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The internet structure is extremely complex. The Positive-Feedback Preference (PFP) model
is a recently introduced internet topology generator. The model uses two generic algorithms to
replicate the evolution dynamics observed on the internet historic data. The phenomenological
model was originally designed to match only two topology properties of the internet, i.e. the rich-
club connectivity and the exact form of degree distribution. Whereas numerical evaluation has
shown that the PFP model accurately reproduces a large set of other nontrivial characteristics as
well. This paper aims to investigate why and how this generative model captures so many diverse
properties of the internet. Based on comprehensive simulation results, the paper presents a detailed
analysis on the exact origin of each of the topology properties produced by the model. This work
reveals how network evolution mechanisms control the obtained topology properties and it also
provides insights on correlations between various structural characteristics of complex networks.

PACS numbers: 89.75.-k, 87.23.Ge, 05.70.Ln

I. INTRODUCTION

It is vital to obtain a good description of a network
topology because structure fundamentally affects func-
tion [1, 2]. The internet contains millions of routers,
which are grouped into thousands of subnetworks, called
autonomous systems (AS), which are then glued into a
global network by the Border Gateway Protocol. Effec-
tive engineering of the internet is predicated on a detailed
understanding of issues such as the large-scale structure
of its underlying physical topology, the manner in which
it evolves over time, and the way in which its constituent
components contribute to its overall function [3].

The recently introduced Positive-Feedback Preference
(PFP) model [4] is an internet AS-level topology genera-
tor. The model uses two evolution mechanisms, namely
the interactive growth and the positive-feedback prefer-
ence. Both mechanisms are inspired by, and coincident
with, practical observations on the internet historic data.
Originally the phenomenological model was designed to
match only the internet’s rich-club connectivity [5] and
the exact form of degree distribution, including the dis-
tribution of low degrees, the maximum degree and the
degree distribution’s power-law exponent [6]. It has been
a pleasant surprise that numerical evaluation against the
internet measurement date has shown that the model ac-
curately reproduces a large set of other nontrivial topol-
ogy characteristics as well, including the disassortative
mixing [7, 8, 9], the shortest path length [10], short cy-
cles [11, 12] and the betweenness centrality [13]. The
PFP model has been used in more realistic simulations
of the internet, e.g. [14].

As of this writing, an analytical solution of the PFP
model is not available yet. In this paper we use the nu-
merical method to analyze why and how the model is
able to reproduce a fuller picture of the internet than it

was designed for. In other words, we aim to investigate
the exact origin of each of the topology properties cap-
tured by the PFP model. Answers to these questions
can be valuable for the ongoing effort on a mathematical
solution of the model.

In Section II, we review the PFP model and its two
mechanisms. We reflect on the intuitions underlying the
design of the two evolution mechanisms. In Section III,
we comparatively examine two limiting cases of the PFP
model. Based on detailed numerical simulations, we iden-
tify the explicit evolution dynamics that are responsible
for generating the rich-club phenomenon and the degree
distribution properties. We also reveal that the origin
of the disassortative mixing is in fact already embedded
in the model’s two evolution mechanisms. Furthermore
we explain that the PFP model resembles the internet’s
shortest path length and short cycles because these two
characteristics are correlated with other topology prop-
erties.

In Section IV, the above results become more evident
when we examine how the PFP model’s topology prop-
erties react to the change of the parameters that control
the model’s evolution mechanisms. Our investigation
leads to a number of insightful discoveries. For exam-
ple we find out that the rich-club connectivity is almost
exclusively determined by the interactive growth mech-
anism. We also show that the interactive growth and
the positive-feedback preference jointly contribute to the
model’s disassortative mixing behavior, however the two
mechanisms have opposite effects on the degree distribu-
tion’s power-law exponent.

In Section V we conclude that this work represents a
fuller and deeper understanding of the internet topology
evolution dynamics. This work complements the research
on evolution mechanisms and structural constrains of
complex networks in general.

http://arxiv.org/abs/cs/0512011v3
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II. THE POSITIVE-FEEDBACK PREFERENCE

MODEL

In graph theory, degree, k, is defined as the number
of links a node has. Degree is a local property but the
distribution of degree provides a global view of a network
structure. The degree distribution of the internet AS-
level topology is characterized by a power-law [6] as

P (k) ∼ kγ , γ ≃ −2.2. (1)

A power-law degree distribution means the majority of
nodes that form a network have very few links. Some
nodes, however, are very well connected.

FIG. 1: Network growth mechanisms: (a) the BA model’s
new-node-only growth; (b) the independent growth; and (c)
and (d) the PFP model’s interactive growth.

