difference matrix.

There is an intuitive explanation for this result: a universal code has to protect itself against

the worst channel that is not in outage. The condition of no-outage only puts a constraint on

the norm of the channel vector h but not on its direction. So, the worst channel aligns itself

to the “weakest direction” of the codeword difference matrix. The corresponding worst-case

pairwise error probability is governed by the smallest singular value of the codeword difference

matrix.

On the other hand, the i.i.d. Rayleigh channel does not prefer any specific direction: thus

the design criterion tailored to its statistics requires that the average direction be well protected

and this translates to the determinant criterion. While the two criteria are different, codes with

large determinant tend to also have a large value for the smallest singular value; the two criteria

(based on worst-case and average-case) are related in this aspect.

For the case when nt = 2, the Alamouti scheme [25] converts the MISO channel to a scalar

channel with gain ‖h‖ and the total SNR reduced by a factor of 2. Hence, the outage behavior is

exactly the same as in the original MISO channel, and the Alamouti scheme provides a universal

conversion of the 2× 1 MISO channel to a scalar channel. Any approximately universal scheme

for the scalar channel, such as a QAM, when used in conjunction with the Alamouti scheme

will be approximately universal for the MISO channel.

In the general case when the number of transmit antennas is greater than 2, there is no

equivalent to the Alamouti scheme. Here we explore one approach to construct approximately

universal schemes for the general MISO channel: we consider a simple scheme that converts

the MISO channel into a parallel channel and show that the scheme is approximately universal

over a restricted class of MISO channel statistics.

6.2 MISO channel viewed as a Parallel Channel

Consider the simple scheme of using one antenna at a time to communicate at a rate of R

bits/symbol on the MISO channel. By using one transmit antenna at a time, we arrive at a

parallel channel with nt sub-channels and the data rate of communication is R bits/symbol

per sub-channel. We code over the antennas using a parallel channel code, e.g. a permutation
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code. Our first result is that this simple scheme is tradeoff optimal for the i.i.d. Rayleigh fading

MISO channel.

Can this conversion be approximately universal? To see that this could not be the case,

consider the following (worst-case) MISO channel model: the channels from all but the first

transmit antenna are very poor. To make this example concrete, set hℓ = 0, ℓ = 2, . . . , nt. The

tradeoff curve depends on the outage probability (which depends only on the statistics of the

first channel). Using one transmit antenna at a time is a waste of degrees of freedom: since

the channels from the all but the first antenna are zero, there is no point in transmitting any

signal on them. Thus the scheme could not have been tradeoff optimal over a MISO channel

with such statistics.

Essentially, using one antenna at a time equates temporal degrees of freedom with spatial

ones. All temporal degrees of freedom are the same, but the spatial ones need not be the same:

in the extreme example above, the spatial channels from all but the first transmit antenna

are zero. Thus, it seems reasonable that when all the spatial channels are symmetric then the

parallel channel conversion of the MISO channel is tradeoff-optimal. This intuitive argument

is formalized in the proposition below; the proof is provided in Appendix E.

Proposition 6.1. An approximately universal parallel channel code sequence used over the

antennas of a MISO channel, one antenna at a time, is tradeoff-optimal for the class of MISO

channels with i.i.d. fading coefficients. Further, the optimal tradeoff curve of the MISO channel

is given by

d∗(r) = ant(1− r), 0 ≤ r ≤ 1, (36)

where

a := lim
x→0

log P
(

|hℓ|2 ≤ x
)

log x
, ∀ℓ = 1, . . . , nt. (37)

We have seen that the conversion of the MISO channel into a parallel channel is tradeoff-

optimal for the i.i.d. Rayleigh fading channel. To get a practical feel for how much loss the

conversion of the MISO channel into a parallel channel entails with respect to the optimal

outage performance, we plot the error probabilities of two schemes with the same rate (R = 2

bits/symbol): uncoded QAMs over the Alamouti scheme and the permutation code in Figure 3.

This performance is plotted in Figure 6 where we see that the conversion of the MISO channel

into a parallel channel entails a loss of about 1.5 dB in SNR for the same error probability

performance. This is a fairly small loss and suggests the practical utility of the conversion of

the MISO channel with larger number of receive antennas to a parallel channel.

7 The MIMO Channel

Having studied the construction of approximately universal codes over the parallel and the

MISO channel, we are now ready to move over the general MIMO channel: we first conclude the

approximate universality of some recently proposed codes and then explore the approximate

universality properties of two classical space time coding architectures: D-BLAST and V-

BLAST.
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Figure 6: The error probability of uncoded QAM with the Alamouti scheme and that of a

permutation code over one antenna at a time for the Rayleigh fading MISO channel with two

transmit antennas: the permutation code is only about 1.5 dB worse than the Alamouti scheme

over the plotted error probability range.

7.1 Approximate Universality of Number-Theoretic Codes

Some of the recent space time code constructions in the literature have a number-theoretic

flavor. In particular, a rotated QAM constellation was used to construct a two transmit antenna

space time code in [7, 9, 26]. For arbitrary nt, [10] proposes codes derived from cyclic division

algebras. Some constructions based on cyclic division algebras are also presented in [11, 12].

All these two codes satisfy the non-vanishing determinant criterion. The authors in [7, 9] used

this property to conclude the tradeoff optimality over the i.i.d. Rayleigh fading channel. In the

light of our characterization of approximate universality (cf. Theorem 3.1), we can conclude

that all these codes are approximately universal; further more, in the light of the discussion in

Section 3.1, we can conclude that these codes are approximately universal simultaneously for

every MIMO channel with nt transmit antennas (nt = 2 for the code in [7, 9]) and arbitrary

nr. To see this formally, we discuss the two transmit antenna code in [7] in some detail.

The rotated code QAM code in [7] spans two symbols and is designed to work over the two

transmit MIMO channel. The entries of the 2× 2 transmit codeword matrix X := [xij] are

[

x11
x22

]

:= Q(θ1)

[

u1
u2

]

, and

[

x21
x12

]

:= Q(θ2)

[

u3
u4

]

. (38)

Here u1, u2, u3, u4 are independent QAMs of size 2R/2 each (so the data rate of this scheme is

R bits/symbol). The rotation matrix Q(θ) is

Q(θ) :=

[

cos θ − sin θ

sin θ cos θ

]

.

With the choice of the angles θ1, θ2 equal to 1/2 tan−1 2 and 1/2 tan−1(1/2) radians respectively,

Theorem 2 of [7] shows that the determinant of every normalized codeword difference matrix
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D satisfies

|detD|2 ≥ 1

10 · 2R .

Our discussion so far is summarized in the following formal statement characterizing of the

performance of this code.

Proposition 7.1. The code described in (38), with θ1 = 1/2 tan−1 2 and θ2 = 1/2 tan−1(1/2),

is approximately universal for every MIMO channel with two transmit antennas.

7.1.1 Discussion

While the two codes discussed above are explicit and easy to encode, they lack a computation-

ally simple decoding algorithm. In general, it appears hard to design explicit approximately

universal codes for the MIMO channel with a computationally simple decoding algorithm; it

still remains an open problem. For the parallel channel we have been able to answer this ques-

tion to a reasonable extent. The difference in the two models arises due to the rotation matrix

in the SVD decomposition (6): a parallel channel code has to be optimal for a fixed rotation

matrix (the identity matrix) while a MIMO channel code has to be optimal for every rota-

tion matrix. This difference seems to naturally lead to codes with a number-theoretic flavor:

they are delicately designed so as to cope with every possible rotation. Such a code with a

computationally simple decoding algorithm has not yet been found.

An alternate view point is proposed in [27] where a lattice based space-time code is con-

structed. The authors show that the structure of these codes resembles random Gaussian codes

and then conclude the tradeoff optimality of an ensemble of lattice codes for a decoder based on

a generalized MMSE estimator for the i.i.d. Rayleigh fading channel. A typical code in this en-

semble is very unlikely to be approximately universal. In fact, one of the important conclusions

of the the authors of [27] is that their construction shows that maximizing the determinant cri-

terion is not a necessary requirement for achieving the tradeoff for specific fading distributions.

However, as we see here, maximizing the determinant criterion is a necessary and sufficient

condition to design robust codes that are tradeoff-optimal for every fading distribution.

