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Abstract. The main theme of this workshop (Dagstuhl seminar 04351)
is ‘Spatial Representation: Continuous vs. Discrete’. Spatial represen-
tation has two contrasting but interacting aspects (i) representation of

spaces’ and (ii) representation by spaces. In this paper1 we will exam-
ine two aspects that are common to both interpretations of the theme,
namely nerve constructions and refinement. Representations change, data
changes, spaces change. We will examine the possibility of a ‘differential
geometry’ of spatial representations of both types, and in the sequel give
an algebra of differential forms that has the potential to handle the dy-
namical aspect of such a geometry. We will discuss briefly a conjectured
class of spaces, generalising the Cantor set which would seem ideal as a
test-bed for the set of tools we are developing. 2

1 Introduction

Spatial representation has two contrasting but closely related aspects: (i) rep-
resentation of spaces and (ii) representation by spaces. The first is, classically,
based firmly in geometry, and topology and assumes some ‘space’ is given, whilst
its aim is to study the ‘attributes’ of the space - essentially its geometry and
topology, or more precisely those parts that are amenable to study by the usual
tools of geometry and topology! The other aspect represents some configuration
by a space. This ‘configuration’ may be a formal situation modelling some re-
lationship between some objects and attributes, or perhaps a physical context
such as the space of physical configurations of a molecule.

1 This paper, and the corresponding part II, evolved from the talks entitled
Fractafolds, their geometry and topology: a test bed for spatial representation, given
at the Seminar, as a result of the insights gleaned by the authors during the excellent
sessions of the week. This paper with some more figures is also available on their
website: http://drops.dagstuhl.de/portals/04351/ .

2 This research forms part of a project : Fractafolds, their geometry and topology,
partially supported by a grant from the Leverhulme Trust. This help is gratefully
acknowledged.

http://arxiv.org/abs/cs/0512010v1
http://drops.dagstuhl.de/portals/04351/


In this paper and its sequel, [?], we will examine two ideas shared by these
different views of spatial representation: nerve constructions and refinements,
thus leading to ideas of approximating the ‘idealised ’ space by constructive
and more computationally amenable gadgets, namely simplicial complexes and
related posets. As we will see, this process of approximation raises almost philo-
sophical problems about the nature of spaces and how we observe them. The two
aspects of spatial representation with which we started are mirrored here by two
views of what is being done. In the first more classical one, the given space is
approximated by the simplicial complexes, whilst for the second view, the situa-
tion is more that the ‘space’ is made up of idealised ‘points’ that are observable
via the approximating process and the ultimate consequence of that view is that
the ‘space’ is the approximating system of simpler gadgets and thus the notion
of ‘point’ becomes itself an idealisation. Spaces are rarely ‘static’. The space may
change or we may be looking at a changing ‘point’ within the space. A challeng-
ing problem is thus to study change in the context of spatial representations. If
a state of a system is represented by a ‘point’ of a space, it is natural to seek
for the evolution of that state under some ‘dynamics’ given perhaps by some
‘energy’ functions, vector fields, etc. The usual classical expedient is to impose
the structure of a smooth manifold on the state space, but in a system based on
‘observations’ , the state space cannot be observed to be a manifold. One is left
with a situation in which, for the usual theory to apply, one needs smoothness,
but that is computationally infeasible. This sort of problem is at the heart of the
problem of reconciling general relativity and quantum mechanics, but is also a
problem, here, in modelling processes in computer science and AI. One needs a
discrete analogue of differential geometry which behaves well with regard to the
viewpoint of approximations. This type of theory has been under development in
mathematical physics (e.g. [1]), but has not been examined for its applicability
to areas where Information changes. There are obvious analogies. This will give
us a second theme for this paper.

One of the approximation tools we will use is that of the nerve. Various
nerve constructions are widely used in mathematics and computer science (in-
cluding AI). They have also served as a link between continuous and discrete
models in other contexts, for instance, relating to economics (even explicitly, cf.
Baryshnikov, [2]). They give, at any ‘resolution’ a simplicial complex and behave
moderately well under refinement of the resolution.

The title of the talks at the workshop contained the word ‘fractafold’. What
are they and how are they relevant to this theme? In this research, we are
investigating a class of idealised spaces that could be used as a testbed for
any emerging analogue of the tools of differential geometry in the observational
context. These spaces should include some well known ones such as the Cantor set
and less well known ones such as the solenoids and Menger manifolds, (for which
see later in this paper). These example spaces have various common features
including reasonably constructive local properties, specified by local iterated
function schemes. They are fractal, but not too wildly so! They should provide
a controlled environment for testing the emergent theory, but better than that,



certain of their aspects suggest that they model a class of very computationally
interesting spaces.

In more detail:

Represention of spaces?

Spatial phenomena, spatial data, comes in many flavours. A differential ge-
ometer may say ‘Given M a smooth manifold’, but how is M given to us? ‘Let
X be a space having the homotopy type of a CW complex...’ says an algebraic
topologist. A worker in fractal geometry may specify a space by an iterated
function scheme (IFS) or as an attractor of a dynamical system. An algebraic
geometer may specify a geometric object by some polynomial equations or as a
moduli space.

Outside mathematics as such, a medical imager may have point cloud data
output from a scanner; a digital topologist has a digitalised pixelled image or
some volume data. In both cases, the discrete data is approximating some ide-
alised spatial model. One ‘flavour’ of such data is however often incompatible
with another. Give an algebraic topologist a manifold or CW complex and an
analysis of certain invariants can be attempted, give that same algebraic topolo-
gist an algebraic curve or some strange attractor of a dynamical system and ...!
(An excellent commentary on mathematical aspects of spaces, points, etc. can
be found in Cartier’s beautiful IHES birthday article, [3].)

Represention by spaces

In AI and in various other parts of Computer Science, one finds numerous
instances of representation by spaces, that is, representation of non-spatial in-
formation in a spatial form to aid visualisation, or to use spatial analogies to
help the understanding of the data. For instance, in problems of knowledge rep-
resentation there is a considerable literature on analyses of relational data of
the following form: we have a set, O of objects and a set, A of attributes and a
relation, R from O to A modelling the idea that oRa means that object o has at-
tribute a. From this basic situation, one type of analysis yields a concept lattice,
as in the talks by Pfaltz and Zhang in this workshop, but another gives a sim-
plicial complex that represents the relation faithfully and allows various aspects
of the situation to be extracted quite efficiently. (We will look at this in slightly
more detail later.) There is a sense in which the set of objects is being structured
via the attributes as observations. Two objects may be distinguished if one of the
attributes can yields different results on them, i.e., one satisfies the attribute, the
other does not. Likewise, two objects are in this context equivalent if they satisfy
exactly the same attributes. The simplicial complexes that result are instances
of nerve constructions, and refinement of the attributes, by adding in new ones,
correspond to simplicial mappings between the corresponding nerves.

Topological spaces are used extensively in theoretical physics and increasingly
in ecomonics and social choice theory (cf. [4,2,5] and other work by the same
authors and their collaborators). Some of this work is combinatorially based
using simplicial complexes or simplicial sets as the principal tool, with spaces
occuring as a backdrop via some notion of triangulation. This combination of



intuitively defined configuration space managed by a combinatorial model is
frequent.

