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We study the phenomenon of quantum synchronization from the viewpoint of quantum metrology.
By interpreting quantum self-sustained oscillators as dissipative quantum sensors, we develop a
framework to characterize several aspects of quantum synchronization. We show that the quantum
Fisher information (QFI) serves as a system-agnostic measure of quantum synchronization that
also carries a clear operational meaning, viz., it quantifies the precision with which the amplitude
of a weak synchronizing drive can be measured. We extend our analysis to study many-body
oscillators subjected to multiple drives. We show how the QFI matrix can be used to determine
the optimal drive that maximizes quantum synchronization, and also to quantitatively differentiate
the synchronization responses induced by different drives. Our work highlights multiple connections
between quantum synchronization and quantum metrology, paving a route towards finding quantum
technological applications of quantum synchronization.

Introduction.— Classical synchronization is a long
studied and ubiquitous phenomenon in nature and forms
the basis of numerous everyday applications. More re-
cently, several studies have explored synchronization in
quantum systems and its relation to quantum features
such as coherence, interference and entanglement [1–24].
One notion of quantum synchronization (QS) explores
the development of coherences in a dissipatively stabi-
lized quantum system with no a priori phase preference,
when it is subjected to a phase-symmetry breaking per-
turbation [5, 9, 10, 12, 14, 15, 17, 19]. A central challenge
here is to devise metrics to quantify the synchronization
response of quantum systems [9, 25, 26]. At the same
time, the question of how QS may be broadly relevant for
quantum technology applications remains largely unan-
swered, in part because existing quantifiers of QS are
either not universally applicable or do not admit a clear
operational interpretation in the context of specific quan-
tum information processing tasks.

In this Letter, we demonstrate that the toolbox of
quantum Fisher information (QFI) [27, 28] provides a
systematic way to quantify and analyze several aspects
of QS in a system-agnostic manner. Conversely, quantum
synchronizing systems can naturally be interpreted as
dissipative quantum sensors [29–31] tasked with measur-
ing the amplitude of a symmetry-breaking perturbation.
We illustrate the central ideas interfacing QS and dissi-
pative quantum sensing using the paradigmatic example
of a quantum van der Pol oscillator [1]. Subsequently, we
extend our approach using the QFI matrix (QFIM) to
study many-body oscillators with multiple drives. Using
a minimal example of a two-qubit oscillator [32], we show
how our framework allows to optimize the combination
of applied drives to maximize QS, and also enables to
quantify differences in the synchronization responses in-
duced by the different drives. More broadly, our work

reinforces the utility of the QFIM as a diagnostic tool in
diverse contexts beyond its original setting of quantum
metrology (QM) [28].
Framework of quantum synchronization.—We consider

an open quantum system whose intrinsic dynamics is gov-
erned by a Lindblad master equation ∂tρ̂ = L0ρ̂. The
Liouvillian L0 has the general form (ℏ = 1)

L0ρ̂ = −i[Ĥ0, ρ̂] +
∑

k

D[Ôg,k]ρ̂+
∑

k

D[Ôd,k]ρ̂, (1)

where Ĥ0 is the free system Hamiltonian, and
Ôg,k, Ôd,k, k = 1, 2, . . . are one or more jump opera-
tors that respectively set up gain and damping channels
via Lindblad dissipators of the form D[Ô]ρ̂ = Ôρ̂Ô† −
Ô†Ôρ̂/2− ρ̂Ô†Ô/2. In order to constitute a valid quan-
tum synchronizing system, L0 and the steady state ρ̂0
must have an underlying U(1) symmetry that reflects
the absence of a preferred phase. This symmetry will
be evident in the model systems we introduce below;
for a formal discussion, see the Supplementary Material
(SM) [33].

We consider the synchronization of this system to a
weak U(1)-symmetry breaking perturbation that changes
L0 → L0 + ϵL1. Accordingly, the steady state of the
system is changed to leading order as ρ̂0 → ρ̂0 + ϵ∂ϵρ̂,
where the differential change is given by

∂ϵρ̂ = −L−1
0 L1ρ̂0. (2)

Here, L−1
0 is computed excluding its null space, and we

have assumed that L0 has a unique steady state ρ̂0 and
that all of its other eigenmodes are damped. In our ex-
amples below, the perturbations are of the form ϵL1ρ̂ =
−iϵ[Ĥ1, ρ̂], where Ĥ1 is a (dimensionless) U(1)-symmetry
breaking Hamiltonian. The above framework includes,
but is not restricted to, notions of QS that consider sys-
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tems whose unperturbed steady states are diagonal in the
eigenbasis of Ĥ0, e.g., as in Refs. [9, 12, 14, 17, 26].

QFI measure for quantum synchronization.— We con-
sider the above setting from a QM perspective. First, we
note that in many QM settings, a state ρ̂ is prepared as
input to an interferometer and subsequently a signal to
be sensed is encoded via unitary dynamics. This kind of
interferometric approach, using intuitive choices for the
unitary operator, has previously been employed to pro-
pose a QS measure [34]. In contrast, we consider QS from
a dissipative quantum sensing scenario, where the signal
to be sensed is directly the amplitude ϵ of the perturba-
tion L1, which is concurrently applied while the system
is still subjected to L0. We find this approach advanta-
geous because it clearly distinguishes intrinsic dynamics
from the synchronizing perturbation, doesn’t rely on in-
tuition to define the QS measure, and extends naturally
to the case of multiple drives.

Writing the spectral decomposition ρ̂0 =
∑

k qk |k⟩ ⟨k|
for the unperturbed steady state, the QFI for sensing the
amplitude ϵ from the change in the steady state is [27,
35, 36]

F [L0,L1] =
∑

k,k′

qk+qk′>0

2

qk + qk′
|⟨k′|∂ϵρ̂|k⟩|2, (3)

with ∂ϵρ̂ given by Eq. (2) [37]. Equation (3) is our
proposed QS measure, which also carries a clear oper-
ational meaning: The ultimate precision limit on esti-
mating ϵ using K ≫ 1 independent copies of this system,
optimized over all measurement strategies, is given by
(∆ϵ)2 = 1/(KF). In proposing Eq. (3) as a QS measure,
we have assumed that L1 only introduces coherences be-
tween |k⟩ , |k′⟩ belonging to different U(1) symmetry sec-
tors, which is true in many typical QS settings including
the examples below (see SM [33] for the general case).

Often, QS measures quantify the distance between the
steady states in the presence and absence of a synchro-
nizing drive, and hence explicitly depend on the drive
amplitude ϵ [9, 26]. Complementary to these measures,
the QFI is a measure of the rate of change in the steady
state with ϵ, and is hence independent of ϵ. Thus, it
captures the small-signal response of the oscillator and
is a direct indicator of the propensity of an oscillator to
synchronize.

Example: Quantum van der Pol oscillator.— We con-
sider a quantum van der Pol (vdP) oscillator with Ĥ0 =
ωâ†â, Ôg =

√
κ1â

†, and Ôd =
√
κ2â

2. The U(1) sym-

metry operator for this system is Û(ϕ) = e−iϕâ†â. As
the symmetry breaking perturbation, we consider a reso-
nant external drive, such that in the drive frame we have
Ĥ0 = 0 and ϵĤ1 = ϵx̂ ≡ ϵ(â + â†)/2. In Fig. 1, we
plot κ2

1F as κ1/κ2 is increased by fixing κ1 and reduc-
ing κ2. As κ1/κ2 becomes large, the limit cycle ampli-
tude increases as ⟨â†â⟩1/2 ∼

√
κ1/κ2 and the phase noise

FIG. 1. Quantum synchronization in the quantum van
der Pol oscillator. The normalized QFI (κ2

1F) is compared
against two other measures— an entropy-based measured of
QS (Ω̃) and a metrology-based measure of the system response
(κ2

1µ)— as the system is tuned from the quantum (κ1/κ2 ≪ 1)
to the classical limit (κ1/κ2 ≫ 1), keeping κ1 fixed. Inset: Ra-
tios of the QFI to the other two measures, showing asymptotic
proportionality in the classical limit (F/Ω̃ → 2, F/µ → 1).

decreases since the phase diffusion constant is propor-
tional to κ2 [1]. As a result, stronger synchronization—
characterized by increasing F— is observed as κ1/κ2 in-
creases. This behavior is consistent with the expectation
that a self-sustained oscillator with large amplitude and
low phase noise is highly sensitive to a weak, injection-
locking resonant drive.