7.2 The V-BLAST Architecture

The V-BLAST architecture was proposed for high rate communication over the MIMO channel

[13]. It splits the data stream into independent streams that are sent over the different transmit

antennas. It is very clear that V-BLAST is not tradeoff optimal at low rates: the largest

diversity of any data stream is limited by the number of receive antennas. However, it is also

clear that the V-BLAST scheme cannot be approximately universal even at high rates: over

the 2×1 MIMO channel suppose the channel from one of the transmit antennas is zero and the

other channel is CN (0, 1). Then the diversity obtained by the data stream sent over the first

transmit antenna for any multiplexing gain is zero whereas the overall channel has a non-zero

diversity-multiplexing tradeoff. Since the V-BLAST scheme does not code across the transmit

antennas it takes a hit when the transmit antennas have asymmetric fading statistics. When

all transmit antennas are statistically similar to one another, V-BLAST indeed turns out to be

tradeoff optimal at high rates; we explore this aspect in detail in Section 8.
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7.3 The D-BLAST Architecture

The D-BLAST architecture has been proposed to attain high diversity gains over the MIMO

channel [14]. The data is split into independent streams that are sent over the MIMO channel

in a diagonal fashion. The coding scheme can be written as















0 · · · 0 p
(1)
1 p

(2)
1 · · · p

(T−nt+1)
1

... . .
.

. .
.

. .
. · · · . .

. ...

0 p
(1)
nt−1 p

(2)
nt−1

. .
.

. .
.

0

p
(1)
nt p

(2)
nt · · · · · · 0 0















, (39)

where p(k) =
[

p
(k)
1 , . . . , p

(k)
nt

]

are the independent data streams.

It is well known that the D-BLAST architecture with MMSE-SIC receiver preserves mutual

information over any deterministic MIMO channel with Gaussian inputs; thus it converts a

MIMO channel into an equivalent parallel channel (a tutorial description of this conversion is

described in Chapter 8.5 of [6]). Therefore an approximately universal code over the parallel

channel, such as the permutation code, when used as the streams of the D-BLAST architecture

for the MIMO channel will be approximately universal for the MIMO channel. This approach

of converting the MIMO channel into a parallel channel has also been used by Matache and

Wesel in [4].

Alternatively, one can see its approximate universality by explicitly verifying that it satisfies

the condition in (4) for nt = nr. The product of singular values of the codeword difference matrix

for (39) turns out to be lower bounded by the product distance of the permutation code. Thus,

if p(k) is a permutation code that is approximately universal for the parallel channel, then the

D-BLAST scheme (39) is approximately universal for the MIMO channel (see and compare (24)

and (4)).

A potential drawback is the initialization loss due to the zero padding in (39) which reduces

the effective rate. For a 2 × 2 channel with block-length three, a rate of R bits/stream corre-

sponds to a rate of 2R/3 bits/symbol on the MIMO channel. In general, the actual tradeoff

curve achieved by this scheme is

dout

(

T

T − nt + 1
r

)

, (40)

where r is the multiplexing gain per symbol. For the block length T large, D-BLAST approaches

approximate universality. For finite block-length, this scheme is strictly sub-optimal. The

precise characterization for approximate universality also implies that this performance can not

be universally improved upon using a better decoding strategy (than MMSE and successive

interference cancelation). In Section 9, we see that the performance can indeed be improved

upon for a certain restricted class of fading distributions using a better decoding strategy.

8 The V-BLAST Architecture

The V-BLAST architecture transmits independent data streams over the transmit antennas.

This is closely related to how a multiple access channel is operated, the tradeoff performance of
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which under i.i.d. Rayleigh fading is studied (using random Gaussian codes) in [28, 29]. In this

section, we study the performance of simple modulation schemes over the V-BLAST architec-

ture: in particular, QAM constellations. While we have seen that the V-BLAST architecture

can never be approximately universal, it still performs very well for an interesting restricted

class of channels.

8.1 Tradeoff Optimality over Rayleigh Fading Channels

Consider operating the V-BLAST architecture over an nt × nr i.i.d. Rayleigh fading channel:

we transmit independent data streams over each of the nt antennas; each data stream is trans-

mitted un-coded using a QAM constellation (with SNR
r/nt points at each time symbol). This

scheme corresponds to a total data rate of r log SNR bits/symbol over the MIMO channel. Our

main result is the precise characterization of the tradeoff performance; the proof is available in

Appendix G.

Proposition 8.1. Uncoded independent QAMs of size SNR
r/nt points over the antennas of an

nt × nr i.i.d. Rayleigh fading MIMO channel are protected by a diversity gain, d(r), where

d(r) = nr −
nrr

nt
if nr ≥ nt (41)

≥ nr − r if nr < nt. (42)

Several interesting observations follow from this result.

1. Apart from the fact that the channel can be in outage, there is an additional error event in

the V-BLAST architecture: the presence of the other simultaneously transmitted streams

impacts the reliable reception of any particular data stream. However, the reliability

performance represented in (41) is as if the other streams didn’t exist at all. This suggests

that the typical way error occurs is not due to the inter-stream interference but because

of the channel being in outage.

2. With nt = nr = n, the diversity gain of uncoded QAMs is equal to n−r; this matches the

optimal diversity gain characterized in [1] for large enough r (≥ n− 1). This observation

is graphically illustrated in Figure 7.

3. In a multiple access setting with

• nt users with one transmit antenna each,

• a symmetric multiplexing gain of r/nt per user,

• nr ≥ nt receive antennas,

the diversity-multiplexing tradeoff is given by [28]:

nr −
nrr

nt
. (43)

Therefore this simple scheme is tradeoff-optimal.

4. With nt 6= nr, the performance of uncoded QAMs is never equal to the optimal diversity

gain of the channel.
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Figure 7: The i.i.d. Rayleigh fading channel with nt = nr = n.

Rayleigh fading is a physically relevant fading model and we have seen the tradeoff optimality

at high rates of plain uncoded QAMs using the V-BLAST architecture. We can conclude the

robustness of this performance if it continues to hold for a wider class of fading distributions;

this is the focus of the next section.

8.2 Tradeoff Optimality over Isotropic Fading Channels

The key property of a fading distribution determining the diversity performance is the near zero

behavior of its singular values. In particular, denoting φ1, . . . , φmin(nr,nt) to be the increasingly

ordered squared singular values of H, suppose

P
{

φ1 ≤ ǫ1, . . . , φmin(nr ,nt) ≤ ǫmin(nr,nt)

} .
= ǫk1+1

1 · · · ǫkmin(nr,nt)
+1

min(nr ,nt)
, (44)

for ǫ1 < · · · < ǫmin(nr,nt). Here our notation f(ǫ1, . . . , ǫmin(nr ,nt))
.
= g(ǫ1, . . . , ǫmin(nr ,nt)) is in

the sense of

lim
ǫ1→0

lim
ǫ2→0

· · · lim
ǫmin(nr,nt)

→0

log f(ǫ1, . . . , ǫmin(nr ,nt))

log g(ǫ1, . . . , ǫmin(nr ,nt))
= 1. (45)

We also assume that all the singular values have an exponential tail, i.e., , for there exists an ǫ

such that for large enough x,

P {φℓ ≥ x} ≤ e−ǫx ∀ ℓ. (46)

For a given near zero behavior of singular values, the tradeoff curve can be explicitly determined.

We compute it for the case when kis are increasingly ordered (as is the case for i.i.d. Rayleigh

fading).

Theorem 8.1. If k1 < k2 < · · · < kmin(nr,nt), then the tradeoff curve is piecewise linear with

min (nr, nt) segments and the sth segment (i.e., s ≤ r < s+ 1) is given by:

(kmin(nr ,nt)−s + 1)(s + 1− r) +

min(nr,nt)
∑

ℓ=min(nr,nt)−s+1

(kℓ + 1)
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Furthermore, random Gaussian codes with block-length T ≥ kmin(nr ,nt)−s + 1 will achieve this

performance.

Proof. See Appendix H.1 for the outage curve calculation. The proof of achievability for random

Gaussian codes is a simple generalization of achievability proof in [1] and we omit it here.

The key property of the i.i.d. Rayleigh fading channel used in the calculation of the per-

formance of uncoded V-BLAST transmission is the rotational symmetry of its statistics. We

can thus generalize this calculation and characterize the performance of uncoded V-BLAST

transmission over isotropic distributions on the n× n MIMO channel H:

HQ has the same distribution as H for every unitary matrix Q. (47)

If the ordered singular values of the n × n MIMO channel H decay slower than the corre-

sponding decay rate of ordered singular values of H with i.i.d. Rayleigh fading, then we can

extend our earlier observation of tradeoff optimality of the transmission of uncoded QAMs over

the V-BLAST architecture at multiplexing gains r ≥ n−1 on the i.i.d. Rayleigh fading channel.

We make this precise in the following proposition, delegating the proof to Appendix H.

Proposition 8.2. Consider n × n isotropic MIMO channels with the polynomial decay rates

of its squared singular values as defined in (44). The uncoded QAM transmission over the

V-BLAST architecture at multiplexing rates r ≥ n − 1 is tradeoff optimal for every isotropic

MIMO channel satisfying

ki > (2i− 2) + k1 i = 2, . . . , n,

k1 ≤ 0.