Other objects such as partially ordered sets, domains, lattices, locales, profi-
nite spaces, etc., are currently used for the study of various logical, semantical
and informational situations. Some of these have obvious topological content,
others less so. A good example of a logical situation in which intuitions from
algebraic topology naturally occur is in the semantics suggested for the proof
theory of the intuitionistic form of the modal logic S4 (Goubault and Goubault-
Larrecq, [6]), in which various forms of semantics are shown to be consequences of
one based on simplicial sets, a near relative of the combinatorial gadgets, simpli-
cial complexes, that we will be using extensively to give discrete approximations
to ‘spaces’. Another example is the second author’s attempt, [7], to understand
models for multiagent systems using homotopical (and thus topological) ideas
based on sets with several equivalence relations. Finally the study of distributed
systems and some of the associated problems, especially that of detection of
deadlock, have resulted in enriched topological models being used as an aid in
the design of the algorithms, see the talks by Fajstrup and Raussen on directed
homotopy in this workshop and the papers from the GETCO conferences and
workshops, e.g. [8].

Multiscaling, sampling and observations.

In many of the spatial contexts mentioned above, a ‘space’ is ‘observed’.
Data about the ‘points’ of the space are calculated, or collected, then sampled
and used to make a ‘model’ of the space. Different levels of observation may be
used. The methods used are simplicial with density of sampling sometimes being
determined by the local geometry of the ‘space’, cf. the excellent notes by Dey,
[9].

In all of these cases, the ‘spaces’ may also be evolving in time, so different
‘snapshots’ of the resulting ‘space-time’ may be used.

Combining these aspects we can extract certain features, although not all are
present in all examples:

– pointless : although a useful ‘sham’, points are never observed; two ‘points’
in a space can sometimes be distinguished if an observation gives significantly
different values at these two sites, but can never be ‘equal’, (a useful perspec-
tive on this type of viewpoint can be found in Vickers, [10]). This suggests
that ‘pointless’ models such as locales and quantales, etc. may eventually be
needed. ‘Open sets’ are somehow more basic than ‘points’ from this point of
view.

– relational : if at one resolution / scale / magnification, two points cannot
be distinguished, but at another, they can be, then this tells one about their
‘nearness’, (but, of course, this does not necessarily involve distance).

– directional: one sample is a subset of another; one set of observations is a
refinement of another; time is not reversible.

– dynamical : when a ‘space’ represents a situation and that situation evolves
under ‘external’ influences then the representations must also evolve. If a
state is observed in a ‘state space’, and there are influences that cause a



change of state, the observations should be able to detect and to study those
changes.

– multiscale : to combine fine detail with local structure.

This suggests that it would be of considerable use to have a way of handling ‘flows
on a space’, ‘gradient vector fields’ perhaps ‘Morse theory’ (which is related to
the calculus of variations on the space), as observed by our phantom observer,
i.e., as mirrored in the approximating system of ‘constructive’ spaces. (It is
important to note that some parts of such a list of analogues for ‘differential’
tools do exist for simplicial complexes, but each such complex encountered in
this theory will be merely a snapshot of the overall situation and our hope is to
extend from any one approximation to the idealised ‘limit’ space. Once again,
how do the approximating spaces reflect change of the space or change on the
space.

Remark

The ubiquity of this sort of situation from a categorical viewpoint was the
main theme of [11] and some attempts to assess the relevance of such approxi-
mations to general problems in AI was made in [12,13].

Example - with abstract data

The Menger cube is a higher dimensional analogue of the Cantor set. It can
be imagined via its approximations and from a computational or contructive
viewpoint is clearly an idealisation of a process. The pictures of it can easily
be found by searching the internet. The ‘space’ can be precisely specified as
an intersection of approximating polyhedra. The IFS / fractal structure gives
relationships between each level and the next. The ‘points’ of the space are ideal
entities, abstracted from the approximating system that ‘specifies’ or perhaps
‘defines’ the space. Observationally the ‘space’ is its approximating system. Its
regularity makes this a useful ‘toy model’. Menger manifolds, [14], combine this
locally well behaved fractal structure with global geometric structure.

Fractafolds, a test bed for spatial representation tools?

Is there some class of spaces containing the Menger manifolds, for instance,
that combine sufficient ‘regularity’, so as to enable global structure not to be
dominated by local irregularities, and yet are also reasonably ‘irregular’ in having
lots of local singularities? Some ‘fractal’ analogue of the manifold concept might
be feasible, yet it is not certain that Menger manifolds are general enough to
be optimal. In any case such a class would provide a well behaved ‘test bed’
for new techniques to analyse global geometric structure of even more general
spatial phenomena.

Such an idea has been floated by Strichartz, [15], who coined the term
‘fractafold’, and that idea relates well to Kigami’s analysis on fractals, [16], (see
also [17]), but for what we want, Kigami’s theory does not seem quite right as
no detailed geometric theory seems to be available there. For global ‘homotopy
structure’, shape theory, [18,11,19], and its stronger relative, [20], can be useful.
Some of the techniques from there may be adapted to a more geometric context.
Topologically, various classes of spaces may be candidates for being subclasses
of some class of ‘fractafolds’. These would include the solenoids, and the Menger



manifolds, [14], the latter being spaces locally like the Menger cube. The test to
be applied is whether or not global geometric structure can be analysed using
analogues of (differential) geometric concepts such as curvature, torsion, differ-
ential forms, vector fields, characteristic classes, etc. and, from the perspective of
this paper, how would this interpret in terms of a dynamic theory of observable
change of spatial representations.

When representing a situation spatially, the tradition has been to assume
local niceness conditions (manifold, CW-complex, etc.), but how can we know
that such local conditions are valid. It may be that it was just that we did not
know how to handle the modelling process in any other way! Limiting process
based on smooth models have often been found to have singularities, (for instance
in quantum gravity theory in physics), which perhaps shows some limitations
for that approach. The fractafolds project’s plan is to use a suitable class of
‘fractafolds’ as a testing ground for a limiting calculus of differential forms and
hopefully the development of corresponding tools.

2 Nerves, simplicial complexes and T0-spaces

As mentioned above, observations may or may not distinguish objects. The struc-
tural management of observations can be handled in several different ways. Al-
though related to each other, these methods do give different information and
assume slightly different starting models. The methods either use simplicial com-
plexes or T0-spaces / partially ordered sets.

It is probably a good idea to recall the basic definitions to start with.

Definition 1. A simplicial complex K is a set of objects, K0, called vertices and
a set of finite non-empty subsets of K0, called simplices. The simplices satisfy
the condition that if σ ⊂ K0 is a simplex and τ ⊂ σ, τ 6= ∅, then τ is also a
simplex.

Definition 2. If K and L are two simplicial complexes a simplicial mapping
f : K → L is a function f0 : K0 → L0 in vertex sets that preserves simplices
in the sense that if σ ⊂ K0 is a simplex of K then its image, f(σ) ⊂ L0, is a
simplex of L.

The other basic model is that of a finite T0-space.

Definition 3. A topological space X is a T0 space if given distinct points of X,
there is an open set of X that contains one but not the other.

A T0-space gives rise naturally to a partial order on the set of points of X , where
x ≤ y if for each open set, U , of X , y ∈ U implies x ∈ U and conversely.

The first method that we will examine is due to Sorkin, [?] and, roughly
speaking, assumes there is a space X being ‘observed’ and that a set of obser-
vations correspond to an open cover of the space. This model is ‘static’ as it
assumes a given space, but it led later to the causal set approach which is based
more on the possible futures of state and is thus dynamic allowing the space



being observed to evolve through time more explicitly (see Sorkin’s papers and
his talk at the workshop).

The Sorkin model, [?].
Let X be a space and F , a (locally finite) open cover of X . (The idea of

the model is approximately that open sets correspond to observations, so if
x, x′ ∈ U , the observation, U , ‘tests positive’ on both x and x′, so does not
distinguish them.)

