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ABSTRACT. We study an initial-boundary-value problem (IBVP) for a system of coupled Maxwell-Bloch
equations (CMBE) that model two colors or polarizations of light resonantly interacting with a degenerate, two-
level, active optical medium with an excited state and a pair of degenerate ground states. We assume that the
electromagnetic field approaches non-vanishing plane waves in the far past and future. This type of interaction
has been found to underlie nonlinear optical phenomena including electromagnetically induced transparency,
slow light, stopped light, and quantum memory. Under the assumptions of unidirectional, lossless propagation
of slowly-modulated plane waves, the resulting CMBE become completely integrable in the sense of possess-
ing a Lax Pair. In this paper, we formulate an inverse scattering transform (IST) corresponding to these CMBE
and their Lax pair, allowing for the spectral line of the atomic transitions in the active medium to have a finite
width. The scattering problem for this Lax pair is the same as for the Manakov system. The main advancement
in this IST for CMBE is calculating the nontrivial spatial propagation of the spectral data and determining the
state of the optical medium in the distant future from that in the distant past, which is needed for the complete
formulation of the IBVP. The Riemann-Hilbert problem is used to extract the spatio-temporal dependence of the
solution from the evolving spectral data. We further derive and analyze several types of solitons and determine
their velocity and stability, as well as find dark states of the medium which fail to interact with a given pulse.
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1. INTRODUCTION

This paper considers nonlinear resonant interaction between a light beam and an active optical medium
with three working levels, arranged in what is suggestively known as the Λ-configuration. This configuration
consists of two ground levels and an excited level, with a forbidden atomic dipole transition between the
two ground levels. The two allowed dipole transitions interact with light of either two different colors or
opposite circular polarizations. In the latter case, the medium can be considered as having two working
levels, with the ground level being degenerate, as shown in Figure 1. This type of interaction underlies laser
operation [1] and a version of self-induced transparency (SIT) [2]. It is also believed to underlie phenomena
such as inversionless laser operation [3, 4], electromagnetically induced transparency (EIT) [5–7], slow
light [8–12], and quantum memory [13].

After assuming lossless, unidirectional light propagation and slow modulation of the plane carrier light
waves, we find the interaction between light of two different colors or opposite circular polarizations and a
Λ-configuration active optical medium to be described by the following Λ-configuration coupled Maxwell-
Bloch equations (CMBE) [2, 14–19]:

(1)

ρt = [ikJ +Q, ρ], Qz = −
1
2 ∫

∞

−∞

[J, ρ] g(k)dk, (t, z, k) ∈ R×R+ ×R,

Q(t, z) ∶= ( 0 −E⊺

E∗ O2×2
) , E(t, z) ∶= (E1(t, z), E2(t, z))⊺ ∈ C2,

ρ(t, z, k)† = ρ(t, z, k) ∈ C3×3, J ∶= diag(1,−1,−1),
where the subscripts t and z denote differentiation with respect to t and z, respectively; O2×2 is the 2 × 2
zero matrix; the superscripts ⊺, ∗, and † denote the matrix transpose, complex conjugate, and conjugate
transpose, respectively; and [A, B] ∶= AB − BA is the matrix commutator. The variable z = zlab is the
propagation distance and the variable t = tlab − zlab/c is the retarded time; c denotes the speed of light. The
complex vector E(t, z) contains the envelopes of the two modulated, plane-wave, light (electric field) com-
ponents interacting with the dipole transitions between each ground state and the excited state. The density
matrix ρ(t, z, k) is a 3 × 3 Hermitian matrix representing the state of the medium. The diagonal entries of
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FIGURE 1. Quantum transition diagram for the Λ-configuration CMBE (1) in the case
of a degenerate, two-level, active optical medium interacting with two opposite circular
polarizations of monocromatic light. Please see the discussion following Equations (1) for
an explanation of the variables.

ρ(t, z, k) denote the populations of the atoms in the excited state and the two ground states, respectively.
The off-diagonal elements ρ12 and ρ13 denote the complex-valued envelopes of the medium polarizability
contributions corresponding to the two dipole transitions, while ρ23 denotes the average coherence between
the two ground states. The probability density function g(k) describes the shape of the spectral line. In par-
ticular, g(k) dk gives the proportion of the atoms in the medium whose transition frequencies are detuned
from the resonance with the carrier frequencies of the two impinging light components by the amount k.
This spectral-line shape corresponds to the inhomogeneous broadening of the spectral line and is caused by
phenomena such as the Doppler effect (if the medium is a rarefied gas) [20]. Frequently, it is modeled by
a Lorentzian function, which we will do in this paper whenever a specific g(k) is required. Equations (1)
were shown to be completely integrable in the sense of being derived from a Lax pair [2,16,17], as reviewed
in Section 2.1.

Equations (1) are a generalization of the classic, two-level Maxwell-Bloch equations (MBE), which have
been studied extensively for over three quarters of a century [21–24]. (See [20] and references therein
for many of the optical effects this model describes.) The integrable nature of this model was gradually
revealed in [25–30]. The Lax pair was discovered in [31], where the SIT was explained from the viewpoint
of the IST, with additional explanations of physical effects following in [32]. (See also the description
in [33].) Improvements of the IST used for describing more general physical phenomena were developed
for photon echo [34], nonlinear amplification [35, 36], and superfluorescence [37, 38]. The development of
the complete IST for MBE with vanishing asymptotic values of the electric field in the far past and future
was accomplished in [39]. Additionally, a self-similar Bessel-function solution related to superfluorescence
was discovered in [37, 38]. Self similar solutions of MBE and CMBE belonging to families of Painlevé-III
functions and related to Bessel functions were also studied in [40, 41]. In [42, 43], we developed the IST to
study the IBVP for the classic MBE with symmetric, non-vanishing asymptotic values of the electric-field
envelope in the distant past and future, and described several families of soliton solutions.

The nontrivial nature of the phenomena described by the CMBE versus MBE is exemplified by the fact
that even the single soliton described by the CMBE need not be a traveling wave. In fact, typically, when
the asymptotic values of the electric field in the distant past and future vanish, the interaction induced by a
soliton will switch from one transition to the other and thus exhibit an internal degree of freedom [44, 45].

The IST for the Λ-configuration CMBE with vanishing asymptotic values of the electric-field envelopes
in the far past and future was gradually developed in [16, 19, 45, 46]. Meanwhile, special solutions of
CMBE with vanishing and non-vanishing asymptotic values in the past and future were obtained using
symmetry-based methods such as Darboux transformations or dressing, primarily in the sharp-line limit of
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g(k) = δ(k), the Dirac delta. These include descriptions of SIT [47, 48], slow light [8–12], and soliton and
rational solutions [49, 50].

In this paper, we develop the IST for CMBE with symmetric, non-vanishing asymptotic values of the
electric-field envelopes in the far past and future. Typically, non-vanishing asymptotic values in IBVPs for
integrable problems are given at spatial infinity, and so such problems are described as having non-zero
boundary conditions (NZBC). This is not the case for CMBE, and the best way to interpret the physical
phenomena described here is as optical pulses riding on top of a non-zero (continuous-wave) background
(NZBG), which is the terminology we will use in the rest of this paper. (The terminology for the zero
background will be ZBG.) Additionally, in most of our discussion, we will maintain an arbitrary, unspecified
shape of the spectral line, g(k), since our results do not depend on it.

For the scattering and inverse-scattering steps of the IST we have devised, a close relation exists between
CMBE and the focusing coupled nonlinear Schrödinger (NLS) equation (the focusing Manakov system).
Namely, both systems share an identical scattering problem, the 3 × 3 non-self-adjoint Zakharov-Shabat
problem described in Section 2.1 below, albeit in the spatial variable for the Manakov system and the tem-
poral variable in CMBE. As a consequence, the same initial/input data yield the same initial/input spectra
for both systems. Moreover, since the scattering problem also governs the inverse-scattering step of the IST,
we see that the calculation procedure used in this step is the same for both systems. We therefore simply
reuse the scattering/inverse-scattering approach developed for the IBVP for the focusing Manakov system
with NZBC at infinity [51].

In contrast to the scattering problem, the propagation/evolution problems in the Lax pairs for CMBE
and the focusing Manakov systems differ dramatically, due to the non-trivial initial values of the matrix ρ,
representing the initial state of the medium in the CMBE. As a result, the evolution/propagation of the
spectral data (reflection coefficients and norming constants) in the ISTs for the two systems differ in a
fundamental way. For the Manakov system, the (temporal) evolution of the spectral data is trivial, and is
thus often skipped altogether by finding simultaneous eigenfunctions of both equations in the Lax pair at the
very beginning of the IST procedure. On the other hand, the (spatial) propagation (along the z-variable) of
the spectral data for CMBE is complicated and can only be found using a rather involved set of calculations.
Note that this complication occurs even for MBE and CMBE with ZBG [31, 39, 46] and for MBE with
NZBG [43], and that the presence of an inhomogeneously-broadened spectral line g(k) with finite width
helps in deciding how to take crucial steps in the derivation of the propagation equations. Therefore, a large
portion of this work focuses on deriving the equations for the propagation of the spectral data for CMBE,
and this includes some detailed calculations that are relegated to the Appendix.

A byproduct of the IST developed in this paper is a general, explicit formula for N-soliton solutions valid
for any shape of the spectral line, of which formulae previously derived by Darboux transformations and
dressing are special cases. Moreover, even single CMBE solitons display a variety of different dynamical
behaviors, and we find a rich family of both soliton solutions and solutions that can be obtained as their
limits. In particular, we show that there exist three types of solitons, whose properties depend on the loci
of the corresponding discrete eigenvalues in the scattering problem. The first type is a direct generalization
of the classic two-level MBE solitons, but the other two types exhibit entirely new features. In addition, we
find limiting rational solutions, periodic solutions, and a new plane-wave solution, different from the one
used in our initial formulation of the IST. We emphasize that carrying out the calculations using a general,
inhomogeneously-broadened spectral-line shape g(k) is crucial in establishing the forms of these solitons;
calculations performed directly in the sharp-line limit may inadvertently lead to unphysical solutions. (Cf.
the discussion in [42, 43].) Finally, we carry out parameter studies of the soliton dynamics and their limits
for the case of the Lorenztian shape of the spectral line. In particular, we investigate how the (subluminal or
superluminal) pulse velocity and stability depend on the input values of the spectral data and the initial state
of the medium in the distant past.

The remainder of this paper is organized as follows: In Section 2, we set up the IBVP, review the Lax
pair for the CMBE, and discuss the background solutions used in the IBVP. In Section 3, we solve the
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direct scattering problem, which includes defining the Jost eigenfunctions and scattering data, investigating
the auxiliary direct problem, and calculating the symmetries and asymptotics of the eigenfunctions. In
Section 4, we discuss the propagation of the spectral data along the medium, i.e., the propagation stage of
the IST. In Section 5, we cast the inverse-scattering problem in terms of an RHP and present implicit integral
formulas for the solutions. In Section 6, we discusses a number of exact solutions of CMBE with NZBG
and an arbitrary spectral-line shape, including three types of soliton solutions, rational solutions, periodic
solutions and a nontrivial plane-wave solution. In Section 7 we focus on the case of the inhomogeneous
broadening for which the spectral-line shape is a Lorentzian, and investigate numerical examples of the
exact solutions we had obtained in detail. Appendices contain the lengthier calculations and proofs.

2. FORMULATION AND BACKGROUND

In this section, we present the formulation of IBVP for CMBE (1) with NZBG to lay the groundwork
for the IST. In particular, we describe the Lax pair, the Riemann surface and the uniformization variable,
the background solutions with correct asymptotic behavior in the distant past and future, reductions of the
NZBG problem to the ZBG problem, and dark states that do not interact with a given light beam.

2.1. Initial-boundary values and the Lax pair. In this section, we present the Lax pair and the formula-
tion of the IBVP for CMEB (1) with NZBC. This Lax pair is given by the equations

ϕt = X ϕ , X(t, z, k) ∶= ikJ +Q(t, z) ,(2a)

ϕz = V ϕ , V(t, z, k) ∶= iπ
2
Hk[ρ(t, z, k)g(k)] ,(2b)

where ϕ = ϕ(t, z, k) is the (auxiliary) wave function andHk denotes the Hilbert transform

(3) Hk[ f (k)] ∶=
1
π ∫
−
∞

−∞

f (k′)
k′ − k

dk′ .

The physical problem we consider is that of a beam consisting of two colors or polarizations of light,
described by the complex vector envelope E(t, z), traveling inside a narrow, semi-infinite tube filled with
the active optical medium located along the non-negative z-axis, z ≥ 0. The light beam is injected into the
medium at z = 0, and propagates along it as z increases. In the reference frame co-moving with the speed
of light, t → −∞ denotes the distant past and t → +∞ denotes the distant future. Without loss of generality,
we take the light cone as t > 0 and z > 0.

In CMBE (1), the physical meaning of t and z is that of a temporal and spatial variable, respectively.
However, reflecting the initial-value-signaling nature of the problem we are investigating for CMBE (1), in
the formulation of IST governed by the Lax pair (2), t plays the role usually reserved for the spatial variable
and z that for the temporal variable. Moreover, we adopt a change in the terminology describing the IST.
In particular, the three major stages of IST are typically referred to as the direct problem, the evolution, and
the inverse problem. Here, we rename the second stage as the propagation, in order to reflect the fact that,
in a signaling problem, z represents the propagation distance of the light into the medium.

To finalize the problem formulation as well as to avoid certain technical difficulties in the further devel-
opment, we make the following assumptions:

(1) Symmetric nonzero backgroud amplitudes: The electric field has the same intensity in the distant
past and in the distant future, i.e., ∥E(t, z)∥2 → E0 > 0 as t → ±∞. In particular, we write E(t, z) →
E±(z) as t → ±∞, where E±(z) ∶= (E±,1(z), E±,2(z))⊺.

(2) Initial conditions (injected light beam): At the injection point z = 0, the vector-valued electric-
field envelope E(t, 0) decays towards the background as t → ±∞ sufficiently fast. In other words,
E(t, 0)− E±(z)→ 0 sufficiently fast as t → ±∞, respectively.

(3) Discrete spectrum of the scattering operator X in Equation (2a):
(a) There are no spectral singularities and no embedded eigenvalues on the continuous spectrum.
(b) All discrete eigenvalues are simple.
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We now show that, without loss of generality, the asymptotic value E−(0) of the injected electric-field
envelope can be chosen as a real vector. To do so, we present the following:

Lemma 1. Let U be a constant 2× 2 unitary matrix, i.e., UU† = I. Define a 3× 3 unitary matrix Uext

Uext = (
1 0
0 U∗) , U−1

ext = (
1 0
0 U⊺) .

Let E(t, z) and ρ(t, z, k) form a solution of CMBE (1). Then the functions

(4) Ẽ(t, z) ∶= U−1E(t, z) , Q̃(t, z) ∶= UextQ(t, z)U−1
ext , ρ̃(t, z, k) ∶= U−1

extρ(t, z, k)Uext ,

also form a solution of CMBE (1).

Remark 1 (On the simplified distant-past value of the injected light beam). In general, one can write the
distant-past value of the injected optical field as E−(0) = (E0eiα1 cos α, E0eiα2 sin α) with αj ∈ [0, 2π) and
α ∈ [0, π/2]. Applying Lemma 1 with U = diag(eiα1 , eiα2) and dropping the tilde, the above value E−(0)
can be transformed into

(5) E−(0) = (E0 cos α, E0 sin α)⊺ , with α ∈ [0, π/2].
Hence, without loss of generality, in the rest of the work we take the condition (5) as the asymptotic injected
background value in the distant past.

2.2. Riemann surface and uniformization variable. Similarly to other integrable systems with NZBC
such as the non-self-adjoint Zakharov-Shabat spectral problem, the formulation of IST can be simplified
by utilizing a uniformization variable ζ(k) in the spectral plane. We only present a quick review of this
approach here, and also take this opportunity to discuss two equivalent formulations of IST. In particular, a
complex-valued square-root function, λ(k), appears in the IST,

(6) λ(k) ∶= (E2
0 + k2)

1
2 , k ∈ C .

To complete the definition of λ(k), one needs to specify the branch cut corresponding to this square root in
the complex plane. For this cut, we can use two topologically distinct choices:

● The interval i[−E0, E0] along the imaginary axis: On the real line, one can then write λ(k) =
sign(k)

√
E2

0 + k2, with k ∈ R. This definition of λ(k) is discontinuous at k = 0, but has the
advantage that λ(k) → k as E0 → 0. It can be shown that this choice of the branch cut allows one
to take the limit E0 → 0 directly and continuously throughout the formulation of IST to recover the
IST for CMBE (1) with ZBG [43].
● The interval union i(−∞,−E0] ∪ i[E0,∞) (or any other pair of non-intersecting curves con-

necting ±iE0 and ∞): On the real line, we write λ(k) =
√

E2
0 + k2 with k ∈ R. This definition of

λ(k) is continuous on the entire real line, but in the limit E0 → 0, does not recover k from λ(k).
Without showing details, to recover the ZBG case of IST, more care must be taken in the limiting
process with this choice of the branch cut [43].

Remark 2 (Equivalence between choices of branch cut). Despite the previous discussion and compari-
son, it is worth pointing out that the two choices of the branch cut for λ(k) in Equation (6), and the two
corresponding versions of IST, can be shown to be equivalent, just as in the classic two-level case [43].

Because of this equivalence and its advantages, in this paper, we use the first definition of the branch cut,
i.e., along the interval i[−q0, q0]. This choice allows us to take the limit E0 → 0 and recover the case of ZBG
in a trivial way.

Once we have settled on the branch cut, we naturally introduce two sheets of the complex k-plane, CI
and CII, with the square root in λ(k) taking different signs on each sheet. We introduce subscripts I and II
to denote a quantity evaluated on the first and second k-sheet, respectively.
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In order to simplify calculations on two separate copies of the complex plane, we further introduce a
two-sheeted Riemann surface by defining a uniformization variable ζ(k),

(7) ζ(k) ∶= k + λ(k) , k ∈ C .

The Riemann surface ζ ∈ C is obtained by gluing the two copies of the complex k-plane together along the
branch cut i[−E0, E0]. Correspondingly, the origin of the first sheet is mapped to ∞ in the ζ-plane, i.e.,
0I ↦ ∞, whereas the origin of the second sheet is mapped to the origin of the ζ-plane, i.e., 0II ↦ 0. The
corresponding inverse transforms are given by

(8) k(ζ) = ζ + ζ̂

2
, λ(ζ) = ζ − ζ̂

2
, where ζ̂ ∶= −

E2
0

ζ
, ζ ∈ C/{0} .

We point out that the above transforms are only valid on the punctured complex plane, because ∞II is
mapped to the origin in the ζ-plane.

In the formulation of the IST, we use the uniformization variable ζ instead of the original spectral variable
k for most of the calculations.

2.3. Background solutions. We present the simplest solution of CMBE (1) corresponding to the IBVP
with NZBG (5) at infinity. The calculations are presented in Appendix A. This solution is given by the
formulas

(9)

Ebg,1(z) ∶= E0e
i
2 ∫

z
0 w(s)ds cos α ,

Ebg,2(z) ∶= E0e
i
2 ∫

z
0 w(s)ds sin α ,

ρbg(t, z, k) ∶= ϱbg,1,1ρ
(1)
bg (t, z, k)+ ϱbg,2,2ρ

(2)
bg (t, z, k)+ ϱbg,3,3ρ

(3)
bg (t, z, k) ,

which contain three free parameters, ϱbg,j,j ≥ 0, for j = 1, 2, 3. The quantity w(z) is given by

(10) w(z) ∶= ∫
∞

−∞

(ϱbg,1,1(z)− ϱbg,3,3(z))
g(k)
λ(k)

dk ∈ R ,

and the three matrices ρ
(j)
bg (t, z, k) are given by

(11)

ρ
(1)
bg (t, z, k) ∶= 1

2λ

⎛
⎜⎜
⎝

ζ iEbg,1 iEbg,2

−iE∗bg,1 (λ − k) cos2 α (λ − k) sin α cos α

−iE∗bg,2 (λ − k) sin α cos α (λ − k) sin2 α

⎞
⎟⎟
⎠

,

ρ
(2)
bg (t, z, k) ∶=

⎛
⎜
⎝

0 0 0
0 sin2 α − sin α cos α

0 − sin α cos α cos2 α

⎞
⎟
⎠

,

ρ
(3)
bg (t, z, k) ∶= 1

2λ

⎛
⎜⎜
⎝

λ − k −iEbg,1 −iEbg,2

iE∗bg,1 ζ cos2 α ζ sin α cos α

iE∗bg,2 ζ sin α cos α ζ sin2 α

⎞
⎟⎟
⎠

,

Remark 3. The background solution ρbg for the state of the medium is a linear combination of the three

components ρ
(j)
bg (t, z, k) in general. Note that for each component trρ

(j)
bg (t, z, k) = 1 for all t, z and k. All

diagonal entries for ρ
(j)
bg (t, z, k) are always nonnegative. Therefore, trρbg(t, z, k) = ϱbg,1,1 + ϱbg,2,2 + ϱbg,3,3,

which is the total population of atoms in the optical medium.
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2.4. Zero boundary condition reductions of the background solutions. In order to better understand the
physical meaning of the background solution and the roles played by the coefficients ϱbg,j,j, we relate the
solution (9) to its counterpart in the case of ZBG. Thus, we next consider the limiting case as Ebg → 0, i.e.,
E0 → 0. This also enables us to relate the two k-sheets and explore any potential symmetries.

We know from the definition that λI → k as E0 → 0, and λII → −k. We now examine the background
solution (9) in the same limit.
● On sheet I, the background density matrix reduces to

ρbg →
⎛
⎜
⎝

ϱbg,1,1 0 0
0 ϱbg,2,2 sin2 α + ϱbg,3,3 cos2 α (ϱbg,3,3 − ϱbg,2,2) sin α cos α

0 (ϱbg,3,3 − ϱbg,2,2) sin α cos α ϱbg,2,2 cos2 α + ϱbg,3,3 sin2 α

⎞
⎟
⎠

, E0 → 0 ,

Recall that ρ1,1 corresponds to the population of the atoms in the excited state, and ρ2,2 and ρ3,3 correspond
to the populations of the two ground states, respectively. Thus, in the limit E0 → 0, ϱbg,1,1 indicates the
population of excited atoms, and ϱbg,2,2 and ϱbg,3,3 relate to the populations in the two ground states. This
situation is identical to the case of ZBG.
● On sheet II, the density matrix becomes

ρbg →
⎛
⎜
⎝

ϱbg,3,3 0 0
0 ϱbg,2,2 sin2 α + ϱbg,1,1 cos2 α (ϱbg,1,1 − ϱbg,2,2) sin α cos α

0 (ϱbg,1,1 − ϱbg,2,2) sin α cos α ϱbg,2,2 cos2 α + ϱbg,1,1 sin2 α

⎞
⎟
⎠

, E0 → 0 .

By a similar discussion as in the previous case, we find that ϱbg,3,3 indicates the population in the excited
state, and ϱbg,1,1 and ϱbg,2,2 correspond to the population in the two ground states.
We conclude that the roles of ϱbg,1,1 and ϱbg,3,3 are interchanged between the two k-sheets. We will

use this symmetry later to define proper asymptotics for the density matrix ρ(t, z, ζ) as t → ±∞ (cf. Sec-
tion 3.6). Also recall that a similar symmetry occurs between the two sheets in the classic two-level case
with NZBG [43].

Remark 4. The coefficients ϱbg,j,j are not the atomic level populations in each state observed from Equa-
tion (9). Instead, the atomic level population in each state ρj,j can be written as a linear combination of
the coefficients ϱbg,j,j using Equation (9) with additional parameters such as k and E0. This complicated
situation is quite different from the case of zero asymptotic values, in which ρj,j = ϱbg,j,j holds due to the
above calculations. (One needs to enforce additional conditions α = 0 or π/2 due to the additional internal
freedom from NZBG.) In other words, the nontrivial relation between ρj,j and ϱbg,j,j is a direct consequence
of the nonzero background, hence a novel feature of this work.

2.5. Nonzero background solution in a dark state. We note from the background solution (9) that if
we choose ϱbg,1,1 = ϱbg,3,3 = 0 and ϱbg,2,2 ≠ 0, i.e., ρbg(t, z, k) = ρ

(2)
bg (t, z, k), then the excited state is

never occupied. The electric field envelopes become Ebg,1(t, z) = E0 cos α and Ebg,2(t, z) = E0 sin α. In
this particular situation, the electric field and the medium do not interact at all, and medium is in a “dark
state” [13]. Despite a slight risk of clashing with this established physics terminology, we refer to entire
such configurations as dark-state solutions of the CMBE (1).

The above special background solution is the first and the simplest dark-state solution appearing in this
work. We shall look for other kinds of dark-state solutions later, in Section 7.3.

2.6. Notation. In the rest of the paper, we will use the following notation. The superscript � is defined for
every v = (v1, v2)⊺ ∈ C2 as

(12) v� ∶= (v2,−v1)† ,

with the superscript † denoting conjugate transpose.
We introduce the notation Aj as the j-th column of a matrix A.
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For every complex quantity ξ, we define the following shorthand notation,

(13) ξ̂ ∶= −
E2

0

ξ
, ξ ∈ C/{0} .

For an arbitrary 3× 3 matrix C = (ci,j), we define the following subscripted matrices

(14)

Cd ∶=
⎛
⎜
⎝

c1,1 0 0
0 c2,2 c2,3
0 c3,2 c3,3

⎞
⎟
⎠

, Co ∶=
⎛
⎜
⎝

0 c1,2 c1,3
c2,1 0 0
c3,1 0 0

⎞
⎟
⎠

,

Cdd ∶=
⎛
⎜
⎝

c1,1 0 0
0 c2,2 0
0 0 c3,3

⎞
⎟
⎠

, Cdo ∶=
⎛
⎜
⎝

0 0 0
0 0 c2,3
0 c3,2 0

⎞
⎟
⎠

, C[1,1] ∶= (
c2,2 c2,3
c3,2 c3,3

) ,

where the subscripts d and o indicate the block-diagonal and block-off-diagonal parts of the matrix, respec-
tively, as well as subscript dd indicates the main diagonal of the matrix. Using this notation, one can show
that for two given 3× 3 matrices A and B the following identities hold

(15)
[AB]d = AdBd +AoBo , [AB]o = AdBo +AoBd ,

[AdBd]dd = AddBdd +AdoBdo , [AdBd]do = AddBdo +AdoBdd .

3. IST: DIRECT SCATTERING PROBLEM

We now begin formulating the IST for CMBE (1) with NZBGs. This section focuses on the direct
problem, which consists of analyzing Equation (2a) in the Lax pair and obtaining the scattering data at the
injection point z = 0.

We recall that CMBE and the focusing Manakov system share the same scattering problem. Hence, the
direct problem is formulated mainly following what has been done in [51]. Nonetheless, certain differences
still appear between the current work and that concerning the focusing Manakov system. One of the main
differences is that [51] utilized a simultaneous solution of both equations in the Lax pair, so that the scattering
data only depends on the spectral parameter ζ. However, due to the complicated propagation in z of CMBE
solutions with NZBG, we only consider a solution of the scattering problem, and so the scattering data must
depend on both z and ζ. In other words, while the evolution stage of the IST for the focusing Manakov
system in [51] is trivial, the propagation stage of CMBE with NZBG is highly nontrivial, and so is discussed
in a separate section.

We recall the discussion in Section 2.2 on the uniformization variable. Starting from this section, the
original complex variable k will be interpreted as a function of this variable, ζ, via Equation (8). The
explicit ζ-dependence is frequently omitted for brevity.

As usual, we first consider the asymptotic scattering problem as t → ±∞

(16) ϕt = X±ϕ , X±(z, ζ) ∶= ikJ +Q±(z) , Q±(z) ∶= (
0 −E±(z)⊺

E±(z)∗ O ) .

Recall E±(z) = limt→±∞ E(t, z) are the asymptotic conditions in the distant past and future.
The eigenvalues of X±(z, ζ) are {−ik,±iλ} with λ given in Equation (6). The continuous spectrum Σ is

defined as the set of ζ ∈ C in which all the eigenvalues are purely imaginary, i.e., all the eigenfunctions are
bounded. From Equation (16), we find Σ to be

(17) Σ ∶= R∪Σ○ , where Σ○ ∶= {ζ ∈ C ∶ ∣ζ∣ = E0} .