9 The D-BLAST Architecture

We have seen (cf. Section 7.3) that the D-BLAST architecture with approximately universal

parallel channel codes over its independent constituent data streams approaches approximately

universality for large block length (cf. (40)). For any finite block length, the architecture is

strictly not approximately universal. However, we will see in this section that by restricting the

class of MIMO channels over which we demand universality, the performance of the D-BLAST

architecture can be significantly improved. In particular, our focus throughout this section is

with isotropic MIMO channels. We characterize the diversity performance of the D-BLAST

architecture with exactly two data streams; our main result is the observation of a restricted

universality result for channels with 2 receive antennas.

The i.i.d. Rayleigh fading MIMO channel is also isotropic and we state our results first in

this context; the calculations are relatively simple and shed insight as to why we can expect

robustness when generalized to arbitrary isotropic channel distributions.

9.1 Tradeoff Optimality over Rayleigh Fading Channels

Consider the nt×2 i.i.d. Rayleigh fading MIMO channel: the tradeoff curve is composed of two

linear segments, as illustrated in Figure 8.
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Figure 8: The tradeoff behavior for the nt × 2 i.i.d. Rayleigh fading channel.

9.1.1 D-BLAST and the First Segment

Consider the D-BLAST architecture with only two independent data streams:













0 · · · 0 pnt qnt

... . .
.

. .
.

. .
.

0

0 p2 . .
.

. .
. ...

p1 q1 0 · · · 0













; (48)

here [p1, . . . , pnt ] and [q1, . . . , qnt ] are unit block-length approximately universal codes for a

parallel channel with nt sub-channels. Suppose both these codes have a data rate of

(nt + 1) r

2nt
log SNR bits per sub-channel. (49)

Since the overall architecture is composed of two data streams and the transmission lasts nt+1

time symbols long, the overall data rate of the architecture is r log SNR bits/symbol. Our main

result is a precise characterization of the diversity performance under joint ML decoding of the

streams; the proof is available in Appendix F.

Proposition 9.1. The D-BLAST architecture in (48) with approximately universal parallel

channel codes as its two data streams operated at a total multiplexing gain of r over the i.i.d.

Rayleigh fading nt × nr MIMO channel with nr ≥ 2 sees a diversity gain equal to

nr

(

nt −
nt + 1

2
r

)

. (50)

A couple of observations follow:

1. If we set nr = 2, the diversity performance in (50) is equal to 2nt−(nt + 1) r; this overlaps

with the optimal tradeoff curve of the channel for small enough multiplexing gains, i.e.,

r ≤ 1, thus achieving the first segment for the nt × 2 i.i.d. Rayleigh fading channel (see

Figure 9).
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Figure 9: Diversity performance of the D-BLAST architecture.

2. From the perspective of one of the streams in the D-BLAST architecture, the best diversity

performance is obtained if the other stream didn’t exist at all (or was decoded correctly

and thus canceled exactly). Suppose this is the case: then each data stream sees a

parallel channel with nt scalar sub-channels, each of whose squared amplitudes are i.i.d.

with distribution χ2
2nr

. The optimal tradeoff curve for this parallel channel with a data

rate of (nt + 1) /2 bits/symbol (cf. (49)) is

nr

(

nt −
nt + 1

2
r

)

. (51)

The diversity performance of any data stream with the other stream being perfectly can-

celed cannot be any more than the gain in (51). However, from the claim in Proposition 9.1

(cf. (50)), we observe that this upper bound is exactly equal to the diversity gain achieved

even when there is inter-stream interference. There we conclude:

Under the joint ML decoder, inter-stream interference is not the typical error

event.

We study the joint ML decoder in some detail in the next section.

3. Finally, we observe that we crucially used the symmetry between the two streams in the

above argument. With more than two streams, the middle streams see more interference

than the outer two streams and an extension to this situation is not natural.

9.1.2 D-BLAST and ML Decoding

In this section, we discuss the ML decoding of the two data streams in the D-BLAST architec-

ture in some detail. To make our discussions simple and concrete we focus on the simple case

of nt = 2; the received signal spans three time symbols and can be written as

[y1y2y3] = [h1h2]

[

0 p2 q2
p1 q1 0

]

+ [w1w2w3] .
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The two data streams [p1, p2] and [q1, q2] are unit block-length approximately universal codes

for a parallel channel with 2 sub-channels and independent of each other. For concreteness,

suppose p1 (q1) and p2 (q2) are points from a QAM constellation and correspond to bit reversal

with alternative bits flipped of each other (cf. Section 5.3.5). The ML decoder makes a joint

decision on both these codes using the three received vectors y1,y2,y3. However, due to the

specific structure of the zeros in the D-BLAST architecture, the joint ML decoder can be broken

down algorithmically into three separate steps:

1. We observe that the received vector at the first time symbol y1 gives information only

about the the QAM symbol p1:

y1 = p1h2 +w1. (52)

In particular, y1 specifies exactly the most significant bits of the bit representation of the

QAM point p1 (cf. Section 5.3). More specifically, the number of MSBs of p1 that can

be deduced from y1 is with high probability equal to ⌊log
(

|h2|2SNR
)

⌋; further more, the

information about the remaining bits of p1 depends on the noise w1 that is independent

of the received signals at the other two time symbols. Since the QAM points p1 and

p2 correspond to bit reversals (with alternate bits flipped) of each other, we have also

deduced the least significant bits of ⌊log
(

|h2|2SNR
)

⌋ of p2.

2. The scenario at the third time symbol is identical to that at the first time symbol except

that p1 is replaced by q2 and p2 by q1. In particular, we can deduce ⌊log
(

|h1|2SNR
)

⌋
MSBs of q2 (and the ⌊log

(

|h1|2SNR
)

⌋ LSBs of q1) from y3; further more, the information

about the remaining bits of q2 (and hence q1) depends on the noise vector w3 that is

independent of the received vector at the first two time symbols.

3. We are now ready to focus on the received vector at the second time symbol:

y2 = p2h1 + q1h2 +w2. (53)

Here we know some of the LSBs of both p2 and q1 (due to processing of the received vector

at the first and third time symbols, respectively); this reduces the randomness in p2 and

q1 to another sparser QAM which is a subset of the original QAM from which they were

drawn. We see from (53) is exactly the output of a 2 × 2 MIMO channel with uncoded

QAMs transmitted over the two transmit antennas, i.e., uncoded QAM transmission over

the V-BLAST architecture. Thus, the ML decoding of the two streams of the D-BLAST

architecture reduces to that of a decoding uncoded QAM transmission over the V-BLAST

architecture.

9.1.3 A Time-Space Code and the Second Segment

While we have seen the tradeoff optimality of the D-BLAST architecture in achieving the first

segment of the nt × 2 i.i.d. Rayleigh fading channel, there is a simple transformation of this

architecture that achieves the second segment of the same channel. The key is to consider a

time-space version of the space-time D-BLAST architecture: replace the transmit symbol at
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time symbol m over the transmit antenna k by the transmit symbol at time symbol k and

transmit antenna m. In particular, the time-space version of the space-time code in (48) is



















0 · · · 0 p1
... . .

.
p2 q1

0 . .
.

q2 0

pnt
. .
.

. .
. ...

qnt 0 · · · 0



















. (54)

It is meant to be used over a channel with nt+1 transmit antennas and spans nt time symbols

long; observe that the original code in (48) is meant to be used over a channel with nt trans-

mit antennas and spans nt + 1 time symbols long. Suppose that [p1, . . . , pnt ] and [q1, . . . , qnt ]

independent unit block-length approximately universal codes for the parallel channel at rate

0.5 log SNR bits per sub-channel; this corresponds to the overall code in (54) to have a total

multiplexing rate of r bits/symbol. Our main result is a precise characterization of the diver-

sity performance of this space-time code over the i.i.d. Rayleigh fading channel; the proof is

available in Appendix F.1.

Proposition 9.2. The diversity gain of joint ML decoding the data streams of the time-space

code in (54) at a total multiplexing rate of r bits/symbol over the (nt + 1) × nr i.i.d. Rayleigh

fading MIMO channel with nr ≥ 2 is equal to

ntnr
2

(2− r). (55)

Setting nr = 2, we see that the diversity gain in (55) is equal to 2nt − ntr which overlaps

with the optimal tradeoff curve for that channel for large enough multiplexing gains, i.e., r ≥ 1;

in particular, this achieves the second segment of the tradeoff curve (see Figure 10).
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Figure 10: D-BLAST curves vs the optimal tradeoff curve
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9.1.4 Tradeoff Optimality over Isotropic Channels

We demonstrate the robustness of the performance results a time-space code for the i.i.d.

Rayleigh fading channel by generalizing them to the class of isotropic fading distributions: in

particular, we are interested in MIMO channel distributions which satisfy the property in (47).

Further recall the definition of the polynomial decay rates of the squared singular values of

the n × n MIMO channel in (44). The proofs of the results in this section are available in

Appendix H.