Barabási and Albert (BA) [15] showed that a power-
law degree distribution can arise from two generic mech-
anisms: growth, where a network “grows” from a small
random network by attaching new nodes to m old nodes
in the existing system (see Fig. 1a, in which m = 3); and
preferential attachment, where a new node is attached
preferentially to nodes that are already well connected.
The probability that a new node will be connected to a
node with degree k is given as

Π(k) =
k

∑
j kj

. (2)

During the last few years a large number of models
have been proposed to resemble and explain the power-
law degree distribution and other topology properties ob-
served on various real networks [1, 2]. Recently Zhou and
Mondragón [4] introduced the Positive-Feedback Prefer-
ence (PFP) model. Numerical evaluation has shown that
the PFP model accurately reproduces a large number
of characteristics of the internet AS-level topology. The
model uses the following two evolution mechanisms.

A. Mechanism One: Interactive Growth

The interactive growth is designed to satisfy a num-
ber of observations on internet history data [16, 17, 18].
Firstly the internet evolution is largely due to two pro-
cesses: the attachment of new nodes to the existing sys-
tem, and the addition of new internal links between old
nodes already present in the existing system. Secondly
the majority of new nodes appeared on the internet are
each attached to no more than two old nodes. And
thirdly the ratio of links to nodes on the internet AS
graph is approximately three.
Different from the independent growth [19] (see

Fig. 1b), in which new nodes and new internal links are
added independently, the two evolution processes are in-
terdependent in the interactive growth (see Fig. 1c and
d). That is to say, a new internal link always starts from
an old node, we call it a host node, to whom a new node
has just attached. A heuristic explanation of this interac-
tion is that on the internet, new customers (new nodes)
generate extra demand for service, which triggers their
service providers (host nodes) to develop new connec-
tions to other service providers (new internal links) in
order to accommodate the increased traffic and improve
services.
The interactive growth is described as such: starting

from a small random graph, at each time step,

• with probability p ∈ [0, 1], a new node is attached
to a host node, and at the same time two new in-
ternal links are added connecting the host node to
two other old nodes (see Fig. 1c);

• with probability 1 − p, a new node is attached to
two host nodes, and only one new internal link is
added connecting one of the host nodes to another
old node (see Fig. 1d).

Numerical simulation shows that when the probability
parameter p = 0.4, the interactive growth produces the
best result.

B. Mechanism Two: Positive-Feedback Preference

The PFP model uses the following nonlinear preference
probability to choose old nodes for the interactive growth,

Π(k) =
k1+δ ln k

∑
j k

1+δ ln kj

j

, δ ≥ 0. (3)

It is called the positive-feedback preference (PFP) be-
cause a node’s ability of acquiring new links increases
as a feed-back loop of the node’s degree. When the pa-
rameter δ = 0, it is equivalent to the BA model’s linear
preference (see Eq. 2). Numerical simulation shows that
the positive-feedback preference produces the best result
when the parameter δ = 0.021 [26].
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C. Discussion

FIG. 2: Three degree functions: f(k) = k for the linear
preference, f(k) = k1.15 for the exponential preference and
f(k) = k1+0.021 ln k for the positive-feedback preference.

The positive-feedback preference is designed to satisfy
the observation [16, 17, 18] that during the internet evo-
lution, the probability that a new node links with a low-
degree node follows the BA model’s linear preference,
whereas high-degree nodes have a stronger ability of ac-
quiring new links than predicted by the linear preference.
A preference probability can be written as Π(k) =

f(k)/
∑

j f(kj), where f(k) is a degree function. The

exponential preference [20, 21], which uses the nonlinear
degree function of f(k) = kλ, λ ≥ 1, also gives high-
degree nodes a stronger preference than the linear pref-
erence. However as shown in Fig. 2, only the PFP can
be approximated by the linear preference for low-degree
nodes. When degree increases, the PFP grows more and
more rapidly and finally exceeds the exponential prefer-
ence.

TABLE I: Preference probability ratio f(µk)/f(k) when
λ = 1.15 and δ = 0.021.

Linear Exponential Positive-Feedback

f(k) k kλ k1+δ ln k

f(µk)
f(k)

µ µλ µ1+δ ln (µk)kδ lnµ

f(1000)
f(100)

1000
100

= 10 2818.4
199.5

= 14.1 2722.7
156.1

= 17.4
f(10)
f(1)

10
1

= 10 14.1
1

= 14.1 11.2
1

= 11.2

To illustrate the impact of such difference, we com-
pare a k-degree node against a µk-degree node, µ > 1.
The ratio of their preference probability can be given
as Π(µk)/Π(k) = f(µk)/f(k). As shown in Table I, for
the linear and the exponential preferences, a 1000-degree
node, when competing against a 100-degree node, has the
same advantage as a 10-degree node competing against a
1-degree node. Whereas for the PFP, f(1000)/f(100) is
more than 50% larger than f(10)/f(1). This means the
PFP not only appreciates the degree gap between low-
degree nodes and high-degree nodes, but also effectively

FIG. 3: Preference probability ratio f(µk)/f(k) as a function
of degree k when µ = 10, λ = 1.15 and δ = 0.021.

enlarges the degree difference between high-degree nodes
themselves (see Fig. 3). The consequence of the positive-
feedback preference is “rich not only get richer, they get
disproportionately richer”.