Using F , define, on the set X , an equivalence relation ∼F , given by
x ∼F x′ if and only if, for all U ∈ F , x ∈ U ⇔ x′ ∈ U ,

thus two points of X are equivalent if all the observations from F give the same
positive or negative result on them both. Using ∼F , we can form a quotient
space, XF .

Remarks

(i) In some ways, this seems silly, since as we do not know X , we do not know
its topology and so should have little or no knowledge of the quotient topology
on XF . The point is, however, that XF is something we do know. It encodes the
observational data on the mysterious (and perhaps ‘pointless’), X . The type of
simplified model of ‘observational data’, using an idea that ‘observations behave
like open sets’, does determine the model, but the type of construction is almost
generic. The space XF ‘organises’ the data.

The question of the topology on XF initially does look tricky, but quite
generally it will be a T0-space and hence should correspond to a partially ordered
set in a natural way. The order can be specified without knowing the topology
on X , merely needing the cover F ! In fact, writing [x]F for the equivalence class
of x ∈ X , in a very natural way:

[x]F ≤ [x′]F if and only if, for every open set, U in F , if x′ ∈ U , then
x ∈ U .

In fact, in situations such as we are considering, in which the cover is finite, XF

is a finite T0-space, and each point [x]F is in a unique minimal open set, U[x] of
XF , and

[x]F ≤ [x′]F if and only if x ∈ U[x′] .
Of course, this has a nice interpretation in terms of ‘observations’. The essential
information on XF is contained in this partially ordered set and it can be con-
sidered to be a spatial representation of the original ‘space’ X , relative to the
observations considered.

(ii) Later in the second part of this paper, [?], we will generalise the Sorkin
construction to the abstract setting of formal contexts and Chu spaces and will
show that it is a particular case of a well known construction in Chu theory.

Nerves

This partially ordered set is closely related to, but need not be identical with,
the partially ordered set of simplices of the nerve of the open cover F . (A detailed
examination of the relationship forms part of the second part of this paper, [?].)

Recall that given a space X , and an open cover, F , the (Čech) nerve, N(F),
of F is defined to be that simplicial complex having the sets of F as vertices and
in which {U0, . . . , Un} ⊂ F is a n-simplex of N(F) if and only if

⋂n
i=0 Ui 6= ∅.



The construction is a classical one of algebraic topology, cf. [21].
There is an alternative construction, essentially dual to this, and due to

Vietoris. The vertices in this Vietoris complex V (F) of (X,F) are the points of
X itself and an (n+1)-tuple of such points, 〈x0, . . . , xn〉, is an n-simplex if there
is a U ∈ F that contains them all,

{x0, . . . , xn} ⊆ U.

Dowker showed that these two complexes provide the same information up
to homotopy, cf. [22].

Dowker’s constructions have been rediscovered several times since and one
finds similar ideas now being used in Artificial Intelligence, for instance, in
Knowledge Representation, cf., papers by Giavitto and Valencia, [23] and San-
sonnet and Valencia, [24]. In these and elsewhere the basic setup is that which
was briefly mentioned in the introduction. There is a set of objects and a set of
attributes together with a relation between them. This situation is well known
in Theoretical Computer Science as being a (dyadic) Chu space and in Formal
Concept Analysis as a formal context. (we will tend to emphasise the former
theory here for reasons that will become clear later.) We recall the basic defi-
nitions so as to have the notion of morphism of Chu spaces available. (We use
[25,26] as sources so will combine and adapt the notation used there.)

Definition 4. A (dyadic3 or two valued) Chu space P is a triple (Po, |=P , Pa),
where Po is a set of objects, and Pa is a set of attributes. The satisfaction
relation |=P is a subset of Po × Pa.

A morphism or Chu transform from a Chu space (Po, |=P , Pa) to a Chu space
(Qo, |=Q, Qa) is a pair of functions (fa, fo) with fo : Po → Qo and fa : Qa → Pa

such that for any x ∈ Po and y ∈ Qa,

fo(x) |=Q y iff x |=P fa(y) .

If P = (Po, |=P , Pa) is a dyadic Chu space, then P⊥ = (Pa, |=
op
P , Po) is the dual

Chu space of P. (It just reverses the roles of objects and attributes.)

A Chu space when considered in Formal Concept Analysis (FCA) is usually
called a formal context. The level of generality as well as the level of abstraction
means that there are many different situations to which they can be applied.
The advantage of the Chu space theory over FCA is that Chu morphisms are an
integral part of the theory, whilst the notion of a morphism of contexts is less
well developed. The rich categorical theory of dyadic, and more general types of
Chu spaces can be found in Pratt’s excellent Coimbra lecture notes [25]. Links
between Chu spaces and Formal Concept Analysis are more fully explored in
[27,28,26]. We will see later that in addition to these Chu transforms, there are
other useful notions of morphisms, which are particularly suited to the study of
nerves.
3 the relation can be thought of as a subset of Po×Pa and hence as a map Po×Pa → 2,
hence the term ‘dyadic’. The role of 2 = {0, 1} can be replaced by an arbitrary set
K and this leads to a very rich theory.



Definition 5. If P = (Po, |=P , Pa) is a formal context or dyadic Chu space,
then its (Čech) nerve is the simplicial complex N(P) with vertex set Pa and
where a subset, {a0, . . . , ap} of Pa is a p-simplex if there is an object x ∈ Po

satisfying x |=P ai for i = 0, . . . , p.
The Vietoris nerve of P is, by definition, the Čech nerve of P⊥. It will be

denoted V (P). It is worth noting that it has Po as set of vertices and {x0, . . . , xq}
is a q-simplex if there is an attribute a satisfied by all the xs, i.e, for j = 0, . . . , q,
we have xj |=P a.

Strangely enough the Čech and Vietoris nerve constructions do not seem to
be functorial on the category of dyadic Chu spaces as no induced simplicial map
would seem to exist corresponding to an arbitrary morphism of Chu spaces in
the obvious way. There is however a generalisation of the induced map for a
continuous map of spaces relative to an open cover and this has a nice interpre-
tation in our situation. Remember that Pa is thought of as a set of attributes
and we can think of the relation together with these attributes, as helping us to
gain ‘knowledge ’ about the objects. The set Pa may be large even infinite, and
in that case it will be necessary to sample the attribute set, thereby choosing a
subset F of Pa, and to corestrict the context relation to that subobject getting
a formal context (Po, |=P ,F).

Proposition 1. If f = (fo, fa) : (Po, |=P , Pa) → (Qo, |=Q, Qa) is a morphism of
Chu spaces and F is, this time, a sample of the attributes Qa of (Qo, |=Q, Qa),
then
(i) we have an induced map (which we will also denote by (fo, fa)),

(fo, fa) : (Po, |=P , fa(F)) → (Qo, |=Q,F) .

(ii) there is an induced simplicial map

V (f) : V (Po, |=P , fa(F)) → V (Qo, |=Q,F) ,

given by

V (f)〈p0, . . . , pn〉 = 〈fo(p0), . . . , fo(pn)〉 .

(iii) Any choice of splitting for the function

fa : F → fa(F) F ⊆ Qa

determines a simplicial map

N(f) : N(Po, |=P , fa(F)) → N(Qo, |=Q, fa(F))

given by

N(f)〈fa(q0), . . . , fa(qn)〉 = 〈q0, . . . , qn〉 .

[More exactly, if we choose for each p ∈ fa(F), a q ∈ F such that p = fa(q),
then N f)〈p〉 = 〈q〉, and so on for higher dimensional simplicies.]



The proof uses just the adjointness relationship
fo(x) |=Q q if and only if x |=P fa(q) .