Our result is the restricted approximate universality of the time-space version of the D-

BLAST architecture with two data streams in achieving the second segment of the tradeoff

curve; this generalizes the result in Proposition 9.2. The proof of this result is available in

Appendix H.

Theorem 9.1. The diversity gain of joint ML decoding the data streams of the time-space code

in (54) at a total multiplexing rate of r bits/symbol over any isotropic nt+1 × 2 MIMO channel

achieves the second segment of its tradeoff curve, provided

k2 − k1 ≥ 2,

k1 ≤ 0.

10 Conclusion

We have presented a precise characterization of universally-tradeoff optimal codes for the MIMO

channel. We also presented explicit codes for the parallel channel that are simple to encode and

decode. These codes, along with the general construction in [20], completely solves the code

design problem for the parallel channel. For the MIMO channel, we suggest using the D-BLAST

architecture to reduce it to a parallel channel and using codes designed for the parallel channel.

This approach is reasonable when the block-length is large, since in this case the initialization

overhead in D-BLAST is insignificant. While, finite block length approximately universal codes

for the MIMO channel have been constructed, they are not known to be simple to decode;

construction of simple codes for the MIMO channel remains an open problem.

Alternative to approximately universal codes for MIMO channel, we have seen the existence

of simple codes for the MIMO channel that are approximately universal for a restricted class

of fading distributions. Our construction has been restricted for specific number of antenna

elements; a generalization of this construction is also an interesting future research direction.

A Converse for Approximate Universality

We want to show that if a coding scheme does not satisfy the universal code design criterion,

then there exists a fading distribution such that the coding scheme is not tradeoff optimal. In

the high SNR scaling of [1], a coding scheme is defined by a discrete sequence of codes C(SNR)

with rate r log SNR. If this sequence does not satisfy the approximate universality criterion,

then there exists a subsequence of C(SNR) such that for every code in the sub-sequence there

exists a codeword pair such that it does not satisfy the universal criterion. For proving the

existence of a fading distribution such that the original sequence is not tradeoff optimal, it is

33



enough to find a fading distribution for which this subsequence of codes is not tradeoff-optimal.

Therefore we assume that for every code in the sequence we can find a codeword pair that does

not satisfy the universal criterion.

A brief note regarding our notation: we use the symbols
.
= (≥̇, ≤̇) to denote exponential

equality (inequality), i.e.,

f(SNR)
.
= SNR

b ⇒ lim
SNR→∞

log f(SNR)

log SNR
= b.

A.1 Proof of Theorem 5.1

Here we focus on the necessity of the condition for approximate universality for the MIMO

channel. If a sequence of codes is not approximately universal, we show that there exists an

i.i.d. distribution on ψℓs such that this sequence of codes is not tradeoff optimal.

For codewords XA and XB, the pairwise error conditioned on a channel realization, H, can

be written as (cf. (5)):

Pe (XA → XB|H) = Q





√

SNR
∑min(nr ,nt)

ℓ=1 |λℓ|2|ψℓ|2
2



 .

The approximate universality condition can then be written as:

min
∑min(nr,nt)

ℓ=1 log(1+|ψℓ|2SNR)>r log SNR

SNR

min(nr ,nt)
∑

ℓ=1

|λℓ|2|ψℓ|2 ≥̇ 1.

Thus, if a sequence of codes does not satisfy the universal criterion then there exists a sequence

of codeword pair differences, D(SNR), and a corresponding realization Ha(SNR) such that

SNR

min(nr,nt)
∑

ℓ=1

|λℓ(SNR)|2|ψaℓ (SNR)|2 < 2−rǫ log SNR (56)

for some positive ǫ, where Ha(SNR) satisfies

min(nr ,nt)
∑

ℓ=1

log
(

1 + |ψaℓ (SNR)|2SNR
)

= r log SNR. (57)

Now define Hb(SNR) as

|ψbℓ(SNR)|2 = |ψaℓ (SNR)|2 · 2rǫ log SNR, l = 1, . . . , L.

Then using (56) and (57), Hb(SNR) satisfies

SNR

L
∑

ℓ=1

|λℓ(SNR)|2|ψbℓ(SNR)|2 < 1 and (58)

L
∑

ℓ=1

log
(

1 + |ψbℓ(SNR)|2SNR
)

≥ r(1 + ǫ) log SNR. (59)
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Now, consider the i.i.d. fading distribution on H such that:

P

{

|ψℓ|2 ≤
1

x

}

.
=

1

x
2
ǫ

∀ ℓ = 1, · · · , L. (60)

The diversity for the code-sequence can then be upper bounded using the following sequence of

steps:

1. The pairwise error for the codeword difference D(SNR) can be lower bounded by a con-

stant, Q(
√
0.5), for a range of channels such that (see (58)):

{

H : |ψℓ|2 < |ψbℓ(SNR)|2, ℓ = 1, · · · , L
}

.

Furthermore, because of the power constraint on the input we can assume that

|ψbℓ(SNR)|2 ≥̇ 1

SNR
∀ ℓ = 1, · · · ,min (nr, nt) (61)

If this is not true, we can increase ψbℓ(SNR) to
1

min(nr ,nt)SNR
such that (59) and (58) still

hold.

2. Hence the probability of error can be lower bounded by

Pe(C(SNR)) ≥
Q(

√
0.5)

min(nr ,nt)
∏

ℓ=1

P
{

|ψℓ|2 ≤ |ψbℓ(SNR)|2
}

SNR
r . (62)

Writing

|ψbℓ(SNR)|2 = SNR
−αℓ ,

the probability of error expression (62) can be written as (also see (60)):

Pe(C(SNR)) ≥̇ SNR
−( 2

ǫ

∑

ℓ αℓ+r), (63)

where αℓs satisfy (see (59) and (61)):

∑

ℓ

(1− αℓ)
+ ≥ r(1 + ǫ) and αℓ ≤ 1.

Therefore

∑

ℓ

αℓ ≤ min (nr, nt)− r(1 + ǫ).

Then the probability of error for C(SNR) is lower bounded by (see (60) and (63)):

Pe(C(SNR)) ≥̇ SNR
−( 2

ǫ
(min(nr ,nt)−r(1+ǫ))+r),

= SNR
−( 2

ǫ
(min(nr ,nt)−r)−r).
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Thus, the diversity of the sequence of codes is upper bounded by:

2

ǫ
(min (nr, nt)− r)− r. (64)

The outage curve on the other hand is given by4:

2

ǫ
(min (nr, nt)− r) .

Thus, comparing with (64), this sequence of codes is not tradeoff optimal and hence not ap-

proximately universal.

B Proof of Theorem 5.2

Consider a parallel slow fading channel with L sub-channels. A permutation code over this

channel can be rewritten as

C =

{
√

SNR

SNR
r (q, f2(q), ..., fL(q)) |q ∈ QZ

}

,

where

QZ =

{

(a+ ib) : −SNR
r/2

2
≤ a, b ≤ SNR

r/2

2

}

(65)

is the integer-QAM with SNR
r points, and f2, ..., fL are permutations of QZ . We define the

normalized product distance between two codewords as

πd (q1, q2) =
|q1 − q2|2
SNR

r

L
∏

k=2

|fk(q1)− fk(q2)|2
SNR

r . (66)

The condition for approximate universality, (24), on the other hand, can be written as

πd (q1, q2) ≥̇ 1

SNR
r ∀q1 6= q2. (67)

The number of permutation codes with SNR
r points is given by

((SNRr)!)L−1.

We now prove existence of a permutation code in this ensemble such that (67) is satisfied.

We average of the inverse of product distance over all such codes under the uniform measure

(all codes have the same probability). The intuition behind averaging the inverse of product

distance is to capture the codeword differences that have small product distance, which is the

event of interest.

E

[

1

πd

]

=
1

(SNRr!)L−1SNR
2r

∑

f2,...,fL,
q1,q2 6=q1

SNR
r

|q1 − q2|2
L
∏

k=2

SNR
r

|fk(q1)− fk(q2)|2
,

4A proof for this result can be seen from Appendix E, Equation (78), with nt replaced by min (nr, nt) and

ntr replaced by r and a replaced by 2
ǫ
.
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=
((SNRr − 2)!)L−1SNR

rL

(SNRr!)L−1SNR
2r

∑

q1,q2 6=q1,
qk1 ,q

k
2 6=qk1

k=2,··· ,L

1

|q1 − q2|2
L
∏

k=2

1

|qk1 − qk2 |2
.

The second equality is obtained by considering all permutations fk’s that map q1 to qk1 and q2
to qk2 ; the number of such permutations is ((SNRr − 2)!)L−1. Therefore,

E

[

1

πd

]

≤ 1

SNR
Lr





∑

q1,q2 6=q1

1

|q1 − q2|2





L

.