III. EVOLUTION MECHANISMS VS

TOPOLOGY PROPERTIES

To investigate the relations between the PFP model’s
evolution mechanisms and the obtained topology prop-
erties, we compare the PFP model and the BA model
against the following two limiting cases.

1. The Interactive Growth (IG) model, which uses
the PFP model’s interactive growth and the BA
model’s linear preference.

2. The BA+PFP model, which uses the BA model’s
new-node-only growth and the PFP model’s
positive-feedback preference.

For each of the four models, we generate ten networks
to the same size as the internet AS graph [22, 23] using
different random seeds. All networks are generated from
small random graphs consisting of 10 nodes randomly
connected by 30 links. Quantities in Table II are aver-
ages over the ten networks. Detailed evaluation of the
PFP model against Internet measurement data has been
provided in [4]. In the following we focus on the compar-
ison of topology properties among the four models.

A. Rich-Club Phenomenon

A hierarchical structure of the internet AS-level topol-
ogy is the rich-club phenomenon [5], which describes the
fact that well connected nodes, rich nodes, tent to be
tightly interconnected with other rich nodes forming a
core group, or club. Rich-club membership can be de-
fined as “the r best connected nodes”, where r is a node’s
rank denoting the node’s position on the non-increasing



4

TABLE II: Properties of the four models and the internet AS graph

BA IG BA+PFP PFP AS graph

Growth mechanism New-node-only IG p=0.4 New-node-only IG p=0.4

Preference scheme Linear Linear PFP δ=0.021 PFP δ=0.021

Number of nodes, N 9204 9204 9204 9204 9204

Number of links, L 27612 27612 27612 27612 28959

Rich-club phenomenon weak strong weak strong strong

Rich-club exponent, θ -0.97 -1.49 -0.97 -1.49 -1.481

Rich-club connectivity ϕ(0.01) 6.0% 40.3% 5.7% 44.8% 44.3%

Top clique size, nclique 2 15 4 16 16

Degree distribution P (1) 0% 25.8% 0% 26.2% 26.5%

Degree distribution P (2) 0% 33.7% 0% 33.7% 30.2%

Degree distribution P (3) 39.8% 10.5% 43.7% 10.5% 14.8%

Degree distribution exponent, γ -2.902 -2.206 -2.890 -2.255 -2.254

Maximum degree, kmax 240 677 898 1950 2070

Disassortative mixing neutral weak weak strong strong

Assortativity coefficient, α -0.036 -0.124 -0.091 -0.234 -0.236

Characteristic path length, ℓ∗ 4.25 3.55 3.75 3.07 3.12

degree list of a network. Node rank is often normalized
by N , the number of nodes contained in the network.
The rich-club phenomenon is assessed by measuring

the rich-club connectivity, ϕ(r/N), defined as the ratio
of the actual number of links to the maximum possible
number of links among the rich-club members. The inter-
net AS graph is fundamentally characterized by a power
law of φ(r/N) ∼ rθ with the exponent θ = −1.48, which
results from fitting φ(r/N) with a power law for 90%
of the nodes, i.e. 0.1 6 r/N 6 1. Rich-club connectiv-
ity indicates how well club members “know” each other,
e.g. ϕ = 1 means that all the members have a direct link
to any other member, i.e. they form a fully connected
mesh, a clique. The tope clique size, n

clique
, defined as

the maximum number of nodes with the highest ranks
still forming a clique.

FIG. 4: Rich-club connectivity vs normalized rank, ϕ(r/N).

As shown in Fig. 4 and Table II, the PFP model and
the IG model exhibit the same rich-club connectivity. So

do the BA model and the BA+PFP model. However the
former two models, using the interactive growth, produce
a significantly stronger rich-club phenomenon than that
obtained by the later two models using the new-node-only
growth. It is evident that the rich-club phenomenon is
primarily determined by the growth mechanisms, not the
preference schemes.
The BA model and the BA+PFP model use the new-

node-only growth mechanism, in which all newly added
links are external links between new nodes and old nodes.
The old nodes are preferentially chosen from rich nodes
but the new nodes have only three initial links. Thus the
only chance for the rich-club connectivity to increase is
when new nodes become rich nodes, however this usually
happens in the early stage of network growth, and later
on new nodes become more and more difficult to com-
pete for new links against the already rich nodes. As a
result, although rich nodes keep acquiring new links, the
interconnections among rich nodes hardly increases.
On contrast the PFP model and the IG model use the

interactive growth mechanism, which adds not only ex-
ternal links, but also internal links between old nodes.
Since the old nodes are preferentially chosen from al-
ready rich nodes, the newly added internal links directly
increase the rich-club connectivity. The ratio of internal
links to external links can be estimated as a function of
the parameter p,

Lint

Lext
=

2p+ (1− p)

p+ 2(1− p)
=

1 + p

2− p
. (4)

Simulation result shows that when p = 0.4,
i.e. Lint/Lext = 7/8, the interactive growth produces a
rich-club phenomenon that precisely matches that of the
internet AS graph.
The reason that using different preference schemes has
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little impact on the obtained rich-club phenomenon is
that, although preference schemes influence the degree
growth rate (i.e. how many links rich nodes have), they
have little effect on the interconnectivity among the rich
nodes.