Corollary 1. If f = (fo, fa) : P → Q has fa surjective, then there are induced
maps N(f) : N(P) → N(Q) and V (f) : V (P) → V (Q).

Remarks

(i) The question, of course, arises as to what happens if the splitting of fa
is changed. In this case the two induced maps from N(P) to N(Q) will be
homotopic, i.e. each can be ‘deformed’ into the other.

(ii) The ‘dual’ case when f is surjective can, of course, be handled by duality.
In particular if f is the identity on Po,

f = (id, fa) : (Po, |=P , Pa) → (Po, |=P , Qa) ,

and if we further assume that the Chu spaces are ‘normal’4, then fa will be an
inclusion.

The dual morphism

f⊥ : Q⊥ → P⊥

has its adjoint part surjective, so f⊥ induces a well defined

V (f⊥) : V (Q⊥) → V (P⊥) ,

that is,

N(f)⊥ : N(Q) → N(P)

sending a simplex 〈q0, . . . , qn〉 ∈ N(Q) to 〈fa(q0), . . . , fa(qn)〉 ∈ N(P). Similarly
a choice of splitting for fo gives a simplicial map

V (f⊥) : V (Q) → V (P)

with different splittings giving homotopic maps.

(iii) There is another situation that classically leads to an induced map on
the nerves, namely, refinement. This does not seem to be subsummed under the
Chu transform model and we will return to it later.

4 In Pratt’s terminology, a Chu space is said to be normal if the ‘attributes’ are subsets
of the set of objects, so here we are assuming Pa, Qa ⊆ P(Po).



A Critique

Each of these methods for exploring the interrelations between objects and
attributes has its advantages and its disadvantages. If the carrier set X underly-
ing the Chu space (that is, the object set of the context) is essentially unknown
(perhaps even unknowable), then the Sorkin construction and the Vietoris con-
struction become problematic unless adapted, (see later, in the second paper).
The Čech nerve would make sense even in a ‘pointless’ context, but the points or
objects in the space serve to ‘rigidify’ the changes when the cover is refined. We
give this initially just in the classical context of a space with two open covers:

if F ′ is finer that F , then, by definition, for any U ∈ F ′, there is at least
one V ∈ F with U ⊆ V .

As we will see later there are at least two different and useful types of re-
finement in this context. When we need to we will refer to the above as Čech
refinement.

A problem occurs with refinement and the Čech nerve construction if, for
some U ∈ F , there are several such V , then there will be a simplicial map

N(F ′) → N(F)

obtained by making a choice of one such V for each U , but different choices give
different maps so the induced map is not determined by the refinement process.
For the Sorkin and Vietoris models, on the other hand, there is an obvious
natural map

XF ′ → XF

resp.

V (F ′) → V (F)

induced by the refinement relation, without need of a definite choice of ‘refine-
ment map’, however this depends on having ‘points’.

Computationally with data in the form of a point cloud, this problem is
transmuted to another. An open cover is derived from a sample of the data cloud.
Algorithms are used (perhaps nearest neighbour, or similar and perhaps with
clustering) to produce a simplicial complex / triangulation that approximates
the space and if an open cover is produced it is of that complex, not of the original
space. The points that witness to, say, the non-emptiness of an intersection, are
estimates of points ‘in the space’. It is as if 〈U0, . . . , Un〉 is an n-simplex if

⋂
Ui is

observed to be non-empty. Refinement here may typically mean taking a larger
sample including the old one. This may result in the detection of holes, but as
with the Čech nerve, problems arise in the refinement process. (For an overview
of some of the problems in this area, see the survey article by de Floriani, Magillo
and Puppo, [29].)

Variants of both the Čech nerve and the Vietoris complex has also been
used in this context and in the theoretical development of feature identification
algorithms, see [30].



Suppose that X is a metric space with metric d. For any finite subset S of
X and any ǫ > 0, define the ǫ-Rips complex of S to be the abstract simplicial
complex whose vertex set is S and where a subset {s0, . . . , sk} is a simplex if
and only if d(si, sj) ≤ ǫ for all i, j with 0 ≤ i, j ≤ k.

Dually, and in the same situation, consider U(S)ǫ to be the collection of open
balls in X of radius ǫ and with centres in S. The nerve of this family gives a
second complex, Cǫ(S), the Čech complex of the sample S at resolution ǫ.

The intuition is that X is the ‘feature space’, typically thought of as a subset
of Rn for a high value of n, giving possible position coordinates plus some extra
ones specifying attributes, and S is a sample from the point cloud data taking
values inX . We therefore think of S as a subset ofX . The complex approximated
the space being ‘observed’. The computational advantage of the Rips complex
is that the test d(si, sj) ≤ ǫ, lets one identify the 1-simplices (edges) which then
determine the rest of the complex. A lot of work has gone into the question of
the density of sampling from the point cloud. Too low a density of sampling
and there will be small features that are missed. Features near which, say, the
curvature is changing rapidly may need denser sampling, yet too high a sampling
level not only leads to slower computation, but can also include distortion of the
basic geometry of the spatial representation even to the extent of changing the
dimension. (In the Vietoris complex, the dimension of the realisation is often
unbounded. The dimension of the Rips complex will depend on the local size of
the sample used etc.) It is however possible to attempt useful geometric feature
identification, to use isosurface algorithms and to find a good continuous rep-
resentation of the original object in many cases, although the initial data was
discrete and obtained from sampling data that originated, say, from a medical
CT or MRI scanner.

If we examine these refinement problems through the abstract perspective of
Chu spaces, we arrive at a definition of ‘Čech’ refinement for Chu spaces, and
we will look at this in detail shortly.

In more generality, any continuous f : X → Y between spaces, together with
open covers U of X and V of Y , will induce a simplicial map on nerves if U is
finer than f−1(V). We abstract this via a notion of a refinement relation relative
to a carrier function (on objects), the absolute version being the case when f is
the identity function.

Definitions

Given P = (Po, |=P , Pa) and Q = (Qo, |=Q, Qa) and a function f = fo : Po →
Qo, which we wil call a carrier function, a (Čech) refinement relation relative to
f , from P to Q is a relation

→f⊆ Pa ×Qa

such that

if x |=P p and p →f q, then f(x) |=Q q .

A (Čech) refinement map for a given carrier function f) is a function ρ :
Po → Qo such that



for all p ∈ Po, p →f ρ(p) ,
i.e. if x |=P p then f(x) |=Q ρ(p) .

Remark

There would seem to be a maximal such relation given by:
p →f q if and only if {x|x |=P p} ⊆ {x|f(x) |=Q q},

however for the moment we will restrict our attention to the general form.
The relationship with Chu transforms is given by:

Proposition 2. (i) If f = (fo, fa) : (Po, |=P , Pa) → (Qo, |=Q, Qa) is a Chu
transform,

p →f q if and only if p = fa(q)

is a Čech refinement relation relative to the carrier function, fo.
(ii) If f = (fo, fa) and fa is surjective, any splitting ρ : Pa → Qa of fa is a Čech
refinement map for the carrier function f .

It is important to remember that the definition of →f does not assume that
→f is non-empty, nor ‘total’ in the sense that for each p ∈ Pa, there is a q ∈ Qa

such that p →f q, but that frequently in the situations we will consider ‘totality’
is a natural condition to assume.

We can extend any such relation →f to one

→f⊆ Fin(Pa)× Fin(Qa)

by defining, for X ∈ Fin(Pa) and Y ∈ Fin(Qa),

X →f Y if and only if, for all p ∈ X , there is a q ∈ Y , with p →f q .