Because of the symmetry of the QAM, the average inverse product distance can be further

upper bounded as

E

[

1

πd

]

≤ 1

SNR
Lr



SNR
r
∑

q1 6=0

1

|q1|2





L

, (68)

=





∑

q1 6=0

1

|q1|2





L

.

The summation inside the parantheses in (68) can be upper bounded by (log SNR)2. This

implies that the expectation can be upper bounded by

E

[

1

πd

]

≤̇ 1.

We conclude that there exists at least one permutation codeCa with the average inverse product

distance less than 1. We now use this code Ca with good average behavior to construct a code

that has a good worst-case behavior. For Ca,

1

SNR
2r

∑

q1 6=q2∈QZ

1

πd(q1, q2)
≤̇ 1.

Therefore,

1

SNR
r

∑

q1∈QZ

g(q1) ≤̇ SNR
r,

where

g(q1) =
∑

q2∈QZ ,q2 6=q1

1

πd(q1, q2)
.

Thus, at least half of the q1’s have g(q1)≤̇SNR
r. By expurgating at most half the codewords,

we can construct a code Cb such that:

g(q1) ≤̇ SNR
r ∀q1. (69)
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This implies that for every q2 6= q1,

πd (q1, q2) ≥̇
1

SNR
r ;

this is precisely the criterion for approximate universality (67). Finally, expurgating at most of

half of the codeword reduces the rate of the code by at most one and hence does no change the

multiplexing gain. Thus, there exist approximately universal permutation codes.

B.1 Product distance distribution

A statement much more stronger that that made about the code Cb constructed in Section B.

The result below characterizes the behavior of the product distance πd, cf. (66), (rather than

just a lower bound, which is what was required for approximate universality), and hence can

be thought of as a weight distribution result for the product distance.

Theorem B.1. Consider a parallel slow fading channel with L sub-channels. There exists a

permutation code with SNR
r points over this channel such that the number of codeword pairs

that have a product distance less than SNR
k−r is Θ(SNRr+k), for k in [0, r].

Proof. We start with the code Cb constructed above that satisfies (69): then for each q1, the

number of codewords which are at a product distance less than SNR
k−r is Θ(SNRk), for k in

[0, r] (otherwise such a code will not satisfy (69)). Considering all possible values of q1, the

number of codeword difference that have product distance less than SNR
k−r is Θ(SNRr+k), for

k in [0, r].

C Proof of Theorem 5.3

Let the binary representation of integers a1 and a2 be:

a1 = b1R/2 · · · b11,
a2 = b2R/2 · · · b21.

Let k be the largest integer such that b1k 6= b2k. Then without any loss of generality we can

assume that b1k = 1 and b2k = 0. We also write

bi = b1i = b2i ∀ k + 1 ≤ i ≤ R/2,

for notational convenience as well as to emphasize that the largest R/2− k bits are the same.

Now, let l be the smallest integer such that b1k−l ≥ b2k−l. Note that this implies that

b1k−i = 0 b2k−i = 1 ∀ 1 ≤ i ≤ l − 1,

which is similar to the codeword pair that was the counter example given for the fact that

simple bit-reversal is not universal (see Section 5.3.3). Here we essentially prove that such pairs

are the only reason that the simple bit reversal is not approximately universal and bit reversal

with alternated bit flipping can tackle this problem. We consider the following subcases:
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• If no such l exists, Then ais can be written as:

a1 = bR/2 · · · bk+110 · · · 0
a2 = bR/2 · · · bk+101 · · · 1

and B(ai)s can be written as:

B(a1) = 101 · · ·
B(a2) = 010 · · ·

Thus B(a1)−B(a2) is lower bounded by 2R/2−2, hence (31) is satisfied.

• l ≥ 2: Then ais can be written as:

a1 = bR/2 · · · bk+110 · · · 0b1k−lb1k−l−1 · · · b11
a2 = bR/2 · · · bk+101 · · · 1b2k−lb2k−l−1 · · · b21

then, the difference a1 − a2 can be lower bounded by 2k−l−1 and B(ai)s can be written

as:

B(a1) = b11b
1
2 · · · b1k−l−1b

1
k−l1101 · · · 0bk+1 · · · bR/2

B(a2) = b11b
2
2 · · · b2k−l−1b

2
k−l0010 · · · 1bk+1 · · · bR/2

Then the difference |B(a1) − B(a2)| is lower bounded by 2R/2−(k−l)−2 (here we have

assumed that bk−l is not flipped, i.e., k − l is even; if k − l is odd, then same argument

hold with a2 and a1 reversed). Thus, the product distance is lower bounded by 1
8·2R/2

(which is the one in (31)).

• If l = 1: then ais can be written as:

a1 = bR/2 · · · bk+11b
1
k−1 · · · b11

a2 = bR/2 · · · bk+10b
2
k−1 · · · b21

then the difference a1−a2 can be lower bounded by 2k−2 (since b1k−1 ≥ b2k−1). The B(ai)s

can be written as:

B(a1) = b11b
1
2 · · · b1k−11bk+1bk+2 · · · bR/2

B(a2) = b21b
1
2 · · · b2k−10bk+1bk+2 · · · bR/2

and the difference |B(a1) − B(a2)| is lower bounded by 2R/2−k (here we have assumed

that bk−1 is flipped, i.e., k is even; same is true if k is odd). Thus, the product distance

is lower bounded by 1
4·2R/2 .
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D Proof of Theorem 5.4

We again consider the I and Q channels separately. Then we want to define L−1 permutations of

the PAM such that the corresponding permutation code is approximately universal. We consider

the q-digit representation of the PAM. For a PAM with qn points and number it from left to

right by 0 to qn−1 (in term of the rate R, n behaves like log2R/2
log2q

). For showing that a universally

decodable system satisfies the product distance criterion, we have to resort to irregularly spaced

PAMs. For every mth least significant q-bit change, we put a gap of gqm−1. Similar to the

two sub-channel case, using this construction we prove that any universally decodable scheme

satisfies the condition for approximate universality: consider any two codewords; suppose for

the ℓth sub-channel their kℓ MSBs are the same and (kℓ+1)th MSB is different. By construction

of the irregularly spaced QAM, the normalized (by qn) separation in the ℓth coordinate is lower

bounded by
gqn−kℓ−1

qn
= gq−(kℓ+1).

The universal decodability condition implies that if
∑

ℓ kℓ ≥ n, then there exists a unique

codeword corresponding to the MSBs. Therefore, the kℓs must satisfy

∑

ℓ

kℓ < n.

Thus, the product distance can be lower bounded by

|d1d2 · · · dL|2/L ≥
(

∏

ℓ

g2q−2kℓ−2

)1/L

,

=
(

q−2
∑

ℓ kℓ
)1/L

,

≥ g2

q2
q−2n/L

=
g2

q22R
(70)

.
=

1

2R
,

implying that the code satisfies the approximate universality condition (24). For a PAM of size

qn, the (normalized) increase in size is given by

n
∑

m=1

gqm−1−n(number of mth LS q-bit changes) =

n
∑

m=1

gqm−n(qn−m),

= gn. (71)

In the high SNR scaling,

qn = SNR
r =⇒ gn

.
= log SNR.

Thus the extra spacing does not affect the multiplexing gain.
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We also note the Theorem 5.4 is true even if the field size q is growing like log SNR. Note

that if q grew like a polynomial in SNR, i.e., like SNR
ǫ, then we can no longer ignore q in (70)

and such a code then will not be approximately universal. We also have to show that the power

gain because of the gaps still increases slowly enough so as to not affect the multiplexing gain.

For a PAM of size qn, the increase in size is, cf. (71),

gn ≤̇ SNR
ǫ ∀ ǫ > 0.

Therefore, the extra spacing does not affect the diversity-multiplex tradeoff.

E Proof of Propositions 6.1

We use an approximately universal parallel channel code, (e.g. a permutation code [p1, · · · , pnt ]

with total rate Rnt) over the MISO channel in a diagonal fashion:







p1 0 0

0
. . . 0

0 0 pnt






. (72)

We prove that scheme (72) is tradeoff optimal for MISO channel with i.i.d. fading coefficients.

Since it operationally converts the MISO channel into a parallel channel, we only need to

match the outage probabilities of the MISO channel and the corresponding parallel channel.

The outage probability of the MISO channel is given by.

P

{

log

(

1 +

nt
∑

i=1

|hi|2SNR
)

≤ r log SNR

}

(73)

For the equivalent parallel channel, the outage probability is given by

P

{

nt
∑

i=1

log
(

1 + |hi|2SNR
)

≤ ntr log SNR

}

(74)

The near zero behavior of sum of |hi|2s can be upper and lower bounded as:

(

P

{

|h1|2 <
x

nt

})nt

≤ P

{

nt
∑

i=1

|hi|2 ≤ x

}

≤
(

P
{

|hi|2 ≤ x
})nt

.