B. Degree Distribution Properties

FIG. 5: Degree distribution, P (k).

1. Distribution of Low Degrees

Table II and Fig. 5 show that more than half of the
nodes on the internet AS graph are 1-degree or 2-degree
nodes, and the distribution of low degrees does not follow
a power law because P (k = 1) = 26.5% < P (k = 2) =
30.2%. The BA model and the BA+PFP model do not
contain 1-degree and 2-degree nodes because they use
the new-node-only growth, in which each new node is
attached to three old nodes, i.e. k > 3. The IG model and
the PFP model use the interactive growth mechanism,
which assigns a new node’s initial degree as one or two
according to the probability parameter p. Simulation
result shows when p = 0.4 the interactive growth closely
resembles the AS graph’s distribution of low degrees as
well.

2. The Maximum Degree and Degree Growth Rate

As shown in Fig. 5, the AS graph’s degree distribution
does not follow a strict power law because it has a heavy
tail. The maximum degree, kmax, is the largest degree in
a network. The maximum degree is an indicator of how
far the degree distribution deviates from the prediction
of a strict power law. Table II shows that the internet
AS graph features a very large maximum degree, which
is one order of magnitude larger than that generated by
the BA model.

FIG. 6: Average degree growth of the initial nodes.

Fig. 6 illustrates the growth of average degree of nodes
contained in the initial small random graphs from which
the networks grow. These nodes are the earliest ones
present in the networks and usually they represent a
sample of the rich nodes in the generated networks.
As expected, the nodes in the BA+PFP model enjoy a
higher degree growth rate than the BA model because the
positive-feedback preference gives stronger preference to
high-degree nodes than the BA model’s linear preference.
Fig. 6 also shows that the degree growth rate of the IG

model is higher than the BA model and the BA+PFP
model. This means the interactive growth is also able to
accelerate the link acquiring process. As shown in Fig. 1,
the new-node-only growth and the independent growth
only allow a chosen old node to acquire one new link
per time step. Whereas the interactive growth is funda-
mentally different. It enables a chosen old node, i.e. a
host node, to acquire up to three new links at each time
step: with probability p, a host node acquires one exter-
nal link and two internal links; and with probability 1−p,
a host node acquires one external link and one internal
link. We call this the degree-leap effect of the interac-
tive growth. The degree-leap effect increases the degree
of host nodes by two or three, which would take many
time steps to achieve when using other growth mecha-
nisms. The degree-leap effect also significantly enhances
the node’s ability to compete for even more new links in
the forthcoming time steps, therefore the node’s degree
growth rate is accelerated.
The PFP model uses both the interactive growth and

the positive-feedback preference, which reinforce each
other, to achieve a degree growth rate that is notably
more rapid than any other models. As a result, the PFP
model obtains a very large maximum degree, as large as
that of the internet AS graph.

3. Power-Law Exponent of Degree Distribution

As shown in Fig. 5, all four models produce power-
law degree distributions, but have different power-law
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exponents, which result from fitting P (k) in the area of
2 6 k 6 100. Table II shows that the power-law ex-
ponents produced by the IG model and the PFP model,
both using the interactive growth, are close to that of the
internet AS graph, γ = −2.254. Whereas the exponent
generated by the BA model and the BA+PFP model is
close to γ = −3.0 [1].
It is clear that the interactive growth has a major im-

pact on the obtained degree distribution exponent. This
is because the interactive growth has the degree-leap ef-
fect, which allows more nodes to be “fast-tracked” into
rich nodes and also makes the already rich nodes get
richer more rapidly. The consequences of this dynamics
is that the obtained power-law degree distribution ex-
hibits a flatter slope (with a larger value of γ) and a
heavier tail (with a larger maximum degree).
Studying the degree distribution exponents shown in

Table II, we can see that the exponent of the IG model,
γ = −2.206, is actually overly increased by the interac-
tive growth and slightly larger than that of the internet
AS graph. The PFP model accurately matches the AS
graph’s exponent because its positive-feedback preference
has a minor effect of reducing the value of γ. This is
because, comparing with the linear preference, the PFP
gives a strong favor to the richest nodes (at the tail of
the degree distribution) at the cost of all other nodes. As
a result, the degree distribution is slightly steeper (with
a smaller value of γ), the power law cuts off at a smaller
degree, and the tail gets even longer.