Here Fin(A) denotes the set of finite subsets of A.
There would seem to be a link here with the approximable morphisms of

formal contexts studied by Shen and Zhang, [28] and Hitzler and Zhang, [27].
The following certainly holds:

Proposition 3. For any carrier function f : Po → Qo,

∅ →f ∅

and
if X →f Y1 and X →f Y2, then X →f Y1 ∪ Y2 .

The proof is easy. The final condition for approximable morphism does not hold
in general, but a variant does, namely,

if X1 ⊂ X2, X2 →f Y1 and Y1 ⊆ Y2 then X1 →f Y2 .

3 Back to Fractafolds.

At present no definition of a fractafold as such exists. There are examples and
conjectured cases that we would hope to include. The ‘bootstrapping’ process is
to develop the tools we believe might analyse these spaces, and see what spaces



can be analysed in the process, hopefully inching towards a workable definition.
The Menger cube and the Menger manifolds are prime candidates as are the
solenoids and more conjecturally some of the well known fractal spaces such as
the Lorentz attractor and the Rössler band. (The latter is defined by certain
linked very simple differetnial equations, namely

dx

dt
= −(y + z)

dy

dt
= x+ ay

dz

dt
= b+ xz − cz ,

where a, b and c are parameters, for some values of these parametres, nothing
exceptional happens, but the graphics of the attractor for other values seem to
show a Möbius band-like space having the interval replaced by a Cantor set.5)

In general, such spaces are of interest as they occur in modelling situations
representing the limiting behaviour of some dynamical system, but from the
point of view of spatial representation they also provide a challenge that will test
to the limit the mathematical tools available for the extraction of geometric (and
not just topological) information from the spatial specification. For instance,
these spaces may curve and twist, but there seems no machinery at present that
will measure those characteristics, since traditional differential geometry needs
smoothness.

As a starting point, we do have some intuition about these ‘fractafolds’. As
was said earlier, they should have global structure that is fairly regular, but
locally may be specified by some IFS or similar. If a space is not globally fairly
‘homogeneous’, then ideally the tools should idntify the regions of ‘irregularity’,
but in the first instance, we do not want to ‘bite off more than we can chew’. This
means that there should be both global and local structure that is sufficiently
regular but of somewhat different natures. (One can construct artificial examples
by taking a Menger cube and a smooth curve or surface and constructing their
product. The dyadic solenoid is fibred over the circle with fibre a Cantor set,
and so on.)

For such ‘fractafolds’, the above discussion of nerves leads to a natural de-
sire to use the local regularity to control the open covers being used as much
as possible. As a ‘toy’ example, the Cantor set is typical. There are obvious
open covers that one can use. Each stage of the construction of a ‘middle third’
Cantor set yields a polyhedron and the self similarity / iterated function scheme
yields computational methods of refinement that can construct the next stage
of refinement from the current one.

Remark

5 The values a = 0.15, b = 0.2, c = 10.0 will do and such im-
ages and some interesting demos can be found on the website
http://bill.srnr.arizona.edu/demos/rossler/rossler2.html or by a simple search
on the web

http://bill.srnr.arizona.edu/demos/rossler/rossler2.html


Note that here polyhedra give covers that reflects their combinatorial struc-
ture and that, on restriction to the original limiting space, give covers that have
nerves whose realisations are essentially the original approximating polyhedra.
These covers, the star open covers, of a polyhedron K are obtained from a trian-
gulation by taking, for each vertex, v, the union Uv of all open simplices having v
as one of their vertices. The cover is then {Uv : v a vertex of the triangulation of K}.
The nerve of such a cover is then essentially the same as the abstract simplicial
complex underlying the triangulation.

For the Cantor set polyhedral approximation

[0,
1

3
] ∪ [

2

3
, 1] ,

the cover will be {[0, 13 ), (0,
1
3 ], [

2
3 , 1), (

2
3 , 1]}, and so on. The nerve in this example

is obvious, whilst the poset model is

• •oo // • • • //oo •

or its dual, depending on the conventions being used.
(In the second part of this paper, we will return to this example in more

detail.)

4 ‘In the limit . . . ’

The intuition behind these discrete representations is that, as the ‘mesh’ of the
cover or triangulation tends to zero, the space X being modelled emerges as the
limit. In models of physical systems, this is philosophically and physically prob-
lematic, but is none the less useful. The limit space should perhaps be thought of
as providing insight into the system of approximating ‘data objects’. The ‘points’
of the ‘space’ are ideal entities. This viewpoint is essential in computational sit-
uations, where the ‘points’ in the limit represent infinite processes, hence, once
again, are idealised models of the objects of interest.

‘Taking a limit’ can only occur within a mathematical context, in fact, within
a category and the answer may, and often will, be dependent on which category
you take that limit in. Perhaps from this point of view, a ‘fractafold’ will be
a particularly well structured approximating system of combinatorially defined
spaces - but a ‘manifold’ will also be represented by a different, but quite similar,
structured approximating system of combinatorially defined spaces!

One common example of a limit space, much used when talking about com-
putational issues is, of course, the Cantor set in its various guises. The basic
Menger cubes are n-dimensional analogues of the Cantor set. As you refine the
obvious open covers, ever more holes or handles are revealed at the finer scale. A
Menger manifold is locally like a Menger cube of fixed dimension, so you expect
initially that refinements of open covers of such objects likewise will reveal more
holes or handles, but that it is not clear that any other complications arise. It
is even known that Menger n-manifolds have a fibre structure that makes them



look, for many purposes, locally like a product of a polyhedron with a Menger
cube (see the book by Chigogidze, [14]). Menger manifolds behave as if they were
the finite dimensional analogues of Hilbert cube manifolds, and those have a very
well behaved topology. All this would suggest that Menger manifolds should be
easy to study and would not give us many problems. The reality is that other
phenomena can occur within the candidate spaces that are slightly unexpected
from the viewpoint of observations, open coverings, etc.

Some of these potential peculiarities of ‘fractafolds’ can be illustrated by the
class of spaces known as solenoids. These seem to be very closely related to the
Menger manifolds, but they show clearly how our intuitions may need a bit of
‘refining’.

Solenoids

The solenoids have similar structure, and are very simple to construct. They
arise as the attractors of dynamical systems and are closely related to the Lorenz
attractor and the Rossler band. In general, a solenoid, M∞, is an inverse limit
space of a sequence of closed manifolds Mi with ‘bonding’ or ‘structure’ maps

pi : Mi+1 → Mi

for i ∈ N, which are covering maps, in the topological sense, such that any
composite

pi+k ◦ . . . ◦ pi : Mi+k+1 → Mi

is a regular covering map. Solenoids are homogeneous spaces, so if x, y ∈ M∞,
there is some homeomorphism h : M∞ → M∞ such that h(x) = y. (Locally they
are similar everywhere, so this looks after the regularity issue here.)

We will not look at this general case, but restrict to one example, the dyadic
solenoid, DS. To construct this, we take each Mi to be the unit circle S1, and
each pi to be a degree two covering map, (double covering). (To be explicit,
represent S1 as the space of unit modulus complex numbers and pi(z) = z2, the
map wrapping S1 around itself twice.) The points of DS can be given an explicit
description as sequences (zi) of unit moduli complex numbers with z2i+1 = zi for
each i ∈ N.

There is a well known representation of DS as an intersection of solid tori in
R3. Take a solid torus in R3 and within it put a second solid torus that wraps
around itself twice.