To demonstrate that F serves as a reliable QS measure,
we compare it with a recently proposed information theo-
retic QS measure [26]. The latter is shown as the dashed
line in Fig. 1(a) and is defined as Ω = S(ρ̂) − S(ρ̂diag).
Here, S(ρ̂) is the von Neumann entropy for the steady
state ρ̂ under L0 + ϵL1 and ρ̂diag is the reference ‘limit-
cycle’ state obtained by deleting all off-diagonal elements
from ρ̂. While F is independent of ϵ, Ω ∝ ϵ2 and hence
we plot Ω̃ = Ω/ϵ2 to enable comparison. The behavior
of F is qualitatively similar to Ω̃ over the entire range
of κ1/κ2. Furthermore, in the classical limit κ1/κ2 ≫ 1,
F is asymptotically proportional to Ω̃, as shown in the
inset. In fact, we find that Ω̃ → F/2 quite generally, pro-
vided the steady-state populations and coherences vary
smoothly across the ladder of Fock states, which is the
case in the classical limit of this system [33].

The above comparison suggests that, for this paradig-
matic system, the QFI is on par with Ω̃ as a QS mea-
sure. Moreover, and in contrast to Ω̃, it also sets the
ultimate precision for estimating the drive amplitude. In
the classical limit, the value of F−1 agrees with the pre-
cision of intuitive estimation strategies based on measur-
ing low-order moments of simple observables. The dotted
line shows the quantity κ2

1µ, where µ = (∂ϵ⟨p̂⟩)2/Var(p̂),
with p̂ ≡ (â − â†)/(2i) and Var(p̂) = ⟨p̂2⟩ − ⟨p̂⟩2. In the
method of moments approach to estimation [27], µ cor-
responds to the signal-to-noise ratio in estimating ϵ by
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measuring ⟨p̂⟩ when the drive (along x̂) is applied. While
µ ≤ F for any κ1/κ2, the equality is saturated asymp-
totically for κ1/κ2 ≫ 1 (see inset), where we find that
µ,F → 4/(9κ1κ2) [33].

In contrast, in the quantum limit κ1/κ2 ≪ 1, F and
µ differ significantly, and estimation strategies based on
classical intuition are suboptimal. The origin of this de-
viation can be quantitatively explained by accounting for
the discrete quantum levels of the system. Analyzing the
system using the lowest three Fock states, we find that
F → 4/(81κ2

1), while µ → 4/(135κ2
1) [33].

The above example demonstrates how the QFI inter-
faces QS and QM: On the one hand, the behavior of F
agrees with existing QS measures. On the other, by in-
herently optimizing over all measurement strategies, F
captures the full sensitivity of the system to the synchro-
nizing drive in all parameter regimes. Hence, it serves as
an unambiguous QS measure that doesn’t rely on intu-
ition, while simultaneously carrying a clear operational
meaning in the context of QM.

Synchronization under multiple drives.— In a many-
body quantum system that undergoes synchronization, it
is natural to consider the case of several external drives
that are, e.g., applied on different constituents of the
system. A systematic framework to explore QS in such
a multiple-drive scenario has not been introduced so far.
Here, we show how the QFI toolbox readily extends to
this general setting.

We consider the simultaneous action of M weak per-
turbations L1 = (L1,1, . . . ,L1,M ) with amplitudes ϵ =
(ϵ1, . . . , ϵM ) that change L0 → L0 + ϵ · L1. Then,
the steady state changes in leading order according to
ρ̂0 → ρ̂0 + ϵ · ∇ϵρ̂, where ∇ϵρ̂ is the generalization
of Eq. (2). An M × M QFI matrix (QFIM) FM can
be constructed to analyze QS in this setting, with ele-
ments [28, 35, 36]

FM,mn =
∑

k,k′

qk+qk′>0

2

qk + q′k
Re[⟨k′|∂ϵm ρ̂|k⟩ ⟨k|∂ϵn ρ̂|k′⟩]. (4)

We discuss two applications of the QFIM to QS.

Drive optimization.— The M simultaneous drives can
be viewed as a single composite drive L1,c with strength
ϵc that changes L0 → L0 + ϵcn · L1. Here, n is a unit
vector such that ϵj = ϵcnj are the individual drive ampli-
tudes. The QS measure for the composite drive is just the
QFI for sensing ϵc, given by F = nTFMn. We can im-
mediately identify the optimum linear combination nopt

of the M drives that maximizes F as the eigenvector of
FM corresponding to the largest eigenvalue. This obser-
vation extends the recent idea of using optimal unitary
generators to encode parameters [38] to the scenario of
dissipative quantum sensing. Thus, in contrast to other
QS measures, the QFI framework enables us to easily
identify strategies to maximize QS in a given system.

Eigendrives and drive orthogonality.—The QFI frame-
work can be used to assess the distinguishability of the
responses induced by two or more drives. To do so, we
first note that for a given L0 and L1, the eigenvectors of
the QFIM can be understood as eigendrives that drive
mutually orthogonal modes of synchronization, in the fol-
lowing sense. We consider the parameter space spanned
by ϵ, where each point is associated with the steady-state
density matrix ρ̂ϵ. In this space, the QFIM FM defines
a metric tensor at the origin ϵ = 0; each element FM,mn

specifies the inner product between the directions along
which the undriven steady state ρ̂0 is displaced by the
mth and nth drives. The QFIM can thus be used to in-
troduce a measure of distance between the driven and
undriven steady states, viz., the infinitesimal Bures dis-
tance [28, 39]

d2B(ρ̂0, ρ̂ϵ) =
1

4
ϵTFMϵ =

1

4

M∑

j=1

λj ϵ̃
2
j , (5)

where {λj} are the eigenvalues of FM , ϵ̃ = V ϵ and V is
the matrix of eigenvectors ofFM . The distance contribu-
tion of each eigendrive adds in quadrature and hence the
induced responses define mutually orthogonal directions,
or modes of synchronization, in parameter space.
This notion of drive orthogonality is not merely an ab-

stract information-geometric concept, rather, it has an
operational meaning in QM. The precision limit for esti-
mating an amplitude ϵm in the absence of all the other
drives is (∆ϵm)2ab. = 1/(KFM,mm). On the other hand,
in their presence, their unknown (but small) amplitudes
act as nuisance parameters [40] that generally degrade
the ability to estimate ϵm, with the corresponding pre-
cision limit given by (∆ϵm)2pr. = [F−1

M ]mm/K. For each
drive m, we introduce an orthogonality measure

Dm =
(∆ϵm)2ab.
(∆ϵm)2pr.