The continuous spectrum Σ with its orientation is shown in Figure 2 (left), and is similar to its analog in [51].
For future use, we also define the continuous spectrum without the two points ±iE0,

(18) Σ∗ ∶= Σ/{±iE0} .
9



0 Eo-Eo

D1: μ+1, μ-2, m1

D3: μ+2, μ-3, m3

D4: μ-2, μ+3, m4

D2: μ-1, μ+2, m2

0 Eo-Eo
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D3

D4

D2

ξ

ξ
*

ξ

ξ*

FIGURE 2. Left: Eigenfunctions in their analytic regions. Right: The quartet of a discrete
eigenvalue ζ = ξ in the complex ζ-plane.

These two points are excluded because certain quantities become singular there, as we will see in the next
section. Similar singularities have has also appeared in other integrable systems with NZBC/NZBG at
infinity, e.g., the focusing NLS equation and the focusing Manakov system [51]. The local behavior of
various quantities near these singular points in the IST will not be discussed in this work. In the context
of the focusing NLS equation, this phenomenon was studied extensively and shown to be closely related to
rogue-wave solutions [52].

3.1. Jost solutions and scattering matrix.

3.1.1. Jost solution. The asymptotic scattering problem (16) can be solved by diagonalizing the matrix
X±(z, ζ), which yields the following eigenvalue problem:

(19) X±Y± = iY±Λ , ζ ∈ Σ∗ ,

where Λ(ζ) is the diagonal matrix containing the eigenvalues multiplied by the factor −i, and Y±(z, ζ)
contains the corresponding eigenvectors:

(20) Λ(ζ) ∶= diag(λ,−k,−λ) , Y±(z, ζ) ∶= ( 1 0 −iE0/ζ
−iE∗

±
/ζ (E�

±
)∗/E0 E∗

±
/E0
) .

The inverse of the eigenvector matrix can be expressed as

Y−1
±
(z, ζ) = 1

γ(ζ)

⎛
⎜
⎝

1 iE⊺
±
/ζ

0 γ(ζ)(E�
±
)⊺/E0

iE0/ζ E⊺
±
/E0

⎞
⎟
⎠

where γ(ζ) is defined as

(21) γ(ζ) ∶= det Y±(z, ζ) = 1+
E2

0

ζ2 .

The eigenvalue problem (19) is only valid on Σ∗ because the eigenvector matrix Y(z, ζ) is singular at
ζ = ±iE0.
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From the asymptotic scattering problem (16), one expects that the scattering problem (2a) admits solu-
tions ϕ

±
(t, z, ζ) with the asymptotic behavior

(22)
ϕ
−
(t, z, ζ) ∶= Y−(z, ζ)eiΛt + o(1) , t → −∞ ,

ϕ
+
(t, z, ζ) ∶= Y+(z, ζ)eiΛt + o(1) , t →∞ .

The solutions ϕ
±
(t, z, ζ) are called Jost solutions. In order to further study the Jost solutions, we introduce

the modified eigenfunctions by removing oscillations,

(23) µ
±
(t, z, ζ) ∶= ϕ

±
(t, z, ζ)e−iΛt , ζ ∈ Σ .

These new functions solve the following integral equations on the continuous spectrum Σ,

(24)
µ
−
(t, z, ζ) = Y−(z, ζ)+∫

t

−∞

Y−(z, ζ)eiΛ(t−τ)Y−(z, ζ)−1∆Q−(τ, z)µ
−
(τ, z, ζ)e−iΛ(t−τ)dτ ,

µ
+
(t, z, ζ) = Y+(z, ζ)−∫

∞

t
Y+(z, ζ)eiΛ(t−τ)Y+(z, ζ)−1∆Q+(τ, z)µ

+
(τ, z, ζ)e−iΛ(t−τ)dτ ,

where we use the shorthand notation

(25) ∆Q±(t, z) ∶= Q(t, z)−Q±(z) .

The existence of µ
±
(t, z, ζ) can be derived from the above integral equations assuming sufficiently fast

decay of ∆Q±(t, z) as t → ±∞, respectively.
Correspondingly, the existence of the Jost eigenfunctions ϕ

±
(t, z, ζ) on the continuous spectrum Σ under

certain assumptions on the injected pulse E(t, 0) is obtained from Equation (23).

Proposition 1. The two Jost eigenfunctions ϕ
±
(t, z, ζ) are two fundamental matrix solutions on Σ∗ of the

scattering problem. In particular, det ϕ
±
(t, z, ζ) = eiktγ(ζ) on Σ.

Proof. Besides the aforementioned existence of ϕ
±
(t, z, ζ), it is sufficient to show det ϕ

±
(t, z, ζ) ≠ 0 on

Σ∗. Since ϕ
±
(t, z, ζ) solves the scattering problem, Abel’s identity yields

∂

∂t
(det ϕ

±
) = trX det ϕ

±
= −ik det ϕ

±
,

which can be rewritten as
∂

∂t
(det(ϕ

±
e−iΛt)) = 0.

In other words, the determinant of ϕ
±
(t, z, ζ)e−iΛt is independent of t. Combining this fact with the asymp-

totic behavior ϕ
±
= Y±eiΛt + o(1) as t → ±∞, respectively, we obtain

det(ϕ
±

e−iΛt) = γ(ζ) , ζ ∈ Σ .

Therefore, we conclude that

det ϕ
±
(t, z, ζ) = eiktγ(ζ) ≠ 0 , ζ ∈ Σ∗.

□

Similarly to what happens in the focusing Manakov system with NZBC [51], the eigenfunctions can be
analytically extended off the continuous spectrum. Recall that µ

±,j denotes the j-th column of the matrix µ
±

.
The columns of the eigenfunctions then exhibit the following analyticity properties:

µ
+,1 ∶ ζ ∈ D1, µ

+,2 ∶ Im ζ < 0, µ
+,3 ∶ ζ ∈ D4 ,(26a)

µ
−,1 ∶ ζ ∈ D2, µ

−,2 ∶ Im ζ > 0, µ
−,3 ∶ ζ ∈ D3 ,(26b)
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where the domains of analyticity are given by

D1 ∶= {ζ ∶ Im ζ > 0∧ ∣ζ∣ > E0}, D2 ∶= {ζ ∶ Im ζ < 0∧ ∣ζ∣ > E0},(27a)

D3 ∶= {ζ ∶ Im ζ < 0∧ ∣ζ∣ < E0}, D4 ∶= {ζ ∶ Im ζ > 0∧ ∣ζ∣ < E0}.(27b)

These regions are shown in Figure 2 (left) together with the oriented continuous spectrum Σ. The same
analyticity properties also hold for the columns of the matrix ϕ

±
(t, z, ζ) via the relation (23).

Remark 5. In each region Dj there are only two analytic eigenfunctions, so they are not enough to formulate
the inverse problem by building a 3× 3 Riemann-Hilbert problem (RHP). Therefore, unlike in the two-level
MBE case, we need to seek additional eigenfunctions. These can be formed using the adjoint problem, which
is presented in Section 3.2.

3.1.2. Scattering matrix. Proposition 1 implies that there exists an invertible 3× 3 matrix S(z, ζ) such that

(28) ϕ
+
(t, z, ζ) = ϕ

−
(t, z, ζ)S(z, ζ) , ζ ∈ Σ∗.

Proposition 1 also implies the equation

det S(z, ζ) = 1 , ζ ∈ Σ∗ .

Let us write the entries of the scattering matrix as S(z, ζ) = (ai,j)3×3 and of its inverse as S−1(ζ, z) =
(bi,j)3×3. Following the same procedure as in [51], the scattering coefficients can be analytically extended
off the continuous spectrum Σ into the following regions:

(29)
a1,1 ∶ ζ ∈ D1 , a2,2 ∶ Im ζ < 0 , a3,3 ∶ ζ ∈ D4 ,
b1,1 ∶ ζ ∈ D2 , b2,2 ∶ Im ζ > 0 , b3,3 ∶ ζ ∈ D3 .

3.2. Adjoint problem and auxiliary eigenfunctions. In this subsection, we construct additional eigen-
functions analytic in each region Dj in order to formulate a 3× 3 RHP later on. To do so, let us consider the
adjoint scattering problem

(30) ϕ̃t = X̃ ϕ̃ , X̃(t, z, ζ) ∶= −ikJ +Q(t, z)∗ .

Similarly to what was done in [51], it can be shown that if ṽ(t, z, ζ) and w̃(t, z, ζ) are two solutions of the
adjoint problem (30), then the following combination

(31) u(t, z, ζ) ∶= e−ikt[ṽ × w̃](t, z, ζ) ,

is a solution of the original scattering problem (2a). We use this relation to construct additional eigenfunc-
tions of the original scattering problem. One thus needs to solve the adjoint scattering problem (30) first,
and find its eigenfunctions. Following the same procedure as before, we know that the matrix X̃±(z, ζ)
of the asymptotic adjoint scattering problem has eigenvalues ik and ±iλ. The eigenvalue matrix can be
written as −iΛ(ζ) where Λ(ζ) is given in Equation (20). One can choose the eigenvector matrix as
Ỹ±(z, ζ) ∶= Y±(z, ζ∗)∗ with Y±(z, ζ) given in Equation (20). Note that det Ỹ±(z, ζ) = γ(ζ) as well.

As in Section 3.1, for all ζ ∈ Σ, we define the Jost solutions of the adjoint scattering problem with the
asymptotic behavior

(32) ϕ̃
±
(t, z, ζ) = Ỹ±(z, ζ) e−iΛ(ζ)t + o(1) , t → ±∞ .

Then, we introduce the modified adjoint eigenfunctions by removing the oscillations

(33) µ̃
±
(t, z, ζ) ∶= ϕ̃

±
(t, z, ζ) eiΛ(ζ)t , ζ ∈ Σ ,

so that µ̃
±
(t, z, ζ) = Ỹ±(z, ζ)+ o(1) as t → ±∞, respectively. Again, similarly to what we did in Section 3.1,

one can show that the columns of µ̃
±
(t, z, ζ) can be analytically extended into the following regions of the
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complex plane:

µ̃
−,1 ∶ ζ ∈ D1 , µ̃

−,2 ∶ Im ζ < 0 , µ̃
−,3 ∶ ζ ∈ D4 ,

µ̃
+,1 ∶ ζ ∈ D2 , µ̃

+,2 ∶ Im ζ > 0 , µ̃
+,3 ∶ ζ ∈ D3 .

We then define the adjoint scattering matrix S̃(z, ζ) as

(34) ϕ̃
+
(t, z, ζ) = ϕ̃

−
(t, z, ζ) S̃(z, ζ) , ζ ∈ Σ .

Following the same notation S̃ = (ãi,j)3×3 and S̃−1 = (b̃i,j)3,3 and arguments similar to those in Section 3.1,
the scattering coefficients can be analytically extended off the continuous spectrum:

b̃1,1 ∶ ζ ∈ D1 , b̃2,2 ∶ Im ζ < 0 , b̃3,3 ∶ ζ ∈ D4 ,
ã1,1 ∶ ζ ∈ D2 , ã2,2 ∶ Im ζ > 0 , ã3,3 ∶ ζ ∈ D3 .

Finally, we define four new solutions of the original Lax pair,

χ1(t, z, ζ) ∶= e−ikt[ϕ̃
−,1 × ϕ̃

+,2](t, z, ζ) , χ2(t, z, ζ) ∶= e−ikt[ϕ̃
+,1 × ϕ̃

−,2](t, z, ζ) ,

χ3(t, z, ζ) ∶= e−ikt[ϕ̃
−,2 × ϕ̃

+,3](t, z, ζ) , χ4(t, z, ζ) ∶= e−ikt[ϕ̃
+,2 × ϕ̃

−,3](t, z, ζ) .

Remark 6. The new eigenfunctions χj(t, z, ζ) with j = 1, . . . , 4 are called auxiliary eigenfunctions, and can
be shown to be analytic in Dj, using the relation (33) and the analyticity of µ̃

±,j(t, z, ζ) from above.

Moreover, the scattering matrix S(z, ζ) and the adjoint scattering matrix S̃(z, ζ) are related by

(35) S̃(z, ζ)−1 = Γ(ζ)S(z, ζ)⊺ Γ(ζ)−1 , ζ ∈ Σ∗ ,

where Γ(ζ) ∶= diag (1, γ(ζ), 1).
For all ζ ∈ Σ, the Jost eigenfunctions have the following decompositions:

(36)

ϕ
−,1(t, z, ζ) = 1

b2,2(z, ζ)
[χ4(t, z, ζ)+ b2,1(z, ζ)ϕ

−,2(t, z, ζ)]

= 1
b3,3(z, ζ)

[b3,1(z, ζ)ϕ
−,3(t, z, ζ)+χ3(t, z, ζ)] ,

ϕ
+,1(t, z, ζ) = 1

a2,2(z, ζ)
[χ3(t, z, ζ)+ a2,1(z, ζ)ϕ

+,2(t, z, ζ)]

= 1
a3,3(z, ζ)

[a3,1(z, ζ)ϕ
+,3(t, z, ζ)+χ4(t, z, ζ)] ,

ϕ
−,3(t, z, ζ) = 1

b2,2(z, ζ)
[χ1(t, z, ζ)+ b2,3(z, ζ)ϕ

−,2(t, z, ζ)]

= 1
b1,1(z, ζ)

[b1,3(z, ζ)ϕ
−,1(t, z, ζ)+χ2(t, z, ζ)] ,

ϕ
+,3(t, z, ζ) = 1

a2,2(z, ζ)
[χ2(t, z, ζ)+ a2,3(z, ζ)ϕ

+,2(t, z, ζ)]

= 1
a1,1(z, ζ)

[a1,3(z, ζ)ϕ
+,1(t, z, ζ)+χ1(t, z, ζ)] .

In addition, we remove the exponential oscillations and define the modified auxiliary eigenfunctions

(37)
mj(t, z, ζ) ∶= χj(t, z, ζ)eiλt , j = 1, 2,

mj(t, z, ζ) ∶= χj(t, z, ζ)e−iλt , j = 3, 4.
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Next, we list the asymptotic behavior of the modified auxiliary eigenfunctions as t → ±∞. For all ζ in their
corresponding domain of analyticity, the modified auxiliary eigenfunctions have the following asymptotic
behavior as t → ±∞:

(38)

lim
t→−∞

m1(t, z, ζ) = b1,1(z, ζ)Y−3(z, ζ) , lim
t→∞

m1(t, z, ζ) = a2,2(z, ζ)Y+3(z, ζ) ,

lim
t→−∞

m2(t, z, ζ) = b2,2(z, ζ)Y−3(z, ζ) , lim
t→∞

m2(t, z, ζ) = a1,1(z, ζ)Y+3(z, ζ) ,

lim
t→−∞

m3(t, z, ζ) = b2,2(z, ζ)Y−1(z, ζ) , lim
t→∞

m3(t, z, ζ) = a3,3(z, ζ)Y+1(z, ζ) ,

lim
t→−∞

m4(t, z, ζ) = b3,3(z, ζ)Y−1(z, ζ) , lim
t→∞

m4(t, z, ζ) = a2,2(z, ζ)Y+1(z, ζ) .

Now, for each region Dj, there are three independent eigenfunctions as shown in Figure 2 (left). The
independence can be verified directly by calculating Wronskians.

3.3. Symmetries. Here we discuss the symmetries of all the eigenfunctions and scattering coefficients
derived from the scattering problem. These symmetries play an important role throughout the entire IST
procedure. There are two symmetries to be discussed in this section.

3.3.1. First symmetry. Let us consider the transform ζ ↦ ζ∗, implying (k, λ) ↦ (k∗, λ∗). This transform
maps a point from upper half plane into the lower half plane or vice versa in the ζ-plane or on the same sheet
of the k-plane.

Lemma 2. If ϕ(t, z, ζ) is a non-singular square matrix solution of the Lax pair (2), then so is ϕ(t, z, ζ∗)−†,
where the superscript −† denotes the inversion and conjugate transpose.

Lemma 2 can be proved by direct substitution. Applying Lemma 2 to the Jost eigenfunctions ϕ
±
(t, z, ζ),

and noticing the uniqueness of solutions, one concludes that there exits an invertible matrix C such that

(39) ϕ
±
(t, z, ζ∗)−†C(ζ) = ϕ

±
(t, z, ζ) , ζ ∈ Σ∗ .

It is not obvious that (i) the connection matrix C(ζ) is the same for both Jost eigenfunction matrices
ϕ
±
(t, z, ζ); (ii) C(ζ) is independent of z, but one can use the asymptotic behavior of ϕ

±
(t, z, ζ) as t → ±∞

and obtain C(ζ) explicitly as

(40) C(ζ) = diag(γ(ζ), 1, γ(ζ)) .

Furthermore, the identity

(41) ϕ
±
(t, z, ζ)−⊺ = 1

det ϕ
±
(t, z, ζ)

(ϕ
±,2 ×ϕ

±,3, ϕ
±,3 ×ϕ

±,1, ϕ
±,1 ×ϕ

±,2)(t, z, ζ) ,

together with the symmetry (39), imply

(42)

ϕ
−,1(t, z, ζ∗)∗ = eikt

b2,2(z, ζ)
[ϕ
−,2 ×χ1](t, z, ζ) ,

ϕ
+,1(t, z, ζ∗)∗ = eikt

a2,2(z, ζ)
[ϕ
+,2 ×χ2](t, z, ζ) ,

ϕ
−,2(t, z, ζ∗)∗ = eikt

γ(ζ)b1,1(z, ζ)
[χ2 ×ϕ

−,1](t, z, ζ) = eikt

γ(ζ)b3,3(z, ζ)
[ϕ
−,3 ×χ3](t, z, ζ) ,

ϕ
+,2(t, z, ζ∗)∗ = eikt

γ(ζ)a1,1(z, ζ)
[χ1 ×ϕ

+,1](t, z, ζ) = eikt

γ(ζ)a3,3(z, ζ)
[ϕ
+,3 ×χ3](t, z, ζ) ,

ϕ
−,3(t, z, ζ∗)∗ = eikt

b2,2(z, ζ)
[χ4 ×ϕ

−,2](t, z, ζ) ,

ϕ
+,3(t, z, ζ∗)∗ = eikt

a2,2(z, ζ)
[χ3 ×ϕ

+,2](t, z, ζ) .
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These relations involving χj(t, z, ζ) are also valid for ζ ∈ Dj, with j = 1, . . . , 4, besides the continuous
spectrum Σ∗.

Thereafter, by using the definition of the scattering matrix (28), we also conclude that the scattering
matrix and its inverse satisfy the symmetry relation:

(43) S(z, ζ∗)−† = C(ζ)S(z, ζ)C(ζ)−1 , ζ ∈ Σ∗ .

Componentwise, for all ζ ∈ Σ∗, the above equation yields

(44)

a1,1(z, ζ) = b1,1(z, ζ∗)∗ , a1,2(z, ζ) =
b2,1(z, ζ∗)∗

γ(ζ)
, a1,3(z, ζ) = b3,1(z, ζ∗)∗ ,

a2,1(z, ζ) = γ(ζ)b1,2(z, ζ∗)∗ , a2,2(z, ζ) = b2,2(z, ζ∗)∗ , a2,3(z, ζ) = γ(ζ)b3,2(z, ζ∗)∗ ,

a3,1(z, ζ) = b1,3(z, ζ∗)∗ , a3,2(z, ζ) = b2,3(z, ζ∗)∗

γ(ζ)
, a3,3(z, ζ) = b3,3(z, ζ∗)∗ .

The Schwarz reflection principle then allows us to conclude

(45)

a1,1(z, ζ) = b1,1(z, ζ∗)∗ , ζ ∈ D1 ,

a2,2(z, ζ) = b2,2(z, ζ∗)∗ , Im ζ < 0 ,

a3,3(z, ζ) = b3,3(z, ζ∗)∗ , ζ ∈ D4 .

We can also obtain symmetry relations for the auxiliary eigenfunctions. It can be shown that the auxiliary
eigenfunctions satisfy the following symmetry relations [51],

(46)

χ1(t, z, ζ∗)∗ = eikt[ϕ
−,1 ×ϕ

+,2](t, z, ζ) , ζ ∈ D2 ,

χ2(t, z, ζ∗)∗ = eikt[ϕ
+,1 ×ϕ

−,2](t, z, ζ) , ζ ∈ D1 ,

χ3(t, z, ζ∗)∗ = eikt[ϕ
−,2 ×ϕ

+,3](t, z, ζ) , ζ ∈ D4 ,

χ4(t, z, ζ∗)∗ = eikt[ϕ
+,2 ×ϕ

−,3](t, z, ζ) , ζ ∈ D3 .

In other words, we have

(47) ϕ
±,j(t, z, ζ∗)∗ = eikt[ϕ

±,l ×ϕ
±,m](t, z, ζ)/γ(ζ) ,

where j, l and m are cyclic indices.

3.3.2. Second symmetry. Next, we consider the transformation ζ ↦ ζ̂ in the scattering problem, mapping
the exterior of the circle Σ○ into its interior, and vice versa, and implying (k, λ)↦ (k,−λ).

Lemma 3. If ϕ(t, z, ζ) is a matrix solution of the Lax pair (2), so is ϕ(t, z, ζ̂).

This lemma can be proved by direct substitution. Applying Lemma 3 to the Jost eigenfunctions and
recalling the uniqueness of solutions, as proved in [51], it can be shown that there exists an invertible matrix
Π(ζ) such that the Jost eigenfunctions satisfy

(48) ϕ
±
(t, z, ζ) = ϕ

±
(t, z, ζ̂)Π(ζ) , ζ ∈ Σ .

Similarly to what has been done in discussing the first symmetry, we consider the asymptotic behavior of
ϕ
±
(t, z, ζ) as t → ±∞, respectively. By comparison, we obtain an explicit form of the matrix

(49) Π(ζ) =
⎛
⎜
⎝

0 0 −iE0/ζ
0 1 0

−iE0/ζ 0 0

⎞
⎟
⎠

.
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As before, the analyticity properties of the eigenfunctions allow us to analytically extend all of the above
relations off the continuous spectrum:

(50)

ϕ
±,1(t, z, ζ) = − iE0

ζ
ϕ
±,3(t, z, ζ̂) , Im ζ ≷ 0∧ ∣ζ∣ > E0 ,

ϕ
±,2(t, z, ζ) = ϕ

±,2(t, z, ζ̂) , Im ζ ≶ 0 ,

ϕ
±,3(t, z, ζ) = − iE0

ζ
ϕ
±,1(t, z, ζ̂) , Im ζ ≶ 0∧ ∣ζ∣ < E0 .

The definition of the scattering matrix (28) yields the corresponding symmetry

(51) S(z, ζ̂) = Π(ζ)S(z, ζ)Π−1(ζ) , ζ ∈ Σ∗ .

Componentwise, on the continuous spectrum Σ∗, we have the equations

(52)

a1,1(z, ζ) = a3,3(z, ζ̂) , a1,2(z, ζ) = − iE0

ζ
a3,2(z, ζ̂) , a1,3(z, ζ) = a3,1(z, ζ̂) ,

a2,1(z, ζ) = iζ
E0

a2,3(z, ζ̂) , a2,2(z, ζ) = a2,2(z, ζ̂) , a2,3(z, ζ) = iζ
E0

a2,1(z, ζ̂) ,

a3,1(z, ζ) = a1,3(z, ζ̂) , a3,2(z, ζ) = − iE0

ζ
a1,2(z, ζ̂) , a3,3(z, ζ) = a1,1(z, ζ̂) .

The analyticity of the scattering coefficients (29) allows us to conclude

b1,1(z, ζ) = b3,3(z, ζ̂) , ζ ∈ D2 ,

a1,1(z, ζ) = a3,3(z, ζ̂) , ζ ∈ D1 ,

a2,2(z, ζ) = a2,2(z, ζ̂) , Im ζ ≤ 0 ,

b2,2(z, ζ) = b2,2(z, ζ̂) , Im ζ ≥ 0 ,

where we recall that ai,j and bi,j are the entries of the scattering matrix and its inverse, respectively. Moreover,
repeating the procedure in the discussion of the first symmetry in Section 3.3.1, we also conclude that the
auxiliary eigenfunctions satisfy the relations

(53)
χ1(t, z, ζ) = − iE0

ζ
χ4(t, z, ζ̂) , ζ ∈ D1 ,

χ2(t, z, ζ) = − iE0

ζ
χ3(t, z, ζ̂) , ζ ∈ D2 .

3.3.3. Combined symmetry and reflection coefficients. We define the following quantities rj(ζ) with j =
1, 2, 3 on the continuous spectrum, which are the reflection coefficients appearing in the inverse problem:

(54a)

r1(z, ζ) ∶=
a2,1(z, ζ)
a1,1(z, ζ)

= γ(ζ)
b1,2(z, ζ∗)∗

b1,1(z, ζ∗)∗
,

r2(z, ζ) ∶=
a3,1(z, ζ)
a1,1(z, ζ)

=
b1,3(z, ζ∗)∗

b1,1(z, ζ∗)∗
,

r3(z, ζ) ∶= a3,2(z, ζ)
a2,2(z, ζ)

= 1
γ(ζ)

b2,3(z, ζ∗)∗

b2,2(z, ζ∗)∗
.
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The symmetries (52) of the scattering matrix yield

(54b)

r1(z, ζ̂) = − iE0

ζ

a2,3(z, ζ)
a3,3(z, ζ)

= −γ(ζ) iE0

ζ

b3,2(z, ζ∗)∗

b3,3(z, ζ∗)∗
,

r2(z, ζ̂) =
a1,3(z, ζ)
a3,3(z, ζ)

=
b3,1(z, ζ∗)∗

b3,3(z, ζ∗)∗
,

r3(z, ζ̂) = iζ
E0

a1,2(z, ζ)
a2,2(z, ζ)

= iζ
E0γ(ζ)

b2,1(z, ζ∗)∗

b2,2(z, ζ∗)∗
.

Furthermore, the definition of S(z, ζ) yields the following relations

(55) a3,2(z, ζ) = b1,2(z, ζ)b3,1(z, ζ)− b1,1(z, ζ)b3,2(z, ζ) , ζ ∈ Σ∗ .

This equation shows that, in fact, the three reflection coefficients are not independent, and they are related
by the equation

(56) r3(z, ζ) =
b1,1(z, ζ)b1,1(z, ζ̂)

a2,2(z, ζ)γ(ζ)
[r1(z, ζ∗)∗r2(z, ζ̂∗)∗ + iζ

E0
r1(z, ζ̂∗)∗] , ζ ∈ Σ∗ .

3.4. Discrete spectrum, norming constants and their symmetries. With the eigenfunctions and their
behavior on the continuous spectrum established, we next discuss their behavior on the discrete spectrum.
Recall that we have assumed there to be no spectral singularities or embedded eigenvalues, so the continuous
and discrete spectra of the current problem are well separated.

3.4.1. Discrete spectrum and norming constants. The discrete spectrum of the direct problem is the set of
all values ζ ∈ C/Σ for which bounded eigenfunctions exist. In order to characterize the discrete spectrum, it
is convenient to introduce the following 3× 3 matrices:

(57)

Φ(1)(t, z, ζ) ∶= (ϕ
+,1(t, z, ζ), ϕ

−,2(t, z, ζ), χ1(t, z, ζ)) , ζ ∈ D1 ,

Φ(2)(t, z, ζ) ∶= (ϕ
−,1(t, z, ζ), ϕ

+,2(t, z, ζ), χ2(t, z, ζ)) , ζ ∈ D2 ,

Φ(3)(t, z, ζ) ∶= (χ3(t, z, ζ), ϕ
+,2(t, z, ζ), ϕ

−,3(t, z, ζ)) , ζ ∈ D3 ,

Φ(4)(t, z, ζ) ∶= (χ4(t, z, ζ), ϕ
−,2(t, z, ζ), ϕ

+,3(t, z, ζ)) , ζ ∈ D4 .

It follows immediately that

(58)

det Φ(1)(t, z, ζ) = b2,2(z, ζ)a1,1(z, ζ)e−ikt , ζ ∈ D1 ,

det Φ(2)(t, z, ζ) = b1,1(z, ζ)a2,2(z, ζ)e−ikt , ζ ∈ D2 ,

det Φ(3)(t, z, ζ) = b3,3(z, ζ)a2,2(z, ζ)e−ikt , ζ ∈ D3 ,

det Φ(4)(t, z, ζ) = b2,2(z, ζ)a3,3(z, ζ)e−ikt , ζ ∈ D4 .