C. Disassortative Mixing

Networks exhibit different degree-degree mixing pat-
terns [7, 8, 9]. For example social networks are usually
classified as assortative networks, because nodes in so-
cial networks statistically tend to attach to alike nodes,
i.e. high-degree nodes to high-degree nodes and low-
degree nodes to low-degree nodes. On contrast, techno-
logical and biological networks, e.g. the internet, exhibit
the disassortative mixing, where high-degree nodes tend
to connect with low-degree nodes, and visa versa. The
BA model, however, is a neutral network which exhibits
no mixing tendency.
The rich-club phenomenon observed on the internet

does not conflict with the fact that the internet is a dis-
assortative network, because the rich-club phenomenon
does not imply that the majority links of the rich nodes
are directed to other rich-club members. Indeed, rich
nodes have very large numbers of links and only a few
of them are enough to provide the interconnectivity to
other club members, whose number is anyway small [2].
A network’s mixing pattern is decided by the condi-

tional probability pc(k
′|k) that a link connects a k-degree

node to a k′-degree node. For computational simplicity,
a network’s mixing pattern is often identified by the cor-
relation between node degree and nearest-neighbors av-
erage degree [16]. As shown in Fig. 7, the PFP model

FIG. 7: Nearest-neighbors average degree vs node degree.

is a disassortative network because it exhibits a negative
degree-degree correlation, and the BA model is a neutral
network because the nearest-neighbors average degree is
almost invariant to the node degree.
Another way to determine a network’s mixing pattern

is a metric called the assortativity coefficient [7], α ∈
[−1, 1], which is defined as

α =
L−1

∑
i jiki − [L−1

∑
i
1
2 (ji + ki)]

2

L−1
∑

i
1
2 (j

2
i + k2i )− [L−1

∑
i
1
2 (ji + ki)]2

, (5)

where L is the number of links, and ji, ki are the degrees
of the nodes at the ends of the ith link, with i = 1, 2, ..., L.
When α > 0, a network is an assortative network, and
when α < 0, it is a disassortative network. As shown in
Table II, the internet AS graph, characterized by a neg-
ative assortativity coefficient of α = −0.236, is closely
resembled by the PFP model. The assortativity coeffi-
cient of the BA model is close to zero. In between are
that of the IG model and the BA+PFP model.
This result shows that both the positive-feedback pref-

erence and the interactive growth contribute to a net-
work’s disassortative mixing behavior. As we have dis-
cussed in Section II C, the positive-feedback preference
can effectively amplify the degree difference between two
nodes. Thus any degree difference between a link’s two
end nodes will be magnified by the PFP because the end
node with a larger degree will grow faster and faster than
the other end node. As a result the PFP increases a
network’s disassortative mixing. The interactive growth
also increases the disassortative mixing but in a differ-
ent way. When external links are attached between new
nodes and host nodes, the host nodes are preferentially
chosen from already rich nodes, and they enjoy the extra
degree growth given by the interactive growth’s degree-
leap effect. However the new nodes are to remain as
low-degree, poor nodes. Thus the interactive growth in-
troduces external links with a larger degree gap between
the end nodes than other growth mechanisms do.
As shown in the IG model and the BA+PFP model,

when either the interactive growth or the positive-
feedback preference works alone, their effect on strength-
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ening the disassortative mixing is limited. When the two
mechanisms work together, as shown in the PFP model,
they reinforce each other and generate networks as dis-
assortative as the internet AS graph.
Up to this point, we have identified the explicit evolu-

tion dynamics that are responsible for the above topology
properties. We can see the origin of these topology prop-
erties are embedded in the PFP model’s two evolution
mechanisms.

D. Shortest Path Length

The internet is a small-world network [10] because it
is possible to get to any node via only a few links among
adjoining nodes. The shortest path length, ℓ, is the mini-
mum hop distance between a pair of nodes. Performance
of modern network routing algorithms depends strongly
on the distribution of shortest path length [24]. The char-
acteristic path length, ℓ∗, is the average shortest path
length over all pairs of nodes.
The characteristic path length of the internet AS graph

is only 3.12 hops. The internet is so small is because
it exhibits both a strong rich-club phenomenon and a
strong disassortative mixing. These two structural prop-
erties together contribute to the routing efficiency of the
network. The rich-club consists of a small number of
highly connected nodes. The club members are tightly
interconnected between each other. If two club members
do not have a direct connection, they are very likely to
share a neighboring club member. Thus the average hop
distance between the members is very small (between 1
and 2 hops). The rich-club functions as a “super” traf-
fic hub of a network by providing a large selection of
shortcuts for routing. The disassortative mixing property
ensures that the majority of network nodes, peripheral
low-degree nodes, are always near the rich-club. Thus a
typical shortest path between two peripheral nodes con-
sists of three hops, the first hop is from the source node
to a member of the rich-club, the second hop is between
two club members and the final hop is to the destination
node.
As shown in Fig. 8 and Table II, the PFP model ac-