Since the upper and lower bound have the same decay rate, the probability of outage of the

MISO channel, (73), has a decay rate of

(

SNR
r

SNR

)ant

. (75)

Thus, the outage curve of the MISO channel with i.i.d. fading coefficients with the a denoting

the decay rate of |h1|2 near zero is

dout(r) = ant(1− r).
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The second outage probability, (74), is somewhat more involved. Define αi by

|hi|2 =
SNR

αi

SNR
.

In this notation, the outage condition for the parallel channel can be written as
∑

i

αi ≤ ntr. (76)

Since the sub-channels are independent, the outage probability (cf. (74)) has the decay rate

max
α1,··· ,αnt

nt
∏

i=1

(

SNR
αi

SNR

)a

, (77)

where the maximization is under the constraint in (76). Thus, the decay rate of the outage

probability expression in (77) is
(

SNR
r

SNR

)nta

, (78)

the same as that in (75); this completes the proof.

F Proof of Proposition 9.1

We prove that the diversity obtained by the code in (48) is nr (nt − r̃), where r̃ log SNR is the

rate of codes [p1, · · · , pnt ] and [q1, · · · , qnt ].

The pairwise probability of error, averaged over the Rayleigh fading channel with nr receive

antennas is given by [8]

P (X0 → X1) ≤ 1

det (I+ (X0 −X1)(X0 −X1)†)
nr
.

The difference codeword pair can be written as:

X0 −X1 =













0 · · · 0 dpnt dqnt

... . .
.

. .
.

. .
.

0

0 dp2 . .
.

. .
. ...

dp1 dq1 0 · · · 0













; (79)

where dp = [dp1, · · · , dpnt ] and dq = [dq1, · · · , dqnt ] are the codeword difference for a permutation

code.

Expanding (X0 −X1)(X0 −X1)
† in terms of the streams, we get:

det
(

I+ (X0 −X1)(X0 −X1)
†
)

≥ |dp1dp2 · · · dpnt
|2 + |dq1dq2 · · · dqnt

|2.

The probability of error can be upper bounded using the union bound:

Pe ≤ 1

SNR
2r̃

∑

X0,X1 6=X0

1

(|dp1d
p
2 · · · d

p
nt |2 + |dq1d

q
2 · · · d

q
nt |2)nr

.

42



This upper bound can be broken into two summations: one corresponding to where both the

streams are different and the other summation where one of the streams is the same. Suppose

the same code is used for both the streams; now the upper bound can be simplified:

Pe ≤ 1

SNR
2r̃

∑

dp 6=0,dq 6=0

1

(|dq1dq2 · · · dqnt |2 + |dq1dq2 · · · dqnt |)nr

+
2

SNR
r̃

∑

dp 6=0

1

|dp1dp2 · · · dpnt |2nr
.

The arithmetic mean-geometric mean inequality for the term inside the first summation yields

Pe ≤̇ 1

SNR
2r̃

∑

dp 6=0,dq 6=0

1

|dq1dq2 · · · dqnt |nr |dq1dq2 · · · dqnt |nr

+
2

SNR
r̃

∑

dp 6=0

1

|dp1dp2 · · · dpnt |2nr
,

=





1

SNR
r̃

∑

d
p
1 6=0

1

|dp1dp2 · · · dpnt |nr





2

+
2

SNR
r̃

∑

d
p
1

1

|dp1dp2 · · · dpnt |2nr
.

Now, we use the product distance distribution result in Appendix B.1 to separately bound the

two summations on the RHS. The result says that the number of codeword differences pairs

with |dp1 · · · d
p
nt |2 less than SNR

nt

SNR
r̃−k is

SNR
r̃+k,

for k in [0, r]. Using this result, the first term can be upper bounded as:




1

SNR
r̃

∑

p1 6=0

1

|dp1dp2 · · · dpnt |nr





2

≤̇
(

max
k∈[0,r̃]

1

SNR
r̃
SNR

k+r̃ SNR
nr(r̃−k)/2

SNR
ntnr/2

)2

=

(

max
k∈[0,r̃]

SNR
(1−nr/2)k SNR

nr r̃/2

SNR
ntnr/2

)2

= SNR
−(nr(nt−r̃)),

for nr ≥ 2. The second term corresponds to the error when one of the streams is decoded

correctly and can be directly verified to be of the correct order. Alternatively,

2

SNR
r̃

∑

d
p
1 6=0

1

|dp1dp2 · · · dpnt |2nr
≤̇ max

k∈[0,r̃]

1

SNR
r̃
SNR

k+r̃ SNR
nr(r̃−k)

SNR
nrnt

,

= max
k∈[0,r̃]

SNR
k(1−nr) SNR

nr r̃

SNR
nrnt

,

= SNR
−(nr(nt−r̃)).

Thus, combining the two upper bounds, for nr ≥ 2 there exists a code such that the diversity

gain is

nr(nt − r̃).

Taking r̃ = nt+1
2 r proves Proposition 9.1.
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F.1 Proof of Proposition 9.2

For the (nt + 1)× 2 channel, we transposed the code in (48) which was used for achieving the

first segment nt × 2 channel. The probability of error can be calculated using a union bound

calculation. The pairwise probability of error is given by

1/det
(

I+ (X0 −X1)(X0 −X1)
†
)nr

.

Since

det
(

I+ (X0 −X1)(X0 −X1)
†
)

= det
(

I+ (X0 −X1)
†(X0 −X1)

)

,

the union bound calculation for calculating the probability of error is exactly the same as same

as (48) case. Therefore the diversity obtained by this scheme is given by nrnt − nr r̃. But in

this case we are coding over a block-length of nt, thus the actual tradeoff curve is nrnt(2−r)/2,
where r log SNR is the per symbol rate of the channel.

G Proof of Proposition 8.1

The scheme of sending nt QAM constellations can be written as

{

q =

√

SNR

SNR
r
nt

(i1, . . . , i2nt) |ij ∈ PZ ∀ j = 1, . . . , 2nt

}

,

where PZ is the integer PAM constellation with SNR
r

2nt points. For a Rayleigh fading channel,

the probability of pairwise error averaged over the fading statistics is given by [8]:

P(q1 → q2) ≤
[

1

1 + ||q1 − q2||2
]nr

.

Using the union bound the probability of error is bounded by:

Pe ≤ 1

SNR
r

∑

q1 6=q2

[

1

1 + ||q1 − q2||2
]nr

,

≤
∑

q 6=0

1

||q||2nr
,

where 0 is the 2nt dimensional vector of zeros. The second step follows from the symmetry

of the QAM. To compute the summation in on RHS, we split into a summation over vectors

such that all its components are non-zero and then use the arithmetic mean-geometric mean

(am/gm) inequality. We denote a subset of the index set, {1, 2, · · · , 2nt}, by S. Then the

summation can be simplified as

∑

q 6=0

1

||q||2nr
=

SNR
rnr
nt

SNR
nr

∑

(i1,...,i2nt) 6=0

1

(|i1|2 + · · ·+ |int |2)nr
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=
SNR

rnr
nt

SNR
nr

∑

S

∑

ij 6=0:j∈S

1

(|i1|2 + · · ·+ |i2nt |2)nr

≤ SNR
rnr
nt

SNR
nr

∑

S

∑

ij 6=0:j∈S

∏

j∈S

1

|ij |2nr/|S| using am/gm inequality

≤ SNR
rnr
nt

SNR
nr

∑

S





∑

i1 6=0

1

|i1|2nr/|S|





|S|

Since the range of summation |i1| is growing with SNR, the inner summation has different

behavior for depending on whether |S| is larger/smaller than 2nr.

∑

i1 6=0

1

|i1|2nr/|S|
.
=

(

SNR
r/2nt

)1−2nr/|S|
if 2nr < |S|

.
= 1 otherwise

But because of the definition of S, |S| is naturally upper bounded by 2nt. Thus, for nr ≥ nt,

the probability of error can be upper bounded by:

Pe ≤̇ SNR
−(nr− rnr

nt
)
. (80)

On the other hand, if nr < nt, then the probability of error can be upper bounded as:

Pe ≤ SNR
rnr
nt

SNR
nr

∑

S





∑

i1 6=0

1

|i1|2nr/|S|





|S|

≤̇ SNR
rnr
nt

SNR
nr

∑

2nr≤|S|≤2nt

(

SNR
r/2nt

)|S|−2nr

≤̇ SNR
rnr
nt

SNR
nr

max
2nr≤|S|≤2nt

(

SNR
r/2nt

)|S|−2nr

,

= SNR
−(nr−r)

H Isotropic MIMO Channels

We concentrate on the rotationally invariant distributions. For this class, the singular value

distribution determines the channel statistics completely. Let f(φ) be the density function of

the ordered squared singular values, φ, of the channel gain matrix. In terms of notation of

Section 7, we have

φℓ = ψ2
ℓ for ℓ = 1, · · · ,min (nr, nt) ,

where ψℓs are the singular values of H. In the high SNR regime, we are only interested in the

near zero behavior of φ. Therefore, in the scaling of interest, f can be assumed to be of the

form:

f(φ)
.
= φk11 · · ·φkmin(nr,nt)

min(nr,nt)
Iφ1≤φ2≤···≤φmin(nr,nt)

(81)
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This is same as the earlier definition of distribution of the squared singular values:

P
{

φ1 ≤ ǫ1, . . . , φmin(nr ,nt) ≤ ǫmin(nr,nt)

} .
= ǫk1+1

1 · · · ǫkmin(nr,nt)
+1

min(nr ,nt)
,

for ǫ1 < · · · < ǫmin(nr,nt).