If the above determinants are zero, then some of the eigenfunctions are linearly dependent. Similarly to [51],
it can be shown that in these cases bounded eigenfunctions exist. Therefore, the zeros of the determinants,
i.e., the zeros of the scattering coefficients from Equation (58), are the discrete eigenvalues.

Therefore, we now discuss the zeros of the scattering coefficients. For simplicity, we assume that these
zeros are simple. Due to the symmetries of the problem, it is unnecessary to discuss separately the zeros of
all five scattering coefficients. In fact, there are only two equivalence classes of zeros, in particular:

● Let ζ0 ∈ D1 be a zero of a1,1(z, ζ); then by symmetries (44) and (52) we obtain

(59) b1,1(z, ζ∗0) = 0⇐⇒ a1,1(z, ζ0) = 0⇐⇒ a3,3(z, ζ̂0) = 0⇐⇒ b3,3(z, ζ̂∗0) = 0 .

● Let ζ0 ∈ C+ be a zero of b2,2(z, ζ); then by symmetries (44) and (52) we obtain

(60) a2,2(z, ζ∗0) = 0⇐⇒ b2,2(z, ζ0) = 0⇐⇒ b2,2(z, ζ̂0) = 0⇐⇒ a2,2(z, ζ̂∗0) = 0 .
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Remark 7. (i) It is sufficient to study the zeros of a1,1(z, ζ) and b2,2(z, ζ) in only one region, ζ ∈ D1. (ii)
For each discrete eigenvalue in D1 when a1,1(z, ζ) or b2,2(z, ζ) vanishes, there are three corresponding
zeros in the other three regions Dj with j = 2, 3, 4, respectively. Hence, each discrete eigenvalue in D1
generates a quartet of discrete eigenvalues in the entire complex plane. (iii) A discrete eigenvalue in D1 can
be categorized by probing which quantity, a1,1(z, ζ) or b2,2(z, ζ), vanishes there.

The above remark implies that all the discrete eigenvalues in the complex plane can be classified based
on which scattering coefficient a1,1 or b2,2 vanishes in a single region, D1.

Definition 1. There are three kinds of eigenvalue quartets corresponding to a given eigenvalue in D1:
● Eigenvalue of the first kind, wn for n = 1, . . . , NI: a1,1(z, wn) = 0 and b2,2(z, wn) ≠ 0.
● Eigenvalue of the second kind, zn for n = 1, . . . , NII: a1,1(z, zn) ≠ 0 and b2,2(z, zn) = 0.
● Eigenvalue of the third kind, ζn for n = 1, . . . , NIII: a1,1(z, ζn) = b2,2(z, ζn) = 0.

Then we have

Proposition 2. For every eigenvalue ζ0 ∈ D1 the following statements are equivalent:
(1) χ2(t, z, ζ∗0) = 0.
(2) χ3(t, z, ζ̂∗0) = 0.
(3) There exists a constant b0 ∈ C such that ϕ

−,2(t, z, ζ0) = b0 ϕ
+,1(t, z, ζ0).

(4) These exists a constant b̂0 ∈ C such that ϕ
−,2(t, z, ζ̂0) = b̂0 ϕ

+,3(t, z, ζ̂0).

Proposition 3. For every eigenvalue ζ0 ∈ D1 the following statements are equivalent:
(1) χ1(t, z, ζ0) = 0.
(2) χ4(t, z, ζ̂0) = 0.
(3) There exists a constant b0 ∈ C such that b0 ϕ

+,2(t, z, ζ∗0) = ϕ
−,1(t, z, ζ∗0).

(4) These exists a constant qb0 ∈ C such that qb0 ϕ
+,2(t, z, ζ̂∗0) = ϕ

−,3(t, z, ζ̂∗0).

The above two propositions together with Definition 1, yield the following result:

Proposition 4. Let ζ0 ∈ D1 be a discrete eigenvalue of the scattering problem, that is, a1,1(ζ0)b2,2(ζ0) = 0.
Then the following statements are true.

(1) If wn is an eigenvalue of the first kind for n = 1, . . . , NI, there exist complex constants cn, ĉn, qcn and
cn such that

(61)
χ2(t, z, w∗n) = cn ϕ

−,1(t, z, w∗n) , ϕ
+,1(t, z, wn) = cn χ1(t, z, wn) ,

ϕ
+,3(t, z, ŵn) = ĉn χ4(t, z, ŵn) , χ3(t, z, ŵ∗n) = qcn ϕ

−,3(t, z, ζ̂∗0) .

(2) If zn is an eigenvalue of the second kind for n = 1, . . . , NII, there exist complex constants dn, d̂n, qdn
and dn such that

(62)
ϕ
+,2(t, z, z∗n) = dn χ2(t, z, z∗n) , χ1(t, z, zn) = dn ϕ

−,2(t, z, zn) ,

χ4(t, z, ẑn) = d̂n ϕ
−,2(t, z, ẑn) , ϕ

+,2(t, z, ẑ∗n) = qdn χ3(t, z, ẑ∗n) .

(3) If ζn is an eigenvalue of the third kind for n = 1, . . . , NIII, then there exist complex constants fn, f̂n,
qfn and f n such that

(63)
ϕ
+,2(t, z, ζ∗n) = f n ϕ

−,1(t, z, ζ∗n) , ϕ
+,1(t, z, ζn) = fn ϕ

−,2(t, z, ζn) ,

ϕ
+,3(t, z, ζ̂n) = f̂n ϕ

−,2(t, z, ζ̂n) , ϕ
+,2(t, z, ζ̂∗n) = qfn ϕ

−,3(t, z, ζ̂∗n) .

The above twelve constants cn, ĉn, qcn and cn (and similar quantities for dn and fn) are the norming
constants.

We further define the modified norming constants that will be used directly in the inverse problem.
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Definition 2. The modified norming constants are given by

(64)

Cn(z) ∶=
cne−2iλ(wn)t

a′1,1(z, wn)
, Cn(z) ∶=

cne2iλ(w∗n)t

b′1,1(z, w∗n)
, Ĉn(z) ∶=

ĉne−2iλ(wn)t

a′3,3(z, ŵn)
, qCn(z) ∶=

qcne2iλ(w∗n)t

b′3,3(z, ŵ∗n)
,

Dn(z) ∶=
dne−iẑnt

b′2,2(z, zn)
, Dn(z) ∶=

dneiẑ∗n t

a′2,2(z, z∗n)
, D̂n(z) ∶=

d̂ne−iẑnt

b′2,2(z, ẑn)
, qDn(z) ∶=

qdneiẑ∗n t

a′2,2(z, ẑ∗n)
,

Fn(z) ∶=
fne−iζnt

a′1,1(z, ζn)
, Fn(z) ∶=

f neiζ∗n t

a′2,2(z, ζ∗n)
, F̂n(z) ∶=

f̂ne−iζnt

a′3,3(z, ζ̂n)
, qFn(z) ∶=

qfneiζ∗n t

a′2,2(z, ζ̂∗n)
,

where the primes denote partial differentiation with respect to ζ, n = 1, . . . , NI, for the four quantities in the
first row, n = 1, . . . , NII, for the second row, and n = 1, . . . , NIII, for the last row.

3.4.2. Symmetries of the norming constants. Let {wn}NI
n=1 be the set of all the eigenvalues of the first kind.

With the definitions of the modified eigenfunctions (23) and (37), the definitions of the first kind of the
norming constants (61) reduce to

(65a)
m2(t, z, w∗n) = cn µ

−,1(t, z, w∗n)e2iλ(w∗n)t , µ
+,1(t, z, wn) = cn m1(t, z, wn)e−2iλ(wn)t ,

µ
+,3(t, z, ŵn) = ĉn m4(t, z, ŵn)e−2iλ(wn)t , m3(t, z, ŵ∗n) = qcn µ

−,3(t, z, ŵ∗n)e2iλ(w∗n)t .

Let {zn}NII
n=1 be the set of all the eigenvalues of the second kind. Using definitions (23) and (37), the defini-

tions of the second type of the norming constants (62) reduce to

(65b)
µ
+,2(t, z, z∗n) = dn m2(t, z, z∗n)eiẑ∗n t , m1(t, z, zn) = dn µ

−,2(t, z, zn)e−iẑnt ,

m4(t, z, ẑn) = d̂n µ
−,2(t, z, ẑn)e−iẑnt , µ

+,2(t, z, ẑ∗n) = qdn m3(t, z, ẑ∗n)eiẑ∗n t .

Let {ζn}NIII
n=1 be the set of all the eigenvalues of the third kind. Using definitions (23) and (37), the definitions

of the third type of the norming constants (63) reduce to

(65c)
µ
+,2(t, z, ζ∗n) = f n µ

−,1(t, z, ζ∗n)eiζ∗n t , µ
+,2(t, z, ζ̂∗n) = qfn µ

−,3(t, z, ζ̂∗n)eiζ∗n t ,

µ
+,1(t, z, ζn) = fn µ

−,2(t, z, ζn)e−iζnt , µ
+,3(t, z, ζ̂n) = f̂n µ

−,2(t, z, ζ̂n)e−iζnt .

We are now ready to discuss the symmetries of the norming constants. By using the symmetries of the
eigenfunctions (50) and (53), we obtain the symmetries among all the norming constants:

(66)

qcn = cn , cn = ĉn = −
c∗n

b2,2(z, wn)
,

dn =
iz∗n
E0

qdn , d
∗

n = −
dn

γ(zn)a1,1(z, zn)
, d

∗

n =
iE0

zn

d̂n

γ(zn)b1,1(z, z∗n)∗
,

f n =
iζ∗n
E0

qfn , f
∗

n = −
b′2,2(z, ζn)
a′1,1(z, ζn)

fn

γ(ζn)
, f

∗

n =
iE0

ζn

b′2,2(z, ζn)
a′1,1(z, ζn)

f̂n

γ(ζn)
.

Using the symmetries (66) and Definition 2, we also obtain the following symmetries:

(67)

Cn = −
C
∗

n
b2,2(z, wn)

, Ĉn = −
E2

0

w2
n

C
∗

n
b2,2(z, wn)

, qCn =
E2

0

(w̄∗n)2
Cn ,

Dn = −γ(zn)a1,1(z, zn)D
∗

n , D̂n = −
iE0

zn
γ(zn)a1,1(z, zn)D

∗

n , qDn = −
iE3

0

(z∗n)3
Dn ,

qFn = −
iE3

0

(ζ∗n)3
Fn , F̂n = −

iE0

ζn
γ(ζn)F

∗

n , Fn = −γ(ζn)F
∗

n .
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3.5. Asymptotic behavior as ζ → ∞ and ζ → 0. The asymptotic behavior of all eigenfunctions and
scattering data will be used in both the propagation and the inverse problem stages of the IST. Therefore, in
this section we study the asymptotic behavior of the eigenfunctions and scattering data as k →∞. In terms
of the uniformization variable ζ = k + λ, this requires studying the behavior both as ζ →∞ and as ζ → 0.

Consider the following formal expansion for µ
+
(t, z, ζ):

(68) µ
+
(t, z, ζ) =

∞

∑
n=0

µn(t, z, ζ) ,

where Equation (24) implies

(69)
µ0(t, z, ζ) = Y+(z, ζ) ,

µn+1(t, z, ζ) = −∫
∞

t
Y+(z, ζ)ei(t−s)Λ(ζ)Y+(z, ζ)−1∆Q+(s, z)µn(t, z, ζ)e−i(t−s)Λ(ζ)ds .

For all n ≥ 0, Equation (69) provides an asymptotic expansion for the columns of µ
+
(t, z, ζ) as ζ → ∞ in

the appropriate region of the complex ζ-plane, with

(70)
[µ2n]d = O(ζ

−n) , [µ2n]o = O(ζ
−(n+1)) ,

[µ2n+1]d = O(ζ
−(n+1)) , [µ2n+1]o = O(ζ

−(n+1)) ,

where the subscripts d and o are defined in Equation (14). Moreover, for all n ≥ 0, Equation (69) provides
an asymptotic expansion for the columns of µ

+
(t, z, ζ) as ζ → 0 in the appropriate region of the complex

ζ-plane, with

[µ2n]d = O(ζ
n) , [µ2n]o = O(ζ

n−1) , [µ2n+1]d = O(ζ
n) , [µ2n+1]o = O(ζ

n) .(71)

As a result of Equation (70), as ζ →∞ in the appropriate regions of the ζ-plane, the leading order terms
of the eigenfunctions µ

±,j(t, z, ζ) are given by

(72)

µ
±,1(t, z, ζ) = (10)−

i
ζ
( 0

E(t, z)∗)+O(ζ
−2) ,

µ
±,2(t, z, ζ) = 1

E0
( 0

E±(z)�,∗)+
i

E0ζ
(E(t, z)⊺E±(z)�,∗

0 )+O(ζ−2) ,

µ
±,3(t, z, ζ) = 1

E0
( 0

E±(z)∗
)− i

E0ζ
(E(t, z)⊺E±(z)∗

0 )+O(ζ−2) .

Similarly, as the result of Equation (71), as ζ → 0 in the appropriate regions of the ζ-plane, the leading order
terms of µ

±,j(t, z, ζ) are

(73)

µ
±,1(t, z, ζ) = − i

ζ
( 0

E±(z)∗
)+ 1

E2
0
(E(t, z)⊺E±(z)∗

0 )+O(ζ) ,

µ
±,2(t, z, ζ) = 1

E0
( 0

E±(z)�,∗)+O(ζ) ,

µ
±,3(t, z, ζ) = − i

ζ
(E0

0 )+
1
E0
( 0

E(t, z)∗)+O(ζ) .
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Similar arguments yield that as ζ →∞ in the appropriate regions of the ζ-plane, the leading order terms
of the auxiliary eigenfunctions mj(t, z, ζ) are

(74)

m1(t, z, ζ) = 1
E0
( 0

E+(z)∗
)− i

E0ζ
(E(t, z)⊺E+(z)∗

0 )+O(ζ−2) ,

m2(t, z, ζ) = 1
E0
( 0

E−(z)∗
)+ 1

E0ζ
(−iE(t, z)⊺E−(z)∗

0 )+O(ζ−2) ,

m3(t, z, ζ) = 1
E2

0
(E+(z)⊺E−(z)∗

0 )+ i
E2

0ζ
( 0

E+(z)⊺E−(z)∗E(t, z))+O(ζ
−2) ,

m4(t, z, ζ) = 1
E2

0
(E−(z)⊺E+(z)∗

0 )+ i
E2

0ζ
( 0

E−(z)⊺E+(z)∗E(t, z))+O(ζ
−2) .

Similarly, as ζ → 0 in the appropriate regions of the ζ-plane, the leading order terms of the auxiliary
eigenfunctions mj(t, z, ζ) are

(75)
m1(t, z, ζ) = 1

E0ζ
(−iE−(z)⊺E+(z)∗

0 )+O(1) , m2(t, z, ζ) = 1
E0ζ
(−iE+(z)⊺E−(z)∗

0 )+O(1) ,

m3(t, z, ζ) = − i
ζ
( 0

E−(z)∗
)+O(1) , m4(t, z, ζ) = − i

ζ
( 0

E+(z)∗
)+O(1) .

One can also compute the expansions of the scattering coefficients, as ζ →∞, in the appropriate regions
of the ζ-plane,

(76)
a1,1(z, ζ) = 1+O(ζ−1) , a2,2(z, ζ) = E⊺

+
E∗
−
/E2

0 +O(ζ
−1) , a3,3(z, ζ) = E⊺

−
E∗
+
/E2

0 +O(ζ
−1) ,

b1,1(z, ζ) = 1+O(1/ζ) , b2,2(z, ζ) = E⊺
−

E∗
+
/E2

0 +O(ζ
−1) , b3,3(z, ζ) = E⊺

+
E∗
−
/E2

0 +O(ζ
−1) .

Similarly, as ζ → 0 in the appropriate regions of the ζ-plane, we find

(77)
a1,1(z, ζ) = E⊺

−
E∗
+
/E2

0 +O(ζ) , a2,2(z, ζ) = E⊺
+

E∗
−
/E2

0 +O(ζ) , a3,3(z, ζ) = 1+O(ζ) ,

b1,1(z, ζ) = E⊺
+

E∗
−
/E2

0 +O(ζ) , b2,2(z, ζ) = E⊺
−

E∗
+
/E2

0 +O(ζ) , b3,3(z, ζ) = 1+O(ζ) .

3.6. Asymptotics of the density matrix (part I). Recall that this work addresses the IBVP for CMBE with
NZBG. Similarly to the classic two-level MBE with ZBG or NZBG and similarly to the CMBE with ZBG,
it is not possible to solve the problem by using only two quantities, q(t, 0) and q−(z). In fact, additional
quantities are needed, which turn out to be the asymptotic expressions for the elements of the density matrix
as t → −∞. Therefore, we analyze these asymptotic expressions in the current section. We will discuss
q−(z) in the next section.

We first derive the asymptotics for the density matrix ρ(t, z, ζ) as t → ±∞. From the CMBE (1) and the
scattering problem (2a), it is easy to show that

(78)
∂

∂t
[ϕ−1(t, z, ζ)ρ(t, z, ζ)ϕ(t, z, ζ)] = 0 , ζ ∈ R .

Consequently, the quantity inside the square brackets is independent of t, so naturally we define

(79) ϱ
±
(z, ζ) ∶= ϕ−1

±
(t, z, ζ)ρ(t, z, ζ)ϕ

±
(t, z, ζ) , ζ ∈ R ,

where ϕ
±
(t, z, ζ) are the Jost eigenfunction. Conversely, one can write

(80) ρ(t, z, ζ) = ϕ
±
(t, z, ζ)ϱ

±
(z, ζ)ϕ−1

±
(t, z, ζ) .

Note that the density matrix ρ(t, z, ζ) itself has no limits as t → ±∞, but ϱ
±
(z, ζ) obviously does.
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Remark 8. In this work, the matrices ϱ
±
(z, ζ) are regarded as the limiting values underlying the limiting

expressions for the density matrix ρ(t, z, λ) in the limits t → ±∞. Besides Equation (79), the following
equivalent expression is more useful to compute ϱ

±
(z, ζ) in practice:

(81) ϱ
±
(z, ζ) = lim

t→±∞
e−iΛ(ζ)tY−1

±
(z, ζ)ρ(t, z, ζ)Y±(z, ζ)eiΛ(ζ)t .

This expression is obtained by taking the limit of Equation (79) as t → ±∞ and using the asymptotics (22).

Remark 9. Similarly to the quantities ϱbg,j,j in the background solution, the entries {ϱ−,j,j} play an im-
portant role in the formulation of IST. In fact, as we show later, these parameters appear in many spectral
data, and control the behavior of solutions. Similarly to Equation (9), ϱ−,j,j are not the initial atomic level
populations ρ−,j,j of the medium in each state, but they determine these initial populations via a complicated
combination, discussed in the rest of this section. Consequently, even if one assumes that all the coefficients
{ϱ−,j,j} are independent of the spectral parameter k, the matrix ρ−(z, k) still depends on k in a nontrivial
way.

In order to form a complete data set of initial-boundary values for CMBE (1), in addition to the asymptotic
initial condition E±(z) for the optical pulse and the input condition E(t, 0) for the injected pulse, one
needs to impose a proper asymptotic initial condition for the medium, i.e., the density matrix ρ(t, z, λ).
One natural choice is the newly found asymptotics ϱ

±
(z, ζ). However, due to the first-order nature of the

differential equations for ρ(t, z, λ) in CMBE (1), one has to determine: (i) whether ϱ
±
(z, ζ) are independent

of each other and; (ii) how to pick the proper (and mathematically correct) asymptotic condition.
To address these concerns, we first show that ϱ

−
(z, ζ) and ϱ

+
(z, ζ) are dependent, meaning that only

one of them needs to be specified for the solution of the initial-boundary value problem. Since ϕ
+
(t, z, ζ) =

ϕ
−
(t, z, ζ)S(z, ζ), by Equation (80), one sees that S(z, ζ)ϱ

+
(z, ζ) = ϱ

−
(z, ζ)S(z, ζ), or equivalently,

(82) ϱ
+
(z, ζ) = S−1(z, ζ)ϱ

−
(z, ζ)S(z, ζ) , ζ ∈ R ,

which relates the asymptotic behaviors of the density matrix as t → ±∞. This relation allows one to obtain
the asymptotic behavior ϱ

+
(z, ζ) from ϱ

−
(z, ζ) using the scattering matrix S(z, ζ), which can be calculated

from the optical pulse envelope Q(t, z). Hence, only one of ϱ
±
(z, ζ) can be chosen at will. The causality

of CMBE thus ensures that only ϱ
−
(z, ζ) is needed to solve the initial-boundary value problem considered

in this work.

Definition 3 (Asymptotic conditions for the density matrix ρ(t, z, λ)). In this work, the quantity ϱ
−
(z, ζ)

from Equation (81) is chosen as the asymptotic value associated with the behavior of the density matrix
ρ(t, z, λ) in the distant past, i.e., in the limits t → −∞, in order to form a complete data set of the initial-
boundary problem for CMBE (1).

3.6.1. Properties of ϱ
±
(z, ζ). We proceed to discuss the properties of the newly found asymptotic initial

data ϱ
−
(z, ζ). It turns out that the properties of both ϱ

±
(z, ζ) are almost identical, so we instead discuss

them together for completeness. However, one should always remember that only ϱ
−
(z, ζ) is required in the

IST.
Looking at Equation (81), we note that ϱ

±
(z, ζ) is not necessarily Hermitian, even though ρ(t, z, ζ) is.

Since the solution ρ(t, z, ζ) only depends on the real values of k, we can consider the Schwarz reflection
of the matrix ρ(t, z, ζ) and easily verify that ρ(t, z, ζ∗)† = ρ(t, z, ζ) for all ζ ∈ R. Similarly, it can also be
verified that Y†

±(z, ζ∗) = Π0(ζ)Y−1
±
(z, ζ) from Equation (20) with

(83) Π0(ζ) ∶= diag(γ(ζ), 1, γ(ζ)) .

Correspondingly, we obtain a symmetry for the asymptotic value ϱ
±
(z, ζ) given by

(84) ϱ†
±
(z, ζ) = Π0(ζ∗)ϱ±(z, ζ∗)Π−1

0 (ζ
∗) , ζ ∈ R .
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Besides the above symmetry (84), one more connection between ϱ
±
(z, ζ) exists, which is the relation

between the data sets on the two k-sheets, i.e., between ζ and ζ̂. Applying the second symmetry of the
eigenfunctions (48), we have

(85) ϱ
±
(z, ζ) = Π−1(ζ)ϱ

±
(z, ζ̂)Π(ζ) , ζ ∈ R ,

where the matrix Π(ζ) is defined in Equation (49).

Remark 10. The symmetry (85) implies that one cannot choose the data ϱ
−
(z, ζ) arbitrarily as a function

of ζ on the entire real line. Indeed, one only has the freedom to pick ϱ
−
(z, ζ) with k ∈ R on the first sheet,

or ζ ∈ (−∞,−E0]∪ [E0,∞), after which the full expression of ϱ
−
(z, ζ) is determined on the entire real zeta

line.

Following the above discussion, Definition 3 and Remark 10, we thus write the proper asymptotic data
for the density matrix as t → −∞, in the k-plane, in the element-wise form, as

(86)

ϱ
±
(z, kI) = (ϱ±,i,j(z, kI))3×3 ,

ϱ
±
(z, kII) =

⎛
⎜
⎝

ϱ±,3,3(z, kI) −iE0ϱ±,3,2(z, kI)/ζ ϱ±,3,1(z, kI)
iζϱ±,2,3(z, kI)/E0 ϱ±,2,2(z, kI) iζϱ±,2,1(z, kI)/E0

ϱ±,1,3(z, kI) −iE0ϱ±,1,2(z, kI)/ζ ϱ±,1,1(z, kI)

⎞
⎟
⎠

,

where the subscript I or II denotes evaluation on sheet I or II, respectively. Also, Equation (86) needs to
satisfy the symmetry (84). One can thus also write an equivalent form of ϱ

±
(z, ζ) in terms of ζ as follows:

(87a)

ϱ±,1,1(z, ζ) = ϱ±,3,3(z, ζ̂) , ϱ±,1,2(z, ζ) = iζ
E0

ϱ±,3,2(z, ζ̂) , ϱ±,1,3(z, ζ) = ϱ±,3,1(z, ζ̂) ,

ϱ±,2,1(z, ζ) = − iE0

ζ
ϱ±,2,3(z, ζ̂) , ϱ±,2,2(z, ζ) = ϱ±,2,2(z, ζ̂) , ϱ±,2,3(z, ζ) = − iE0

ζ
ϱ±,2,1(z, ζ̂) ,

ϱ±,3,1(z, ζ) = ϱ±,1,3(z, ζ̂) , ϱ±,3,2(z, ζ) = iζ
E0

ϱ±,1,2(z, ζ̂) , ϱ±,3,3(z, ζ) = ϱ±,1,1(z, ζ̂) ,

and
(87b)

ϱ±,1,1(z, ζ) = ϱ±,1,1(z, ζ∗)∗ , ϱ±,1,2(z, ζ) = 1
γ(ζ)

ϱ±,2,1(z, ζ∗)∗ , ϱ±,1,3(z, ζ) = ϱ±,3,1(z, ζ∗)∗ ,

ϱ±,2,1(z, ζ) = γ(ζ)ϱ±,1,2(z, ζ∗)∗ , ϱ±,2,2(z, ζ) = ϱ±,2,2(z, ζ∗)∗ , ϱ±,2,3(z, ζ) = γ(ζ)ϱ±,3,2(z, ζ∗)∗ ,

ϱ±,3,1(z, ζ) = ϱ±,1,3(z, ζ∗)∗ , ϱ±,3,2(z, ζ) = 1
γ(ζ)

ϱ±,2,3(z, ζ∗)∗ , ϱ±,3,3(z, ζ) = ϱ∗
±,3,3(z, ζ∗) .

We have now fully determined the asymptotic behavior of the density matrix ρ(t, z, ζ) in the distant past.
We next explore the physical meaning of ϱ

−
(z, ζ) with regard to ρ(t, z, ζ). In particular, since we know that

the diagonal entries of ρ(t, z, ζ) (namely ρdd) denote the populations of atoms in the three states, we would
like to relate ϱ

−,dd to the initial populations of atoms in all three states.
The relation between ϱdd and ρdd are simple in the case of ZBG, where one can easily show that

ϱ
−,dd(z, k) = limt→−∞ ρdd(t, z, k). However, we will show that this relation is much more complicated

for NZBG due to the presence of the nonzero background E−(z). Indeed this also happens in the classic
two-level MBE with NZBGs [43]. This can be seen in the discussion below Equation (9) in context of
background solutions.
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Next, we show that there are no simple relations between each ρi,j and ϱ−,i,j. We write the diagonal entries
of Equation (81) explicitly as

ϱ−,1,1(z, ζ) = 1
ζλ

lim
t→−∞

[Re(E1(t, z)E∗2 (t, z)ρ2,3(t, z, ζ))− ζ Im(E1(t, z)ρ2,1(t, z, ζ)+ E2(t, z)ρ3,1(t, z, ζ))]

+ ζ

2λ
lim

t→−∞
ρ1,1(t, z, ζ)+ ∣E−1(z)∣2

2ζλ
lim

t→−∞
ρ2,2(t, z, ζ)+ ∣E−2(z)∣2

2ζλ
lim

t→−∞
ρ3,3(t, z, ζ) ,

ϱ−,2,2(z, ζ) =− 2
E2

0
lim

t→−∞
Re(E2(t, z)E∗1 (t, z)ρ3,2(t, z, ζ))+

∣E−,1(z)∣2

E2
0

lim
t→−∞

ρ3,3(t, z, ζ)

+ ∣E−,2(z)∣2

E2
0

lim
t→−∞

ρ2,2(t, z, ζ) ,

ϱ−,3,3(z, ζ) = 1
λ

lim
t→−∞

[E−2
0 Re(ζE1(t, z)E∗2 (t, z)ρ2,3(t, z, ζ))− Im(ρ1,2(t, z, ζ)E∗1 (t, z)+ ρ1,3(t, z, ζ)E∗2 (t, z))]

+
E2

0

2ζλ
lim

t→−∞
ρ1,1(t, z, ζ)+

∣E−,1(z)∣2ζ

2E2
0λ

lim
t→−∞

ρ2,2(t, z, ζ)+ ∣E−,2(z)∣2ζ

2E2
0λ

lim
t→−∞

ρ3,3(t, z, ζ) .