curately reproduces the rich-club phenomenon and the
disassortative mixing of the internet AS graph, naturally
it reproduces the internet’s shortest path length as well.
The BA model exhibits a weak rich-club phenomenon
and it is a neutral network. As a result the BA model’s
characteristic path length is more than one hop longer
than that of the internet AS graph. This one-hop differ-
ence is significant considering that the AS graph’s char-
acteristic path length is merely over three hops. The
BA+PFP model exhibit a rich-club phenomenon as weak
as the BA model, but it exhibits a (weak) disassortative
mixing. Consequently its characteristic path length is
half-hop shorter than that of the BA model. The IG
model is more disassortative than the BA+PFP model
and it exhibits the rich-club phenomenon as strong as

FIG. 8: Complimentary cumulative distribution (CCD) of
shortest-path length, P (> ℓ).

the PFP model, therefore the IG model is smaller than
the BA+PFP model, but not as small as the PFP model.

E. Short Cycles – Triangle Coefficient

Short cycles, i.e. triangles and quadrangles, encode the
redundancy information in a network because the mul-
tiplicity of paths between any two nodes increases with
the density of short cycles [11, 12]. The triangle coef-
ficient, kt, is defined as the number of triangles that a
node shares, or the number of links connecting among a
node’s nearest neighbors. The clustering coefficient [10]
can be given as c = kt

k(k−1)/2 . Comparing with the clus-

tering coefficient, the triangle coefficient is able to infer
neighbor clustering information of nodes with different
degrees, i.e. the correlation between triangle coefficient
and degree.

FIG. 9: Complement cumulative distribution of node triangle
coefficient, P (≥ kt).

Fig. 9 shows that the density of triangles of the PFP
model and the IG model is significantly larger than that
of the BA model and the BA+PFP model. Fig. 10 shows
that the average triangle coefficient of k-degree nodes in
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FIG. 10: Average triangle coefficient of k-degree nodes, kt(k).

the PFP model and the IG model is one order of magni-
tude larger than that of nodes with the same degrees in
the BA model and the BA+PFPmodel. It is evident that
models showing a stronger rich-club phenomenon contain
considerably more triangles. This is because the intercon-
nections between rich-club members play a major role on
the formation of triangles, not only for the club members
themselves, but also for the peripheral low-degree nodes
which have more than one connections to the rich-club.
The disassortative mixing also has a minor impact on

the formation of triangles. When a model exhibits a
stronger disassortative mixing, links of the low-degree
nodes are more likely connected to the rich-club, and thus
form more triangles. For example, the PFP model and
the IG model show the same rich-club phenomenon but
the PFP model exhibits a stronger disassortative mixing.
Thus, as shown in Fig. 10, the average triangle coefficient
of nodes in the degree area of 2 < k < 100 in the PFP
model is notably larger than that of nodes with the same
degrees in the IG model. The same can be observed by
contrasting the BA+PFP model against the BA model
in the degree area of 3 < k < 30.
In summary, the PFP model captures the internet’s

shortest path length and triangle coefficient because
these properties are correlated with other topology prop-
erties that have been produced by the model’s evolution
mechanisms.

IV. SENSITIVITY TO MODEL PARAMETERS

The PFP model’s interactive growth and positive-
feedback preference are controlled by the parameter p
and δ respectively. In the previous section the PFPmodel
uses p = 0.4 and δ = 0.021 to generate internet-like net-
works. In this section we provide more detailed numer-
ical results to support the above analysis. We examine
how the parameters control the evolution mechanisms
and therefore change the generated topology properties.
We first study the model’s sensitivity to individual pa-
rameters by making one parameter a variable and fixing

the other as a constant. Then we investigate the model’s
reactions when both parameters are variables.

A. Sensitivity To Parameter p

FIG. 11: Properties of the PFP model when parameter p
grows from 0 to 0.8 while δ = 0, including the degree dis-
tribution exponent γ, the rich-club connectivity exponent θ,
and the assortativity coefficient α.