=
1

FM,mm[F−1
M ]mm

, (6)

such that 0 ≤ Dm ≤ 1. A value of Dm = 1 implies that
the response induced by drivem is in a direction orthogo-
nal to that of all the other drives in parameter space; this
corresponds to the situation when FM,mn = 0 ∀ n ̸= m
and hence the distance contribution of drive m adds in
quadrature in Eq. (5). In particular, when all the inde-
pendent drives are taken to be eigendrives, Dm = 1 ∀ m.
Conversely, Dm < 1 implies that the response induced
by drive m is partially indistinguishable from that of the
other drives. A measure like Eq. (6) can guide the choice
of drives to probe a many-body system. It can also reveal
surprising features in the many-body synchronization re-
sponse that emerge due to the interplay of gain, loss and
interactions, as we illustrate below.
Example: Two-qubit oscillator.—As a minimal many-

body oscillator, we consider a system of two coupled
qubits subjected to local gain and damping channels.
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FIG. 2. Quantum synchronization under multiple
drives in a two-qubit oscillator. (a) Optimized QFI ver-
sus qubit-qubit coupling strength g, when the applied drive is
optimized over the full set of x drives (Fmax) and when the set
is restricted to unconditioned drives (Fmax,s). The QFI when
applying an unconditioned drive on only one of the qubits is
also shown (F1). (b) Orthogonality measure [Eq. (6)] for the

unconditioned drives Ĥ1,1 and Ĥ1,2 [see Eq. (7)] versus g. (c)
The QFIM FM for the full set of x drives at g = 0, and (d)
at g =

√
3Γ/2. Other system parameters for these plots are

described in the text.

The gain (damping) of each qubit is described by op-
erators Ôg,j =

√
wj σ̂

+
j (Ôd,j =

√
γj σ̂

−
j ). Here, σ̂±

j are
the Pauli raising and lowering operators for qubit j. We
assume that the two qubits have identical frequencies ωq.
In a frame rotating at ωq, the intrinsic system Hamilto-

nian is given by Ĥ0 = −ig(σ̂+
1 σ̂

−
2 − σ̂+

2 σ̂
−
1 ). The U(1)

symmetry operator for this system is Û(ϕ) = e−iϕŜz ,
where Ŝz = (σ̂z

1 + σ̂z
2)/2.

We consider synchronizing drives resonant with ωq. A
total of 8 linearly independent Hamiltonian drives can
be applied, that break the U(1) symmetry by coupling
states that differ by ∆Sz = ±1. These are

Ĥ1 = {σ̂x
1 , σ̂

x
2 , σ̂

z
2 σ̂

x
1 , σ̂

z
1 σ̂

x
2 , σ̂

y
1 , σ̂

y
2 , σ̂

z
2 σ̂

y
1 , σ̂

z
1 σ̂

y
2}. (7)

The drives Ĥ1,m,m = 1, 2, 5, 6 are unconditioned drives
while the remaining ones are conditioned on the state of
the other qubit. All drives have the same magnitude as
quantified by the Frobenius norm ∥Ô∥2F = Tr[Ô†Ô] and

satisfy trace orthonormality, i.e., Tr[Ĥ1,mĤ1,n] ∝ δm,n.

This ensures that any linear combination Ĥn = n · Ĥ1

has the same magnitude, and thus enhancements in QS
obtained by drive optimization are not due to arbitrary
scale factors. Due to the symmetry of the system, the
8 × 8 QFIM is block diagonal, with each block given by
identical 4 × 4 matrices, respectively corresponding to

drives along x and y [33]. Hence, we only analyze the
x drives Ĥ1,m,m = 1, . . . , 4 below, denoting their 4 × 4
QFIM by FM .

We consider the case where γ1 > w1 and γ2 < w2.
The latter corresponds to an effective negative temper-
ature bath for qubit 2, which can be engineered, e.g.,
using an auxiliary level [32]. We choose γ1 = w2 = Γ
and w1 = γ2 = 0, although many of our conclusions
are not restricted to this particular parameter set. Fig-
ure 2(a) shows Fmax, the maximum eigenvalue of FM , as
a function of the qubit-qubit coupling g. Interestingly, we
observe that the peak value of Fmax occurs at non-zero
g. Although the system consists of only two qubits, this
feature points to the potential to enhance QS by engi-
neering interactions in ensembles of self-sustained units,
that could thus serve as highly sensitive many-body dis-
sipative quantum sensors. For larger g, Fmax decreases
monotonically as the energy levels shift appreciably, mak-
ing the external drives off-resonant with any pair of levels.

In practice, it may be challenging to apply conditioned
drives such as Ĥ1,3, Ĥ1,4. A power of our approach is that
we can now analyze QS under unconditioned drives alone
by considering the 2 × 2 submatrix FM,s of FM that

corresponds to Ĥ1,1, Ĥ1,2. The orange line in Fig. 2(a)
shows Fmax,s, the maximum eigenvalue of FM,s, which
is significantly lower than Fmax over the entire range of
g. This highlights the role of the conditioned drives in
boosting QS in this system, which is also reflected in the
composition of the optimal drives, i.e., eigenvectors [33].
Nevertheless, Fmax,s also peaks at non-zero g, implying
that it is enhanced by qubit-qubit coupling. Finally, the
yellow line shows F1, the QFI when driving only either
one of the two qubits. Notably, F1 decreases monoton-
ically and does not show any enhancement at non-zero
g. These results show that our approach can unlock the
full QS potential of many-body quantum oscillators by
systematically identifying the optimal drives to apply to
these systems.

Restricting our analysis to FM,s, we now study the

mutual orthogonality of the responses induced by Ĥ1,1

and Ĥ1,2. In Fig. 2(b), we plot D1 [Eq. (6)] as g is var-
ied. Note that D1 = D2 always for a 2 × 2 QFIM. At
g = 0, the two qubits are uncoupled and D1 = 1 since
the coherences established by Ĥ1,1 and Ĥ1,2 are localized
on the respective qubits. For nonzero g, driving either
qubit establishes coherences that are delocalized over the
two-qubit system. Hence, the responses induced by Ĥ1,1

and Ĥ1,2 in general become partially indistinguishable,
leading to D1 < 1.

Interestingly, at the particular point g ≡ g∗ =
√
3Γ/2,

the system exhibits a revival of perfect orthogonality
(D1 = 1). This behavior is remarkable, because the two
qubits are not decoupled and yet driving either qubit in-
duces a response that is perfectly distinguishable from
driving the other qubit. Unlike at g = 0, the perfect
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orthogonality of the two drives at this point is thus a
many-body effect. This is immediately evident in the
QFIM for the full set of x drives, FM , which we plot at
g = 0 and g = g∗ in Figs. 2(c) and (d). In both cases, the
perfect orthogonality of the unconditioned drives is evi-
dent in the vanishing off-diagonal element between Ĥ1,1

and Ĥ1,2. However, at g = 0, there are no nonzero
off-diagonal elements between any two drives— uncon-
ditioned or conditioned— that act on different qubits.
On the other hand, at g = g∗, we observe nonzero off-
diagonal elements between, e.g., Ĥ1,1 and Ĥ1,4, and be-

tween Ĥ1,2 and Ĥ1,3. This implies that, at g = g∗, the co-
herences established by drives on different qubits are not
in general localized on the respective qubits. An analysis
of density matrix elements reveals that the orthogonality
of Ĥ1,1 and Ĥ1,2 at g = g∗ results from a blockade in
coherence buildup between specific eigenstates of ρ̂0 [33]
when either drive is applied. Hence, the QFIM can serve
as a powerful tool to capture intriguing many-body ef-
fects in QS that may not be evident otherwise.