Inverting the system (81) yields ρ(t, z, ζ) = Y±(z, ζ)eiΛtϱ
±
(z, ζ)e−iΛtY−1

±
(z, ζ) + o(1) as t → ±∞. There-

fore, the diagonal entries ρdd can be expressed in the limit t → −∞ as

(88)

ρ1,1(t, z, ζ) =D−,1(z, ζ)+ iE0

2λ
(ϱ−,1,3(z, ζ)− ϱ−,3,1(z, ζ))+ o(1) ,

ρ2,2(t, z, ζ) =D−,2(z, ζ)+
E∗
−,1(z)E

∗

−,2(z)
E2

0
ϱ−,3,2(z, ζ)−

iE∗
−,1(z)E

∗

−,2(z)
E0ζ

ϱ−,1,2(z, ζ)

+
i∣E−,1(z)∣2

2E0λ
(ϱ−,3,1(z, ζ)− ϱ−,1,3(z, ζ))+

E−,1(z)E−,2(z)ζ
2E2

0λ
ϱ−,2,3(z, ζ)

+
iE−,1(z)E−,2(z)

2E0λ
ϱ−,2,1(z, ζ)+ o(1) ,

ρ3,3(t, z, ζ) =D−,3(z, ζ)−
E∗
−,1(z)E

∗

−,2(z)
E2

0
ϱ−,3,2(z, ζ)+

iE∗
−,1(z)E

∗

−,2(z)
E0ζ

ϱ−,1,2(z, ζ)

+ i∣E−,2(z)∣2

2E0λ
(ϱ−,3,1(z, ζ)− ϱ−,1,3(z, ζ))−

E−,1(z)E−,2(z)ζ
2E2

0λ
ϱ−,2,3(z, ζ)

−
iE−,1(z)E−,2(z)

2E0λ
ϱ−,2,1(z, ζ)+ o(1) ,

with D−,j(z, ζ) given by

(89)

D−,1(z, ζ) ∶= ζ

2λ
ϱ−,1,1(z, ζ)+

E2
0

2ζλ
ϱ−,3,3(z, ζ) ,

D−,2(z, ζ) ∶=
∣E−,1(z)∣2

2ζλ
ϱ−,1,1(z, ζ)+ ∣E−,2(z)∣2

E2
0

ϱ−,2,2(z, ζ)+
∣E−,1(z)∣2ζ

2E2
0λ

ϱ−,3,3(z, ζ) ,

D−,3(z, ζ) ∶= ∣E−,2(z)∣2

2ζλ
ϱ−,1,1(z, ζ)+

∣E−,1(z)∣2

E2
0

ϱ−,2,2(z, ζ)+ ∣E−,2(z)∣2ζ

2E2
0λ

ϱ−,3,3(z, ζ) .

Remark 11 (Importance of D−,j). We point out that if ϱ(z, ζ) is diagonal, then the quantities D−,j are
precisely the asymptotic initial values of ρ(t, z, λ) as t → −∞, i.e., ρj,j(t, z, ζ) = D−,j(z, ζ) + o(1) as
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t → −∞. This is a direct consequence of Equation (88). As we will see, a diagonal ϱ(z, ζ) is one of the
requirements for pure soliton solutions of CMBE.

For later use, it is also useful to invert the system (89)

(90)

ϱ−,1,1(z, ζ) = ζ

2k
D−,1 +

ζ̂∣E−,1∣2

2k(∣E−,1∣2 − ∣E−,2∣2)
D−,2 −

ζ̂∣E−,2∣2

2k(∣E−,1∣2 − ∣E−,2∣2)
D−,3

ϱ−,2,2(z, ζ) = − ∣E−,2∣2

∣E−,1∣2 − ∣E−,2∣2
D−,2 +

∣E−,1∣2

∣E−,1∣2 − ∣E−,2∣2
D−,3 ,

ϱ−,3,3(z, ζ) = ζ̂

2k
D−,1 +

ζ∣E−,1∣2

2k(∣E−,1∣2 − ∣E−,2∣2)
D−,2 −

ζ∣E−,2∣2

2k(∣E−,1∣2 − ∣E−,2∣2)
D−,3 .

Note that if ∣E−,1∣ = ∣E−,2∣, the system (89) is singular and cannot be inverted.

4. IST: PROPAGATION

In this section, we compute the propagation of the asymptotic initial data, norming constants and re-
flection coefficients. Recall that in CMBE the propagation variable is the spatial variable z instead of t,
the usual evolution variable in equations such as KdV, nonlinear Schrödinger equation and the Manakov
systems. Here we discuss the z dependence of various quantities appearing in the IST.

4.1. Propagaton of the limiting data in the distant past and future. First, let us discuss the dependence
on z of the asymptotic values of the background electric field envelope q±(z). We assume that the limit as
t → ±∞ and the partial derivative ∂/∂z commute. Then the second equation in CMBE (1) yields

(91)
∂

∂z
Q±(z) = −

1
2

lim
t→±∞∫

∞

−∞

[J, ρ(t, z, k)]g(k)dk .

Also, Equation (81) can be written equivalently as

(92) ρ(t, z, ζ) = Y±(z)eiΛ(ζ)tϱ
±
(z, ζ)e−iΛ(ζ)tY±(z)−1 + o(1) , t → ±∞ .

We would like to combine Equations (92) and (91) to derive a propagation equation for the quantity
Q±(z). We outline the calculations below without showing all the details. The exact calculations are
cumbersome and similar to those in the classic two-level system [43].

(1) We decompose the matrix ϱ
±
(z, ζ) into diagonal and off-diagonal parts: ϱ

±
= ϱ
±,dd + ϱ

±,o + ϱ
±,do,

with subscripts dd, o and do, defined in Equation (14).
(2) The integrand [J, ρ(t, z, k)] in Equation (91), combined with the asymptotics (92) and the decom-

position in the previous step, simplifies to become the equation (with temporary omission of t, z and
ζ dependence in all quantities)

[J, ρ] = [J, Y±ϱ
±,ddY−1

±
]+ [J, Y±eiΛtϱ

±,oe−iΛtY−1
±
]+ [J, Y±eiΛtϱ

±,doe−iΛtY−1
±
]+ o(1) .

The last two terms before the error term in this equation contain oscillatory exponentials, which
cancel out as t → ±∞ inside the integral in Equation (91) by the Riemann-Lebesgue lemma. Hence,
one only needs to consider the very first term inside the integral in the limit.

(3) Using the definition of Y±(z, ζ) from Equation (20), the effective part of [J, ρ(t, z, k)] from the
previous step (i.e., the part that survives after integration and limits) becomes, as t → ±∞,

[J, ρ(t, z, ζ)]eff = [J, Y±(z, ζ)ϱ
±,dd(z, ζ)Y−1

±
(z, ζ)] = − i

λ
(ϱ±,1,1(z, ζ)− ϱ±,3,3(z, ζ))JQ±(z) .

(4) The propagation equation (91) for the asymptotic conditions Q±(z) becomes

(93) ∂zQ±(z) =
i
4 ∫

∞

−∞

(ϱ±,1,1(z, k)− ϱ±,3,3(z, k))g(k) dk
λ(k)

[J, Q±(z)] .
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Remark 12. With known asymptotic data ϱ
−
(z, ζ), Q−(z) can be obtained from Equation (93). The quantity

Q+(z) turns out to be unnecessary in the formulation of IST, which is consistent with causality. Of course,
with ϱ

−
(z, ζ) known, ϱ

+
(z, ζ) and consequently Q+(z) can be found using Equations (82) and (93) as well.

Before solving for Q±(z) from Equation (93), we must discuss one potential issue: on which k-sheet
should we compute the integral in Equation (93)? Since λ takes different values on each sheet, it seems that
the integral (93) is ambiguous and the result depends on the sheet choice. However, recall the definition (86)
that ϱ

±
(z, ζ) also take different values on each sheet as seen from Equation (87). In particular, one needs

to interchange the values for ϱ±,1,1(z, ζ) and ϱ±,3,3(z, ζ) between the sheets. Because both quantities, λ(k)
and ϱ±,1,1 − ϱ±,3,3, change signs between the two sheets, the integral (93) is uniquely defined and can be
evaluated on either sheet.

It is convenient to define

(94) w±(z) ∶=
1
4 ∫

(ϱ±,1,1(z, k)− ϱ±,3,3(z, k)) g(k) dk
λ(k)

∈ R .

This quantity simplifies the propagation equation (93) to become

(95) ∂zQ±(z) = iw±(z)[J, Q±(z)] .
By solving this ODE, we obtain the z-dependence of the background optical pulse

(96) Q±(z) = eiW±(z)JQ±(0)e−iW±(z)J , W±(z) ∶= ∫
z

0
w±(z′)dz′ ∈ R .

It is evident that W±(z) is independent of k from Equations (94) and (96). Recall that ∥E±(z)∥ = ∥E±(0)∥ =
E0 for z > 0 by our assumption before Lemma 1. We can therefore write Equation (96) explicitly, element-
wise, as

E±,1(z) = e2iW±(z)E±,1(0) , E±,2(z) = e2iW±(z)E±,2(0) .
Equation (5) further simplifies the E−,j(z) to become

(97) E−,1(z) = E0e2iW±(z) cos α , E−,2(z) = E0e2iW±(z) sin α .

4.2. Asymptotics for the density matrix (part II). Before continuing discussing the propagation of the
physical quantities, we make a detour and simplify the asymptotics for the density matrix using the explicit
expressions (97).

Combining equations (89) and (97), we obtain

(98)

D−,1(z, ζ) ∶= ζ

2λ
ϱ−,1,1(z, ζ)+

E2
0

2ζλ
ϱ−,3,3(z, ζ) ,

D−,2(z, ζ) ∶=
E2

0 cos2 α

2ζλ
ϱ−,1,1(z, ζ)+ ϱ−,2,2(z, ζ) sin2 α + ζ

2λ
ϱ−,3,3(z, ζ) cos2 α ,

D−,3(z, ζ) ∶=
E2

0 sin2 α

2ζλ
ϱ−,1,1(z, ζ)+ ϱ−,2,2(z, ζ) cos2 α + ζ

2λ
ϱ−,3,3(z, ζ) sin2 α .

As mentioned in Remark 11, these three quantities play crucial roles in pure soliton solutions, as they
determine the initial populations of atoms in the three states of the medium.

4.3. Propagation of reflection coefficients and norming constants. The next step is to calculate the prop-
agation of all scattering data, including the reflection coefficients on the continuous spectrum and norm-
ing constants for discrete eigenvalues. To do so, we need to use the z-dependence of the eigenfunctions
ϕ
±
(t, z, ζ) whose t-dependence is discussed in the direct problem.
Recall that the eigenfunctions are not simultaneous solutions for the Lax pair, so they only solve the

scattering problem. As such, they contain nontrivial z-dependence, which implies that all the scattering data
contain nontrivial z-dependence as well. Hence, we need to address the z-dependence of the eigenfunctions
before moving on to the scattering data. We do so by employing simultaneous solutions of the Lax pair.
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4.3.1. Simultaneous solutions of the Lax pair and auxiliary matrix. Because the asymptotic behavior of the
eigenfunctions ϕ

±
(t, z, ζ) as t → ±∞ is fixed, in general, they are not solutions of Equation (2b). However,

because both ϕ
+
(t, z, ζ) and ϕ

−
(t, z, ζ) are fundamental matrix solutions of the scattering problem, every

other solution Φ(t, z, ζ) of the scattering problem (2a) can be written as

Φ(t, z, ζ) = ϕ
+
(t, z, ζ)C+(z, ζ) = ϕ

−
(t, z, ζ)C−(z, ζ) , ζ ∈ Σ ,

where C±(z, ζ) are 3× 3 matrices independent of t.
We assume that Φ(t, z, ζ) is a simultaneous solution of both equations in the Lax pair (2), so Φ(t, z, ζ)

satisfies Equation (2b), i.e., Φz(t, z, ζ) = V(t, z, ζ)Φ(t, z, ζ) for ζ ∈ Σ as well, where the matrix V(t, z, ζ)
is given in Equation (2b). Therefore, we find

∂zC±(z, ζ) = i
2

R±(z, ζ)C±(z, ζ) , ζ ∈ Σ ,

where the auxiliary matrices R±(z, ζ) are given by

(99)
i
2

R±(z, ζ) ∶= ϕ−1
±
(t, z, ζ)[V(t, z, ζ)ϕ

±
(t, z, ζ)− ∂

∂z
ϕ
±
(t, z, ζ)] , ζ ∈ Σ.

It will be shown later that, in order to determine the z dependence of other scattering data, we need to
compute R±(z, ζ) explicitly. Let us again assume that z-derivatives and the limits as t → ±∞ commute, and
we know that R±(ζ, z) is independent of t, so we can write

(100) R±(z, ζ) = −2i lim
t→±∞

[ϕ−1
±
(t, z, ζ)V(t, z, ζ)ϕ

±
(t, z, ζ)−ϕ−1

±
(t, z, ζ) ∂

∂z
ϕ
±
(t, z, ζ)] .

Equation (80) implies that V(t, z, ζ) becomes

(101) V(t, z, ζ) = iπ
2
Hk[ϕ±(t, z, ζ′)ϱ

±
(z, ζ′)ϕ−1

±
(t, z, ζ′)g(k′)] ,

where we use the shorthand notation ζ′ = ζ(k′), and Hk(⋅) is the Hilbert transform (3). After a lengthy
calculation presented in Appendix B, we thus obtain the explicit expression for the matrix R±(z, ζ) as
follows:
(102)

R±,dd(z, ζ) =πλHk[ρ−±(k′)g(k′)/λ′]diag(1 , 0 , −1)+ {πHk[ρ+±(k′) g(k′)]+ 2w±(z)}diag(1, 0, 1) ,

+ {πHk[ϱ±,2,2(k′)g(k′)]− 4w±(z)}diag(0, 1, 0) , ζ ∈ Σ ,

R±,o(z, ζ) =
⎧⎪⎪⎨⎪⎪⎩

±iπg(k)diag(1,−1,−ν)ϱ
±,o(z, ζ)diag(1, 1, ν) , ζ ∈ R ,

03×3 , ζ ∈ Σ○ ,

R±,do(z, ζ) =
⎧⎪⎪⎨⎪⎪⎩

±iπg(k)ϱ
±,do(z, ζ)diag(1, 1,−1) , ζ ∈ R ,

03×3 , ζ ∈ Σ○ ,

where ϱ+
±

and ϱ−
±

are defined as,

(103)
ϱ+
±
∶= (ϱ±,1,1 + ϱ±,3,3)/2 , ϱ−

±
∶= (ϱ±,1,1 − ϱ±,3,3)/2 ,

ϱ±,1,1 = ϱ+
±
+ ϱ−
±

, ϱ±,3,3 = ϱ+
±
− ϱ−
±

,

and where we define

(104) ν(ζ) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 , ζ ∈ (−∞,−E0]∪ [E0,∞) ,
−1 , ζ ∈ (−E0, E0) .

Note that the matrix R±(z, ζ) is computed via a Hilbert transform, meaning that in general it is discon-
tinuous when ζ (or k) crosses the real axis. Note also that the results (102) seemingly depend on the choice
of the k-sheet on which one performs the calculation, as can be seen from ν having different values on each
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sheet. However, recall what happens to Equation (94) and recall our definition (86) for the asymptotic data
ϱ
±
(z, ζ). The potential “ambiguity” inside the above results (102) is resolved by interchanging the values

for ϱ±,i,j(z, ζ) between the k-sheets:
● For the diagonal portion R±,dd(z, ζ): Recall that ϱ−

±
is defined in Equation (103). We find that

ϱ−
±
(z, ζ̂) = −ϱ−

±
(z, ζ) from the symmetries (87). The switching of signs of ϱ−

±
between the two

k-sheets cancels the additional negative sign from λ in the first integral of R±,dd(z, ζ) in Equa-
tion (102). Also, ϱ+

±
(z, ζ̂) = ϱ+

±
(z, ζ) and ϱ±,2,2(z, ζ̂) = ϱ±,2,2(z, ζ̂) by the symmetries (87). Thus,

all integrals in R±,dd(z, ζ) can be evaluated on either k-sheet with identical outcomes.
● For the (1, 3) and (3, 1) components: The symmetries (87) yield that ϱ±,1,3(z, ζ̂) = −ϱ±,1,3(z, ζ) and

ϱ±,3,1(z, ζ̂) = −ϱ±,3,1(z, ζ). Thus, these two quantities evaluated on the two k-sheets take opposite
signs, which cancels the effect of ν.
● For the rest of the off-diagonal entries: The symmetries (87) yield ϱ±,j,k(z, ζ̂) = ϱ±,j,k(z, ζ), i.e.,

these entries evaluated on either k-sheet give identical results.
With the above discussion, we conclude that Equation (102) can be used on either k-sheet and yield identical
results. In other words, the expressions (102) are uniquely defined on both sheets and yield consistent results.

Besides the values on the continuous spectrum Σ, the matrices R±(z, ζ) at certain complex points are also
needed when calculating the propagation of the norming constants. Hence, we next discuss the analyticity
of the entries of R±(z, ζ).

Note that the explicit expressions for the off-diagonal entries (102) are only valid on the continuous
spectrum. However, via the integral expression (99), it is possible to extend some entries off the continuous
spectrum. More precisely, in Appendix B the analytical extension is found by analyzing the exponential in
each integral that produces each entry. It can be shown that one integral can be analytically continued (and
correspondingly becomes zero) if and only if the real part of the corresponding exponent is negative. The
explicit expressions for all the off-diagonal entries are presented in Appendix B. Finally, we obtain

(105)

R−,1,2(z, ζ) = 0 , ζ ∈ C+ , R+,1,2(z, ζ) = 0 , ζ ∈ C− ,

R−,1,3(z, ζ) = 0 , ζ ∈ D3 ∪D4 , R+,1,3(z, ζ) = 0 , ζ ∈ D1 ∪D2 ,

R−,2,1(z, ζ) = 0 , ζ ∈ C− , R+,2,1(z, ζ) = 0 , ζ ∈ C+ ,

R−,3,1(z, ζ) = 0 , ζ ∈ D1 ∪D2 , R+,3,1(z, ζ) = 0 , ζ ∈ D3 ∪D4 ,

R−,2,3(z, ζ) = 0 , ζ ∈ C− , R+,2,3(z, ζ) = 0 , ζ ∈ C+ ,

R−,3,2(z, ζ) = 0 , ζ ∈ C+ , R+,3,2(z, ζ) = 0 , ζ ∈ C− .

These conditions are all we need to compute the propagation of all the scattering data.

4.3.2. Propagation equations for the reflection coefficients. By Equation (28) and the relation ϕ
+
(t, z, ζ)C+(z, ζ) =

ϕ
−
(t, z, ζ)C−(z, ζ), we find that

(106) S(z, ζ) = C−(z, ζ)C−1
+
(z, ζ) , ζ ∈ Σ ,

together with

(107)

∂

∂z
S(z, ζ) = i

2
[R−(z, ζ)S(z, ζ)− S(z, ζ)R+(z, ζ)] ,

∂

∂z
S−1(z, ζ) = i

2
[R+(z, ζ)S−1(z, ζ)− S−1(z, ζ)R−(z, ζ)] .

Note that the scattering coefficients ai,j(z, ζ) from S(z, ζ) and bi,j(z, ζ) from S(z, ζ)−1 do not appear in
the inverse problem directly, but in the form of a combination among them, i.e., the reflection coefficients
rj(z, ζ) with j = 1, 2, 3, appear, as defined in Equation (54). Therefore, Equation (107) is not enough
to complete the formulation of IST, and we need to compute the propagation equation for the reflection
coefficients instead. Note that by our definition (86), the matrix R±(z, ζ) takes the same values on the two
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k-sheets, but the reflection coefficients do not. Thus, we also need to perform the calculations on k-sheets I
and II separately.
● First, let us consider the reflection coefficients r1(z, ζ) and r2(z, ζ). We define the matrix B(1)(z, ζ) such

that

(108) B(1)(z, ζ) ∶= So(z, ζ)Sd(z, ζ)−1 =
⎛
⎜
⎝

0 (a1,2(z, ζ), a1,3(z, ζ)) ⋅ S[1,1](z, ζ)−1

r1(z, ζ) 01×2
r2(z, ζ) 01×2

⎞
⎟
⎠

,

where the subscripts d, o and [1, 1] are defined in Equation (14). Then, by differentiating Equation (108)
with respect to z, one obtains an ODE for the matrix B(1)(z, ζ),

∂B(1)

∂z
(z, ζ) = ∂So

∂z
(z, ζ)So(z, ζ)−1B(1)(z, ζ)−B(1)(z, ζ)∂Sd

∂z
(z, ζ)Sd(z, ζ)−1 .

By using Equation (106), separating the block-diagonal and block-off-diagonal parts of the matrix, apply-
ing the identity S(z, ζ)S−1(z, ζ) = I and performing some tedious calculations, we find the propagation
equations for the two reflection coefficients when ζ ∈ Σ/(−E0, E0). Let r(z, ζ) ∶= (r1(z, ζ), r2(z, ζ))⊺;
then the propagation equations for the two reflection coefficients can be written compactly as

∂r
∂z
(z, ζ) = i

2
A(z, ζ)r(z, ζ)+ b(z, ζ) , ζ ∈ Σ/(−E0, E0) ,(109a)

where

(109b)

A(z, ζ) ∶= (H2,2(z, ζ)−H1,1(z, ζ) H2,3(z, ζ)
0 H3,3(z, ζ)−H1,1(z, ζ)) ,

b(z, ζ) ∶= −ν0πg(k)(ϱ−,2,1(z, ζ)
ϱ−,3,1(z, ζ)) ,

H(z, ζ) = (Hi,j(z, ζ))2×2 ∶= R−(z, ζ)+ iν0πg(k)ϱ
−
(z, ζ) ,

with

(110) ν0 ∶=
⎧⎪⎪⎨⎪⎪⎩

1 , ζ ∈ (−∞,−E0]∪ [E0,∞) ,
0 , ζ ∈ Σ○ .

Note that the two ODEs for r1(z, ζ) and r2(z, ζ) are coupled, which is similar to the case of ZBG. Note
also that, unlike the two-level case with NZBG, the propagation equation (109) is only valid when k ∈ Σk
on sheet I or ζ ∈ Σ/(−E0, E0), not on the entire continuous spectrum Σ. We will see that this is all we
need to reconstruct our solution in the inverse problem.

In fact, one could also compute the propagation equations of r1(z, ζ) and r2(z, ζ) with ζ ∈ (−E0, E0).
However, in this case, the equations are not as simple as the propagation equation (109). This does not
happen to both ZBG cases (two-level and coupled) and to the two-level system with NZBG. As we will
show later, these equations are not necessary for the IST. Thus, we skip this derivation and omit explicit
formulas.
● Next, we compute the propagation equation for the last reflection coefficient r3(z, ζ). To do so, we define

another matrix B(2)(z, ζ) as

(111) B(2)(z, ζ) ∶= Sdo(z, ζ)Sdd(z, ζ)−1 =
⎛
⎜
⎝

0 0 0
0 0 a2,3(z, ζ)/a3,3(z, ζ)
0 r3(z, ζ) 0

⎞
⎟
⎠

, ζ ∈ Σ ,

where the subscripts dd and do are defined in Equation (14). By differentiating Equation (111) with
respect to z, we obtain the ODE

∂B(2)

∂z
(z, ζ) = ∂Sdo

∂z
(z, ζ)Sdo(z, ζ)−1B(2)(z, ζ)−B(2)(z, ζ)∂Sdd

∂z
(z, ζ)Sdd(z, ζ)−1 .
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By using Equation (15) to separate the diagonal and off-diagonal parts, and using similar techniques as
for computing Equation (109), the above equation reduces to [with r̃(z, ζ) ∶= (r3(z, ζ), r3(z, ζ̂))⊺]

(112a)
∂̃r
∂z
(z, ζ) = i

2
Ã(z, ζ)̃r(z, ζ)+ b̃(z, ζ) , ζ ∈ Σ/(−E0, E0) ,

where

(112b)

Ã(z, ζ) ∶= (H̃3,3(z, ζ)− H̃2,2(z, ζ) 0
iζ H̃1,3(z, ζ)/E0 H̃1,1(z, ζ)− H̃2,2(z, ζ)) ,

b̃(z, ζ) ∶= ν0πg(k)( ϱ−,3,2(z, ζ)
iζϱ−,1,2(z, ζ)/E0

) ,

H̃(z, ζ) = (H̃i,j(z, ζ))2×2 ∶= R−(z, ζ)− iν0πg(k)ϱ
−
(z, ζ) ,

with ν0 defined in Equation (110). Note that if ζ ∈ (−∞,−E0] ∪ [E0,∞), then ζ̂ ∈ (−E0, E0), so Equa-
tion (112) gives the propagation of r3(z, ζ) on the entire continuous spectrum Σ. Moreover, the third
reflection coefficient r3(z, ζ) has different expressions for k on sheet I or II, and the propagation equa-
tions are coupled. Also, if ζ ∈ Σ○, so is ζ̂. In this case, by the choice of the asymptotic condition (86), the
system (112) can be shown to be self-compatible.

Similarly to the classic two-level MBE with NZBG [43], the reflection coefficients take different forms
depending on whether ζ is real or complex. Note also that all the equations are determined solely by the
asymptotic condition ϱ

−
(z, ζ) via R−(z, ζ), which is consistent with causality.

4.3.3. Propagation equations for the norming constants. Here, we present the propagation equations for all
three types of the norming constants. The calculations can be found in the Appendix C. These equations are

(113)

∂Cn

∂z
(z) = i

2
[R−,1,1(w∗n)− R−,3,3(w∗n)]Cn(z) , n = 1, 2, . . . , NI ,

∂Dn

∂z
(z) = i

2
[R−,2,2(zn)− R−,3,3(zn)]Dn(z) , n = 1, 2, . . . , NII ,

∂Fn

∂z
(z) = i

2
[R−,1,1(ζ∗n)− R−,2,2(ζ∗n)] Fn(z) , n = 1, 2, . . . , NIII ,

where R−,j,j(z, ζ), with j = 1, 2, 3, are defined in Equation (102). Recall that w∗n, zn and ζ∗n are the three types
of discrete eigenvalues corresponding to the three modified norming constants Cn, Dn and Fn as discussed
in Section 3.4. Note that these equations only contain the asymptotic conditions as t → −∞, consistent with
causality.

Remark 13. The three propagation equations (113) (one for each type of the norming constants) are suf-
ficient for the formulation of the entire IST, even though there are a total of twelve norming constants (c.f.
Section 3.4). After one uses Equation (113) to compute the z-dependence of three norming constants, one is
able to use the symmetries (67) to compute the other nine norming constants.

Remark 14. The propagation Equation (113) for the norming constants can also be calculated via the trace
formulae in Equation (122) (derived in Section 5.2 below), similarly to what has been done for IST with
asymmetric background in Ref. [53]. For the symmetric background case with the two-level MBEs studied
in Ref. [43], it can be shown that the two approaches are equivalent and produce identical propagation
equations. We believe the same to be true here, but we have not carried out the tedious calculation explicitly.

5. IST: INVERSE PROBLEM

5.1. Riemann-Hilbert problem and reconstruction formula. We formulate the inverse problem by con-
structing a RHP, after which the solution of CMBE (1) can be reconstructed from the solution of the RHP.
To achieve this, we first rearrange the eigenfunctions and divide them into four groups, so that each group
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is meromorphic in a particular region of the complex ζ-plane. Then, we compute the jump matrix that
characterizes the difference between two groups of eigenfunctions on the shared boundary.

Definition 4. Using the analycity of the eigenfunctions (cf. Equation (26) and Remark 6) and the analyticity
of the scattering data in Equation (29), we define a sectionally meromorphic matrix M(t, z, ζ),

(114) M(t, z, ζ) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ(1) e−iΛt[diag(a1,1, 1, b2,2)]−1 = (
µ
+,1

a1,1
, µ
−,2,

m1

b2,2
) , ζ ∈ D1 ,

Φ(2) e−iΛt[diag(1, a2,2, b1,1)]−1 = (µ
−,1,

µ
+,2

a2,2
,

m2

b1,1
) , ζ ∈ D2 ,

Φ(3) e−iΛt[diag(b3,3, a2,2, 1)]−1 = (m3

b3,3
,

µ
+,2

a2,2
, µ
−,3) , ζ ∈ D3 ,

Φ(4) e−iΛt[diag(b2,2, 1, a3,3)]−1 = (m4

b2,2
, µ
−,2,

µ
+,3

a3,3
) , ζ ∈ D4 ,

where the matrices Φ(j)(t, z, ζ) are defined in Equation (57).