Table III and Fig. 11 show how topology properties
of the PFP model change when the interactive growth
parameter p increases from 0 to 0.8 while the positive-
feedback parameter δ = 0 (i.e. equavelant to the linear
preference). It is clear that when p increases, the rich-
club phenomenon is getting stronger and stronger as the
value of rich-club exponent θ decreases monotonically.
This is because the ratio of new internal links to new
external links added to the model increases with p (see
Eq. 4). When more internal links are added, the rich
nodes become more tightly interconnected. Also the in-
teractive growth has a direct impact on the distribution
of low degrees. When p increases, the generated network
contains more 1-degree nodes and less 2-degree nodes (see
P (1) and P (2) in Table III). When p = 0.4, the interac-
tive growth well resembles the internet AS graph’s rich-
club phenomenon and distribution of low degrees at the
same time.
As analyzed in the above, the interactive growth has

a degree-leap effect. When p increases, more 3-degree
leaps (see Fig. 1c) and less 2-degree leaps (see Fig. 1d)
take place during the network growth. Thus the over-
all degree-leap effect become stronger. As a result the
power-law degree distribution becomes flatter with an in-
creased value of the degree distribution exponent γ. As
shown in Fig. 11, when p increases to 0.4, γ exceeds that
of the internet AS graph. We will see in the next section
that this excessive increase of γ will be counter balanced
by the positive-feedback preference’s opposite effect on γ.
When p grows from 0 to 0.8, the strengthened degree-

leap effect also enlarges the obtained maximum degree,



9

TABLE III: The PFP model’s sensitivity to parameter p when δ = 0.

Interactive growth parameter p 0.0 0.2 0.4 0.6 0.8 AS graph

Lint/Lext = (1 + p)/(2− p) 1/2 2/3 7/8 8/7 3/2

Rich-club exponent, θ -1.36 -1.43 -1.49 -1.56 -1.61 -1.481

Rich-club connectivity ϕ(0.01) 26.1% 33.3% 40.3% 48.2% 53.8% 44.3%

Top clique size, nclique 7 10 15 17 20 16

Degree distribution P (1) 0% 13.1% 25.8% 38.9% 50.5% 26.5%

Degree distribution P (2) 49.5% 41.6% 33.7% 25.9% 18.7% 30.2%

Degree distribution P (3) 13.5% 12.1% 10.5% 8.4% 6.6% 14.8%

Degree distribution exponent, γ -2.416 -2.229 -2.206 -2.151 -2.055 -2.254

Maximum degree, kmax 573 625 677 722 763 2070

Assortativity coefficient, α -0.075 -0.095 -0.124 -0.150 -0.183 -0.236

Characteristic path length, ℓ∗ 3.65 3.60 3.55 3.52 3.48 3.12

and strengthens the model’s disassortative mixing behav-
ior indicated by a decreasing value of the assortativity co-
efficient. As expected, when the rich-club phenomenon
and the disassortative mixing become stronger, the gen-
erated networks get smaller and smaller indicated by a
decreasing value of the characteristic path length. How-
ever, when p = 0.8 and the model exhibits a stronger rich-
club phenomenon than the internet AS graph, the PFP
model’s characteristic path length is still not as small as
the internet. This is because the model’s disassortative
mixing is yet as strong as the Internet. In order to re-
semble the internet, the interactive growth needs to be
combined with the positive-feedback preference.

B. Sensitivity To Parameter δ

FIG. 12: Properties of the PFP model when parameter δ
grows from 0 to 0.035 while p = 0.4, including the degree
distribution exponent γ, the rich-club connectivity exponent
θ, and the assortativity coefficient α.

Table IV and Fig. 12 show how topology properties of
the PFP model change when the positive-feedback pa-
rameter δ increases from 0 to 0.035 while the interac-
tive growth parameter p = 0.4. It is clear that the

positive-feedback parameter δ has a fairly limited impact
on the obtained rich-club exponent θ, which almost re-
mains the same. When δ increases, greater preference is
given to high-degree nodes, consequently the maximum
degree increases and the network becomes more disas-
sortative mixed. As expected, the characteristic path
length decreases steadily when the network’s disassorta-
tive mixing is getting stronger. When the parameter δ
increases, the degree distribution power-law exponent γ
slightly decreases. This is because when the positive-
feedback preference gets stronger, the richest nodes at-
tract so many new links that they suppress the degree
growth of other nodes, including those with medium to
high degrees. When δ = 0.021 (and p = 0.4), the PFP
model closely matches all the topology properties of the
internet AS graph.
As shown in Fig. 12, by tuning the parameter δ from 0

to 0.028, the PFP model is capable of generating a wide
range of disassortative mixing networks with the value of
the assortativity coefficient α decreasing monotonically
from -0.12 to -0.28, which encompasses most technolog-
ical and biological networks reported in [25]. Notably,
the PFP model achieves this while keeping the rich-club
exponent and the degree distribution exponent largely
unchanged.
δ = 0.028 is the model’s tipping point, beyond which

the network structure changes dramatically, e.g. the de-
gree distribution exponent γ decreases rapidly. This is
because the preferential selection becomes so biased that
super-rich nodes start to emerge. These extremely rich
nodes dominate the network growth and make the net-
work grow towards a star-like structure.

C. Sensitivity To Both Parameters

Fig. 13–15 are contour plots showing how three topol-
ogy properties, i.e. the rich-club connectivity exponent θ,
the degree distribution exponent γ and the assortativity
coefficient α, change when both the parameters are vari-
ables. Fig. 13 clearly shows that the value of rich-club ex-
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TABLE IV: The PFP model’s sensitivity to parameter δ when p = 0.4.