Conclusion and Outlook.—We have shown that the
QFI framework, an established toolbox of QM, has ver-
satile applications in the study of QS. The connection be-
tween QS and dissipative quantum sensing demonstrated
here has both fundamental and practical relevance: On
the one hand, the QFI framework can be used, e.g., to
guide the choice of drives to probe the system, and to
unravel many-body QS effects. On the other, our work
opens the domain of quantum sensing as a broad applica-
tion area for QS. An exciting research direction is the use
of quantum synchronizing systems with engineered gain
and loss to surpass precision limits imposed by unavoid-
able decoherence mechanisms [29, 31]. Furthermore, our
work generalizes straightforwardly to the study of mutual
synchronization of quantum systems, by replacing the
synchronizing drive with a weak coupling between one or
more quantum self-sustained oscillators [10, 25]. Addi-
tionally, it will be interesting to extend this approach to
explore QS under finite driving strengths [2].
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integer effects in quantum synchronization of spin sys-
tems, Quantum 6, 885 (2022).

[20] L. Zhang, Z. Wang, Y. Wang, J. Zhang, Z. Wu, J. Jie, and
Y. Lu, Quantum synchronization of a single trapped-ion
qubit, Physical Review Research 5, 033209 (2023).



6

[21] Y. Shen, W.-K. Mok, C. Noh, A. Q. Liu, L.-C. Kwek,
W. Fan, and A. Chia, Quantum synchronization effects
induced by strong nonlinearities, Phys. Rev. A 107,
053713 (2023).

[22] T. Murtadho, S. Vinjanampathy, and J. Thingna, Coop-
eration and competition in synchronous open quantum
systems, Phys. Rev. Lett. 131, 030401 (2023).

[23] T. Nadolny and C. Bruder, Macroscopic quantum syn-
chronization effects, Phys. Rev. Lett. 131, 190402 (2023).

[24] P. Solanki, F. M. Mehdi, M. Hajdušek, and S. Vinjanam-
pathy, Symmetries and synchronization blockade, Phys.
Rev. A 108, 022216 (2023).

[25] V. Ameri, M. Eghbali-Arani, A. Mari, A. Farace,
F. Kheirandish, V. Giovannetti, and R. Fazio, Mutual
information as an order parameter for quantum synchro-
nization, Phys. Rev. A 91, 012301 (2015).
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[27] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and
P. Treutlein, Quantum metrology with nonclassical states
of atomic ensembles, Rev. Mod. Phys. 90, 035005 (2018).

[28] J. Liu, H. Yuan, X.-M. Lu, and X. Wang, Quantum
fisher information matrix and multiparameter estima-
tion, Journal of Physics A: Mathematical and Theoretical
53, 023001 (2019).

[29] F. Reiter, A. S. Sørensen, P. Zoller, and C. A. Muschik,
Dissipative quantum error correction and application to
quantum sensing with trapped ions, Nature Communica-
tions 8, 1822 (2017).

[30] S. Dutta and N. R. Cooper, Critical response of a quan-
tum van der pol oscillator, Phys. Rev. Lett. 123, 250401
(2019).

[31] Y. Xie, J. Geng, H. Yu, X. Rong, Y. Wang, and J. Du,
Dissipative quantum sensing with a magnetometer based

on nitrogen-vacancy centers in diamond, Phys. Rev.
Appl. 14, 014013 (2020).

[32] G. M. Vaidya, A. Mamgain, S. Hawaldar, W. Hahn,
R. Kaubruegger, B. Suri, and A. Shankar, Exploring
quantum synchronization with a composite two-qubit os-
cillator, Physical Review A 109, 033718 (2024).

[33] See Supplementary Material.
[34] Y. Shen, H. Y. Soh, L.-C. Kwek, and W. Fan, Fisher

information as general metrics of quantum synchroniza-
tion, Entropy 25, 10.3390/e25081116 (2023).

[35] C. W. Helstrom, Quantum detection and estimation the-
ory, Journal of Statistical Physics 1, 231 (1969).

[36] A. S. Holevo, Probabilistic and statistical aspects of quan-
tum theory, Vol. 1 (Springer Science & Business Media,
2011).

[37] Typically, the QFI is written as a function of the initial
state ρ̂ prior to signal encoding, and the perturbation.
However, assuming the steady state ρ̂0 is unique, Eq. (3)
is independent of the initial state and instead depends
only on the dynamics establishing ρ̂0. We emphasize this
aspect by explicitly writing the L0 dependence in Eq. (3),
but henceforth suppress it for brevity.

[38] J. T. Reilly, J. D. Wilson, S. B. Jäger, C. Wilson, and
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SI. QFI BASED QS MEASURE FOR A GENERIC PERTURBATION L1

In the main text, we assumed that the perturbation L1 only introduces coherences between |k⟩ , |k′⟩ belonging to
different U(1) symmetry sectors, which allowed us to use Eq. (4) as our QS measure. However, a general perturbation
can additionally introduce (i) changes in the population of each level |k⟩ and (ii) coherences between |k⟩ , |k′⟩ in the
same U(1) symmetry sector. A QS measure must be sensitive only to the coherences breaking the U(1) symmetry
and should not be sensitive to the above two effects. Here, we discuss how the QFI, Eq. (4), must be modified to
construct a QS measure for a general perturbation L1.

To do so, we first formally define what we mean by U(1) symmetry sectors. For a symmetry operator given by

Û(ϕ) = e−iϕÔ, with Ô a Hermitian operator, we denote the eigenvalues by the functions gµ(ϕ), µ = 1, . . .. For each
eigenvalue, there are in general a set Sµ of orthogonal eigenvectors, such that

Sµ = {|χ⟩ : Û(ϕ) |χ⟩ = gµ(ϕ) |χ⟩}. (S1)

Hence, the indices µ define eigenvectors belonging to different U(1) symmetry sectors. We will use the notation
|χ⟩µν , ν = 1, 2, . . . to index eigenvectors in the set Sµ.

We assume that the intrinsic dynamics of the system L0 and the undriven steady state ρ̂0 are U(1) symmetric.

For the latter, this means that Û(ϕ)ρ̂0Û
†(ϕ) = ρ̂0. Writing the spectral decomposition ρ̂0 =

∑
k qk |k⟩ ⟨k|, the U(1)

symmetry implies that each eigenvector can be written as a linear combination of vectors in a single symmetry sector
Sµ:

|k⟩ =
∑

ν

cν |χ⟩µν . (S2)

Hence, each vector |k⟩ is an eigenvector of Û(ϕ) with eigenvalue gµ(ϕ) for some fixed µ.

For the superoperator L0, the U(1) symmetry implies that it commutes with the superoperator Û(ϕ) · Û†(ϕ). In
particular, this implies that

Û(ϕ)(L0 |χ⟩µν ⟨χ|µ′ν′)Û
†(ϕ) = L0(Û(ϕ) |χ⟩µν ⟨χ|µ′ν′ Û

†(ϕ)) = gµ(ϕ)gµ′(ϕ)(L0 |χ⟩µν ⟨χ|µ′ν′). (S3)
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This implies that L0 |χ⟩µν ⟨χ|µ′ν′ is also a Liouville space eigenvector of Û(ϕ) · Û†(ϕ), i.e., L0 can only couple a

Liouville basis state |χ⟩µν ⟨χ|µ′ν′ with other Liouville basis states |χ⟩µ̃ν̃ ⟨χ′|µ̃′ν̃′ which share the same eigenvalue for

the superoperator Û(ϕ) · Û†(ϕ), i.e. gµ̃(ϕ)gµ̃′(ϕ) = gµ(ϕ)gµ′(ϕ) ∀ ϕ.
Given a general perturbation L1, we can write it as L1 = L1,s + L1,n, where L1,s is the U(1) symmetric part, i.e.

it only couples Liouville basis states with the same eigenvalue, similar to L0 above, and L1,n is the part that is not
U(1) symmetric and only couples Liouville basis states with different eigenvalues. Using linearity of superoperator
action and the U(1) symmetry properties of ρ̂0 and L0, we can show that Eq. (2) can be expressed as