Definition 5. As shown in Figure 3, we define two regions D± as D+ ∶= D1 ∪D3 and D− ∶= D2 ∪D4, and
decompose the continuous spectrum as Σ = ∪4

j=1Σj, with Σ1 ∶= (−∞,−E0]∪ [E0,+∞), Σ2 ∶= {λ = E0eiα∣α ∈
[π, 2π]}, Σ3 ∶= {λ = −z∣z ∈ [−E0, E0]}, and Σ4 ∶= {λ = E0ei(π−α)∣α ∈ [0, π]}. With the designated
orientation, D+ is always to the contour Σ’s left and D− is always to its right. Moreover, we define the
matrix L(z, ζ) as follows:

(115)
L(z, ζ) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eiΛt
⎛
⎜⎜
⎝

−iE0r1r̂3/ζ + (−r2 + r1r3)R2 −R1/γ −R2 + R1R3

−r1 0 γR3

−r2 + r1r3 r3 −γr3R3

⎞
⎟⎟
⎠

e−iΛt , ζ ∈ Σ1 ,

eiΛt
⎛
⎜⎜
⎝

r2r̂2 0 r̂2

0 0 0
−r2 0 0

⎞
⎟⎟
⎠

e−iΛt , ζ ∈ Σ2 ,

eiΛt
⎛
⎜⎜
⎝

−r̂2R̂2 r3r̂2 + iE0r̂3/ζ r̂2

γR3R̂2 − iE0γR̂3/ζ −γr3R3 − γ(γ − 1)r̂3R̂3 −γR3

R̂2 −r3 0

⎞
⎟⎟
⎠

e−iΛt , ζ ∈ Σ3 ,

eiΛt
⎛
⎜⎜
⎝

R2R̂2 0 −R2

0 0 0
R̂2 0 0

⎞
⎟⎟
⎠

e−iΛt , ζ ∈ Σ4 ,

r̂j ∶= rj(z, ζ̂) , Rj ∶= r∗j (z, ζ∗) , R̂j ∶= r∗j (z, ζ̂∗) , ζ̂ ∶= −E2
0/ζ ,

where rj = rj(z, ζ) are reflection coefficients.

Riemann-Hilbert problem 1. One seeks a 3× 3 matrix M(t, z, ζ) satisfying the conditions:
Asymptotics:

M(t, z, ζ) =M∞(t, z, ζ)+O(1/ζ) , ζ →∞ ,

M(t, z, ζ) = − i
ζ

M0(t, z, ζ)+O(1) , ζ → 0 ,

where

M∞(t, z, ζ) ∶= (1 0 0
0 (E�

−
)∗/E0 E∗

−
/E0
) , M0(t, z, ζ) ∶= ( 1 0 E0

E∗
−

0 0 ) .
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FIGURE 3. Left: The regions D+ = D1 ∪D3 and D− = D2 ∪D4, and the decomposition
of the oriented continuous spectrum Σ = ∪4

j=1Σj.

Note that M∞ + (i/ζ)M0 = Y−, which is the asymptotic eigenfunction matrix (20) of the scattering
problem.

Jump Condition:

M+(t, z, ζ) =M−(t, z, ζ)[I− L(z, ζ)] , ζ ∈ Σ .

Analyticity: M(t, z, ζ) is sectionally meromorphic on ζ ∈ C.
Residue Condition: M(t, z, ζ) satisfies the following conditions at the nonanalytic points:

Res
ζ=wn

M(t, z, ζ) = lim
ζ→wn

M
⎛
⎜
⎝

0 0 0
0 0 0
−C
∗

n 0 0

⎞
⎟
⎠

, Res
ζ=w∗n

M(t, z, ζ) = lim
ζ→w∗n

M
⎛
⎜
⎝

0 0 Cn
0 0 0
0 0 0

⎞
⎟
⎠

,

Res
ζ=ŵ∗n

M(t, z, ζ) = lim
ζ→ŵ∗n

M
⎛
⎜
⎝

0 0 0
0 0 0
qCn 0 0

⎞
⎟
⎠

, Res
ζ=ŵn

M(t, z, ζ) = lim
ζ→ŵn

M
⎛
⎜⎜
⎝

0 0 − E2
0

w2
n
C
∗

n

0 0 0
0 0 0

⎞
⎟⎟
⎠

,

Res
ζ=zn

M(t, z, ζ) = lim
ζ→zn

M
⎛
⎜
⎝

0 0 0
0 0 Dn
0 0 0

⎞
⎟
⎠

, Res
ζ=z∗n

M(t, z, ζ) = lim
ζ→z∗n

M
⎛
⎜
⎝

0 0 0
0 0 0
0 − Dn

γ(ζ) 0

⎞
⎟
⎠

,

Res
ζ=ẑ∗n

M(t, z, ζ) = lim
ζ→ẑ∗n

M
⎛
⎜⎜
⎝

− D̂∗n
γ(ζ) 0 0
0 0 0
0 0 0

⎞
⎟⎟
⎠

, Res
ζ=ẑn

M(t, z, ζ) = lim
ζ→ẑn

M
⎛
⎜
⎝

0 0 0
D̂n 0 0
0 0 0

⎞
⎟
⎠

,

Res
ζ=ζn

M(t, z, ζ) = lim
ζ→ζn

M
⎛
⎜
⎝

0 0 0
Fn 0 0
0 0 0

⎞
⎟
⎠

, Res
ζ=ζ∗n

M(t, z, ζ) = lim
ζ→ζ∗n

M
⎛
⎜
⎝

0 Fn 0
0 0 0
0 0 0

⎞
⎟
⎠

,

Res
ζ=ζ̂∗n

M(t, z, ζ) = lim
ζ→ζ̂∗n

M
⎛
⎜
⎝

0 0 0
0 0 0
0 qFn 0

⎞
⎟
⎠

, Res
ζ=ζ̂n

M(t, z, ζ) = lim
ζ→ζ̂n

M
⎛
⎜
⎝

0 0 0
0 0 F̂n
0 0 0

⎞
⎟
⎠

,

where all the modified norming constants are defined in Equation (64), and the loci of a in appro-
priately chosen quartet of discrete eigenvalues are shown in Figure 2 (right).
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Remark 15. This RHP can be derived via direct calculations using the relation (28) and the definition
of the reflection coefficients (54). For the jump condition, note the differences among all three reflection
coefficients in the jump condition in RHP 1: i) r1(z, ζ) only appears on ζ ∈ Σ1; ii) r2(z, ζ) appears on
all portions of the continuous spectrum Σ, but the portion of ζ ∈ Σ3 only requires r2(z, ζ̂) and r∗2(z, ζ̂∗).
Therefore, the explicit expression for r2(z, ζ) is only needed on ζ ∈ Σ/Σ3; iii) r3(z, ζ) appears on Σ1 ∪Σ3.
Combining all the parts, we conclude that the propagation equations (109) and (112) are sufficient to close
the inverse problem. The asymptotics is exactly the leading order term in the asymptotic expansion of
M(t, z, ζ) as ζ → ∞ and as ζ → 0, obtained from Section 3.5. The residue condition can be proved by
using the definition (64) of the modified norming constants.

One can then formally solve RHP 1 and obtain its solution.

Theorem 1. The solution of RHP 1 can be written as the implicit integral equation

(116) M(t, z, ζ) = Y−(z, ζ)+∑
n
(

Resζ=vn M(ζ)
ζ − vn

+
Resζ=v∗n M(ζ)

ζ − v∗n
+

Resζ=v̂∗n M(ζ)
ζ − v̂∗n

+
Resζ=v̂n M(ζ)

ζ − v̂n
)

− 1
2πi ∫Σ

M−(t, z, η)L(z, η)
η − ζ

dη , ζ ∈ C ,

where vn denotes all the discrete eigenvalues in the region D1, and the last term contains the Cauchy
projector

(117) P( f )(ζ) ∶= 1
2πi ∫Σ

f (η)
η − ζ

dη , ζ ∈ C .

The evaluation of the Cauchy projector on the jump contour Σ should be distinguished as from the left or
right of the contour, i.e., using the limit ζ ± iϵ as ϵ → 0+, respectively.

Theorem 1 is proved in two steps. First, we subtract the asymptotic behavior M∞ ∶= M(t, z,∞), M0 ∶=
M(t, z, 0) and the residues at the discrete spectrum from the jump condition, in order to normalize it:

(118) M+ −M∞ +
i
ζ

M0 −∑
n
(

Resζ=vn M(ζ)
ζ − vn

+
Resζ=v∗n M(ζ)

ζ − v∗n
+

Resζ=v̂∗n M(ζ)
ζ − v̂∗n

+
Resζ=v̂n M(ζ)

ζ − v̂n
)

=M− −M∞ +
i
ζ

M0 −∑
n
(

Resζ=vn M(ζ)
ζ − vn

+
Resζ=v∗n M(ζ)

ζ − v∗n
+

Resζ=v̂∗n M(ζ)
ζ − v̂∗n

+
Resζ=v̂n M(ζ)

ζ − v̂n
)

−M−L ,

where ζ ∈ Σ and vn denotes all the discrete eigenvalues. Second, we apply the Cauchy projector (117) to
Equation (118).

Once the solution to RHP 1 is obtained, we are able to reconstruct the solutions to CMBE (1), which is
formalized in the following theorem:

Theorem 2. The solution to CMBE (1) can be reconstructed from RHP 1 and Theorem 1 as,

(119)

Ej(t, z) = E−,j +
NI

∑
n=1
[iCn Mj+1,3(wn)∗ −

wn

E0

qC∗n M(j+1),1(w∗n)∗]− i
NII

∑
n=1

D̂∗n M(j+1),2(zn)∗

− i
NIII

∑
n=1

F∗n M(j+1),2(ζn)∗ +
1

2π ∫Σ
[M−L]∗j+1,1dη , j = 1, 2,

ρ(t, z, ζ) = µ
−
(t, z, ζ) eiΛt ϱ

−
(ζ, z) e−iΛt µ−1

−
(t, z, ζ) , ζ ∈ R ,
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where the eigenfunction matrix µ
−
(t, z, ζ) is given by

(120)

µ
−
(t, z, ζ) = Y−(z, ζ)+ (µ̂1, µ̂2, µ̂3)−

1
2πi ∫Σ

( [M
−L]1

η − ζ + i0
,
[M−L]2
η − ζ − i0

,
[M−L]3
η − ζ + i0

)dη , ζ ∈ R ,

µ̂1 ∶=
NI

∑
n=1

⎛
⎝

iw∗n
E0

qCnM1(w∗n)
ζ − ŵ∗n

− C
∗

nM3(wn)
ζ −wn

⎞
⎠
+

NII

∑
n=1

D̂nM2(zn)
ζ − ẑn

+
NIII

∑
n=1

FnM2(ζn)
ζ − ζn

,

µ̂2 ∶= −
NII

∑
n=1
( 1

ζ − z∗n
+ (γ(z

∗

n)− 1)
ζ − ẑ∗n

) D∗n
γ(z∗n)

M3(z∗n)+
NIII

∑
n=1
( Fn

ζ − ζ∗n
+ iζ∗n

E0

qFn

ζ − ζ̂∗n
)M1(ζ∗n) ,

µ̂3 ∶=
NI

∑
n=1

⎡⎢⎢⎢⎣

CnM1(w∗n)
ζ −w∗n

− iE0

wn

C
∗

nM3(wn)
ζ − ŵn

⎤⎥⎥⎥⎦
+

NII

∑
n=1

DnM2(zn)
ζ − zn

+
NIII

∑
n=1

F̂nM2(ζn)
ζ − ζ̂n

,

where [M−L]j is the jth column of the matrix M−L. Note that Y−(z, ζ) is continuous across the real line.

Proof. First, we use the integral equation (116) to compute the solution M(t, z, ζ) at the discrete eigenval-
ues. This can be achieved by: i) evaluating the first column of Equation (116) at the discrete eigenvalues
ζ = w∗n and ζ = ζ∗n; ii) evaluating the second column of Equation (116) at the discrete eigenvalues ζ = zn
and ζ = ζn; iii) evaluating the third column of Equation (116) at the discrete eigenvalues ζ = wn and ζ = z∗n.

The resulting equations at the discrete spectrum are given by,

(121)

M1(ζ) = Y−,1(ζ)+
NI

∑
j=1

⎛
⎜
⎝

C
∗

j M3(wj)
ζ −wj

+
iw∗j
E0

qCjM1(w∗j )
ζ − ŵ∗j

⎞
⎟
⎠
+

NII

∑
j=1

D̂jM2(zj)
ζ − ẑj

+
NIII

∑
j=1

FjM2(ζ j)
ζ − ζ j

− 1
2πi ∫Σ

[M−L]1
η − ζ

dη , ζ = w∗n , ζ∗n ,

M2(ζ) = Y−,2(ζ)−
NII

∑
j=1

⎛
⎝

1
ζ − z∗j

+
γ(z∗j )− 1

ζ − ẑ∗j

⎞
⎠

D∗j
γ(z∗j )

M3(z∗j )

+
NIII

∑
j=1

⎛
⎝

1
ζ − ζ∗j

+
γ(ζ∗j )− 1

ζ − ζ̂∗j

⎞
⎠

FjM1(ζ∗j )−
1

2πi ∫Σ

[M−L]2
η − ζ

dη , ζ = zn , ζn ,

M3(ζ) = Y−,3(ζ)+
NI

∑
j=1

⎛
⎝

CjM1(w∗j )
ζ −w∗j

− iE0

wj

C
∗

j M3(wj)
ζ − ŵj

⎞
⎠
+

NII

∑
j=1

DjM2(zj)
ζ − zj

+
NIII

∑
j=1

F̂jM2(ζ j)
ζ − ζ̂ j

− 1
2πi ∫Σ

[M−L]3
η − ζ

dη , ζ = wn , z∗n .

The six equations (121) form a closed algebraic system for a given set of scattering data. Therefore, the
unknown vectors {M1(w∗n), M1(ζ∗n), M2(zn), M2(ζn), M3(wn), M3(z∗n)} can be solved for, after which
Equation (116) yields an integral equation for the solution M(t, z, ζ).

Now we are ready to formulate the solution of CMBE (1). First, we reconstruct the electric field envelope.
By comparing the asymptotic behavior of the first column of Equation (116) as ζ → ∞ to the asymptotic
behavior of µ

−,1(t, z, ζ) in Equation (72), we obtain the reconstruction formula for the envelopes Ej(t, z),
with j = 1, 2, as in Equation (119).

Next, we reconstruct the density matrix. In terms of the original spectral variable k, we note that ρ(t, z, k)
should be constructed on the real line, which translates to ρ(t, z, ζ) with ζ ∈ R as well. Furthermore, due
to the double k-sheet, one can reconstruct ρ(t, z, ζ) on ζ ∈ (−∞,−E0]∪ [E0,∞), corresponding to k on the
first sheet, or ζ ∈ [−E0, E0], corresponding to k on the second sheet, or mix the two cases together. All the
results are equivalent. After all, the solution only concerns k ∈ R, not λ or ζ.
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By definition (114), we know that

µ
−
(t, z, ζ) = ([M(t, z, ζ − i0)]1, [M(t, z, ζ + i0)]2, [M(t, z, ζ − i0)]3) , ζ ∈ R ,

Hence, by the solution formula (116) of the RHP, we obtain the reconstruction formula for ρ in Equa-
tion (119).

□

5.2. Trace formulæ. Similarly to the two-level MBEs [43] and the focusing NLS equation [51, 54], it is
also possible to obtain the so-called “trace” formula for CMBE (1), which express the scattering data in
terms of the reflection coefficients and discrete eigenvalues. We present this “trace” formulæ below and
relegate the calculations to Appendix D. The formulæ are

(122)

b1,1(z, ζ) = e−
1

2πi ∫Σ
J

η−ζ
dη

NI

∏
n=1

ζ −w∗n
ζ −wn

ζ − ŵn

ζ − ŵ∗n

NII

∏
n=1

ζ − ẑ∗n
ζ − ẑn

NIII

∏
n=1

ζ − ζ∗n
ζ − ζn

,

a2,2(z, ζ) = e−i∆θe
1

2πi ∫R

J0
η−ζ

dη
NII

∏
n=1

ζ − z∗n
ζ − zn

ζ − ẑ∗n
ζ − ẑn

NIII

∏
n=1

ζ − ζ∗n
ζ − ζn

ζ − ζ̂∗n
ζ − ζ̂n

,

b2,2(z, ζ) = ei∆θe−
1

2πi ∫R

J0
η−ζ

dη
NII

∏
n=1

ζ − zn

ζ − z∗n

ζ − ẑn

ζ − ẑ∗n

NIII

∏
n=1

ζ − ζn

ζ − ζ∗n

ζ − ζ̂n

ζ − ζ̂∗n
,

where the integrands are defined by

(123)

J0 ∶= log [1+ γ(ζ)(γ(ζ)− 1)r3(ζ̂)r∗3(ζ̂∗)+ γ(ζ)r3(ζ)r∗3(ζ∗)] ,

J ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

J1 , ζ ∈ Σ1 ,
J2 , ζ ∈ Σ2 ,
J3 , ζ ∈ Σ3 ,
J4 , ζ ∈ Σ4 ,

J1 ∶= − log(1+ 1
γ(ζ)

r1(ζ)r∗1(ζ
∗)+ r2(ζ)r∗2(ζ∗)) ,

J2 ∶=
1

2πi ∫Σ

J0

η − ζ
dη − log (1− r∗2(ζ∗)r∗2(ζ̂∗)) ,

J3 ∶= − log(r2(ζ̂)r∗2(ζ̂∗)+
1

γ(ζ)(γ(ζ)− 1)
r1(ζ̂)r∗1(ζ̂

∗)+ 1) ,

J4 ∶=
1

2πi ∫Σ

J0

η − ζ
dη − log (1− r2(ζ̂)r2(ζ)) .

Also, in Appendix D, we show how to derive the “theta” formula, which relates the asymptotic phase
difference of the solution as t → ±∞,

∆θ ∶= θ+ − θ− =
1

2π ∫Σ

J
η

dη − 4
NI

∑
n=1

arg wn + 2
NII

∑
n=1

arg zn − 2
NIII

∑
n=1

arg ζn ,

where θ± are defined in the asymptotic conditions E±(z) = E0eiθ± with ∥E0∥ = E0.

5.3. Reflectionless potentials. In this section, we discuss reflectionless potentials corresponding to pure
soliton solutions.

Remark 16. Similarly to other cases of MBEs, reflectionless potentials require not only bj(0, ζ) ≡ 0, i.e.,
reflectionless input data E(t, 0), but also special asymptotic data, i.e., ϱ

−
(z, ζ) must be diagonal, [cf. the

ODEs (109) and (112)].
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Following this discussion, we take the asymptotic conditions from Equation (86) as

(124) ϱ
−
(z, ζ) = diag(ϱ−,1,1, ϱ−,2,2, ϱ−,3,3) , ζ ∈ Σ ,

with ϱ
−,j,j(z, ζ) ≥ 0 for j = 1, 2, 3. Importantly, the above matrix satisfies the mandatory symmetry (87).

We assume that there are total NI ≥ 0 discrete eigenvalues of the first kind wn, NII ≥ 0 discrete eigenvalues
of the second kind zn, and NIII ≥ 0 discrete eigenvalues of the third kind ζn.

Because all three reflection coefficients vanish, the jump matrix (115) is identically zero. Therefore, the
RHP 1 can be solved explicitly, via the closed algebraic system (121) with all the integrals vanishing. We
define the following vector notation for j = 1, 2, 3, in order to further simplify the system (121):

(125)

Mj,1(w∗n) ∶= (Mj,1(w∗1), . . . , Mj,1(w∗NI
)) , Mj,1(ζ∗n) ∶= (Mj,1(ζ∗1), . . . , Mj,1(ζ∗NIII

)) ,

Mj,2(zn) ∶= (Mj,2(z1), . . . , Mj,2(zNII)) , Mj,2(ζn) ∶= (Mj,2(ζ1), . . . , Mj,2(ζNIII)) ,

Mj,3(z∗n) ∶= (Mj,3(z∗1), . . . , Mj,3(z∗NII
)) , Mj,3(wn) ∶= (Mj,3(w1), . . . , Mj,3(wNI)) ,

X j ∶= (Mj,1(w∗n), Mj,1(ζ∗n), Mj,2(zn), Mj,2(ζn), Mj,3(z∗n), Mj,3(wn))
⊺

.

Then, the system (121) can be rewritten in the following compact form,

(I−A)X j = Bj ,

where I is the 3× 3 identity matrix, and the block matrices A and Bj are defined as

(126)
A ∶= (Ai,j)6×6 ,

Bj ∶= (Y−,j,1(w∗n), Y−,j,1(ζ∗n), Y−,j,2(zn), Y−,j,2(ζn), Y−,j,3(z∗n), Y−,j,3(wn))
⊺

,

with Y−,i,j being the (i, j)-component of the matrix Y− in Equation (20) and the underline denoting

(127)

Y−,j,1(w∗n) ∶= (Y−,j,1(w∗1), . . . , Y−,j,1(w∗NI
)) , Y−,j,1(ζ∗n) ∶= (Y−,j,1(ζ∗1), . . . , Y−,j,1(ζ∗NIII

)) ,

Y−,j,2(zn) ∶= (Y−,j,2(z1), . . . , Y−,j,2(zNII)) , Y−,j,2(ζn) ∶= (Y−,j,2(ζ1), . . . , Y−,j,2(ζNIII)) ,

Y−j,3(z∗n) ∶= (Y−,j,3(z∗1), . . . , Y−,j,3(z∗NII
)) , Y−,j,3(wn) ∶= (Y−,j,3(w1), . . . , Y−,j,3(wNI)) .

The blocks Ai,j are defined as (m is the row index and n is the column index)

(128a)

A1,1 ∶= (
iw∗n
E0

qCn

w∗m − ŵ∗n
)

NI×NI

, A1,3 ∶= (
D̂n

w∗m − ẑn
)

NI×NII

,

A1,4 ∶= (
Fn

w∗m − ζn
)

NI×NIII

, A1,6 ∶= (
−C
∗

n
w∗m −wn

)
NI×NI

,

A2,1 ∶= (
iw∗n
E0

qCn

ζ∗m − ŵ∗n
)

NIII×NI

, A2,3 ∶= (
D̂n

ζ∗m − ẑn
)

NIII×NII

,

A2,4 ∶= (
Fn

ζ∗m − ζn
)

NIII×NIII

, A2,6 ∶= (
−Cn

ζ∗m −wn
)

NIII×NI

,

A3,2 ∶= (
Fn

zm − ζ∗n
+ iζ∗n

E0

qFn

zm − ζ̂∗n
)

NII×NIII

, A3,5 ∶= (−
D∗n

γ(z∗n)
( 1

zm − z∗n
+ γ(z∗n)− 1

zm − ẑ∗n
))

NII×NII

,
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as well as

(128b)

A4,2 ∶= (
Fn

ζm − ζ∗n
+ iζ∗n

E0

qFn

ζm − ζ̂∗n
)

NIII×NIII

, A4,5 ∶= (−
D∗n

γ(z∗n)
( 1

ζm − z∗n
+ γ(z∗n)− 1

ζm − ẑ∗n
))

NIII×NII

,

A5,1 ∶= (
Cn

z∗m −w∗n
)

NII×NI

, A5,3 ∶= (
Dn

z∗m − zn
)

NII×NII

,

A5,4 ∶= (
F̂n

z∗m − ζ̂n
)

NII×NIII

, A5,6 ∶= (−
iE0

wn

C
∗

n
z∗m − ŵn

)
NII×NI

,

A6,1 ∶= (
Cn

wm −w∗n
)

NI×NI

, A6,3 ∶= (
Dn

wm − zn
))

NI×NII

,

A6,4 ∶= (
F̂n

wm − ζ̂n
)

NI×NIII

, A6,6 ∶= (−
iE0

wn

C
∗

n
wm − ŵn

)
NI×NI

,

with the remaining blocks being identically zero matrices of appropriate sizes. Then the unknowns Xi,j can
be expressed as

Xi,j =
det((I−A)i,j)

det(I−A)
,

where (I−A)i,j is the matrix I−A with the i-th column replaced by Bj. Thus, the electric field envelope Ej
is obtained from Equation (119) as

(129a) Ej = E−,j − i(
det((̃I−A)j+1)

det(I−A)
)
∗

,

where

(129b)
(̃I−A)j ∶= (

0 −D
Bj I−A) , D ∶= (D1, D2, . . . , D6) , D1 ∶= (

iw∗1
E0

qC1, . . . ,
iw∗NI

E0

qCNI) ,

D3 ∶= (D̂1, . . . , D̂NII) , D4 ∶= (F1, . . . , FNIII) , D6 ∶= (−C
∗

1 , . . . ,−C
∗

NI
) ,

with D2 and D5 being zero vectors of appropriate sizes.
We can also reconstruct the eigenfunction matrix from the solution (120) as

(130a) µ
−
(t, z, ζ) = Y− + [

det(Zi,j)
det(I−A)

]
3×3

,

with

(130b)

Zi,j ∶= (
0 −Gj
Bi I−A) ,

G1 ∶= (
i

E0

w∗n qCn

ζ − ŵ∗n
, 0,

D̂n

ζ − ẑn
,

Fn

ζ − ζn
, 0,− C

∗

n
ζ −wn

) ,

G2 ∶= (0,
Fn

ζ − ζ∗n
+ iζ∗n

E0

qFn

ζ − ζ̂∗n
, 0, 0,−( 1

ζ − z∗n
+ (γ(z

∗

n)− 1)
ζ − ẑ∗n

) D∗n
γ(z∗n)

, 0) ,

G3 ∶= (
Cn

ζ −w∗n
, 0,

Dn

ζ − zn
,

F̂n

ζ − ζ̂n
, 0,− iE0

wn

C
∗

n
ζ − ŵn

) ,
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where all 0 in the above expression are zero vectors of appropriate sizes, and the underline notation xn
denotes vectors (x1, . . . , xN) of appropriate sizes N for each type of discrete eigenvalues.

Finally, the reconstruction formula (119) yields the density matrix ρ(t, z, ζ)

(131) ρ(t, z, ζ) = µ
−
(t, z, ζ)ϱ

−
(z, ζ)µ−1

−
(t, z, ζ) , ζ ∈ R .

6. SOLITONS AND THEIR BEHAVIOR, PART I: GENERAL DESCRIPTION

We are ready to calculate explicit soliton solutions of the MBEs (1) with NZBG, and we present the dis-
cussion in two sections. In this section, we calculate all three kinds of one-soliton solutions of CMBE (1),
after which we compute various limiting cases. In order to achieve maximal generality, we present descrip-
tions of soliton solutions without imposing explicit assumptions on the spectral line shape g(k). As a result,
the z-dependence of soliton solutions cannot be calculated fully. In Section 7, we analyze all aforemen-
tioned soliton solutions with two particular spectral-line shapes: Lorentzian and sharp-line. With an explicit
expression for the shape of the spectral line, we are able to discuss the z-dependence of solutions, and also
perform stability analysis on soliton solutions. Recall the discussion in Section 5.3; we take the diagonal
asymptotic condition (124) throughout this section.

Recall the discussion of the asymptotic conditions in Section 1. Without loss of generality, we take the
asymptotic input condition (5). Therefore, the asymptotic conditions for the electric-filed envelopes are

(132) E−,1(z) = E0e2iW−(z) cos α , E−,2(z) = E0e2iW−(z) sin α ,

where W−(z) is defined in Equation (96) and α ∈ [0, π/2]. Since there are three kinds of discrete eigenvalues
(cf. Section 3.4), there will be three kinds of one-soliton solutions. Because we discuss them separately, for
simplicity and for all three types of one-soliton solutions, we take the discrete eigenvalue in the identical
form:

(133) w1 = z1 = ζ1 = E0 η eiβ ∈ D1 ,

where η > 1 and β ∈ (0, π). We also define the following quantities for later usage:

(134) ∆± ∶= η ± 1/η , co ∶=
√

η4 + 2η2 cos 2β + 1 , c± ∶= η2 ± 1/η2 .

Furthermore, it will be convenient to use the subscripts I, II and III to denote quantities corresponding
to soliton solutions of the first kind, the second kind and the third kind, respectively. Correspondingly,
subscripts I and II in Sections 6.1 and 6.4 do not denote evaluations on the first and second complex k-
planes from the direct problem, respectively. It is also worth noting that, due to the complexity of the
explicit expressions for the 3 × 3 density matrix ρ(t, z, k), we mainly focus on analyzing the electric field
envelope E(t, z) in Sections 6 and 7. On the other hand, it should be pointed out that ρ(t, z, k) can always
be constructed explicitly from Equations (130) and (131).