Positive-feedback parameter δ 0 0.007 0.014 0.021 0.028 0.035 AS graph

Rich-club exponent, θ -1.49 -1.49 -1.49 -1.49 -1.50 -1.44 -1.481

Rich-club connectivity ϕ(0.01) 40.3% 44.0% 43.5% 44.8% 46.4% 36.5% 44.3%

Top clique size, nclique 15 16 16 16 20 15 16

Degree distribution P (1) 26.2% 26.4% 26.8% 26.2% 26.4% 22.0% 26.5%

Degree distribution P (2) 33.7% 34.3% 34.8% 33.7% 35.2% 34.7% 30.2%

Degree distribution P (3) 10.5% 10.6% 10.5% 10.5% 12.4% 16.7% 14.8%

Degree distribution exponent, γ -2.206 -2.219 -2.228 -2.255 -2.321 -2.540 -2.254

Maximum degree, kmax 677 875 1356 1950 2519 7045 2070

Assortativity coefficient, α -0.124 -0.172 -0.202 -0.234 -0.279 -0.292 -0.236

Characteristic path length, ℓ∗ 3.55 3.41 3.24 3.07 2.93 2.44 3.12

θ = -1.49

FIG. 13: Rich-club connectivity’s power-law exponent θ vs
parameters p and δ.

ponent θ is sensitive to the interactive growth parameter
p and is unsensitive to the positive-feedback preference
parameter δ. When parameter p grows, the rich-club
phenomenon becomes stronger. Fig. 14 shows that the
two mechanisms have opposite effects on the value of de-
gree distribution exponent γ. In general, the exponent
γ increases when parameter p increases and parameter δ
decreases.

Fig. 15 shows that the PFP model’s disassortative mix-
ing becomes stronger when either of the two parameters
increases. The assortativity coefficient α is more sensi-
tive to parameter δ than to parameter p. We notice that
when p > 0.5, the network’s disassortative mixing ac-
tually becomes weaker. This is because, when p > 0.5,
the network starts to acquire more internal links than
external links, i.e. Lint/Lext ≥ 1 (see Eq. 4). The in-
creased new internal links among the rich nodes weaken
the disassortative mixing behavior of the network.

FIG. 14: Degree distribution’s power-law exponent γ vs pa-
rameters p and δ.

V. CONCLUSION

The internet has an extremely complex structure. The
PFP model demonstrates a way to simultaneously re-
produce many topology properties of the internet. The
model achieves this by using two generic algorithms
which are designed to replicate the evolution dynamics
observed on the internet historic data. In this paper we
have used the numerical method to investigate the suc-
cess of the model.
Based on detailed simulation results, we show that the

rich-club phenomenon is primarily controlled by the in-
teractive growth mechanism alone. We point out that
this is because the rich-club connectivity increases with
the number of new internal links which are added be-
tween rich nodes. The interactive growth also determines
the probability of new nodes’ initial degrees and thus
controls the distribution of low degrees obtained in the
generated network.
The PFP model’s maximum degree is as large as the

internet because both the interactive growth and the
positive-feedback preference accelerate the degree growth
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FIG. 15: Assortativity coefficient α vs parameters p and δ.

rate. The interactive growth does so by the degree-leap
effect, whereas the positive-feedback preference achieves
so by giving stronger preference to high-degree nodes.
The two mechanisms have opposite effects on the value
of power-law exponent of degree distribution. The inter-
active growth increases the value whereas the positive-
feedback preference slightly decreases the value.
We have explained that the origin of the disassorta-

tive mixing has been, unintentionally, embedded in the
PFP model’s two evolution mechanisms, which not only

enlarge the gap between the high-degree nodes and the
low-degree nodes, but more critically, they increase the
degree difference between end nodes of a link.

Our analysis suggests that the reason that the PFP
model also captures other properties of the internet, such
as shortest path length and triangle coefficient, is that
these properties are correlated with other properties, in
other words, they are constrained by other. For example
the internet is small because the rich-club functions as a
super traffic hub, while the disassortative mixing behav-
ior ensures peripheral low-degree nodes always close to
the hub.

By investigating the PFP model’s sensitivity to the
mechanism parameters, we obtain more evident details
on how the two evolution mechanisms profoundly control
the model’s growth dynamics and therefore effectively
change the generated topology properties. For example
we show that by tuning the positive-feedback parameter
δ, the PFP model is able to generate a wide range of dis-
assortative mixing networks while keeping the rich-club
exponent and the degree distribution exponent almost
unchanged.

This work represents a better understanding of the in-
ternet topology evolution dynamics. It facilitates the
ongoing effort on a mathematical analysis of the PFP
model. This work also complements the research on the
evolution dynamics and the structural constrains of com-
plex networks in general.
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