∂ϵρ̂ ≡ ∂ϵρ̂s + ∂ϵρ̂n = −L−1
0 L1,sρ̂0 − L−1

0 L1,nρ̂0, (S4)

where the differential operator ∂ϵρ̂s is U(1) symmetric and hence its matrix elements satisfy

⟨k|∂ϵρ̂s|k′⟩ ≠ 0 =⇒ |k⟩ , |k′⟩ ∈ span(Sµ), (S5)

for some value of µ, i.e. |k⟩ , |k′⟩ belong to the same U(1) symmetry sector. On the other hand, the matrix elements
of ∂ϵρ̂n satisfy

⟨k|∂ϵρ̂n|k′⟩ ≠ 0 =⇒ |k⟩ ∈ span(Sµ) and |k′⟩ ∈ span(Sµ′) (S6)

for some µ, µ′ such that µ ̸= µ′, i.e. |k⟩ , |k′⟩ belong to different U(1) symmetry sectors.
Using the above observations on the matrix elements, the QFI, Eq. (4), can be expressed as

F ≡ Fs + Fn =
∑

µ

∑

k,k′

qk+qk′>0
|k⟩,|k′⟩∈ span(Sµ)

2

qk + qk′
|⟨k′|∂ϵρ̂s|k⟩|2 +

∑

µ,µ′

µ̸=µ′

∑

k,k′

qk+qk′>0
|k⟩∈ span(Sµ)

|k′⟩∈ span(Sµ′ )

2

qk + qk′
|⟨k′|∂ϵρ̂n|k⟩|2. (S7)

Hence, we can write F as the sum of the QFI Fs resulting from the U(1) symmetric perturbation L1,s and the QFI
Fn resulting from the part L1,n that only couples different U(1) symmetry sectors. Hence, we can discard Fs and use
Fn as the QS measure. Physically, it reflects the sensitivity to the amplitude ϵ if L1,n alone was applied to drive the
system.

In the presence of multiple drives, it is straightforward to extend the above arguments to show that the entire QFI
matrix can be expressed as

FM = FM,s +FM,n, (S8)

where FM,s and FM,n are evaluated from Eq. (4) of the main text using the differential operators {∂ϵm ρ̂s} and
{∂ϵm ρ̂n} respectively in place of the complete differential operators {∂ϵm ρ̂}. Analysis of the QFI matrix FM,n then
amounts to analyzing the multiple drive QS scenario by replacing each drive with the corresponding component that
only couples different U(1) symmetry sectors.

SII. QUANTUM VAN DER POL OSCILLATOR: CLASSICAL LIMIT

A. Convergence of Ω̃ → F/2

In this section we demonstrate that the synchronization measure Ω̃ becomes equal to F/2 in the classical limit.
Our analysis is more general than the one used in the Letter. In general, we consider an oscillator whose intrinsic
dynamics L0 leads to a steady state ρ̂0 that is diagonal in the Fock basis |m⟩0 with m = 0, 1, . . . . The Fock basis
plays here the role as the eigenbasis of the underlying U(1) symmetry. Under a weak external drive, the new steady
state is ρ̂. In this situation, the entropy based QS measure is defined as [1]

Ω = S(ρ̂diag)− S(ρ̂), (S9)

where S(ρ̂) is the von Neumann entropy of a density matrix ρ̂. The density matrix ρ̂diag is obtained by deleting all
off-diagonal elements of ρ̂, when it is expressed in the eigenbasis of the undriven steady state ρ̂0. Note that ρ̂diag is
not just the undriven steady state, since it contains the modified populations under the action of the external drive.
In the following, we will derive an analytical expression for Ω using second order perturbation theory and show that
it is proportional to the QFI when the steady state populations and coherences vary smoothly and slowly across the
ladder of states, which is true in the classical limit of the quantum van der Pol oscillator.
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We consider the effect of a resonant, weak external drive ϵĤ1 = ϵx̂ on the oscillator. The idea is now to derive Ω
in second order in ϵ. For this we write the Liouvillian as L = L0 + ϵL1 and the steady state up to second order in ϵ:

ρ̂ = ρ̂0 + ϵρ̂1 + ϵ2ρ̂2. (S10)

Solving for the steady state in each order in ϵ, we get the following conditions:

L0ρ̂0 =0, (S11)

L0ρ̂1 =− L1ρ̂0, (S12)

L0ρ̂2 =− L1ρ̂1. (S13)

Since the unperturbed steady state is diagonal in the Fock basis |m⟩0, we can write

ρ̂0 =
∞∑

m=0

am |m⟩0 ⟨m|0 , (S14)

with am > 0. Using now the explicit form of Ĥ1, Eqs. (S12) and (S13), and the U(1) symmetry properties of L−1
0 [see

Eq. (S3)], we can write the forms of ρ̂1, ρ̂2 to be

ρ̂1 =
∞∑

m=0

(bm |m⟩0 ⟨m+ 1|0 + b∗m |m+ 1⟩0 ⟨m|0), (S15)

ρ̂2 =
∞∑

m=0

cm |m⟩0 ⟨m|0 +
∞∑

m=0

dm |m⟩0 ⟨m+ 2|0 +
∞∑

m=0

d∗m |m+ 2⟩0 ⟨m|0 , (S16)

where the coefficients bm, dm, are in general complex numbers and cm are real. With this, we have already found the
diagonal representation

ρ̂diag =

∞∑

m=0

(am + ϵ2cm) |m⟩0 ⟨m|0 , (S17)

which can be used to calculate S(ρ̂diag).
Next, we find the diagonal representation of ρ̂. For this, we write the eigenvectors of ρ̂ as a series in ϵ

|m⟩ = |m⟩0 + ϵ |m⟩1 + ϵ2 |m⟩2 , (S18)

and accordingly write the eigenvalues as

λm = λm,0 + ϵλm,1 + ϵ2λm,2. (S19)

Using the fact that the vectors (S18) are the eigenvectors of Eq. (S10) with eigenvalues (S19), we can derive the
following conditions using perturbation theory

ρ̂0 |m⟩0 =λm,0 |m⟩0 ,
ρ̂0 |m⟩1 + ρ̂1 |m⟩0 =λm,0 |m⟩1 + λm,1 |m⟩0 ,

ρ̂0 |m⟩2 + ρ̂1 |m⟩1 + ρ̂2 |m⟩0 =λm,0 |m⟩2 + λm,1 |m⟩1 + λm,2 |m⟩0 . (S20)

Note that ρ̂1 in Eq. (S15) is off-diagonal in |m⟩0. Hence, we have

λm,1 =0, (S21)

|m⟩1 =[λm,0 − ρ̂0]
−1ρ̂1 |m⟩0 . (S22)

Furthermore, using Eq. (S16) we can calculate

λm,2 = ⟨m|0ρ̂1|m⟩1 + ⟨m|0ρ̂2|m⟩0 = ⟨m|0ρ̂1[λm,0 − ρ̂0]
−1ρ̂1|m⟩0 + ⟨m|0ρ̂2|m⟩0 . (S23)

This results in

λ0,2 =
|b0|2

a0 − a1
+ c0, (S24)

λm,2 =
|bm|2

am − am+1
+

|bm−1|2
am − am−1

+ cm, for m > 0. (S25)
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Summarizing the results, we find the following expressions for the eigenvalues of ρ̂:

λ0 =a0 + ϵ2
|b0|2

a0 − a1
+ ϵ2c0,

λm =am + ϵ2
|bm|2

am − am+1
+ ϵ2

|bm−1|2
am − am−1

+ ϵ2cm, for m > 0. (S26)

We are now ready to calculate Ω. We get

Ω = S(ρdiag)− S(ρ) =−
∑

m

[
[am + ϵ2cm] log

[
am + ϵ2cm

]
− λm log(λm)

]

≈
∑

m

[λm − am − ϵ2cm] [log (am) + 1]

=ϵ2
∞∑

m=0

|bm|2 log(am)− log(am+1)

am − am+1
, (S27)

where in the approximation step, we have used (x0 +x1) log(x0 +x1) ≈ x0 log(x0)+x1[log(x0)+ 1] for x1 ≪ x0, with
x1 = λm − (am + ϵ2cm) and x0 = am + ϵ2cm.