6.1. One-soliton solution: type I. We take the discrete eigenvalue w1 in Equation (133), and take the
corresponding norming constant as

(135) C1(t, z) = exp(2iλ∗1 t + ξI(z)+ i ψI(z)) ,

where λ1 ∶= λ(ζ = w1) ∶= E0 cosh(ln η + iβ) and ξI(z) ∈ R, ψI(z) ∈ R. The z-propagation of C1(t, z) is
governed by Equation (113). It currently cannot be determined further due to the missing information about
the shape of the spectral line, g(k). Using the symmetries (67), one can compute the other three norming
constants: C1(t, z), Ĉ1(t, z) and qC1(t, z), as well.

Following Section 5.3, we obtain the one-soliton solution formula,

(136a) Ej(t, z) ∶= qI,j(t, z) , j = 1, 2,
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where it can be shown that qI,j(t, z) is a one-soliton solution of the two-level MBEs with NZBG qI,j → E−j
as t → −∞, namely,
(136b)

qI,j(t, z) ∶= e−2iβE−,j
cosh(χI − 2iβ)− A[c+(η2 sin(sI + 2β)+ sin sI)− ic−(η2 cos(sI + 2β)+ cos sI)]

cosh χI + 2A[η2 sin(sI + 2β)+ sin sI]
,

where we omit both t and z dependence, j = 1, 2 and

χI(t, z) ∶= 2t Im(λ1)+ ξI(z)+ ln
∆+ csc β

2E0co
, sI(t, z) ∶= 2t Re(λ1)+ψI(z) , A ∶=

sin β

∆+co
.(136c)

Importantly, Equations (136) imply that the polarization state of the light is preserved under propagation
onto the medium.

6.1.1. Purely imaginary discrete eigenvalue. In particular, for a purely imaginary discrete eigenvalue, i.e.,
β = π/2, the soliton solution simplifies to

(137a) Ej(t, z) = E−,j
cosh χ̃I − (c+ sin ψI − ic− cos ψI)/∆+

cosh χ̃I − 2/∆+ sin ψI
, j = 1, 2,

with

(137b) χ̃I(t, z) = E0∆−t + ξI(z)+ ln
∆+

2E0η∆−
, ψI = ψI(z) .

6.1.2. Soliton velocity and amplitude. The soliton (136) is localized along the line χI(t, z) = constant,
which is 2t Im(λ1) + ξI(z) = constant. Taking the asymptotic condition (124), we know that ξI(z) =
ξ
(1)
I z + ξI(0) where ξ

(1)
I is independent of z. Then the soliton velocity is defined as

(138) VI ∶= −2 Im(λ1)/ξ
(1)
I .

The soliton amplitude compared to the background is defined as

(139) Aj(z) ∶=max
t∈R
∣Ej(t, z)∣− ∣E−,j(z)∣ .

6.2. Periodic solution. Firstly, we focus on the case where the discrete eigenvalue is in the first quadrant,
i.e., β ∈ (0, π/2). Then, one can take the limit of Equation (136) as η → 1 and obtain the following:

(140)
Ej(t, z) = e−2iβE−,j

cosh(χI − 2iβ)− [ sin(sI + 2β)+ sin sI]/(2 tan β)
cosh χI + [ sin(sI + 2β)+ sin sI]/(2 tan β)

,

χI(z) = ξI(z)− ln(E0 sin 2β) , sI(t, z) = 2E0t cos β +ψI(z) .

This case is the analogue of the Akhmediev breather of the focusing NLS equation, and is the vectorization
of the periodic solution of the two-level MBE.

A detailed discussion of the periodic solution and why it bears this name is presented in Section 7.2.2.

6.3. Rational solutions. We use the soliton solution (137a) with a purely imaginary discrete eigenvalue
ζ = iE0η to produce a rational solution, which is similar to the one obtained from two-level MBE with
NZBG or from the focusing NLS equation with NZBC, i.e., the famous Peregrine soliton. The idea for
producing such a solution is to compute the nontrivial limit of Equation (137a) as η → 1.

To do so, we first compute the limit of R−1,1(z, ζ) and R−3,3(z, ζ) as η → 1 to analyze the propagation of
the soliton solution (137a). Note that R−2,2(z, ζ) is not needed in type I soliton solution. It can be shown
that

(141)
R−1,1(z, iE0η) = R(0)(z)− (η − 1)R(1)(z)+O(η − 1)2 , η → 1+ ,

R−3,3(z, iE0η) = R(0)(z)+ (η − 1)R(1)(z)+O(η − 1)2 , η → 1+ ,
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where

(142)
R(0)(z) ∶= ∫

∞

−∞

ϱ+
−
(z, ζ(k′))g(k′) dk′

k′ + iE0
+ 2w−(z) ,

R(1)(z) ∶= ∫
∞

−∞

iE0

λ(k′)
ϱ−
−
(z, ζ(k′)) g(k′) dk′

k′ + iE0
,

and ϱ−
−

is defined in Equation (103). Therefore, we can write

(143) R−1,1(z, iE0η)− R−3,3(z, iE0η) = −2(η − 1)R(1)(z)+O(η − 1)2 , η → 1+ .

Using Equations (113), (135) and the above expansions, we obtain the following expansion for the ODEs
governing ξI(z) and ψI(z) as η → 1+:

(144) ∂zξI(z) = (η − 1)R(1)Im (z)+O(η − 1)2 , ∂zψI(z) = −i(η − 1)R(1)Re (z)+O(η − 1)2 ,

where R(1)Re (z) and R(1)Im (z) are the real and imaginary parts of R(1)(z), respectively. Thereafter, we solve
for ξI(z) and ψI(z) easily in the limit η → 1+:

(145)
ξI(z) = ξ̃0 + (∫

z

0
R(1)Im (z)dz + ξ̃1)(η − 1)+O(η − 1)2 ,

ψI(z) = ψ̃0 + (− i∫
z

0
R(1)Re (z)dz + ψ̃1)(η − 1)+O(η − 1)2 ,

where ξ̃0, ξ̃1, ψ̃0 and ψ̃1 are all independent of z. In particular, these four constants depend on the “initial
data” ξI(0) and ψI(0), i.e., C1(0, 0), so that they can be chosen arbitrarily.

Next, we compute the nontrivial limit of Equation (137a) as η → 1+. Choosing ξ̃0 = − ln(∆+/2E0η∆−)
and ψ̃0 = π/2 yields the limit as η → 1+ as follows:

(146)
χ̃I(t, z) = E0∆−t + (∫

z

0
R(1)Im (z)dz + ξ̃1)(η − 1)+O(η − 1)2 ,

ψI(z) = π/2+ (− i∫
z

0
R(1)Re (z)dz + ψ̃1)(η − 1)+O(η − 1)2 .

Correspondingly, the nontrivial limit of the soliton solution (137a) as η → 1+ is revealed as

(147) Ej(t, z) = E−,j(z)
X2 + s2 − 4is − 3

X2 + s2 + 1
,

with

(148) X(t, z) ∶= 2E0t +∫
z

0
R(1)Im (z)dz + ξ̃1 , s(t, z) ∶= −i∫

z

0
R(1)Re (z)dz + ψ̃1 .

Note that the two real constants ξ̃1 and ψ̃1 are arbitrary. They determine the displacement of this solution in
the (t, z) plane. Again, this rational solution is the analogue to the one for the classic two-level MBE with
NZBG and the one for the focusing NLS equation with NZBCs. Note however that, while the corresponding
solutions for the focusing NLS equation are rational both in t and z, in this case the solution (147) is rational
in t, but it need not necessarily be rational in z.

A detailed discussion under the assumption that the spectral line is Lorentzian is presented in Sec-
tion 7.2.3.
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6.4. One-soliton solution: type II. Let us discuss the one-soliton solution with a discrete eigenvalue z1
given in Equation (133). We take the modified norming constant

(149) D1(t, z) ∶= exp(−iẑ1t + ξII(z)+ iψII(z)) ,

where we recall that D1(t, z) can be obtained from the ODE (113) once the spectral line shape g(k) is
known. The corresponding components of the soliton solution are

Ej(t, z) = eiβ[E−,j cosh(χII + iβ)+ (−1)je−isII E∗
−,3−j

√
∆+/η sin β]sechχII , j = 1, 2,(150)

where E−,j = E−,j(z) from Equation (132), and

(151)
χII(t, z) ∶= (E0t sin β)/η + ξII(z)− ln(2E0

√
∆+η sin β) ,

sII(t, z) ∶= (E0t cos β)/η +ψII(z) .

Obviously, the electric field envelopes (150) are concentrated along the line χII(t, z) = constant. With the
chosen asymptotic condition (124), the ODE (113) implies the form ξII(z) = ξ

(1)
II z + ξII(0). As a result, the

soliton velocity is defined as

(152) VII = −
E0 sin β

ηξ
(1)
II

.

It is evident that the velocity VII is affected by the location of the discrete eigenvalue and the asymptotic con-
dition (124) via the quantities ξ

(1)
II and β. As such, one expects more interesting and complex phenomena,

as we demonstrate using explicit examples in the next section.

6.4.1. Purely imaginary discrete eigenvalue. In particular, for a purely imaginary discrete eigenvalue, i.e.,
β = π/2, the above one-soliton solution becomes

(153) Ej(t, z) = −E−,j(z) tanh χII(t, z)+ (−1)j
√

∆+/ηE∗j−3e−iψII(z)sechχII(t, z) ,

with

(154) χII(t, z) ∶= E0t/η + ξII(z)− ln(2E0
√

∆+η) .

6.5. A nontrivial plane-wave solution. Unlike for the soliton solution of type I, we discover a special
limiting case as η →∞ of the second type of soliton solution (150).

To uncover this nontrivial limiting solution, we first examine the matrix R−,d(z, E0ηeiβ) defined in Equa-
tion (102) by computing its limit as η →∞ with β ∈ (0, π). It can be shown that

(155) lim
η→∞

R−,1,1(z, E0ηeiβ) = 0 , lim
η→∞

R−,2,2(z, E0ηeiβ) = − lim
η→∞

R−,3,3(z, E0ηeiβ) = −4w−(z) .

Therefore, the propagation equation (113) yields that limη→∞D1(t, z) = e−4iW−(z) limη→∞D1(t, 0) with
W−(z) ∈ R, so

(156) lim
η→∞

ξII(z) = lim
η→∞

ξII(0) , lim
η→∞

ψII(z) = −4W−(z)+ lim
η→∞

ψII(0) .

This calculation shows that, in the limit η → ∞, the quantity ξII becomes independent of z. Consequently,
if we choose the initial condition ξII(0) = ln(2E0

√
∆+η sin β) + ξ̃II, from Equation (151), we obtain the

following expressions for all t and z:

(157) lim
η→∞

χII(t, z) = ξ̃II , lim
η→∞

sII(t, z) = lim
η→∞

ψII(z) = −4W−(z)+ ψ̃II ,

where ψ̃II ∶= limη→∞ ψII(0), and both ξ̃II and ψ̃II are real constants.
The limit of Equation (150) can be computed directly and obtained as

(158) Ej(z) = eiβ[E−,j(z) cosh(ξ̃II + iβ)+ (−1)je−iψ̃II E−,3−j(z) sin β]sechξ̃II , j = 1, 2.
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Clearly, this soliton solution is independent of t. Moreover, the modulus of this soliton is constant, meaning
that it is a plane-wave solution.

Recall that two solutions of the CMBE (1) may be equivalent by Lemma 1. It is thus necessary to discuss
if the two sets {E1(z), E2(z)} and {Ebg,1(z), Ebg,2(z)} from Equation (9) are equivalent, the latter of which
is the background solution used in the formulation of IST, i.e., chosen as the asymptotic condition (132). It
is easy to check that the two sets of solutions are related by

(159) (E1(z)
E2(z)

) = V(Ebg,1(z)
Ebg,2(z)

) , V ∶= eiβsechξ̃II (
cosh(ξ̃II + iβ) −e−iψ̃II sin β

e−iψ̃II sin β cosh(ξ̃II + iβ)
) .

One can verify that the matrix V is not a unitary matrix in general, meaning that the solutions {E1(z), E2(z)}
and {Ebg,1(z), Ebg,2(z)} are not equivalent by Lemma 1. Hence, we consider the new solution {E1(z), E2(z)}
a nontrivial plane-wave solution (compared to the background solution {Ebg,1(z), Ebg,2(z)}).

6.6. One-soliton solution: type III. Recall that type III discrete eigenvalue ζ1 is given in Equation (133).
The form of the norming constant is chosen as

(160) F1(t, z) = exp(iζ∗1 t + ξIII(z)+ iψIII(z)) ,

where ξIII(z) and ψIII(z) are real quantities as in the previous cases. The electric field envelopes are given
by

(161) Ej(t, z) = e−iβ[E−,j(z) cosh(χIII − iβ)+ i(−1)j+1B E∗
−,3−j(z)(η

2 + e2iβ)eisIII]sechχIII , j = 1, 2,

where the parameters are given as

(162)

χIII(t, z) ∶= E0ηt sin β + ξIII(z)− ln(2E0η2B) ,

sIII(t, z) ∶= E0ηt cos β +ψIII(z)+ β ,

B ∶=
√

η∆+
co

sin β .

6.6.1. Purely imaginary discrete eigenvalue. In particular, for a purely imaginary discrete eigenvalue, i.e.,
β = π/2, the soliton solution in Equation (161) becomes

(163) Ej(t, z) = −E−,j(z) tanh χ̃III(t, z)+ i(−1)j+1E∗
−,3−j(z)e

iψIII(z)
√

η∆+sechχ̃III(t, z) ,

with

(164) χ̃III(t, z) ∶= E0ηt + ξIII(z)− ln(2E0η
√

η∆+/∆−) .

7. SOLITONS AND THEIR BEHAVIOR, PART II: PARTICULAR SPECTRAL LINE SHAPE

We discuss a widely used case, in which the spectral-line shape, g(k), is chosen as a Lorentzian

(165) g(k; ϵ) ∶= ϵ

π

1
k2 + ϵ2 , ϵ > 0 .

We take the asymptotic condition (124) with the assumption that the diagonal entries of ϱ
−

are independent
of both z and k. Therefore, by examining Equation (94) and noticing that λ(k) and g(k; ϵ) are respectively
odd and even functions of k, one concludes w−(z) ≡ 0.

Besides the quantity w−, the propagation of solutions is determined by the norming constant, which is
governed by Equation (113). In Appendix E, we show how to compute the auxiliary matrix R−,d(z, ζ),
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which is actually independent of z. The results are as follows:

(166)

R−,1,1(ζ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
ρ+
−

k + iϵ
− ϱ−
−

g(k)
⎡⎢⎢⎢⎢⎢⎣
log(E0 − λ

E0 + λ
)+ λ
√

E2
0 − ϵ2

log
⎛
⎜
⎝

E0 +
√

E2
0 − ϵ2

E0 −
√

E2
0 − ϵ2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
, k ∈ C+ ,

−
kρ+
−

k2 + ϵ2 − ϱ−
−

g(k)
⎡⎢⎢⎢⎢⎢⎣
log(λ − E0

λ + E0
)+ λ
√

E2
0 − ϵ2

log
⎛
⎜
⎝

E0 +
√

E2
0 − ϵ2

E0 −
√

E2
0 − ϵ2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
, k ∈ R ,

−
ρ+
−

k − iϵ
− ϱ−
−

g(k)
⎡⎢⎢⎢⎢⎢⎣
log(E0 − λ

E0 + λ
)+ λ
√

E2
0 − ϵ2

log
⎛
⎜
⎝

E0 +
√

E2
0 − ϵ2

E0 −
√

E2
0 − ϵ2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
, k ∈ C− ,

R−,2,2(ζ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−ϱ−,2,2/(k + iϵ) , k ∈ C+ ,
−kϱ−,2,2/(k2 + ϵ2) , k ∈ R ,
−ϱ−,2,2/(k − iϵ) , k ∈ C− ,

R−,3,3(ζ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
ρ+
−

k + iϵ
+ ϱ−
−

g(k)
⎡⎢⎢⎢⎢⎢⎣
log(E0 − λ

E0 + λ
)+ λ
√

E2
0 − ϵ2

log
⎛
⎜
⎝

E0 +
√

E2
0 − ϵ2

E0 −
√

E2
0 − ϵ2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
, k ∈ C+ ,

−
kρ+
−

k2 + ϵ2 + ϱ−
−

g(k)
⎡⎢⎢⎢⎢⎢⎣
log(λ − E0

λ + E0
)+ λ
√

E2
0 − ϵ2

log
⎛
⎜
⎝

E0 +
√

E2
0 − ϵ2

E0 −
√

E2
0 − ϵ2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
, k ∈ R ,

−
ρ+
−

k − iϵ
+ ϱ−
−

g(k)
⎡⎢⎢⎢⎢⎢⎣
log(E0 − λ

E0 + λ
)+ λ
√

E2
0 − ϵ2

log
⎛
⎜
⎝

E0 +
√

E2
0 − ϵ2

E0 −
√

E2
0 − ϵ2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
, k ∈ C− ,

where we recall that ϱ±
−

are defined in Equation (103).

Remark 17. Similarly to the two-level MBE with NZBG, we can show that the two limits E0 → 0 and ϵ → 0
do not commute.

Proof. ● Zero background limit first. We first take the limit E0 → 0. It is obvious that E−,j(z) → 0 for
j = 1, 2. The matrix R−,d(ζ) in Equation (166) then becomes

(167)

R−,1,1(ζ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(−kϱ−,1,1 + iϵϱ−,3,3)/(k2 + ϵ2) , k ∈ C+ ,
−kϱ−,1,1/(k2 + ϵ2) , k ∈ R ,
−ϱ−,1,1/(k − iϵ) , k ∈ C− ,

R−,2,2(ζ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−ϱ−,2,2/(k + iϵ) , k ∈ C+ ,
−kϱ−,2,2/(k2 + ϵ2) , k ∈ R ,
−ϱ−,2,2/(k − iϵ) , k ∈ C− ,

R−,3,3(ζ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(−kϱ−,3,3 + iϵϱ−,1,1)/(k2 + ϵ2) , k ∈ C+ ,
−kϱ−,3,3/(k2 + ϵ2) , k ∈ R ,
−ϱ−,3,3/(k − iϵ) , k ∈ C− .

Consequently, we take the limit ϵ → 0 and obtain

(168) R−,d(ζ) = −ϱ
−,d/k , ζ ∈ C .

● Sharp-line limit first. One the other hand, after taking the limit ϵ → 0 first, the quantities in Equa-
tion (166) become

(169) R−,1,1(ζ) = −ρ+
−
/k , R−,2,2(ζ) = −ϱ−,2,2/k , R−,3,3(ζ) = −ρ+

−
/k ,
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where ζ ∈ C/R. Evidently, R−,d is independent of E0, so the limit E0 → 0 does not affect the matrix R−,d.
As a result, by comparing the two matrices R−,d from the two cases (168) and (169), we conclude that

the two limits ϵ → 0 and E0 → 0 do not commute.
□

7.1. Solution parameters. We point out that all solutions discussed in Section 6 contain large numbers
of free parameters, including the discrete eigenvalue, the norming constant, the initial state of the density
matrix, the background optical field, and more. Hence, it is impossible to present solutions covering all
possible combinations of parameters due to the space limitation of the manuscript. Thus, in this section, we
only consider solutions with a fixed subset of parameters, including a fixed background amplitude, a fixed
width of the spectral line, and a fixed initial state of the norming constant:

(170) E0 = 1, ϵ = 2, ξ(0) = ψ(0) = 0.

We then vary other, more illustrative parameters, as shown in Table 1.

TABLE 1. Six settings of parameters for all solutions.

Setting ϱ−1,1 ϱ−2,2 ϱ−3,3 α Discrete Eigenvalue

(a) 0 0.4 0.6 π/8 2i

(A) 0 0.4 0.6 π/8 1+ i

(b) 0.2 0.1 0.7 π/4 2i

(B) 0.2 0.1 0.7 π/4 1+ i

(c) 0.7 0.2 0.1 3π/8 2i

(C) 0.7 0.2 0.1 3π/8 1+ i

The six parameter settings cover different situations based on: i) the distribution of the background am-
plitude E0 in the two electric-field envelope components (E0 cos α versus E0 sin α); ii) the initial state of
the medium D−,j from ϱ−,j,j via Equation (98) [uninverted (a/A) versus partially inverted (b/B) versus fully
inverted (c/C)]; iii) the location of the discrete eigenvalue [purely imaginary (a/b/c) versus generic complex
number (A/B/C)].

In particular, the initial medium states are complicated due to the k dependence. The graphs of D−,j are
shown in Figure 4. Recall that D−,1 denotes the initial population in the excited state, and D−,2 and D−,3
denote the initial populations in the ground states.

7.2. Solitary, periodic and rational solutions. Since we now know the spectral-line shape g(k) explicitly,
we are able to present all the formulas for the solutions and to investigate their properties.

7.2.1. One-Soliton solutions: type I. Equation (113) indicates that we need to substitute w∗1 into R−,d(ζ).
We therefore define the following quantity for ζ ∈ D2:

(171) RI(ζ) ∶=
i
2
(R−,1,1(ζ)− R−,3,3(ζ)) = iϱ−

−
g(k)

⎡⎢⎢⎢⎢⎢⎣
log(E0 + λ

E0 − λ
)− λ
√

E2
0 − ϵ2

log
⎛
⎜
⎝

E0 +
√

E2
0 − ϵ2

E0 −
√

E2
o − ϵ2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
.

Then, by Equation (113), we know that

ξI(z) = Re(RI(w∗1))z + ξI(0) , ψI(z) = Im(RI(w∗1))z +ψI(0) .

Substituting the above quantities into the soliton formula (136), we obtain type I soliton completely.
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FIGURE 4. The initial medium states in the six settings. Recall that D−,1 is the initial
population of the excited state while D−,2 and D−,3 are those for the two ground states.
Settings (a/A) denote an uninverted medium as D−,1 is always less than D−,2 and D−,3.
Settings (b/B) denote a partially inverted medium because D−,1 is less/greater than D−,2
and D−,3 depending on the value of k. Settings (c/C) denote a fully inverted medium since
D−,1 is always greater than D−,2 and D−,3.

Six type-I soliton solutions are shown in Figure 5. In particular, the top row includes solutions with
settings (a) and (A); the middle row contains solutions with settings (b) and (B); and the bottom row contains
solutions with settings (c) and (C). The left two columns in Figure 5 contain settings (a/b/c), whereas the
right two columns contain (A/B/C). Furthermore, the first and third columns show plots of ∣E1(t, z)∣ and the
other two columns show plots of ∣E2(t, z)∣.

It is easy to observe that the solitons presented in Figure 5 are subluminal in the uninverted medium,
i.e., settings (a/A), and in the partially inverted medium, i.e., settings (b/B), but are superluminal in the
fully inverted medium, i.e., settings (c/C). It thus appears that the partially inverted case is similar to the
uninverted case. However, as we will see below, this rule does not hold for all cases of solitons.

For a purely imaginary discrete eigenvalue, i.e., settings (a/b/c), the solions are traveling waves, but for
a general complex value, i.e., settings (A/B/C), the solitons exhibit internal oscillations. For all cases, the
group velocities are determined by Equation (138), while the phase velocities in settings (A/B/C) seemingly
coincide with the velocities of the traveling waves in settings (a/b/c).

Remark 18. It is worth pointing out that type-I solitons are similar to their counterparts in the two-level
case [43], because these types of solitons share similar structure and properties between the two Maxwell-
Bloch systems with a nonzero background and with inhomogeneous broadening of the spectral line.

7.2.2. Periodic solutions. Recall that one is able to derive periodic solutions from type-I solitons, as shown
in Section 6.2. With the known spectral-line shape (165), two such solutions are shown in Figure 6, where
settings (A) and (C) are used, except that the discrete eigenvalues are chosen as eiπ/4 on Σ○. We call them
settings (A’) and (C’). The periodic solution with the setting (B’), which has the same parameters as setting
(B) but a discrete eigenvalue eiπ/4, is omitted for brevity, as it mimics the one with the setting (A’).

We can see that setting (A’), corresponding to an uninverted medium, comprises waves traveling slower
than the speed of light, but setting (C’), corresponding to a fully inverted medium, comprises waves traveling
faster than the speed of light, indicating essential differences based on the initial state of the medium. The
solutions also show both temporal and spatial periodicity. Hence, these types of solutions exist inside the
medium forever, and thus can be regarded as a type of background, just as the elliptic solutions of the
focusing nonlinear Schrödinger equation.

7.2.3. Rational solutions. We can also derive rational solutions from type-I soliton solutions as shown in
Section 6.3. Two such solutions are shown in Figure 7.
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FIGURE 5. Type I one-soliton solutions with settings (a/A). First column: ∣E1(t, z)∣ with
setting (a/b/c). Second column: ∣E2(t, z)∣ with setting (a/b/c). Third column: ∣E1(t, z)∣
with setting (A/B/C). Last column: ∣E2(t, z)∣ with setting (A/B/C). First row: solitons with
settings (a/A). Second row: solitons with settings (b/B). Bottom row: solitons with settings
(c/C). The density matrix ρ(t, z, ζ) is omitted due to space constraint.

FIGURE 6. Two periodic solutions with settings (A) and (C), except that the discrete eigen-
values are chosen as eiπ/4 on Σ○. Therefore, the two cases are called settings (A’) and (C’).
The solution with setting (B), in which the discrete eigenvalue is similarly changed to eiπ/4,
exhibits rather similar behavior to the one with setting (A’), and is omitted here for brevity.

Similarly to the classic two-level case [43], the rational solutions of CMBE exhibit traveling-wave instead
of isolated rogue-wave structure. For an initially uninverted medium, such as the setting (a”) in Figure 7,
the solution travels more slowly than the speed of light, whereas for an initially fully inverted medium, such
as the setting (c”) in Figure 7, the solution travels faster than the speed of light. The rational solution in a
partially inverted medium (setting (b”)) also travels more slowly than the speed of light, and so is omitted.
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FIGURE 7. Two rational solutions with settings (a) and (c), except that the discrete eigen-
values are chosen as i. Therefore, the two cases are called settings (a”) and (c”). Similarly
to what happens to the periodic solutions in Figure 6, the setting analogous to the (b) case
is omitted, because it is quite similar to (a”).

It is also worth noting that rational solutions of CMBE look quite similar to the ones in the classic two-
level case, so the solutions here can be regarded as a “vectorization” of the rational solutions discussed
in [43]. However, note that another famous rational solution, but of the focusing nonlinear Schrödinger
equation, i.e., the Peregrine soliton, is an isolated rogue wave. This shows a fundamental difference between
the focusing nonlinear Schrödinger equation and the Maxwell-Bloch system. It also implies that rational
solutions are not necessarily equivalent to rogue waves in a general integrable system.

7.2.4. One-Soliton solutions: type II. In this case, Equation (113) indicates that we need to substitute z1
into R−,d(ζ) and, therefore, we define the following expression for ζ ∈ D1:

(172) RII(ζ) ∶=
i
2
(R−,2,2(ζ)− R−,3,3(ζ))

= i
4

ϱ−,1,1 − 2ϱ−,2,2 + ϱ−,3,3

k + iϵ
− i

2
ϱ−
−

g(k)
⎡⎢⎢⎢⎢⎢⎣
log(E0 + λ

E0 − λ
)+ λ
√

E2
0 − ϵ2

log
⎛
⎜
⎝

E0 +
√

E2
0 − ϵ2

E0 −
√

E2
o − ϵ2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
.

Equation (113) yields

(173) ξII(z) = Re(RII(z1))z + ξII(0) , ψII(z) = Im(RII(z1)z +ψII(0) .

The above equations govern the propagation of type II soliton (150). Examples are shown in Figures 8,
which contains all six settings from Table 1. Similarly to the solitons of type I, type-II solitons with a purely
imaginary discrete eigenvalue are traveling waves, illustrated in settings (a/b/c) in the first two columns. For
a general complex value, i.e., settings (A/B/C), the solitons exhibit internal oscillations, and can be called
breathers.