There is, of course, a homeomorphism from the big torus to the small one,
that maps the initial small one to an even smaller one that now wraps itself four
times around the original central hole. Repeat ad infinitum! The intersection of
all these ever smaller solid tori is the dyadic solenoid. Points to note include:
(i) At any observational resolution, the space, DS, will seem to be a solid torus,
but the effect of refining the open cover/observations will be, not just, to see
finer detail, but also to observe the double covering or its iterates.
(ii) There is a projection map p∞ : DS → S1, mapping the sequence (zi) to
z0, and this is a principal bundle with fibre a Cantor set, CS. Thus locally this
map looks like a product from ‘CS× interval’ to the interval, yet the way the
product twists as one goes around the circle produces the strange features of the



solenoid. ( A detailed analysis of this twisting would bring in the profinite group
of automorphisms of CS.)

At any scale one has a manifold-like space, but at the limit of computation, it
is a highly singular space. That space is ‘locally self similar’, even homogeneous.

Remark

It is worth repeating that although artificially generated, the dyadic solenoid
shows many characteristics of strange attractors that are encountered in math-
ematical models for physical phenomena. Those models use smooth tools, being
based on differential equations, but to understand the geometry of the model,
we have to take seriously the ‘continuous vs. discrete’ transition involved in a)
scientific computation and modelling, and b) scientific visualisation and scientific
observation

5 Geometry?

Static representation of spaces, or alternatively representation by static spaces, is
not the end of the problem. A dynamic approach to the modelling/representation
problem is needed, since actual spaces change in time. Geometric structures such
as vector fields, differential equations or their analogues, and dynamical systems
on a space allow the modelling of change on a space. There is also change between
spatial representations at different observational scales and, for the finer analysis
of geometric features, some analysis of that change will be needed.

The approach to such geometric structures is usually modelled on the differ-
ential paradigm, but the usual tools of differential geometry such as curvature,
torsion, etc., depend on smooth structure. The approximating spaces naturally
arising from the discretisation / measurement / computational framework are
typically simplicial complexes. One key tool of smooth geometry is the differ-
ential form however, and there are several possible ways in which these can be
extended from the smooth to the simplicial / discrete context.

Differential Forms.

The classical situation is based on a smooth manifold, M , with tangent bun-
dle TM . (We use Janich, [31] as a basic reference.) For convenience we recall
some elementary definitions from multilinear algebra and differential geometry.

For V a real vector space, an alternating k-form ω on V is a map

ω : V × . . .× V
︸ ︷︷ ︸

k

→ R

that is linear in each variable and in addition has the property that ω(v1, . . . , vk) =
0 if the vectors v1, . . . , vk ∈ V are linearly dependent. We will denote the vector
space of alternating k-forms on V by AltkV .

A form of degree k on M is a function that assigns to every p ∈ M , an
alternating k-form ωp ∈ AltkTMp on the tangent space to M at p. (To ensure
that the assignment makes sense globally, we actually form a vector bundle
AltkTM in the obvious way by applying the Altk to each fibre, and then ω is a
continuous ‘section’ of that vector bundle.)



If we have a given chart at p, then the coordinate directions give a basis for
TMp. The elements of this basis will be written ∂µ = ∂/∂xµ. The space of 1-
forms has a dual basis with elements dxµ. Any k-form ω can locally be expanded
in terms of symbols dxµ1∧. . .∧dxµk with coefficients ωµ1,...,µk

:= ω(∂µ1
, . . . , ∂µk

).
If these functions are differential with respect to the given coordinate chart, then
ω is called a differential k-form. The space of these is denoted ΩkM .

Examples and explanation of notation.

If f : M → R is a differentiable function, then df : TM → TR, df(X) = X(f)
is a differential 1-form, once we identify TR with R in the canonical way. Here
X is a vector field on M and is thus a section of the tangent bundle TM . It is
this that gives the exact meaning of the notation dxµ used earlier. The wedge or
exterior product of vector spaces is a usual construction of multilinear algebra.
Here it allows us to write any ω ∈ ΩkM locally as a sum

ω =
∑

ωµ1,...,µk
dxµ1 ∧ . . . ∧ dxµk .

As an elementary example consider M ⊂ R3 an open set and therefore a 3-
manifold. The usual volume element dV of elementary integration and vector
calculus is given by dx1∧dx2∧dx3. Similarly the usual vector calculus operations,
div, grad and curl, have easy descriptions in terms of differential forms, cf. [31],
p.172. If M is an n-dimensional manifold then TMp is an n-dimensional vector
space, and so ΩkM = 0 if k > n.

If ω ∈ ΩkM , we can form its Cartan derivative dω ∈ Ωk+1M , which is locally
given by

dω =
∑

dωµ1,...,µk
∧ dxµ1 ∧ . . . ∧ dxµk .

It is moderately easy to check that ddω = 0, so we get a chain complex

0 → Ω0M
d
→ Ω1M

d
→ . . .

d
→ Ωn−1M

d
→ ΩnM

d
→ 0 .

This is the de Rham complex of M . One can use the exterior product to multiply
forms together and the differential is compatible with this multiplication in a
fairly simple way, (see later), so it is a graded differential algebra or dga, see
[31,32,33]. The quotients

Hr
dR(M) =

Ker(d : ΩrM → Ωr+1M)

Im(d : Ωr−1M → ΩrM)

form a cohomology theory and the famous de Rham theorem says that these
geometrically defined groups are isomorphic to the topologically defined singular
cohomology groups with real coefficients. This, loosely speaking, tells one in what
way the geometric differential forms react to, or reflect, the overall topological
structure of the space, M .

One plan of action for the study of ‘differential forms’ on fractafolds and
thus for a geometry of information change, is to look at candidates for theories
of differential forms on non-smooth spaces and, initially, to apply the test: is
there a reasonable substitute for the de Rham theorem in that theory?



Technical remark

It is often useful to replace the simplicial complex / polyhedral models for
approximations by ones using simplicial sets. The detailed theory of simplicial
sets need not concern us here, but if one orders the vertices of a simplicial
complex in such a way that in each simplex the vertices are totally ordered, then
one can encode constructions such as products of objects using the simple tool
of degenerate simplices. For instance, the simplicial complex corresponding to
the interval has two vertices 0, and 1 and one 1-simplex {0, 1}. If we order the
vertices 0 < 1, and then allow degenerate simplices such as (0, 1, 1) or (0, 0, 1, 1, 1)
by repeating a vertex label to get the simplicial set ∆[1], we can represent the
simplicial structure of a square

(0, 1) // (1, 1)

(0, 0) //

OO

(a)

(b)

;;xxxxxxxx

(1, 0)

OO

where (a) =

(
0 0 1
0 1 1

)

=
(
(0, 0, 1), (0, 1, 1),

)
etc.,

by the product of two copies of ∆[1], where, for simplicial sets K, L, the product
simplicial set K×L has its collection of q-simplices given by (K×L)q = Kq×Lq

as a product of sets.
Another useful difference between simplicial sets and simplicial complexes

is that simplices now have definite labelled faces. If σ = {a0, a1, a2, a3} is a
3-simplex in a simplicial complex, then we know its 2-dimensional faces are
all 2-element subsets of σ, but describing them in more detail is tricky. If we
had that σ was a 3-simplex (a0, a1, a2, a3) in a corresponding simplicial set, so
that the vertices were in the given order, then σ has faces d0σ = (a1, a2, a3),
d1σ = (a0, a2, a3), etc., where the ith face diσ leaves out the ith entry in the list
of vertices. (Simplicial sets have been explicitly used in computer graphics in an
attempt to combine the advantages of both cubical and simplicial grids using
products of them to get a combinatorial grid model including prisms.)

The theme of ‘continuous vs. discrete’ repeats in the classification of the
models for the analogues of the de Rham complex that are applicable to simplicial
complexes. (We will not be exhaustive in our listing of these and will choose three
or four, looking at one in a lot more detail in the second part of this paper.)