For Rayleigh fading distribution, φ has the Wishart distribution which can be reduced to

this polynomial form by ignoring the exponential terms in the Wishart distribution (for the

exact expression, see [1]):

r(φ)
.
= φr11 φ

r2
2 · · ·φrmin(nr,nt)

min(nr,nt)
Iφ1≤φ2≤···≤φmin(nr,nt)

(82)

where rℓ = |nt − nr|+ 2(ℓ− 1).

In this appendix, first we characterize the outage curve in terms of kis for general f . Then,

we use this characterization to characterize restricted universality for codes based on the V-

BLAST and D-BLAST architecture proposed in Section 8 and Section 9 respectively.

H.1 The outage curve for general fading distributions

For a general fading distribution, F , we want to calculate the probability of outage. The outage

event can be written as:

min(nr ,nt)
∑

ℓ=1

log (1 + φℓSNR) ≤ r log SNR.

If we write

φℓ = SNR
−αℓ , (83)

then the induced distribution (from (81)) on the ordered vector α is

p(α)
.
= SNR

−α1(k1+1) · · · SNR−αmin(nr,nt)
(kmin(nr,nt)

+1), (84)

which can obtained by change of variables (83). The outage probability will be dominated by

the α that is on the boundary of outage and has smallest SNR exponent. More precisely, using

Laplace’s method as in [1], the outage curve is the solution to the optimization problem

inf
α∈A′

∑

ℓ

(kℓ + 1)αℓ, (85)

where

A
′

=

{

α : α1 ≥ · · · ≥ αmin(nr ,nt) ≥ 0 and
∑

ℓ

(1− αℓ)
+ ≤ r

}

.

The fact that αℓs are positive uses our assumption that the singular values have an exponential

tail. Let’s assume for some integer s, s ≤ r < s+ 1. Then, if

kℓ < kmin(nr,nt)−s for ℓ = 1, · · · ,min (nr, nt)− s− 1 (86)

kℓ > kmin(nr,nt)−s for ℓ = min (nr, nt)− s+ 1, · · · ,min (nr, nt) ,
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then the optimizing α in (85) is given by :

α∗
ℓ = 1 for ℓ = 1, · · · ,min (nr, nt)− s− 1

α∗
min(nr,nt)−s = s+ 1− r

α∗
ℓ = 0 for ℓ = min (nr, nt)− s+ 1, · · · ,min (nr, nt) .

The corresponding outage curve is given by:

dout(r) = (kmin(nr ,nt)−s + 1)(s + 1− r) +

min(nr ,nt)
∑

ℓ=min(nr ,nt)−s+1

(kℓ + 1) for s ≤ r < s+ 1.

In particular, we would like to stress that if all the kis are increasingly ordered then the α

that dominates the outage probability for fading density f is the same one that dominates the

outage probability for for i.i.d. Rayleigh fading.

H.2 Restricted universality of V-BLAST and D-BLAST

We want to prove that the simple QAM code for the V-BLAST architecture and codes based on

using permutation codes over the D-BLAST architecture are universal over a class of isotropic

fading distributions. We know that all these codes are tradeoff optimal for the i.i.d. Rayleigh

fading channel under the union bound calculation. We exploit this fact to prove optimality over

isotropic distributions that fade slower than i.i.d. Rayleigh fading.

We denote the diagonal matrices with entries ψ, the singular values of the the channel gain

matrix, and λ, the singular values of the codeword difference matrix, as Ψ and Λ. Then the

probability of pairwise error averaged over the channel statistics can be written as (see (5)):

Pe (XA → XB) =

∫

H

Q

(
√

‖HD‖2
2

)

dH (87)

=

∫

Ψ

∫

V1

Q

(
√

‖ΨV1U2Λ‖2
2

)

dV1dΨ

=

∫

Φ

∫

V1

Q

(√

‖Φ1/2V1U2Λ‖2
2

)

dV1dΦ

=

∫

Φ

∫

V

Q

(√

‖Φ1/2VΛ‖2
2

)

dVdΦ,

where the last two steps use the independence of Φ and V1 and rotational invariance of V1

respectively. The integral with respect to V is taken with respect to the Haar measure and

does not depend on the distribution of Φ and is only a function of the realization Ψ and the

code.

Now, the probability of error can be upper bounded using a union bound

Pe ≤ 1

SNR
r

∑

Λ

∫

Φ

∫

V

Q

(√

‖Φ1/2VΛ‖2
2

)

dVdΨ,
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where the summation is over all possible codeword difference pairs. Since all the terms are

positive, interchanging the order of the summation and integration the union bound can be

written as

Pe ≤
∫

Φ

(

1

SNR
r

∑

Λ

∫

V

Q

(√

‖Φ1/2VΛ‖2
2

)

dV

)

dΦ.

The term inside the outer integral only depends on the code and the channel realization Φ

and not on the fading distribution. We denote it by g(φ). Then the smart union bound can be

written as

Pe ≤
∫

φ
g(φ)f(φ)dφ,

where f is the density function of φ. Similarly the upper bound corresponding to the smart

union bound is given by

Pe ≤ P (H) +

∫

Ψ/∈H
g(φ)f(φ)dφ, (88)

where H is the set of all channel realizations in outage. If we assume that the union bound is

tight for Rayleigh fading, then it implies

∫

φ/∈H
g(φ)r(φ)dφ ≤̇ SNR

−d∗R(r),

where r(φ) is the is density for the i.i.d. Rayleigh fading channel and d∗R(r) is the corresponding
outage curve. We use d∗F (r) to denote the optimal curve for a generic density f .

Then, for any f the second term in (88) can be upper bounded as

∫

φ/∈H
g(φ)f(φ)dφ =

∫

φ/∈H

f(φ)

r(φ)
g(φ)r(φ)dφ,

≤
(

max
φ/∈H

f(φ)

r(φ)

)

∫

φ/∈H
g(φ)r(φ)dφ,

≤̇
(

max
φ/∈H

f(φ)

r(φ)

)

SNR
−d∗R(r). (89)

The expression to be maximized can be written as (see (81) and (82)):

max
φ/∈H

min(nr,nt)
∏

ℓ=1

φkℓ−rℓℓ = min
φ/∈H

min(nr,nt)
∏

ℓ=1

φuℓℓ . (90)

where uℓ = rℓ − kℓ Now, we consider the codes from Section 8 and 9 and explicitly compute

the maximization (90).
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V-BLAST

For the last segment of an n× n channel, none of the singular values can die completely (i.e., ,

become less than 1
SNR

), therefore the no-outage condition can be written as:

n
∏

ℓ=1

φℓ ≥ SNR
r

SNR
n . (91)

Therefore the minimization (90) can be written as

min
n
∏

ℓ=1
φℓ≥ SNRr

SNRn

n
∏

ℓ=1

φuℓℓ , (92)

with an additional constraint that the φℓs are bounded by one (using the exponential tail

assumption). If we assume that u1 is larger than uℓ for every ℓ ≥ 2, then

min
n
∏

ℓ=1
φℓ≥ SNRr

SNRn

n
∏

ℓ=1

φuℓℓ ≤

min
n
∏

ℓ=1
φℓ≥ SNRr

SNRn

(

n
∏

ℓ=1

φℓ

)u1

max
φ

n
∏

ℓ=2

φu1−uℓℓ

,

If we assume that u1 ≥ 0 and u1 − uℓ ≥ 0 for every ℓ ≥ 2, then the optimizing solution is

given by:

φ∗1 =
SNR

r

SNR
n

φ∗ℓ = 1 for ℓ = 2, · · · , L.
This optimal point is same as the point (in terms of α), that optimized the outage probability

calculation in (85). Then, at the optimal point we can write:

n
∏

ℓ=1

φ∗
kℓ−rℓ

ℓ =

∏n
ℓ=1 φ

∗kℓ+1

ℓ
∏n
ℓ=1 φ

∗rℓ+1

ℓ

=
SNR

−d∗F (r)

SNR
d∗R(r)

.