Moreover, if the medium is initially in an uninverted/fully inverted medium, the soliton travels more
slowly/faster than the speed of light, respectively, just as type-I solitons discussed in previous sections.
However, when the medium initially is in a partially inverted medium, i.e., settings (b/B), it is evident that
type-II solitons are traveling superluminally, contrary to the ones in Figure 5. Thus, we conclude that type-I
and -II solitons differ in an essential way.

7.2.5. One-Soliton solutions: type III. In this case, Equation (113) indicates that we need to substitute ζ∗1
into R−,d(ζ) and therefore, we define the following quantity for ζ ∈ D2:

(174) RIII(ζ) ∶=
i
2
(R−,1,1(ζ)− R−,2,2(ζ))

= − i
4

ϱ−,1,1 − 2ϱ−,2,2 + ϱ−,3,3

k − iϵ
− i

2
ϱ−
−

g(k)
⎡⎢⎢⎢⎢⎢⎣
log(E0 + λ

E0 − λ
)+ λ
√

E2
0 − ϵ2

log
⎛
⎜
⎝

E0 +
√

E2
0 − ϵ2

E0 −
√

E2
o − ϵ2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
.
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FIGURE 8. Similar situation as in Figure 5, but with type II solitons of settings
(a/A/b/B/c/C). The density matrix ρ(t, z, ζ) is omitted due to space constraint.

Six examples are shown in Figure 9. It is evident that type-III solitons are somewhat similar to those
of type II. They exhibit oscillatory internal structure in general and are sensitive to the initial state of the
medium, because they only travel subluminally in an initially uninverted medium.

7.3. Dark-state solutions. In this section, we describe several solutions in which the medium is in a dark
state for the impinging light beam. Inspired by the dark-state background solution in Section 2.5, we impose
the following condition

(175) ϱ−,1,1 = ϱ−,3,3 = 0 , ϱ−,2,2 ≠ 0 ,

and re-investigate all three types of soliton solutions. (Note that the above condition implies that ϱ±
−
= 0 in

Equation (103)).
For type-I soliton and its derivatives, Equation (171) yields a trivial solution, i.e., RI(ζ) = 0. Hence, the

corresponding solutions all propagate trivially. One can then verify that ρ1,1(t, z, ζ) ≡ 0 which indeed shows
that the medium is in a dark-state for the optical pulse involved. One example is shown in Figure 10.

On the other hand, condition (175), together with Equations (172) and (174), implies that

(176) RII(ζ) = −
i
2

ϱ−,2,2

k + iϵ
, RIII(ζ) =

i
2

ϱ−,2,2

k − iϵ
.

So, type-II and type-III solitons retain nontrivial propagation. In other words, there are interactions between
the electric field and the medium. The medium is thus not in a dark state, and the corresponding solutions
are not dark-state solutions.
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FIGURE 9. Similar situation as in Figure 5, but for type III solitons with settings
(a/A/b/B/c/C). The density matrix ρ(t, z, ζ) is omitted due to space constraint.

FIGURE 10. Envelopes of electric fields that do not interact with the medium in type-I
soliton with setting (A). The asymptotic boundary value ϱ− is chosen from Equation (175)
instead of Table 1.

7.4. Stability of solitons. In this section, we discuss the stability of soliton solutions of MBEs (1). We
restrict our discussion to the case of the spectral-line shape described by g(k; ϵ) given in Equation (165).
For greater generality, we use the general asymptotic condition (86). The stability of solitons is determined
by decaying/growing radiation as z increases, which in turn is determined by the jump matrix in RHP (118)
or its solution (116). It is evident that the z-dependence of the jump matrix is given by all three reflection
coefficients. Thus, we turn to characterizing the reflection coefficients by analyzing the two systems (109)
and (112).
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First, we rewrite the two systems as one,

(177a)
∂r(z, ζ)

∂z
= i

2
A(z, ζ) r(z, ζ)+ b(z, ζ) , ζ ∈ Σ/(−E0, E0) ,

r(z, ζ) ∶= (r1(z, ζ), r2(z, ζ), r3(z, ζ), r3(z, ζ̂))⊺ ,

(177b)

A(z, ζ) ∶=
⎛
⎜⎜⎜
⎝

Y−,2,2 −Y−,1,1 Y−,2,3 0 0
0 Y−,3,3 −Y−,1,1 0 0
0 0 Ỹ−,3,3 − Ỹ−,2,2 0
0 0 iζỸ−,1,3/E0 Ỹ−,1,1 − Ỹ−,2,2

⎞
⎟⎟⎟
⎠

,

b ∶= ν0πg(k)
⎛
⎜⎜⎜
⎝

−ϱ−,2,1
−ϱ−,3,1
ϱ−,3,2

iζϱ−,1,2/E0

⎞
⎟⎟⎟
⎠

,

Y−(z, ζ) = (Y−,i,j)3×3(z, ζ) ∶= R−(z, ζ)+ iν0πg(k)ϱ
−

,

Ỹ−(z, ζ) = (Ỹ−,i,j)3×3(z, ζ) ∶= R−(z, ζ)− iν0πg(k)ϱ
−

,

where the quantity ν0 is defined in Equation (110).
The situation is complicated due to the fact that, in general, both A(z, ζ) and b(z, ζ) depend on z. For

simplicity, we assume that ϱ
−

in Equation (81) is independent of z, which implies that the two quantities A
and b are independent of z as well. This assumption is reasonable, because it is equivalent to assuming that
the optical medium is homogeneous throughout z ∈ [0,+∞) in the distant past. In this simpler case, we can
write

(178) r(z, ζ) = 2iA−1b + eizA/2[r(0, ζ)− 2iA−1b] .

Since the z dependence of r(z, ζ) comes from the exponential eizA/2, we next turn to analyzing the matrix
A. Because A is block-diagonal and each block is triangular, the diagonal entries are the eigenvalues, which
are denoted as

λ1 ∶= Y−,2,2 −Y−,1,1 , λ2 ∶= Y−,3,3 −Y−1,1 , λ3 ∶= Ỹ−,3,3 − Ỹ−,2,2 , λ4 ∶= Ỹ−,1,1 − Ỹ−,2,2 ,

where ζ ∈ Σ/(−E0, E0), and the matrices Y and Ỹ are defined in Equation (177). Explicitly, we write the
eigenvalues as

(179)

λ1 = −πλHk[ϱ−−g/λ′]−πHk[ϱ+−g]+πHk[ϱ−,2,2g]− iν0πg(k)ϱ−,1,1 + iν0πg(k)ϱ−,2,2 − 6ω− ,

λ2 = −2πλHk[ϱ−−g/λ′]− iν0πg(k)ϱ−,1,1 + iν0πg(k)ϱ−,3,3 ,

λ3 = −πλHk[ϱ−−g/λ′]+πHk[ϱ+−g]−πHk[ϱ−,2,2g]+ iν0πg(k)ϱ−,2,2 − iν0πg(k)ϱ−,3,3 + 6ω− ,

λ4 = πλHk[ϱ−−g/λ′]+πHk[ϱ+−g]−πHk[ϱ−,2,2g]− iν0πg(k)ϱ−,1,1 + iν0πg(k)ϱ−,2,2 + 6ω− .

Evidently, all four eigenvalues are distinct in general. Therefore, there exists a constant invertible matrix B
such that

B−1AB = diag(λ1, λ2, λ3, λ4) ,

and that
eizA/2 = B−1diag(eizλ1/2, eizλ2/2, eizλ3/2, eizλ4/2)B .

So, r(z, ζ) is bounded as z → ∞ if and only if Im λj ≥ 0 for all j = 1, . . . , 4, and r(z, ζ) is unbounded
as z → ∞ if and only if there exists at least one eigenvalue such that its imaginary part is negative. We
next investigate all eigenvalues of the matrix A, and then characterize the boundedness of the reflection
coefficients.
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One should recall that in the jump condition in RHP 1: i) r1(z, ζ) only appears when ζ ∈ Σ1; ii) r2(z, ζ)
appears when ζ ∈ Σ/Σ3, because r2(z, ζ̂) in Σ3 is equivalent to r2(z, ζ) in Σ1; iii) r3(z, ζ) appears when
ζ ∈ R.

By the block nature of A in Equation (177b), we only need to consider four situations:
i) λ1 on ζ ∈ Σ1;

ii) λ2 on ζ ∈ Σ/Σ3;
iii) λ3 on ζ ∈ Σ1;
iv) λ4 on ζ ∈ Σ1.

7.4.1. Calculation of eigenvalues. Recall that the auxiliary matrix R± in Equation (166) contains
√

E2
0 − ϵ2

in the case of nontrivial inhomogeneous broadening. It is easy to show that the quantity 1/
√

E2
0 − ϵ2 log [(E0+√

E2
0 − ϵ2)/(E0 −

√
E2

0 − ϵ2)] is always real no matter if E0 < ϵ or E0 > ϵ. Thus, we compute the eigenval-

ues in the two cases E0 ≶ ϵ together. Note that if E0 < ϵ the quantity
√

E2
0 − ϵ2 is purely imaginary, which

introduces an additional branch cut in the complex plane. However, as we discussed before, we are only
interested in the imaginary parts of the eigenvalues λj, which will be shown to be independent of the choice
of the new branch cut.

Without showing all the tedious calculations (which are straightforward using Equations (109), (112)
and (166)), we present the explicit expressions for all eigenvalues as follows:

(180)

Im λ1 = πg(k)(ϱ−,2,2 − ϱ−,1,1) , ζ ∈ Σ1 ,

Im λ2 =
⎧⎪⎪⎨⎪⎪⎩

πg(k)(ϱ−,3,3 − ϱ−,1,1) , ζ ∈ Σ1 ,
0 , ζ ∈ Σ○ ,

Im λ3 = πg(k)(ϱ−,2,2 − ϱ−,3,3) , ζ ∈ Σ1 ,

Im λ4 = πg(k)(ϱ−,2,2 − ϱ−,1,1) , ζ ∈ Σ1 ,

where Σ1 = (−∞,−E0]∪ [E0,∞) as in Section 5.1.

7.4.2. Results. As we mentioned earlier, all the reflection coefficients are bounded as z →∞ if and only if
all four eigenvalues have non-negative imaginary parts. The expression (180) yields that all the reflection
coefficients are bounded if and only if the eigenvalues (86) satisfy

(181) ϱ−,2,2 ≥ ϱ−,3,3 ≥ ϱ−,1,1 .

Again, we stress that the eigenvalues ϱ−,j,j do not have a direct physical meaning. Instead, one should look
at D−,j in Equation (98), as they indicate the initial state of the medium. Thus, the system (90) yields the
following system of inequalities:

(182)

D−2 sin2 α −D−,3 cos2 α > − ζ̂

2k
D−,1 cos 2α − ζ cos2 α

2k
D−,2 +

ζ sin2 α

2k
D−,3

> − ζ

2k
D−,1 cos 2α − ζ̂ cos2 α

2k
D−,2 +

ζ̂ sin2 α

2k
D−,3 , if 0 ≤ α < π

4
,

D−,3 cos2 α −D−2 sin2 α > ζ̂

2k
D−,1 cos 2α + ζ cos2 α

2k
D−,2 −

ζ sin2 α

2k
D−,3

> ζ

2k
D−,1 cos 2α + ζ̂ cos2 α

2k
D−,2 −

ζ̂ sin2 α

2k
D−,3 , if

π

4
< α ≤ π

2
,

where we take ∣E−,1∣ = E0 cos α and ∣E−,2∣ = E0 sin α with 0 ≤ α ≤ π/2 in Equation (97) and the fact that
w−(z) = 0 due to g(k) being a Lorentzian. Therefore, we conclude that solitons of CMBE with NZBG are
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stable (radiation decays) as z →∞ if and only if, initially, the population of atoms in each state satisfies the
inequality (182).

Remark 19. i) As one expects, the initial population of atoms in the two ground states (D−,2 and D−,3)
are symmetric in the inequality (182). This shows that the formulation of IST does not have any preference
between the two ground states, meaning that the IST is consistent with physics. ii) However, unlike the case
of ZBG or unlike the two-level MBE with ZBG/NZBG, the inequality (182) is coupled and cannot be solved
easily.
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APPENDIX: PROOFS AND CALCULATIONS

A. Background solutions. A background solution of CMBE (1) is defined as one for which the electric
field envelopes are independent of t. Therefore, we write Ej(t, z) = Ebg,j(z) for j = 1, 2 and Q(t, z) =
Qbg(z). Next, we derive such a solution.

Let us define a t-independent matrix Xbg(z, k) ∶= ikJ +Qbg(z). Then, CMBE (1) implies that

(A.1) ρbg(t, z, k) ∶= etXbg(z,k) C̃(z, k) e−tXbg(z,k) ,

where C̃(z, k) is an as yet undetermined 3× 3 matrix. The matrix Xbg has eigenvalues ±iλ and −ik, where λ
is defined in Equation (6). In this appendix, only the case k ∈ R is needed, so λ ∈ R as well. The eigenvector
matrix of Xbg and its inverse are computed to be

Ybg(z, k) ∶= (
1 0 −iE0/ζ

−iE∗bg/ζ (E�bg)
∗/E0 E∗bg/E0

) , Y−1
bg(z, k) = 1

γ(ζ)

⎛
⎜⎜
⎝

1 iE⊺bg/ζ
0 (E�bg)

⊺γ(ζ)/E0

iE0/ζ E⊺bg/E0

⎞
⎟⎟
⎠

,

where γ(ζ) is given in Equation (21), the superscript � is defined in Equation (12), and one defines

(A.2) Ebg(z) ∶= (Ebg,1, Ebg,2) .

The above eigenvalues and eigenvectors yield the following identity

(A.3) Xbg Ybg = iYbg Λ , with Λ ∶= diag(λ,−k,−λ) .

Consequently, the density matrix (A.1) can be rewritten as

(A.4) ρbg(t, z, k) = Ybg(z, k) eiΛt ϱbg(z, k) e−iΛt Y−1
bg(z, k) ,

where ϱbg(z, k) ∶= Y−1
bg(z, k) C̃(z, k)Ybg(z, k) is another as yet undetermined matrix independent of t.

Remark 20. The matrix ϱbg(z, k) must satisfy three conditions: i) trϱbg(z, k) = trρbg(t, z, k) = 1; ii)

ϱbg(z, k) ensures that ρ†
bg = ρbg; iii) ϱbg(z, k) ensures that the integral ∫ [J, ρbg(t, z, k)] g(k)dk is inde-

pendent of t. The first two conditions follow naturally from the properties of the density matrix ρbg, and the
last ensures the consistency of the background solution, i.e., that Qbg is independent of t by CMBE (1).
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We next look for such a matrix ϱbg(z, k). It is worth noting that, in general, ϱbg(z, k) itself is not a
Hermitian matrix. In order to simplify the situation, we decompose the unknown matrix ϱbg as

ϱbg(z, k) =
4

∑
j=1

ϱ
(j)
bg (z, k) ,

where

(A.5)

ϱ
(1)
bg ∶=

⎛
⎜
⎝

ϱbg,1,1 0 0
0 ϱbg,2,2 0
0 0 ϱbg,3,3

⎞
⎟
⎠

, ϱ
(2)
bg ∶=

⎛
⎜
⎝

0 ϱbg,1,2 0
ϱbg,2,1 0 0

0 0 0

⎞
⎟
⎠

,

ϱ
(3)
bg ∶=

⎛
⎜
⎝

0 0 ϱbg,1,3
0 0 0

ϱbg,3,1 0 0

⎞
⎟
⎠

, ϱ
(4)
bg ∶=

⎛
⎜
⎝

0 0 0
0 0 ϱbg,2,3
0 ϱbg,3,2 0

⎞
⎟
⎠

.

Correspondingly, Equation (A.4) yields the decomposition of the density matrix,

(A.6) ρbg(t, z, k) =
4

∑
j=1

ρ
(j)
bg (t, z, k) , ρ

(j)
bg (t, z, k) ∶= Ybg(z, k) eiΛt ϱ

(j)
bg (z, k) e−iΛt Y−1

bg(z, k) .

Following CMBE (1), one decomposes the electric field envelope Qbg as

(A.7)
∂Q(j)bg

∂z
= −1

2 ∫
[J, ρ

(j)
bg ] g(k)dk .

After tedious but straightforward calculations, we obtain explicit expressions for each ρ
(j)
bg . The formulas

are omitted here for brevity. As we discussed before, the background solution requires a t-independent
Qbg. Hence, from Equation (A.7), one needs to investigate the quantity [J, ρ

(j)
bg ], which should ensure that

∫ [J, ρ
(j)
bg ]g(k)dk is t-independent. Here, we present the explicit expressions for [J, ρ

(j)
bg ]:

(A.8)

[J, ρ
(1)
bg ] =

i
λ
(ϱbg,1,1 − ϱbg,3,3)Qbg J ,

[J, ρ
(2)
bg ] =

⎛
⎝

0 2ei(k+λ)tϱbg,1,2(E�bg)
†/E0

−e−i(k+λ)tϱbg,2,1ζE�bg/(E0λ) 0
⎞
⎠

,

[J, ρ
(3)
bg ] =

1
ζλ

⎛
⎝

0 (E2
0ϱbg,3,1e−2iλt + e2iλtϱbg,1,3ζ2)E⊺bg

−(e2iλtE2
0ϱbg,1,3 + e−2iλtϱbg,3,1ζ2)E∗bg 0

⎞
⎠

,

[J, ρ
(4)
bg ] =

⎛
⎝

0 − 2i
ζ ei(k−λ)tϱbg,3,2(E�bg)

†

− i
λ e−i(k−λ)tϱbg,2,3E�bg 0

⎞
⎠

,

where, of course, some ϱbg,i,j are not arbitrary, because they have to ensure that Remark 20 holds. Nonethe-
less, we know that all ϱbg,i,j are independent of t, meaning that all the t dependence of the quantities in
Equation (A.8) are expressed in the exponential functions. The latter three matrices in Equation (A.8) are
not independent of t in general even upon integration and summation. Therefore, the electric field envelope
Q(j)bg , with j = 2, 3, 4, depends on t and is not a background solution. It is obvious that the first commutator
in Equation (A.8) is independent of t. Hence, following Remark 20, we conclude that ϱbg must be a real
diagonal matrix. Thereafter, we obtain the differential equation

(A.9)
∂Qbg

∂z
= − i

2
QbgJ∫

∞

−∞

(ϱbg,1,1 − ϱbg,3,3)
g(k)
λ(k)

dk .
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B. Computation of the auxiliary matrix R±(z, ζ). The following lemma will be useful in the later calcu-
lations.

Lemma 4. If k ∈ R, i.e., ζ ∈ R, and if k and k′ are on the same Riemann sheet, then the following identities
hold:

lim
t→±∞

−∫
∞

−∞

e±i(λ′−λ)t f (ζ, ζ′) dk′

k′ − k
= ±iνπ f (ζ, ζ) , lim

t→±∞
−∫
∞

−∞

e±i(ζ̂′−ζ̂)t f (ζ′, ζ) dk′

k′ − k
= ±iπ f (ζ, ζ) ,

lim
t→±∞

−∫
∞

−∞

e±i(ζ′−ζ)t f (ζ′, ζ) dk′

k′ − k
= ±iπ f (ζ, ζ) ,

lim
t→±∞

−∫
∞

−∞

e±i(ζ̂′−ζ)t f (ζ, ζ′) dk′

k′ − k
= 0 , lim

t→±∞
−∫
∞

−∞

e±i(ζ′−ζ̂)t f (ζ′, ζ) dk′

k′ − k
= 0 ,

where we recall that ζ̂ is defined in Equation (8). We also use the shorthand notation λ = λ(k), λ′ = λ(k′),
ζ = ζ(k) and ζ′ = ζ(k′), and we define ν = ±1 when k is on sheet I or II, respectively.

If k ∈ i[E0, 0)∪ i(0, E0], i.e., −E0 < λ < E0 and ζ ∈ Σ○, then all the above limits are zero.

Remark 21. Lemma 4 depends crucially on whether k and k′ are on the same Riemann sheet or not, because
their corresponding λ and λ′, respectively, admit different values. We only consider the case when k and k′

are on the same sheet, because the results in Lemma 4 reduce to that in the case of ZBG naturally as E0 → 0.

Remark 22. In the first limit in Lemma 4, if the term (λ′ − λ)t is replaced with (λ′ + λ)t, or by λ′t, one
can show that the corresponding limit vanishes by the Riemann-Lebesgue lemma.

Proof. We calculate the five limits separately below.

(1) Consider the first integral in Lemma 4. Let the left hand-side (LHS) be

I± = lim
t→±∞

−∫
∞

−∞

e±i(λ′−λ)t f (ζ, ζ′) dk′

k′ − k
.

Note that λ′ and λ have opposite signs on sheets I and II, so that I± have different values on each sheet.
By a change of variables k′ → λ′, the domain changes as R → L ∶= (−∞,−E0) ∪ (E0,∞), and the
integral becomes

I± = ν lim
t→±∞∫−

L

e±i(λ′−λ)t f (ζ, ζ′)λ′ − λ

k′ − k
dk′

dλ′
dλ′

λ′ − λ
,

where ν = ±1 given in Lemma 4. Let y′ = λ′ − λ. The integration domain becomes L → L′ ∶=
(−∞,−E0 − λ)∪ (E0 − λ,∞), and the integral becomes

I± = ν lim
t→±∞∫−

L′
e±iy′t f (ζ, ζ′)λ′ − λ

k′ − k
dk′

dλ′
dy′

y′
.

From here, we need to discuss two cases depending on whether 0 ∈ L′ or 0 /∈ L′.
● If k ∈ R, i.e., ζ ∈ R, then λ ∈ (−∞,−E0]∪ [E0,∞) and consequently 0 ∈ L′. We obtain

I±(ζ) = ±νiπ f (ζ, ζ) lim
y′→0

λ′ − λ

k′ − k
dk′

dλ′
.

It is obvious that limy′→0
λ′−λ
k′−k =

dλ′

dk′ , so I±(ζ) = ±iνπ f (ζ, ζ).
● If k ∈ i[−E0, 0)∪ i(0, E0], i.e., ζ ∈ Σ○ and −E0 < λ < E0, then 0 /∈ L′. By using the Riemann-Lebesgue

lemma, we find I± → 0 as t → ±∞.
(2) Let us consider the second integral in Lemma 4 and call the LHS I±, with some abuse of notation.

We first compute this integral on sheet I. Since k′ = 1
2(ζ
′ + ζ̂′), we conclude dk′ = 1

2(1 + E2
0/ζ̂
′)dζ̂′.
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Correspondingly, the integration domain becomes L ∶= (E−0 , 0−) ∪ (0+, E+0 ), again, with some abuse of
notation. Therefore,

I± = lim
t→±∞∫−

L

e±i(ζ̂′−ζ̂)t f (ζ′, ζ)
1+ E2

0/ζ̂
′

ζ̂′ − ζ̂ − E2
0/ζ̂′ + E2

0/ζ̂
dζ̂′ ,

Define y′ ∶= ζ̂′ − ζ̂. We know that 0 ∈ L′ ∶= (E−0 − ζ̂,−ζ̂−)∪ (−ζ̂+,−E+0 − ζ̂). Thus

I± = lim
t→±∞∫−

L′
eiy′t f (ζ′, ζ)

ζ̂′2ζ̂ + E2
0 ζ̂

ζ̂′2ζ̂ + E2
0 ζ̂′

dy′

y′
.

By a similar argument to the first case, we conclude that if ζ ∈ R, I± → ±iπ f (ζ, ζ), and if ζ ∈ Σ○,
I± → 0 as t → ±∞. Similarly, one can compute the same integral on sheet II, and obtain the same result.

(3) The third integral in Lemma 4 can be computed similarly to the second, and has the same value on both
sheets.

(4) Consider the fourth integral in Lemma 4 and let the LHS be I± again, with some abuse of notation.
Similarly to the previous cases, I± takes different values depending on which sheet it is evaluated.
Because k′ = 1

2(ζ
′ −E2

0/ζ
′), we know that dk′ = 1

2(1+E2
0/ζ
′2)dζ′, and ζ′ ∈ L ∶= (−∞,−E0)∪ (E0,+∞).

Thus, the integral becomes

(A.10) I± = ν lim
t→±∞∫−

L

e∓i(E2
0/ζ
′
+ζ)t f (ζ′, ζ)

1+ E2
0/ζ
′

ζ′ − ζ − E2
0/ζ′ + E2

0/ζ
dζ′ .

Let y′ ∶= E2
0/ζ
′ + ζ, so dy′ = −E2

0/ζ
′2dζ′ and L ↦ L′ ∶= (ζ − E0, ζ)∪ (ζ, ζ + E0), provided ζ ∈ R. Also,

note that there is an additional minus sign due to the change of integration limits,

I± = ν lim
t→∞∫−

L′
e∓iy′t f (ζ′, ζ) 1

y′ − ζ

E2
0 + (y

′ − ζ)2

ζ + E2
0/ζ − y′

dy′

y′
.

Note also that 0 /∈ L′. Consequently, the above quantity vanishes by the Riemann-Lebesgue lemma.
Finally note that if ζ ∈ Σ○, the integral (A.10) is zero by the Riemann-Lebesgue lemma.

(5) The last integral in Lemma 4 is zero by an argument similar to the fourth case.
□

We are ready to compute the matrix R± in Equation (100). We compute the two terms in the square
brackets separately, and we consider the second first. We know that, as t → ±∞,

(A.11)

∂ϕ
±

∂z
=(2iw±e2iW± 0

0 0)Y±(0, ζ)(e
−2iW± 0

0 e2iW±σ3
) eiΛt

+ (e
2iW± 0
0 I2

)Y±(0, ζ)(−2iw±e−2iW± 0
0 2iw±e2iW±σ3 σ3

) eiΛt + o(1) .

After some calculations, the above equation yields

(A.12) ϕ−1
±
(ϕ
±
)z = (ϕ−1

±
(ϕ
±
)z)eff + o(1) = iw±

λ

⎛
⎜
⎝

−E2
0/ζ 0 −iE0e−2iλt

0 2λ 0
iE0e2iλt 0 −ζ

⎞
⎟
⎠
+ o(1) .

Now let us compute the first term ϕ−1
±

Vϕ
±

in Equation (100) as t → ±∞. One can write

ϕ−1
±

Vϕ
±
= iπ

2
Hk[C(k, k′)g(k′)]+ o(1) .

where Equation (22) yields the leading term as

(A.13) C(k, k′) ∶= e−iΛtY−1
±
(z, ζ)Y±(z, ζ′)eiΛtϱ

±
(z, ζ′)e−iΛtY−1

±
(z, ζ′)Y±(z, ζ)eiΛt .
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After tedious calculations, one can obtain each entry of C(k, k′) from this matrix product. They are omitted
here for brevity. Correspondingly, each entry of ϕ−1

±
Vϕ

±
can be calculated by taking the Hilbert transform

and using Lemma 4. We list some intermediate steps of the calculations below as t → ±∞, and we use
the shorthand notation f ′ ∶= f (k′) for a function f (⋅) containing the integration variable k′ of the Hilbert
transform. The entries of ϕ−1

±
Vϕ

±
are listed below:

(A.14a)

(ϕ−1
±

Vϕ
±
)1,1 =

i
2 ∫
−

R
C1,1

g(k′)dk′

k′ − k
+ o(1)

= i
2 ∫
−

R

1
γγ′

⎡⎢⎢⎢⎢⎣
ϱ′
±,1,1 (1+

E2
0

ζζ′
)

2

+ E2
0ϱ′
±,3,3 (

1
ζ′
− 1

ζ
)

2⎤⎥⎥⎥⎥⎦

g(k′)dk′

k′ − k
+ o(1) .

(A.14b)

(ϕ−1
±

Vϕ
±
)1,2 =

i
2 ∫
−

R
C1,2

g(k′)dk′

k′ − k
+ o(1)

= ∫−
R

1
2γ
[ie−i(ζ−ζ′)tϱ′

±,1,2(1+
E2

0

ζζ′
)+ E0e−i(ζ−ζ̂′)tϱ′

±,3,2 (
1
ζ′
− 1

ζ
)]

g(k′)dk′

k′ − k
+ o(1)

= ∓πν

2
ϱ±,1,2g(k)+ o(1) .

(A.14c)
(ϕ−1
±

Vϕ
±
)1,3

= i
2 ∫
−

R
C1,3

g(k′)dk′

k′ − k
+ o(1)

= i
2 ∫
−

R
[e−2i(λ−λ′)t

γγ′
ϱ′
±,1,3(

E2
0

ζζ′
+ 1)

2

− iE0

γγ′
e−2iλt(ϱ′

±,1,1 − ϱ′
±,3,3)(

1
ζ
− 1

ζ′
)(1+

E2
0

ζζ′
)]

g′dk′

k′ − k
+ o(1)

=E0

λ
e−2iλtw± ∓

πν

2γ2 ρ
±1,3 (

E2
0

ζ2 + 1)
2

g(k)+ o(1) .