If a and b are smooth and slowly varying functions of m, then we can replace the finite difference in the summand
with the derivative d log(am)/dam = 1/am to obtain

Ω̃ =
Ω

ϵ2
≈

∞∑

m=0

|bm|2
am

. (S28)

On the other hand, for the QFI, we need to evaluate

F =
∑

m,m′

am+am′>0

2

am + am′
|⟨m′|0ρ̂1|m⟩0|2 =

∞∑

m=0

4|bm|2
am + am+1

≈
∞∑

m=0

2|bm|2
am

, (S29)

where the last approximation is justified if am, bm are smooth and slowly varying with m. Hence, we see that Ω̃ → F/2
under fairly general assumptions of smooth variation of populations and coherences across the ladder of Fock states.
In particular, these assumptions are valid in the classical limit of the quantum vdP oscillator, where we observe in
Fig. 1 of the main text that Ω̃ → F/2 for κ1/κ2 ≫ 1.

B. Evaluation of F and µ in classical limit

To evaluate F and µ in the classical limit of the quantum vdP oscillator, we use the results presented in Sec. SII
D of the Supplemental Material of Ref. [2]. We briefly summarize the relevant results using our notation.

First, in the limit that κ1 ≫ κ2, the occupations {am} of the Fock states {|m⟩0} are sharply peaked about the
classical expectation value m̄ = κ1/(2κ2) ≫ 1. This distribution can be approximated as a continuous function u(y)

of the variable y = (m− m̄)/
√
2m̄, which is found to be

u(y) =
1√
2m̄

√
2

3π
e−2y2/3. (S30)

This distribution is normalized according to the condition
∑

m am = 1, which amounts to
√
2m̄

∫
dyu(y) ≈ 1. Equa-

tion (S30) implies that the steady state number distribution has a mean m̄ and standard deviation given by
√

3m̄/2.
Second, in the presence of a weak drive, the coherences between adjacent levels, bm, can also be approximated by

a continuous distribution v(y). An important observation of Ref. [2] is that this distribution has the same functional
form as u(y) and is given by

v(y) = −2iϵ

κ1

1√
27π

e−2y2/3. (S31)

We note that the above equation differs by a factor of 2i from Eq. (S37) of Ref. [2] because of the different definitions
of the linear drive. We also remind that because of the different notation, the symbol ϵ is used to represent different
quantities in this work and Ref. [2].
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Using the above two results for u(y), v(y), we can use the continuum approximation of Eq. (S29) to evaluate F .
This leads to

F ≈
∞∑

m=0

2|bm|2
am

≈ 2
√
2m̄

∫ ∞

−
√

m̄/2

|v(y)|2
u(y)

≈ 2
√
2m̄

∫ ∞

−∞

|v(y)|2
u(y)

=
4

9κ1κ2
, (S32)

where in the second-to-last step, we have extended the lower limit of integration to −∞ since m̄ ≫ 1, resulting in a
standard gaussian integral.

In order to find µ = (∂ϵ⟨p̂⟩)2/Var(p̂), we separately evaluate the numerator and denominator. The denominator is
straightforwardly given as Var(p̂) = 1/4 + m̄/2 ≈ m̄/2. To find the numerator, we use Eq. (S31) to evaluate

⟨â⟩ =
∑

m

√
mbm =

√
2m̄

∫ ∞

−
√
m̄/2

dy

√√
2m̄y + m̄ v(y). (S33)

Since v(y) ∝ e−2y2/3, it is significant only for y ∼ O(1), whereas m̄ ≫ 1. Hence, we can approximate
√√

2m̄y + m̄ ≈√
m̄. Once again extending the lower limit of the integral to −∞ and performing the Gaussian integral, we obtain

⟨â⟩ ≈ 2ϵm̄

3κ1
. (S34)

We can now evaluate the numerator of µ, (∂ϵ⟨p̂⟩)2, and arrive at the final result that

µ =
(∂ϵ⟨p̂⟩)2
Var(p̂)

=
4m̄2

9κ2
1

× 2

m̄
=

4

9κ1κ2
. (S35)

SIII. QUANTUM VAN DER POL OSCILLATOR: QUANTUM LIMIT

Here, we compute analytic expressions for F and µ in the regime κ1/κ2 ≪ 1. In the limit κ1/κ2 → 0, the analysis
can be restricted to the lowest three levels, which respectively have populations [3]

p0 =
2

3
, p1 =

1

3
, p2 = 0. (S36)

Under the action of the drive ϵx̂, the equations of motion for the coherences between these levels can be written as

d

dt
ρ10 = −3

2
κ1ρ10 − i

ϵ

2
(p1 − p0) +O

(
κ1

κ2

)
,

d

dt
ρ21 = −κ2ρ21 +

√
2κ1ρ10 − i

ϵ√
2
(p2 − p1) +O

(
κ1

κ2

)
. (S37)

The above equations imply that the steady state coherences satisfy

ρ10 =
iϵ

9κ1
,
ρ21
ρ10

∝ κ1

κ2
≪ 1. (S38)

Hence, we only need to consider the ρ10 matrix element in the computation of F and the numerator of µ.
The resulting value of F is given by

F = 2× 2

p0 + p1
|∂ϵρ10|2 =

4

81κ2
1

, (S39)

where the extra factor of 2 arises because of the sum over k = 0, k′ = 1 and k = 1, k′ = 0 in Eq. (3) of the main text.
The numerator of µ is given by

(∂ϵ⟨p̂⟩)2 = |∂ϵρ10|2 =
1

81κ2
1

. (S40)

The denominator is given by the variance of p̂ in the undriven steady state, which can be evaluated as

Var(p̂) = ⟨p̂2⟩ − ⟨p̂⟩2 = ⟨p̂2⟩ = 1

4
(2⟨â†â⟩+ 1) =

5

12
. (S41)
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Hence, we find the value of µ to be

µ =
1

81κ2
1

× 12

5
=

4

135κ2
1

. (S42)

Thus, µ < F in the quantum limit κ1/κ2 ≪ 1. This means that, estimating the drive amplitude ϵ using the method
of moments approach [4] on the ‘signal’ ⟨p̂⟩ is not the optimal estimation strategy in this limit. We can understand
why this approach is sub-optimal by analyzing the contribution of the lowest three quantum levels to the quantity
Var(p̂). To do so, we write

Var(p̂) = ⟨p̂2⟩ = −1

4

〈(
|0⟩ ⟨1|+

√
2 |1⟩ ⟨2| − |1⟩ ⟨0| −

√
2 |2⟩ ⟨1|

)2
〉

=
1

4
(p0 + p1 + 2p1) =

5

12
. (S43)

The last term 2p1 in the parenthesis arises because of the contribution of the |2⟩ ⟨1| and |1⟩ ⟨2| operators to the overall
variance of p̂.