‘Continuous’ geometric models (Whitney-Thom-Sullivan)
Let δn be the standard Euclidean n-simplex

∆n = {t ∈ R
n+1 |

∑

ti = 1, all ti ≥ 0},

and let AdR(∆
n) be the algebra of differential forms defined on neighbourhoods

of ∆n in the hyperplane given by
∑

ti = 1. If K is any simplicial set, we can take
a copy of AdR(∆

n) for each n-simplex, σ ∈ Kn and repeating for each n ≥ 0,
‘glue them together’ along shared faces to get the algebra

AdR(K) = Hom(K,AdR(∆
•)).



There is an important point to note here. There are obvious face and degeneracy
maps defined between the various spaces ∆n. For instance, there is the inclu-
sion of an n − 1-face with, say, the ith coordinate ti = 0. Correspondingly, by
restriction, you get maps of algebras, e.g., di : AdR(∆

n) → AdR(∆
n−1). (Note

the direction of the arrow.) This gives AdR(∆
•) two structures. It is a simplicial

object in the category of differential graded algebras. In the ‘Hom’ above we use
the simplicial structure, and this leaves this ‘hom-set’ to inherit the differential
graded algebra structure. This means that defining models for de Rham type
complexes we really only need to define them on simplices and then we can use
the same trick to extend them to all simplicial sets. This is a categorical ‘density’
result. Defining some functor / construction on a dense full subclass is sufficient
to define it everywhere. (A detailed treatment of these ideas is given in [32,33],
or in several more recent texts.)

Theorem (Simplicial de Rham, cf. [33], p.41)
The associated homology of AdR(K) is isomorphic to the cohomology of K

with real coefficients.

‘Sheaf theoretic’ geometric models, cf. Mostow, [34]
Various sheaf theoretic extensions have been suggested. That which we will

describe here is due to Mostow. He bases his construction on a notion of differ-
entiable space that may be useful in its own right, so here it is:

Definition:

A differentiable space is a topological space X together with for each open
set U in X , a collection, denoted C∞(U) of continuous real-valued functions of
U , satisfying the following ‘closure’ conditions:

(i) The assignment U  C∞(U) defines a sheaf on X , which will be denoted
C∞(X);

(ii) For any n, if f1, · · · , fn ∈ C∞(U) and g ∈ C∞(Rn) (with the usual mean-
ing), then g(f1, · · · , fn) ∈ C∞(U).

A basic way to define a differentiable space structure is the following. Let
X be a topological space and let {fa : Ua → Ma} be a collection of continuous
functions from open subsets Ua covering X to manifolds Ma. A function f :
U → R (U open in X) will be said to be locally a smooth function of finitely
many of the fa if for each x ∈ U , there exist a neighbourhood W of x in U , a
finite set of indices a1, . . . , an and a smooth map g : V → R (where V is open
in Ma1

× . . .×Man
) such that for each i = 1, . . . , n,

1. fa is defined on all of W (i.e. Ua ⊃ W ),
2. f |W = g ◦ (fa1

, . . . , fan
).

Let C∞(U) be the set of all such f . Then {X, {C∞(U)}} defines a differentiable
space structure on X .

Examples

1. A smooth manifold M with its usual collection of (locally defined) smooth
functions is a differentiable space.



2. A topological space X becomes a differentiable space in a trivial way if we
define every continuous function on X to be smooth, C∞(U) = C(U).

3. A simplicial complex X becomes a differentiable space if every function on
X , which is locally a smooth function of finitely many barycentric coordinates
is called smooth, so we could use our approximating simplicial complexes, give
them differentiable spaces structures and attempt to ‘pass to the limit’. (In fact
we will not explore that line in detail here, but it would be an interesting one to
pursue.)

A morphism or smooth map of differentiable spaces is a continuous map
which pulls back smooth functions to smooth functions. That is h : X → Y is
smooth if
(i) h is continuous,
(ii) for all open U ⊆ Y and f ∈ C∞(U), f ◦ h ∈ C∞(h−1U).

If M and N are smooth manifolds with their usual differentiable space struc-
ture, then f : M → N is a morphism of differential spaces if and only if it is a
smooth map in the usual sense.

The de Rham complex of a differentiable space

Mostow, [34], does not define a notion of tangent vector for differential spaces,
rather he defines differential forms. These are abstract symbols

∑

fα0
dfα1

∧ . . . ∧ dfαk
,

where each fαi
∈ C∞(U), U ⊂ X . This requires one or two subsidiary notions

to make this more precise .
LetX be a differentiable space. Then a plot ofX is a smooth map φ : E → X ,

where E is an open subspace of Rn for some (finite) n.
Let U be a differentiable space, and let fij ∈ C∞(U), i = 1, . . . , p; j =

0, . . . , q. Let η denote the symbol
∑p

i=1 fi0dfi1 ∧ . . .∧ dfiq, and let φ : E → U be
a plot. Then φ∗η will denote the differential form

p
∑

i=1

(fi0 ◦ φ)d(fi1 ◦ φ) ∧ . . . ∧ d(fiq ◦ φ) ∈ Aq(E) .

Let Bq(U) be the real vector space of symbols of this form (p arbitrary) modulo
the equivalence relation:

η1 ∼ η2 if and only if φ∗η1 = φ∗η2 for all plots φ : E → U .

If X is a differentiable space, then the rule U 7→ Bq(U), U open in X , is a
presheaf on X . We set Aq(X) to be the sheaf generated by this presheaf and let
Aq(U) = Γ (Aq(X)|U). (As usual Γ indicates the space of global sections of a
sheaf.) The passage from Bq to Aq means that the latter contains not only the
finite sums of forms that are in Bq(X), but also locally finite ones, i.e. you may
have an infinite sum but only finitely many terms are non-zero at any one place.
The natural map from Bq(U) to Aq(U) is an inclusion.



The commutative dga A∗(X) =
⊕

q A
q(X) might be called the (Mostow-)de

Rham complex of the differentiable space X . The de Rham cohomology of X ,
H∗

dR(X) is the cohomology of the underlying cochain complex. Again a version
of the de Rham theorem holds here.

Discrete Models

Passing to discrete models as against continuous ones, there is a halfway
stage using polynomial models for the simplices that use the commutative rings,
R[t0, . . . , tn]/(

∑
ti − 1), but these will not be considered here. (A treatment of

such polynomial based forms is given in Karoubi’s work, [35,36], which contains
a discussion of a de Rham type theorem.)

A more purely discrete model is based on the incidence algebra of a partially
ordered set. There are many different versions of this, most of which are closely
related to each other. We will here introduce a version due to Zapatrin, [37], and
will explore the internal structure of this model in a quite a lot of detail in the
second part of this paper.

The combinatorial incidence algebra

There are various variants of the construction of differential forms alge-
braically but most of them use as a first step the incidence algebra of a graph or
of a poset. This construction is well known from combinatorics and there is an
extensive theory in the literature. Here we can do little more than to give the
definition. We assume given a fixed field k, which will usually be R or C in our
context.

Suppose (K,≤) is a partially ordered set and form the vector space, Ω(K)
spanned by all pairs P ≤ Q in K. If we take eP≤Q as the basis element corre-
sponding to P ≤ Q, we get a multiplication on Ω(K) by extending the rule

eP≤Q.eR≤S =

{
0 if Q 6= R

eP≤S if Q = S,

using linearity. We will normally restrict attention to finite posets and for such it
is clear that multiplicatively everything in Ω(K) is built up from the ‘irreducible’
pairs P ≤ Q for which if P ≤ R ≤ Q, then either R = P or R = Q. This
algebra, Ω(K), called the incidence algebra of K, is a k-algebra, but is usually
non-commutative.