Recall that the matrix R± in Equation (100) contains two terms, and we are calculating one of them right
now. The other term is in Equation (A.12). The first term in Equation (A.14c) cancels the corresponding
term appearing in Equation (A.12). Thus, we finally obtain

R±,1,3 = ±iπνϱ±,1,3 g(k) .

Let us continue calculating the entries of ϕ−1
±

Vϕ
±

:

(A.14d)

(ϕ−1
±

Vϕ
±
)2,1 =

i
2 ∫
−

R
C2,1g(k′) dk′

k′ − k
+ o(1)

= ∫−
R

1
2γ′
[iei(ζ−ζ′)t (1+

E2
0

ζζ′
) ϱ′
±,2,1 + E0ei(ζ−ζ̂′)tϱ′

±,2,3 (
1
ζ
− 1

ζ′
)]

g(k′)dk′

k′ − k
+ o(1)

= ±π

2
ϱ±,2,1g(k)+ o(1) ,
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(A.14e)
(ϕ−1
±

Vϕ
±
)3,1

= i
2 ∫
−

R
C3,1g(k′) dk′

k′ − k
+ o(1)

= i
2 ∫
−

R

⎡⎢⎢⎢⎢⎣

e−2i(λ′−λ)t

γγ′
ϱ′
±,3,1 (1+

E2
0

ζζ′
)

2

− iE0

γγ′
e2iλt (1

ζ
− 1

ζ′
)(1+

E2
0

ζζ′
)(ϱ′

±,3,3 − ϱ′
±,1,1)

⎤⎥⎥⎥⎥⎦

g′dk′

k′ − k
+ o(1)

=± πν

2
ϱ±,3,1g(k)− E0

λ
w±e2iλt + o(1) ,

where the last term will cancel the term appearing in Equation (A.12), similarly to the (3, 1) component.
The rest of the entries of ϕ−1

±
Vϕ

±
are given by

(ϕ−1
±

Vϕ
±
)2,2 =

i
2 ∫
−

R
C2,2

g(k′)dk′

k′ − k
+ o(1) = i

2 ∫
−

R
ϱ′
±,2,2

g(k′)dk′

k′ − k
+ o(1) ,

(A.14f)

(ϕ−1
±

Vϕ
±
)2,3 =

i
2 ∫
−

R
C2,3

g(k′)dk′

k′ − k
+ o(1)

= i
2 ∫
−

R

1
γ′
[e−i(ζ̂′−ζ̂)t (1+

E2
0

ζζ′
) ϱ′
±,2,3 − iE0e−i(ζ′−ζ̂)t (1

ζ
− 1

ζ′
) ϱ′
±,2,1]

g(k′)dk′

k′ − k
+ o(1)

= ±π

2
ϱ±,2,3g(k)+ o(1) ,

(A.14g)

(ϕ−1
±

Vϕ
±
)3,2 =

i
2 ∫
−

R
C3,2

g(k′)dk′

k′ − k
+ o(1)

= i
2 ∫
−

R

1
γ
[ei(ζ̂′−ζ̂)t (1+

E2
0

ζζ′
) ϱ′
±,3,2 − iE0ei(ζ′−ζ̂)t ( 1

ζ′
− 1

ζ
) ϱ′
±,1,2]

g(k′)dk′

k′ − k
+ o(1)

= ∓π

2
ϱ±,3,2g(k)+ o(1) ,

(A.14h)

(ϕ−1
±

Vϕ
±
)3,3 =

i
2 ∫
−

R
C3,3

g(k′)dk′

k′ − k
+ o(1)

= i
2 ∫
−

R

1
γγ′

⎡⎢⎢⎢⎢⎣
E2

0ϱ′
±,1,1 (

1
ζ
− 1

ζ′
)

2

+ ϱ′
±,3,3 (

E2
0

ζζ′
+ 1)

2⎤⎥⎥⎥⎥⎦

g(k′)dk′

k′ − k
+ o(1) .

Finally, combining all the above components, we obtain the matrix R±

(A.15) R± =

⎛
⎜⎜⎜⎜⎜⎜
⎝

∫−
R

C1,1
g(k′)dk′

k′ − k
− 2w±ζ̂/λ ±iπϱ±,1,2g(k) ±iπνϱ±,1,3g(k)

∓iπϱ±,2,1g(k) ∫−
R

ϱ′
±,2,2

g(k′)dk′

k′ − k
− 4w± ∓iπϱ±,2,3g(k)

∓iπνϱ±,3,1g(k) ±iπϱ±,3,2g(k) ∫−
R

C3,3
g(k′)dk′

k′ − k
+ 2w±ζ/λ

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

where C1,1 and C3,3 are given by

(A.16)

C1,1 =
1

γγ′

⎡⎢⎢⎢⎢⎣
ϱ′
±,1,1 (1+

E2
0

ζζ′
)

2

+ E2
0ϱ′
±,3,3 (

1
ζ′
− 1

ζ
)

2⎤⎥⎥⎥⎥⎦
,

C3,3 =
1

γγ′

⎡⎢⎢⎢⎢⎣
E2

0ϱ′
±,1,1 (

1
ζ
− 1

ζ′
)

2

+ ϱ′
±,3,3 (

E2
0

ζζ′
+ 1)

2⎤⎥⎥⎥⎥⎦
.
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Next, we show how to simplify R±,1,1 and R±,3,3. First, we recall the shorthand notation defined in
Equation (103). With the help of these quantities one can rewrite w± in Equation (94) as

w± =
1
2 ∫R

ϱ−
±

g(k)dk
λ
= ∫−

R
(ϱ−
±

k′ − k
2λ′
)g(k′) dk′

k′ − k
.

Using Equation (103), we can simplify the function C1,1 in R±,1,1 to become

C1,1 = ρ+
±
+

k′k + E2
0

λ′λ
ϱ−
±

.

Consequently, we have

R±,1,1 = ∫−
R
(ρ+
±
+ λ

λ′
ϱ−
±
)g(k′) dk′

k′ − k
+∫

R

ϱ−
±

λ′
g(k′)dk′ .

Note that the second integral is 2w±, so we have obtained the desired result in Equation (102). One applies
similar simplifications to R±,3,3 and obtains

R±,3,3 = ∫−
R
(ρ+
±
− λ

λ′
ϱ−
±
)g(k′) dk′

k′ − k
+∫

R

ϱ−
±

λ′
g(k′)dk′ ,

yielding the final result in Equation (102).

C. Derivation of propagation equations for norming constants. Using symmetries (67), it suffices to
compute the propagation equations for the three norming constants Cn, Dn and Fn. We do this in the next
three paragraphs.

C.1. Evolution equation for Cn. Recall the definition for Cn in Equation (64). Simple calculations yield

(A.17)
∂Cn

∂z
= ∂cn

∂z
e2iλ(w∗n)t

b′1,1(w∗n)
−Cn lim

ζ→w∗n

1
b1,1(w∗n)

∂b1,1(ζ)
∂z

.

Thus, we have to compute the two z-derivatives.
Using Equation (107), we write ∂zb1,1 explicitly as

∂b1,1

∂z
= i

2
(R+,1,1b1,1 + R+,1,2b2,1 + R+,1,3b3,1 − R−,1,1b1,1 − R−,2,1b1,2 − R−3,1b1,3) .

We first analytically continue every term to D2 according to Equation (105), because it is necessary to
substitute the discrete eigenvalue w∗n ∈ D2. This yields

∂b1,1

∂z
= i

2
(R+,1,1 − R−,1,1) b1,1 , ζ ∈ D2 .

Substituting ζ = w∗n ∈ D2, we obtain the second derivative term in Equation (A.17).
Now, let us focus on the first derivative term. Recall the definition (99) of the matrix R±, which can be

rewritten as
∂ϕ
±

∂z
= Vϕ

±
− i

2
ϕ
±

R± .

Using the analyticity properties (105) of the entries of R±, again, we obtain

(A.18)
∂ϕ
−,1

∂z
= Vϕ

−,1 −
i
2

R−,1,1ϕ
−,1 , ζ ∈ D1 .

Moreover, we need the propagation equation for the auxiliary eigenfunction χ1. Using the decomposi-
tion (36) of the eigenfunctions, we know that χ2 = b1,1ϕ

−,3 − b1,3ϕ
−,1 for ζ ∈ Σ. The chain rule yields

(A.19)
∂χ2

∂z
=

∂b1,1

∂z
ϕ
−,3 + b1,1

∂ϕ
−,3

∂z
−

∂b1,3

∂z
ϕ
−,1 − b1,3

∂ϕ
−,1

∂z
.
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Using the definition (99) of the matrix R± and (107), again, we obtain the following for ζ ∈ Σ:

(A.20)

∂ϕ
−,3

∂z
= Vϕ

−,3 −
i
2
(R−,1,3ϕ

−,1 + R−,2,3ϕ
−,2 + R−,3,3ϕ

−,3) ,

∂b1,3

∂z
= i

2
(R+,1,1b1,3 + R+,1,2b2,3 + R−,1,3b3,3 − R−,1,3b1,1 − R−,2,3b1,2 − R−,3,3b1,3) .

Therefore, combining the above ingredients in Equations (A.18), (A.19) and (A.20), and using Equa-
tion (105) to extend all the terms to D2, we find

∂χ2

∂z
= i

2
(R+,1,1 − R−,1,1 − R−,3,3)χ2 +Vχ2 , ζ ∈ D2 .

At ζ = wn, one knows that χ2 = cnϕ
−,1 from the definition (61) of the norming constant, which implies

that ∂zχ2 = ϕ
−,1∂zcn + cn∂zϕ

−,1. By inserting the two derivatives, we obtain the derivative of cn,

∂cn

∂z
= i

2
(R+,1,1 − R−,3,3) cn , ζ = wn .

This is the end result of the first derivative term in Equation (A.17).
Substituting the above two derivative terms into Equation (A.17), we finally obtain the propagation equa-

tion
∂Cn

∂z
= i

2
(R−1,1(w∗n)− R−3,3(w∗n))Cn .

C.2. Evolution equation for Dn. Differentiating the expression for Dn in Equation (67), we obtain

(A.21)
∂Dn

∂z
= ∂dn

∂z
e−iẑnt 1

b′2,2(zn)
−Dn lim

ζ→zn

1
b2,2(ζ)

∂b2,2(ζ)
∂z

.

Similarly to the previous case, we need to calculate the two derivatives separately.
It is easy to compute ∂zb2,2 on the continuous spectrum from Equation (107), and to extend every part to

C+ by Equation (105), resulting in

∂b2,2

∂z
= i

2
(R+,2,2 − R−,2,2) b2,2 , ζ ∈ C+ .

This gives the second term in Equation (A.21).
Next, we compute ∂zχ1 on the continuous spectrum from Equations (36) and (99):

(A.22)
∂χ1

∂z
= i

2
(R+,2,2 − R−,2,2 − R−,3,3)χ1 +Vχ1 +

i
2

R−,1,3χ4 + f , ζ ∈ Σ ,

f ∶= i
2

R+,2,1 (b1,2ϕ
−,3 − b1,3ϕ

−,2)+
i
2

R+,2,3 (b3,2ϕ
−,3 − b3,3ϕ

−,2)+
i
2

R−,1,2 (b2,3ϕ
−,1 − b2,1ϕ

−,3) .

We would like to extend every term to D1. However, this cannot be done like in the ZBG case or in the
classic two-level case, because R−,1,3 = 0 only holds in D4, and χ4 is analytic only in D4. In order to
continue, we apply the Cauchy projector P( f ) defined in Equation (117) along the integration contour
Σ0 = (−∞,−E0]∪ {E0eiθ ∣0 ≤ θ ≤ π}∪ [E0,∞) ⊂ Σ. Note that Σ0 is a subset of the continuous spectrum, so
applying this projector is valid for every value of the parameter ζ ∈ Σ0. Now, assuming that the z-derivative
and the projector commute, one obtains

(A.23)

1
2πi ∫Σ0

∂χ1(η)
∂z

dη

η − ζ
= 1

4π ∫Σ0
(R+,2,2 − R−,2,2 − R−,3,3)χ1(η)+V(η)χ1(η)

dη

η − ζ

+ 1
4π ∫Σ0

R−,1,3χ4(η)
dη

η − ζ
+ 1

2πi ∫Σ0
f(η)

dη

η − ζ
.
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Now, we insert the discrete eigenvalue ζ = zn ∈ D1. Since some of the terms are analytic in D1, we can use
the Residue Theorem to calculate the corresponding integrals, which yields

∂χ1(zn)
∂z

= i
2
(R+,2,2 − R−,2,2 − R−3,3)ζ=zn χ1(zn)+V(zn)χ1(zn)+

1
4π ∫Σ0

R−,1,3χ4

η − zn
dη .

Since R−,1,3 = 0 in D4 from Equation (105), it is possible to deform the last integral and thus to obtain

(A.24)
∂χ1(zn)

∂z
= i

2
(R+,2,2 − R−,2,2 − R−,3,3)ζ=zn χ1(zn)+V(zn)χ1(zn)+

1
4π ∫R

R−,1,3χ4

η − zn
dη .

Moreover, due to the fact that χ1(zn) = dnϕ
−,2(zn) from Equation (62), we find the following relation:

∂χ1(zn)
∂z

= ∂dn

∂z
ϕ
−,2(zn)+ dn

∂ϕ
−,2(zn)
∂z

.

Note that the explicit expression for ∂ϕ
−,2(zn)/∂z can be calculated using Equation (99). So, Equa-

tion (A.24) and the explicit formula for ∂ϕ
−,2(zn)/∂z together yield

(A.25) [∂dn

∂z
− i

2
(R+,2,2 − R−,3,3)ζ=zn

dn]χ1(zn) =
dn

4π ∫R

R−,1,3χ4(η)
η − zn

dη .

In the above equation, only the eigenfunctions χ1 and χ4 depend on the variable t, so we can evaluate it via
the limit t →∞. The asymptotic behavior of the eigenfunctions is shown in Equation (38).

Note that the eigenfunctions χ1 and χ4 are vectors. Let us look closely at the first component of the
integral on the right hand side of Equation (A.25) in the limit

lim
t→∞
(∫

R

R−,1,3χ4(η)
η − zn

dη)
1
= lim

t→∞∫R
(− iπνϱ

−,1,3g(k(η))a3,3(η)e
i

E2
0 t

2η )eiηt/2 dη

η − zn
.

The term −iπνϱ
−,1,3g(k(η))a3,3(η) exp[iE2

0t/(2η)]/(η − z∗n) remains finite as t →∞. Assuming that this
term is in L1(R), then the Riemann-Lebesgue lemma implies that this integral vanishes. In other words,

lim
t→∞∫R

(− iπνϱ
−,1,3g(k(η))a3,3(η)e

i
E2

0 t
2η )eiηt/2 dη

η − zn
= 0 .

Hence, one obtains the following ODE from Equation (A.25)

∂dn

∂z
= i

2
(R+,2,2 − R−,3,3)ζ=zn

dn .

Finally, the propagation equation for the norming constant Dn is obtained as

∂Dn

∂z
= i

2
(R−,2,2 − R−,3,3)ζ=zn

Dn .

C.3. Propagation equation for Fn. The calculation in this case is similar to the one for Cn. Therefore, the
propagation equation for Fn in Equation (113) can be obtained by following the first case step by step.

D. Calculation of trace formula and asymptotic phase difference. We start from the simple fact S ⋅S−1 =
I with ζ ∈ Σ. Its components yield

b2,1a1,2 + b2,2a2,2 + b2,3a3,2 = 1 , ζ ∈ Σ ,

which reduces to

log a2,2 − log 1/b2,2 = − log [γ(ζ)(γ(ζ)− 1)r3(ζ̂)r∗3(ζ̂∗)+ γ(ζ)r3(ζ)r∗3(ζ∗)] , ζ ∈ Σ ,
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where we recall r3 defined in Equation (54). In order to remove the zeros of a2,2 and b2,2 and to fix the limits
as ζ →∞, we define two more functions

(A.26)

β−(ζ) ∶= a2,2ei∆θ
N2

∏
n=1

ζ − zn

ζ − z∗n

ζ − ẑn

ζ − ẑ∗n

N3

∏
n=1

ζ − ζn

ζ − ζ∗n

ζ − ζ̂n

ζ − ζ̂∗n
, ζ ∈ C− ,

β+(ζ) ∶= 1/b2,2ei∆θ
N2

∏
n=1

ζ − zn

ζ − z∗n

ζ − ẑn

ζ − ẑ∗n

N3

∏
n=1

ζ − ζn

ζ − ζ∗n

ζ − ζ̂n

ζ − ζ̂∗n
, ζ ∈ C+ .

Clearly, the two functions β± are analytic in C±, respectively, and have no zeros and no poles in the corre-
sponding region. The additional as yet undetermined factor ±∆θ ensures that the two functions tend to 1 as
ζ →∞. Thus, we obtain the following jump condition:

log β−(ζ)− log β+(ζ) = J0 , ζ ∈ R ,

where the quantity J0 is defined in Equation (123). By applying Plemelj’s formulas, one can solve for β±

and consequently a2,2 and b2,2. The final results are given by

(A.27)

a2,2(ζ) = e−i∆θe
1

2πi ∫R

J0
η−ζ

dη
N2

∏
n=1

ζ − z∗n
ζ − zn

ζ − ζ̂∗n
ζ − ζ̂n

N3

∏
n=1

ζ − ζ∗n
ζ − ζn

ζ − ζ̂∗n
ζ − ζ̂n

,

b2,2(ζ) = ei∆θe−
1

2πi ∫R

J0
η−ζ

dη
N2

∏
n=1

ζ − zn

ζ − z∗n

ζ − ζ̂n

ζ − ζ̂∗n

N3

∏
n=1

ζ − ζn

ζ − ζ∗n

ζ − ζ̂n

ζ − ζ̂∗n
.

The following four identities can also be obtained from the simple fact S ⋅ S−1 = I with ζ ∈ Σ:

1+
a2,1

a1,1

b1,2

b1,1
+

a3,1

a1,1

b1,3

b1,1
= 1

a1,1b1,1
,

a1,3

a3,3

b3,1

b3,3
+ a2,3

a3,3

b3,2

b3,3
+ 1 = 1

a3,3b3,3
,

a2,2

b1,1b3,3
= 1−

b1,3

b1,1

b3,1

b3,3
,

b2,2

a1,1a3,3
= 1−

a1,3

a3,3

a3,1

a1,1
.

Using these identities, we write down four more jump conditions,

(A.28)

log b1,1 − log
1

a1,1
= J1 ,

log a3,3 − log
1

b3,3
= J3 ,

log b1,1 − log
1

b3,3
= log a2,2 − log (1− r∗2(ζ∗)r∗2(ζ̂∗)) ,

log a3,3 − log
1

a1,1
= log b2,2 − log (1− r2(ζ̂)r2(ζ)) ,

61



where recall J1 and J3 are defined in Equation (123). We define the following identities in order to remove
the zeros of the scattering data:

(A.29)

β1(ζ) ∶=
1

a1,1

N1

∏
n=1

ζ −wn

ζ −w∗n

ζ − ŵ∗n
ζ − ŵn

N2

∏
n=1

ζ − ẑn

ζ − ẑ∗n

N3

∏
n=1

ζ − ζn

ζ − ζ∗n
, ζ ∈ D1 ,

β2(ζ) ∶= b1,1

N1

∏
n=1

ζ −wn

ζ −w∗n

ζ − ŵ∗n
ζ − ŵn

N2

∏
n=1

ζ − ẑn

ζ − ẑ∗n

N3

∏
n=1

ζ − ζn

ζ − ζ∗n
, ζ ∈ D2 ,

β3(ζ) ∶=
1

b3,3
ei∆θ

N1

∏
n=1

ζ −wn

ζ −w∗n

ζ − ŵ∗n
ζ − ŵn

N2

∏
n=1

ζ − z∗n
ζ − zn

N3

∏
n=1

ζ − ζ̂∗n
ζ − ζ̂n

, ζ ∈ D3 ,

β4(ζ) ∶= a3,3ei∆θ
N1

∏
n=1

ζ −wn

ζ −w∗n

ζ − ŵ∗n
ζ − ŵn

N2

∏
n=1

ζ − z∗n
ζ − zn

N3

∏
n=1

ζ − ζ̂∗n
ζ − ζ̂n

, ζ ∈ D4 ,

where the regions Dj are defined in Definition 5. The four functions β j(ζ), with j = 1, 2, 3, 4, are analytic in
Dj, respectively, and have no zeros and no poles in their corresponding analyticity regions. Moreover, they
tend to 1 as ζ → 0 and ζ →∞ in these analytic regions. With new functions

β̄(ζ) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

β1(ζ) , ζ ∈ D1 ,
β2(ζ) , ζ ∈ D2 ,
β3(ζ) , ζ ∈ D3 ,
β4(ζ) , ζ ∈ D4 ,

we can consolidate all the relations in Equation (A.28) as the jump conditions

log β̄− − log β̄+ = Jj , ζ ∈ Σj ,

where all the jumps are defined in Equation (123) for j = 1, . . . , 4. Plemelj’s formula yields

β̄(ζ) = e−
1

2πi ∫Σ
J

η−ζ
dη ,

where J is also defined in Equation (123). In particular, the scattering data b1,1(ζ) has the following explicit
expression,

b1,1(ζ) = e−
1

2πi ∫Σ
J

η−ζ
dη

N1

∏
n=1

ζ −w∗n
ζ −wn

ζ − ŵn

ζ − ŵ∗n

N2

∏
n=1

ζ − ẑ∗n
ζ − ẑn

N3

∏
n=1

ζ − ζ∗n
ζ − ζn

.

Next, we let ζ → 0, compare the leading order of the asymptotic behavior of b1,1, and obtain

e−
1

2πi ∫Σ
J
η

dη
N1

∏
n=1

w∗n
wn

ŵn

ŵ∗n

N2

∏
n=1

ẑ∗n
ẑn

N3

∏
n=1

ζ∗n
ζn
= E⊺
+

E∗
−
/E2

0 .

Simplifying the above expression yields the phase difference of the solution at the boundaries,

∆θ = θ+ − θ− =
1

2π ∫Σ

J
η

dη − 4
N1

∑
n=1

arg wn + 2
N2

∑
n=1

arg zn − 2
N3

∑
n=1

arg ζn .

E. Calculation of R−,dd(z, ζ) with inhomogeneous broadening. According to Equation (113), we must
compute the diagonal part of the auxiliary matrix R−,dd(z, ζ) from Equation (102) in order to compute
the propagation of the norming constants. Thus, this appendix focuses on the explicit computation of
R−,dd(z, ζ) with a known shape of the inhomogeneously broadened spectral line, given in Equation (165).

Recall that it is necessary to pick ϱ
−

with opposite signs on k-sheets I and II. The resulting auxiliary
matrix R− is uniquely defined on each sheet (cf. discussion in Section 4.3). Consequently, without loss of
generality, we perform all the calculations on k-sheet I in this Appendix.

Upon inspecting Equation (102), we see that we must compute the Hilbert transforms of ϱ±
−

g(k). Recall
that we take ϱ

−
to be diagonal and independent of k on either sheet from Section 5.3, so that the quantity
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ϱ±
−

in Equation (103) is also independent of k, and thus can be taken outside the integrals. Therefore, it is
sufficient to calculate the following two integrals to compute R−,dd with g(k) in Equation (165):

(A.30) I1(k) ∶= ∫−
R

g(k′) dk′

k′ − k
, I2(k) ∶= ∫−

R

g(k′)
λ

dk′

k′ − k
.

Note that the above integrals differ when the parameter k takes two possible values: R or C/R. Therefore,
we need to compute them separately. We first compute the easier case in which k ∈ C/R. Then, we use the
following relation to compute the case in which k ∈ R:

(A.31) ∫−
R

f (k′) dk′

k′ − k
= ∫

L
f (k′) dk′

k′ − k
+πi Res

k′=k

f (k′)
k′ − k

,

where the contour is L = (−∞, k − r) ∪ {k′ = r eiθ ∣ θ ∈ [0, π]} ∪ (k + r,∞), provided that r is sufficiently
small and there are no singularities on L.

E.1. Calculation of the integral I1 in Equation (A.30) with k ∈ C/R. Explicitly, this integral is

I1 = ∫
R

ϵ

π(k′ − k)(k′2 + ϵ2)
dk′ , k ∈ C/R .

It is easily evaluated using the Residue theorem. The result is

(A.32) I1 =
⎧⎪⎪⎨⎪⎪⎩

−1/(k + iϵ) , k ∈ C+ ,
−1/(k − iϵ) , k ∈ C− .

E.2. Calculation of the integral I1 in Equation (A.30) with k ∈ R. The identity (A.31) yields the integral I1,
with k ∈ R, from Equation (A.32):

(A.33) I1 = −
1

k + iϵ
+πi Res

k′=k

ϵ

π(k′ − k)(k′2 + ϵ2)
= − k

k2 + ϵ2 , k ∈ R .

E.3. Calculation of the integral I2 in Equation (A.30) with k ∈ C/R. Explicitly, with k ∈ C/R, this integral
is

I2 = ∫
R

ϵ

π

1
λ(ϵ2 + k′2)

dk′

k′ − k
.

Similarly to what has been done in [43], it is convenient to compute this integral in the uniformization
variable ζ. Recalling Equation (8), we can write k′ = (ζ′ − E2

0/ζ
′)/2, λ′ = (ζ′ + E2

0/ζ
′)/2, k = (ζ − E2

0/ζ)/2,
and λ = (ζ + E2

0/ζ)/2. Thus, we find dk′ = (1 + E2
0/ζ
′2)/2dζ′ with a new integration contour: L ∶=

(−∞,−E0)∪ (E0,∞). We substitute all these parts into I2, and find

(A.34) I2(k) = −∫
L

f (ζ, ζ′)dζ′ , f (ζ, ζ′) ∶= 8ϵζζ′2

π(ζ − ζ′)(ζζ′ + E2
0) [ ζ′4 + E4

0 − 2ζ′2(E2
0 − 2ϵ2) ]

.

The denominator of f (ζ, ζ′) has six simple roots rj with j = 1, . . . , 6, whose explicit expressions are omitted
for brevity, so the rational function f (ζ, ζ′) can be decomposed as

f (ζ, ζ′) =
6

∑
j=1

Rj

ζ′ − rj
, Rj ∶= Res

ζ′=rj
f (ζ, ζ′) .

Correspondingly, the integral can be rewritten using the Residue theorem as

I2 = −
6

∑
j=1

Rj log(ζ′ − rj)∣L .
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After some tedious but straightforward calculations, we finally obtain

(A.35) I2 = −
g(k)

λ

⎡⎢⎢⎢⎢⎢⎣
log(E0 − λ

E0 + λ
)+ λ
√

E2
0 − ϵ2

log
⎛
⎜
⎝

E0 +
√

E2
0 − ϵ2

E0 −
√

E2
0 − ϵ2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
, k ∈ C/R .

E.4. Calculations of the integral I2 in Equation (A.30) with k ∈ R. We apply the relation (A.31) again, and
compute

I2 =−
g(k)

λ

⎡⎢⎢⎢⎢⎢⎣
log(E0 − λ

E0 + λ
)+ λ
√

E2
0 − ϵ2

log
⎛
⎜
⎝

E0 +
√

E2
0 − ϵ2

E0 −
√

E2
0 − ϵ2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
+πi Res

ζ′=ζ
f (ζ, ζ′)

=−
g(k)

λ

⎡⎢⎢⎢⎢⎢⎣
log(λ − E0

λ + E0
)+ λ
√

E2
0 − ϵ2

log
⎛
⎜
⎝

E0 +
√

E2
0 − ϵ2

E0 −
√

E2
0 − ϵ2

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
, k ∈ R .(A.36)

E.5. Calculation of R−,dd. Using the values of the above two special integrals, we are able to compute the
matrix R−,dd. By examining Equation (102), we obtain the following relations:

R−,1,1(z, ζ) = ρ+
−

I1 + λϱ−
−

I2 , R−,2,2(z, ζ) = ρ−2,2 I1 , R−,3,3(z, ζ) = ρ+
−

I1 − λϱ−
−

I2 ,

where ϱ±
−

are defined in Equation (103).
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