Equipped with this insight, we now define a new operator σ̂y, which is just the truncation of p̂ to the lowest two
levels. Defining µ̃ = (∂ϵ⟨σ̂y⟩)2/Var(σ̂y) we observe that the ‘signal’, i.e. the numerator, remains the same as before,
but the denominator no longer contains the extra noise contribution from |2⟩ ⟨0|. Hence, applying the method-of-
moments estimation technique using the mean and variance of σ̂y instead of p̂, the signal-to-noise ratio saturates the
QFI, i.e. µ̃ = F = 4/(81κ2

1).

SIV. TWO-QUBIT OSCILLATOR: SYMMETRY PROPERTIES OF QFIM

In the main text, we identified 8 possible drives that can be applied to the two-qubit oscillator (TQO), that in
principle lead to an 8× 8 QFIM. Here, we will show that, thanks to the symmetry of the system, this 8× 8 QFIM is
block-diagonal in drives along x and y, with each set of drives corresponding to identical 4× 4 QFIMs.

The master equation for the intrinsic dynamics of the TQO is given by

∂ρ̂

∂t
= L0ρ̂ = −i[Ĥ0, ρ̂] +

∑

j∈{1,2}
γjD[σ̂−

j ]ρ̂+
∑

j∈{1,2}
wjD[σ̂+

j ]ρ̂,

Ĥ0 = −ig(σ̂+
1 σ̂

−
2 − σ̂+

2 σ̂
−
1 ). (S44)

The U(1) symmetry of the intrinsic dynamics means that L0 and ρ̂0 are invariant under a unitary transformation by

the operator Û(ϕ) = e−iϕ(σ̂z
1+σ̂z

2 )/2. As a consequence, the steady state ρ̂0 has the form

ρ̂0 =
4∑

q=1

λq |q⟩ ⟨q| , (S45)

where λq are the (real, nonnegative) eigenvalues and the {|q⟩} are given by

|1⟩ = |↓↓⟩ ,
|2⟩ = a |↓↑⟩+ b |↑↓⟩ ,
|3⟩ = b |↓↑⟩ − a |↑↓⟩ ,
|4⟩ = |↑↑⟩ (S46)

where a, b are real coefficients (see Sec. SVI for a discussion of why they are real). The eigenvectors of ρ̂0 are also

eigenvectors of Ŝz = (σ̂z
1 + σ̂z

2)/2, and hence transform under Û(ϕ) as

|1⟩ → eiϕ |1⟩ , |2⟩ → |2⟩ , |3⟩ → |3⟩ , |4⟩ → e−iϕ |4⟩ . (S47)

We now consider the action of a perturbative drive composed of a linear combination of the 4 possible x drives that
changes Ĥ0 → Ĥ0 + ϵ · Ĥx, where

ϵ · Ĥx =ϵ1Ĥx,1 + ϵ2Ĥx,2 + ϵ3Ĥx,3 + ϵ4Ĥx,4 := ϵ1σ̂
x
1 + ϵ2σ̂

x
2 + ϵ3σ̂

z
2 σ̂

x
1 + ϵ4σ̂

z
1 σ̂

x
2 . (S48)

The corresponding change in the steady state is ρ̂0 → ρ̂0 + ϵ ·∇ϵρ̂, where the vector of differential changes in ρ̂ has
elements given by

∂ϵm ρ̂ = iL−1
0 [Ĥx,m, ρ̂0]. (S49)
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Since the drives have non-zero matrix elements only between states differing by ∆Sz = ±1, the perturbations to the
steady state have the form

∂ϵm ρ̂ = c21 |2⟩ ⟨1|+ c31 |3⟩ ⟨1|+ c42 |4⟩ ⟨2|+ c43 |4⟩ ⟨3|+H.c. (S50)

The drives along x can be transformed to a drive along any direction ϕ in the x − y plane by the transformation
Ĥϕ = Û(ϕ)ĤxÛ(ϕ)†. Here, ϕ = 0 (ϕ = π/2) corresponds to drives along x (y). Because of the U(1) symmetry of L0

and ρ0, the ∂ϵm ρ̂ transform as

(∂ϵm ρ̂)ϕ = iL−1
0 [ÛϕĤx,mÛ†

ϕ, ρ̂0] = iÛϕL−1
0 [Ĥx,m, ρ̂0]Û

†
ϕ = Ûϕ∂ϵm ρ̂Û†

ϕ. (S51)

Hence, the matrix elements of ∂ϵm ρ̂ transform as

⟨k|(∂ϵm ρ̂)ϕ|1⟩ = eiϕ ⟨k|∂ϵm ρ̂|1⟩ , ⟨4|(∂ϵm ρ̂)ϕ|k⟩ = eiϕ ⟨4|∂ϵm ρ̂|k⟩ , k = 2, 3. (S52)

As a result, the QFIM for the set of drives specified by Ĥϕ is independent of ϕ as the phase factor cancels in the
evaluation of the QFIM. This shows that the set of x drives and the set of y drives contribute identical 4 × 4 QFI
matrices to the full 8× 8 QFIM.

It now remains to show that the off-diagonal blocks, corresponding to driving one qubit along x and the other
along y, vanish. First, it can be shown by explicit calculation that the elements of the matrices (∂ϵm ρ̂)ϕ=0 ∀ m, i.e.
for all four drives along x, are purely imaginary (see Sec. SVI below Eq. (S56)). Consequently, from Eq. (S52), the
matrix elements of all the matrices (∂ϵm ρ̂)ϕ=π/2, i.e., for driving along y, are purely real. Therefore, when evaluating
the off-diagonal QFI matrix elements according to Eq. (4) of the main text, the real part of the product of matrix
elements of (∂ϵm ρ̂)ϕ=0 and (∂ϵm ρ̂)ϕ=π/2 vanishes. Hence, the QFIM is block diagonal in the x and y drives.

SV. TWO-QUBIT OSCILLATOR: OPTIMIZED DRIVES

In Fig. 2 of the main text, we optimized the synchronization of the two-qubit oscillator and discussed the maximum
QFI possible in the presence of the full set of x drives or when the drives are limited to only the single-particle drives.
Here, we discuss the optimal linear combinations of drives, i.e. the eigenvectors of the QFIM, that maximize the QFI.

Figure S1(a) plots Fmax,s, the maximum QFI when the drives are restricted to be linear combinations of the single-

particle drives Ĥ1,1 = σ̂x
1 and Ĥ1,2 = σ̂x

2 [see Eq. (7) of the main text], as g is scanned. For comparison, the QFI
F1 when only either one of the two drives is applied is also shown. The components of the optimized eigenvector are
shown on the same plot as solid lines. Because of the symmetry of the chosen gain and loss parameters for the two
qubits, the 2 × 2 QFIM FM,s has equal diagonal elements. Hence, the maximal eigenvector nmax,s takes the form

(1,±1)/
√
2, where the sign depends on the sign of the off-diagonal element FM,s,12. This feature is evident in the solid

lines, with the component nmax,s,1 corresponding to the amplitude of σ̂x
1 fixed at 1/

√
2 and nmax,s,2 displaying abrupt

jumps between ±1/
√
2. Physically, this implies that in certain ranges of the qubit-qubit coupling strength g, the

qubits must be driven in phase to maximize the QFI whereas in other ranges they must be driven 180◦ out-of-phase.
The points where nmax,s,2 changes sign corresponds to the values of g where the off-diagonal element of FM,s vanishes,
making it proportional to the 2 × 2 identity matrix. These are precisely the points where D1 = D2 = 1 in Fig. 2(b)
of the main text. Hence, zero-crossings of the off-diagonal element signify a crossover in the optimal driving from
in-phase to out-of-phase for the two qubits.