There are other approaches to this construction, some of which are useful in
our context. Any poset K can be considered as a small category in a well known
way and given any small category I, one can form the free k-linear category k(I)
on I. This is a ring with several objects in the sense of Mitchell, [38], and again
there is a well known construction that takes the associative ring or algebra
consisting of the arrows of k(I) with the multiplication extending the partial
multiplication / composition of k(I) by defining a.b = 0 if the composite a ◦ b is
not defined in k(I). This, of course, just gives the incidence algebra back if I is
the small category corresponding to a poset.

There is another slant on incidence algebras via directed graphs. Given any
directed graph, Γ , we can form the free category of paths on Γ , which we will



denote by C(Γ ) Then the obvious thing to do is to form kC(Γ ) and from there
the corresponding incidence algebra. It is worth noting that if we have a partially
ordered set (K,≤) then the Hasse diagram, ΓK , of (K,≤) is a directed graph
and we can apply the above construction to it. There is a quotient functor from
C(ΓK) to K itself, and hence an epimorphism from the incidence algebra of ΓK

to that of K.

From any poset, one can form its nerve, which is the simplicial set with strings
of elements P0 ≤ . . . ≤ Pn as its n-simplices. Going the other way around, from
a simplicial complex K, one can form the poset of its faces. The nerve of this
poset corresponds to the barycentric subdivision of the original K.

For example, the unit interval / 1-simplex complex ∆[1] has poset

{0} {1}

{0, 1}

bbEEEEEEEE

<<yyyyyyyy

and this has nerve
• • //oo •

which is the barycentric subdivision of the original ‘interval’.

From incidence algebras towards differential graded algebras.

(Although much of this section is well known, we have included it as certain
aspects may not be known from the viewpoint we require.)

As a directed graph is just simplicial set of dimension 1 (so no nondegenerate
simplices above dimension 1), if we try to mimic the construction of the incidence
algebra for a simplicial complex, K, one obvious way is to give a total order to
the vertices of K and, denoting the set of (non-degenerate) n-simples in K by
Kn, to form C(K)n a vector space with basis {eσ | σ ∈ Kn}, or abusing notation
{eσ | σ ∈ Kn}. The face maps di : Kn → Kn−1, which are defined since we have
ordered the vertices, induce linear maps, di : C(K)n → C(K)n−1 and yield a
structure that is almost a simplicial vector space. (It only fails because of the
lack of degeneracies.) The usual construction on such a gadget is to take the
alternating sum

δ =
∑

(−1)idi : C(K)n → C(K)n−1

and then a routine calculation shows that δδ = 0, so (C(K)•, δ) is a chain
complex.

Remark

The algebraic topology of (C(K), δ) iswell known. The homology of this chain
complex is the homology of the original simplicial complex, K a construction
that was at the heart of the construction of simplicial homology in the early
20th century. The dual cochain complex obtained by dualising all the spaces
and boundary maps, (C∗(K), δ∗), gives the simplicial cohomology. We refer to
[36] and [33] for a discussion of the problem of giving this cochain complex



a commutative multiplication. The usual method (Alexander-Whitney) is not
commutative. For us, that is not that important, but we do need to adjust its
structure to bring it nearer to the de Rham complex.

This chain complex has additional structure as the geometry of K has been
encoded in the given basis, {eσ | σ ∈ Kn} for each C(K)i. Assume that Ki

is finite and use the given basis to identify C(K)i and its dual C(K)∗i via the
obvious innerproduct

〈 | 〉 : C(K)i × C(K)i → k ,

for k a field. In [37], Zapatrin replaces the cochain complex differential δT , ob-
tained by taking the transpose of δ by a new differential given by :
if x0 ≤ x1 ≤ . . . ≤ xn is an n-simplex,
d(x0 ≤ x1 ≤ . . . ≤ xn) =

∑

y<x0
y ≤ x0 ≤ x1 ≤ . . . ≤ xn

+
∑n

m=1(−1)m
∑

xm−1<y<xm
x0 ≤ x1 ≤ . . . ≤ xm−1 ≤ y ≤ xm ≤ . . . ≤ xn

+(−1)n+1
∑

xn<y x0 ≤ x1 ≤ . . . ≤ xn ≤ y .
In fact, he restricts to strictly increasing chains having < instead of ≤. We will
discuss the precise relationship of this with δT in more detail in the second part
of this paper, which will be, in part, devoted to an analysis of what information
this Zapatrin model tells one about the simplicial complex, K.

6 Vietoris-de Rham theorems

As explained above, one possible test for a ‘good’ theory of differential forms on
a class of spaces, might be to see if it satisfied a version of the de Rham theorem
linking de Rham cohomology (relative to that theory) with a topologically based
theory. The following sketches out a general attack on this, based on an idea used
by Allday and Halperin, [39].

Suppose that we have a functorial construction AdR from the opposite of
category of simplicial sets to that of dgas, i.e. differential graded algebras. Many
of those that we have considered are such that a form of de Rham theorem links
the cohomology of AdR(K) with the ordinary cohomology of K with real coef-
ficients, so we will assume that this holds for ourfavouritee one of the moment,
fixing k = R in the process.

Define for any space X , a direct system of dgas by

A(X) = {AdR(V (U)) | U an open cover of X} ,

the ‘bonding’ maps in this direct system being induced by those of the Vietoris
construction itself. Now let A(X) be the colimit (direct limit) of A(X). This
is an algebra of differential forms and we might call it the Vietoris-de Rham
algebra of X . Then a version of the de Rham theorem follows for this complex.
The argument goes that, as homology commutes with direct limits,

H(A(X)) ∼= colimH(AdR(V (U)) .



The assumption that a de Rham theorem follows holds for AdR, means that this
is naturally isomorphic to colimH(V (U),R). However as is known classically,
this latter cohomology is precisely the Alexander-Spanier cohomology of X with
real coefficients.

Note that nowhere did we have to use any special features about the space
X , so what is the problem?

The most computational constructive and geometric generalisations of the de
Rham complex are best behaved only on finite simplicial complexes and V (U) is
not finite.
We could replace V (U) by the Sorkin model relative to the cover U , and the
same argument works. The resulting cohomology does not seem to change since
the Čech and Vietoris models are homotopically equivalent, by Dowker’s result,
so Čech based cohomology and Alexander-Spanier cohomology are naturally
ismorphic.

Another problem is to link up the Zapatrin model with all this. The assump-
tions we made are not all known for that model, but it does give, as we will see
in the second half of this paper, a good interpretation of the geometry of the
complex and in certain cases (perhaps for all fractafolds) the representation of
that geometry seems to pass to the limiting dga.

If one tries to use the Čech construction to replace the Vietoris one, and
hence to avoid ‘points’ then problems arise with the refinement maps as A(N(U))
will not be a directed system of dgas, merely one ‘up to coherent homotopy’.
However, for our supposed class of fractafolds, it seems likely that each will be
represented by an approximating sequence of polyhedra with excellent control
over the refinement maps ‘locally’ and one can use that ‘excellent behaviour’ to
define a limiting algebra of differential forms in a highly controlled way. At this
point however we are getting beyond our present knowledge and into a more
speculative range of questions, so in the second part of this paper, we will look
at limiting processes, recalling known aspects of them for the situation of the
Sorkin model and then will look at how the Zapatrin-de Rham model behaves
for simple examples and at its more detailed algebraic structure.
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arbitraires. Trans. Amer. Math. Soc. 347 (1995) 4277–4299

36. Karoubi, M.: Formes topologiques non commutatives. Ann. Sci. École Norm. Sup.
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