Therefore, using (89) and (88) the probability of error can be upper bounded by

Pe ≤̇ SNR
−d∗F (r) +

SNR
−d∗F (r)

SNR
d∗R(r)

SNR
−d∗R(r)

≤̇ SNR
−d∗F (r).

Thus, the code is also tradeoff optimal for the channel with fading density f , where f satisfies

the following conditions:

r1 ≥ k1

r1 − k1 ≥ r1 + 2(ℓ− 1)− kℓ for ℓ = 2, · · · , L.
Combining these two conditions, we get

kℓ − 2(ℓ− 1) ≥ k1 for ℓ = 2, · · · , L.
k1 ≤ 0.
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D-BLAST

For the last segment of an nt× 2 channel, none of the singular values can fade completely (i.e.,

become less than 1
SNR

), and hence the no-outage condition can be written as:

φ1φ2 ≥ SNR
r

SNR
2 . (93)

This means that the minimization (90) can be written as

min
φ1φ2≥ SNRr

SNR2

φu11 φ
u2
2 , (94)

Now, this optimization problem is the same as the V-BLAST optimization problem in (92),

with n = 2. Hence, the optimality condition on k1 and k2 turns out to be

k2 − k1 ≥ 2

k1 ≤ 0
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[3] C. Köse and R. D. Wesel, “Universal space-time trellis codes,” IEEE Transactions on

Information Theory, vol. 49, no. 10, pp. 2717–2727, Oct 2003.

[4] A. Matache and R. D. Wesel, “Universal trellis codes for diagonally layered space-time

systems,” IEEE Transactions on Signal Processing, vol. 51, no. 11, pp. 1073–1096, Nov

2773-2783.

[5] D. Divsalar and M. Simon, “The design of trellis coded mpsk for fading channels: Per-

formance criteria,” IEEE Transactions on Communications, vol. 36, no. 9, pp. 1004–1012,

Sept 1988.

[6] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge Uni-

versity Press, 2005.

[7] H. Yao and G. Wornell, “Achieving the the full mimo diversity-multiplexing frontier with

rotation based space-time codes,” in Proceedings of the Allerton conference on Communi-

cations, Control and Computing, Oct 2003.

[8] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate

wireless communication: Performance criterion and code construction,” IEEE Transactions

on Information Theory, vol. 44, no. 2, pp. 744–765, March 1998.

50



[9] P. Dayal and M. Varanasi, “An optimal two transmit antenna space-time code and its

stacked extension,” in Proceedings of the Asilomar Conference on Signals, Systems and

Computers, Nov 2003.

[10] P. Elia, K. R. Kumar, S. A. Pawar, P. V. Kumar, and H. feng Lu, “Explict construction

of space-time block codes: Achieving the diversity-multiplexing gain tradeoff,” submitted

to IEEE Transactions on Information Theory, Sept 2004.

[11] F. Oggier, G. Rekhaya, J.-C. Belfiore, and E. Viterbo, “Perfect space time block codes,”

submitted to IEEE Transactions on Information Theory, Sept 2004.

[12] K. T. and B. S. Rajan, “Stbc-schemes with nonvanishing determinant for certain number

of transmit antennas,” IEEE Transactions on Information Theory, vol. 51, no. 8, pp.

2984–2992, Aug 2005.

[13] G. J. Foschini, G. Golden, R. Valenzuela, and P. Wolniansky, “Simplified processing for

high spectral efficiency wireless communication employing multi-element arrays,” IEEE

Journal on Selected Areas in Communication, vol. 17, pp. 1841–1852, 1999.

[14] G. J. Foschini, “Layered space time architecture for wireless communication in a fading

environment when using multi-element antennas,” Bell Labs Technical Journal, vol. 1,

no. 2, pp. 41–59, 1996.

[15] J.-C. Belfiore and G. Rekaya, “Quaternionic lattices for space-time coding,” in Proceedings

of the Information Theory Workshop, Paris, France, Mar 2003.

[16] J. Boutros, E. Viterbo, C. Rastello, and J. Belfiore, “Good lattice constellations for both

rayleigh fading and gaussian channels,” IEEE Transactions on Information Theory, vol. 42,

no. 2, pp. 502–518, Mar 1996.

[17] J. Boutros and E. Viterbo, “Signal space diversity: a power and bandwidth efficient diver-

sity technique for the rayleigh fading channel,” IEEE Transactions on Information Theory,

vol. 44, no. 4, pp. 1453–1467, July 1998.

[18] J. Yedidia, K. Pedagani, and A. Molisch, “New spreading transforms for fading channels,”

in Proceedings of the Allerton Conference on Communication, Control and Computing, Oct

2004.

[19] A. Sahai, “Anytime information theory,” Ph.D. dissertation, Massachusetts Institute of

Technology, Cambridge, MA, 2001.

[20] P. Vontobel and A. Ganesan, “An explicit construction of universally decodable matrices.”

[Online]. Available: http://arxiv.org/abs/cs.IT/0508098

[21] R. E. Blahut, Algebraic Codes for Data Transmission. Cambridge University Press, 2003.

[22] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge, UK: Cambridge

University Press, 1991.

51

http://arxiv.org/abs/cs.IT/0508098


[23] S. Tavildar and P. Viswanath, “Approximately universal codes for over slow fading

channels.” [Online]. Available: http://arxiv.org/abs/cs.IT/0512017

[24] V. Doshi, “Explicit permutation codes for the slow fading parallel channel,” Bachelors

thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 2005.

[25] S. M. Alamouti, “A simple transmit divesity technique for wireless communication,” IEEE

Journal on Selected Areas in Communication, vol. 16, no. 8, pp. 1451–1458, Oct 1998.

[26] J.-C. Belfiore, G. Rekaya, and E. Viterbo, “The golden code: a 2 × 2 full rate space-

time code with non-vanishing determinants,” in Proceedings of the International IEEE

symposium on Information Theory, June 2004, p. 308.

[27] H. E. Gamal, G. Caire, and M. O. Damen, “Lattice coding and decoding achieve the opti-

mal diversity-multiplexing of mimo channels,” IEEE Transactions on Information Theory,

vol. 50, pp. 968–985, June 2004.

[28] D. Tse, P. Viswanath, and L. Zheng, “Diversity-multiplexing tradeoff in multiple access

channels,” IEEE Transactions on Information Theory, vol. 50, no. 9, pp. 1859–1874, Sept

2004.

[29] N. Prasad and M. Varanasi, “Outage analysis and optimization for multiaccess/v-blast

architecture over mimo rayleigh fading channels,” in 41st Annual Allerton Conf. on Comm.

Control and Computations, Oct 2003.

52

http://arxiv.org/abs/cs.IT/0512017

	Introduction
	Channel Model and The Outage Formulation
	Main Result
	Approximately Universal Codes in the Downlink
	Characterization of approximately universal codes
	Worst-case Pairwise Error Probability
	A Closer Look at the Universal Criterion
	Proof of Theorem ??


	QAM is Approximately Universal for the Scalar Channel
	The Parallel Channel
	Approximate Universality of Codes Based on Rotation of PAM
	Permutation Codes
	Examples
	A Random Permutation Code Ensemble

	Two Sub-channels: Bit-Reversal Permutation Code
	Operational Interpretation to the Outage Condition
	Bit-Reversal Permutation Code
	Product Distance and Bit Reversals
	Irregularly Spaced PAM Permutation Code
	Alternate-Bit-Flipping Permutation Code

	Explicit Permutation Codes for General Parallel Channel
	Bit-Reversal as a Linear Operation
	Universally Decodable Matrices
	Reed-Solomon Codes are Approximately Universal
	L= 3: Universally Decodable Matrices
	A Complete Characterization of UDMs


	The MISO Channel
	Characterization of Approximately Universal Codes
	MISO channel viewed as a Parallel Channel

	The MIMO Channel
	Approximate Universality of Number-Theoretic Codes
	Discussion

	The V-BLAST Architecture
	The D-BLAST Architecture

	The V-BLAST Architecture
	Tradeoff Optimality over Rayleigh Fading Channels
	Tradeoff Optimality over Isotropic Fading Channels

	The D-BLAST Architecture
	Tradeoff Optimality over Rayleigh Fading Channels
	D-BLAST and the First Segment
	D-BLAST and ML Decoding
	A Time-Space Code and the Second Segment
	Tradeoff Optimality over Isotropic Channels


	Conclusion
	Converse for Approximate Universality
	Proof of Theorem ??

	Proof of Theorem ??
	Product distance distribution

	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Propositions ??
	Proof of Proposition ??
	Proof of Proposition ??

	Proof of Proposition ??
	Isotropic MIMO Channels
	The outage curve for general fading distributions
	Restricted universality of V-BLAST and D-BLAST