Figure S1(b) extends the eigenvector analysis to the full set of x drives, with Ĥ1,1 = σ̂x
1 , Ĥ1,2 = σ̂x

2 , Ĥ1,3 = σ̂z
2 σ̂

x
1 and

Ĥ1,4 = σ̂z
1 σ̂

x
2 . The black dashed line shows the variation of the maximal QFI, Fmax with g. Also shown for comparison

are the QFI curves obtained under driving with only Ĥ1,1 (F1) and only Ĥ1,3 (F3). Because of the symmetric choice
of bath parameters, F2 = F1 and F4 = F3. Unlike in the case of single-particle drives, optimizing using the full set
of x drives leads to a smooth variation of the components of the maximal eigenvector, which are shown as solid lines.
The component nmax,1 is identical to nmax,2 and is not visible since it is perfectly overlaid by the latter curve. For
any value of g, we find that the optimal driving strategy is to apply the two single-particle drives in phase and with
equal amplitude, and the two conditioned drives Ĥ1,3, Ĥ1,4 out-of-phase but with equal amplitude. Furthermore, it
is advantageous to assign larger amplitudes to the conditioned drives than to the single-particle drives for all values
of g. Interestingly, there appears to be a special value of g where the amplitudes of the single-particle drives vanish
and maximum synchronization is obtained by driving the system with purely conditioned drives. The analysis of
optimal eigenvectors thus promises to provide a window into the rich physics of the response of quantum many-body
oscillators to external driving, and represents an exciting avenue for future work.
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FIG. S1. Optimized eigenvectors for synchronization of the two-qubit oscillator. (a) Drives optimized over the set of single-
particle x drives, and (b) Drives optimized over the full set of x drives. In both cases, QFI values for various cases (see text)
are shown as dashed lines, while the components of the optimized eigenvector that achieves Fmax,s or Fmax

are shown as solid lines. The various curves and symbols are discussed in the text in Section SV.

SVI. TWO-QUBIT OSCILLATOR: PERFECT DRIVE ORTHOGONALITY AT NON-ZERO g

In this section, we will show by explicit calculation that, for the parameters considered in Fig. 2 of the main text,
the choice of qubit-qubit coupling g =

√
3Γ/2 corresponds to a special point where the single-particle drives ϵσ̂x

1 and
ϵσ̂x

2 lead to perfectly orthogonal responses, i.e. D1 = D2 = 1 [see Eq. (6) of the main text].

We first compute the steady-state solution of the undriven TQO for general choice of gain, loss and coupling rates.
The only constraint we assume is that wj + γj = Γ for j = 1, 2, since this is sufficient for our analysis and simplifies
the analytic expressions. Because of the U(1) symmetry, the steady-state density matrix ρ̂0 is completely determined
by the expectation values of four operators that are invariant under the U(1) symmetry:

xT = (x1, x2, x3, x4) = ⟨x̂⟩T = (⟨σ̂z
1⟩, ⟨σ̂z

2⟩, ⟨σ̂+
1 σ̂

−
2 ⟩, ⟨σ̂z

1 σ̂
z
2⟩). (S53)

Note that ⟨σ̂+
2 σ̂

−
1 ⟩ = x∗

3 and expectation values of operators that are not invariant under the U(1) symmetry are equal
to zero: ⟨σ̂+

j ⟩ = 0 and ⟨σ̂z
kσ̂

+
j ⟩ = 0 for j, k = 1, 2 and k ̸= j.

Writing down the equations of motion for these expectation values ∂tx = Tr[x̂L0ρ̂] and solving for the steady state
solution, we find

x1 =
d1 + 2ḡ2(d1 + d2)

1 + 4ḡ2
,

x2 =
d2 + 2ḡ2(d1 + d2)

1 + 4ḡ2
,

x3 =
ḡ(d1 − d2)

2(1 + 4ḡ2)
,

x4 =
d1d2 + ḡ2(d1 + d2)

2

1 + 4ḡ2
, (S54)

where dj = (wj − γj)/Γ for j = 1, 2 and ḡ = g/Γ are dimensionless parameters of the TQO. This calculation shows
that, although x3 can in general be complex, here it is purely real. The 4× 4 density matrix ρ̂0 can thus be entirely
expressed using the above 4 expectation values as a real, symmetric matrix. Hence, it has real eigenvalues and
eigenvectors, which justifies the choice of real coefficients a, b in Eq. (S46).

Under the influence of the single-particle drive ϵσ̂x
1 , operators that break U(1) symmetry acquire non-zero expec-

tation values. At O(ϵ), the operators acquiring non-zero steady-state expectation values are

yT = ⟨ŷ⟩T = (⟨σ̂+
1 ⟩, ⟨σ̂+

2 ⟩, ⟨σ̂z
2 σ̂

+
1 ⟩, ⟨σ̂z

1 σ̂
+
2 ⟩), (S55)
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which satisfy a set of linear equations My = iϵc, where

M =



−Γ/2 0 0 g
0 −Γ/2 −g 0

Γd2 g −3Γ/2 0
−g Γd1 0 −3Γ/2


 , c =




x1

0
x4

−2x3


 . (S56)

Since y = iϵM−1c, and ϵ,M , c are real, the elements of y are purely imaginary. It can be checked by explicit
calculation of the source term c, that the same argument applies when the drive is replaced by any arbitrary linear
combination of the 4 possible x drives. Combined with the fact that the eigenvectors of ρ̂0 are all real, this proves
the statement towards the end of Sec. SIV that the matrix elements of (∂ϵm ρ̂)ϕ=0 are all purely imaginary.

In Fig. 2 of the main text, we choose the system parameters γ1 = w2 = Γ and w1 = γ2 = 0. Equations (S54)
and (S56) can then be used to find explicit expressions for y as a function of a single parameter ḡ = g/Γ. To find the
specific point ḡ∗ where D1 exhibits a revival to 1, we are guided by the structure of the numerically determined form
of ∂ϵρ̂ for the drive ϵσ̂x

1 . In particular, we observe a blockade in the buildup of certain coherences as we approach the
revival point: The coherences established by the drive ϵσ̂x

1 between the eigenstates |1⟩ − |3⟩ and |1⟩ − |2⟩ vanish [see
Eq. (S46)]. On the other hand, if the drive was replaced by ϵσ̂x

2 , the |4⟩ − |3⟩ and |4⟩ − |2⟩ coherences vanish. Hence,
at the point ḡ∗ where D1 = 1, the drives lead to perfectly orthogonal responses since they only induce coherences
between mutually exclusive pairs of levels.

To determine the point ḡ∗, we therefore solve for the condition that under the influence of the drive ϵσ̂x
1 , the two

operators |↑↓⟩ ⟨↓↓| and |↓↑⟩ ⟨↓↓|, which contribute to the |1⟩− |3⟩ and |1⟩− |2⟩ coherences, have vanishing expectation
values. These conditions respectively lead to the following equations for ḡ∗:

⟨|↑↓⟩ ⟨↓↓|⟩ = 0 =⇒ y2 − y4 = 0 =⇒ ḡ∗
(
ḡ∗2 − 3

4

)
= 0,

⟨|↓↑⟩ ⟨↓↓|⟩ = 0 =⇒ y1 − y3 = 0 =⇒ ḡ∗2
(
ḡ∗2 − 3

4

)
= 0. (S57)

Both the conditions are simultaneously satisified at ḡ∗ = 0 and ḡ∗ =
√
3/2. The ḡ∗ = 0 point is trivial, since the

two qubits are not interacting at this point. On the other hand, the point ḡ∗ =
√
3/2 is non-trivial and the complete

vanishing of coherences involving the state |↓↓⟩ arises from an interplay of gain, loss and qubit-qubit interactions.
Because of the symmetric choice of gain and loss parameters, the same solutions for ḡ∗ will be found if the drive ϵσ̂x

2

is applied and we solve for the coherences involving the state |↑↑⟩ to vanish.
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