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C. PALLIS

1. OUTLINE

In this talk we first – see Sec. 2 – review a set of (generalized) no-scale models (nSMs) [1, 2]

within Supergravity (SUGRA) which assure spontaneous Supersymmetry (SUSY) breaking at a techni-

cally natural de Sitter (dS) vacuum. As a result, the problem of Dark Energy (DE) can be explained

by fine tuning just one superpotential coupling. We then, in Sec. 3, concentrate on a specific model

which offers a coexistence of the aforementioned dS vacuum with an inflection point of the potential

developed at larger field values and, in Sec. 4, we investigate the communication of SUSY breaking in

the observable sector of minimal SUSY standard model (MSSM). Finally, in Sec. 5 we show how we can

obtain Inflection-Point Inflation (IPI) [3] in our set-up and in Sec. 6 we delineate regions of parameters

allowed by the observations [4–6]. Sec. 7 summarizes our conclusions and discusses some open issues.

Unless otherwise stated, we use units where the reduced Planck scale mP = 2.4 ·1018 GeV is taken

to be unity, a subscript of type ,χ denotes derivation with respect to (w.r.t.) the field χ and charge

conjugation is denoted by a star.

2. FROM MINKOWSKI TO dS VACUA IN NO-SCALE SUGRA

We here provide a short introduction on SUSY breaking within SUGRA in Sec. 2.1 and then, we

show how this mechanism is systematized within no-scale SUGRA obtaining Minkowski (see Sec. 2.2)

or dS vacua – see Sec. 2.3. Examples of such nSMs are given in Sec. 2.4.

2.1 SUSY BREAKING WITHIN SUGRA

Within global SUSY, the scalar potential of a gauge-singlet superfield Z, VSUSY, is positive semi-

definite, since

VSUSY = |FZ|2 with FZ = ∂ZW. (2.1)

Here W =W (Z) is an holomorphic function named superpotential. Spontaneous SUSY breaking occurs

when 〈FZ〉 6= 0 which results to 〈VSUSY〉1/4 > 0. The non discovery of SUSY in LHC dictates 〈FZ〉1/2 >

1 TeV. On the other hand, 〈FZ〉1/2 may be identified with the cosmological constant ΛCC ≃ 2.3 meV.

Therefore, we obtain an inconsistency. The spontaneous SUSY breaking is accompanied with the

presence of a massless fermion named goldstino and for this reason its SUSY partner, Z, is called

sgoldstino.

Within local SUSY – i.e. SUGRA – the F-term scalar potential is given by

VSUGRA = eG
(

GZZ∗
GZGZ∗ −3

)
where G := K + ln |W |2 (2.2)

is the Kähler-invariant function and K = K(Z,Z∗) the Kähler potential. Also GZZ∗ = KZZ∗ = ∂Z∂Z∗K

is the Kähler metric and KZZ∗
= K−1

ZZ∗ . In this context, SUSY is broken again when 〈FZ〉 6= 0 where

FZ = eG/2KZZ∗
GZ∗ which may occur with 〈VSUGRA〉 ≃ 0. This mechanism is accompanied with the

absorption of the goldstino by the gravitino, G̃, which acquires mass according to “super-Higgs” mech-

anism

m3/2 = 〈eG/2〉= 〈eK/2W 〉= 〈GZZ∗FZF̄Z∗ −VSUGRA〉1/2/
√

3. (2.3)

Based on this formalism we can obtain several models of SUSY breaking [7–10]. One of the

key ingredients for the successful implementation of this scenario is the determination of a naturally

realistic vacuum for VSUGRA which may be Minkowski for 〈VSUGRA〉= 0 or de Sitter for 〈VSUGRA〉> 0.
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2.2 MINKOWSKI VACUA IN NO-SCALE SUGRA

Within no-scale SUGRA [1], SUSY is broken along an F-flat direction which naturally yields

VSUGRA = 0. To construct systematically nSMs, we use as input K and determine W so as VSUGRA = 0.

I.e., we solve the differential equation

0 = eK
(

g−1
K |∂ZW +WKZ|2 −3|W |2

)
, where g−1

K = K−1
ZZ∗ = KZZ∗

(2.4)

assuming that the direction Z = Z∗ is stable – this assumption can be verified a posteriori. Indeed,

solving Eq. (2.4) w.r.t W =W0(Z) we find

dW0

dZW0
=±

√
3gK −KZ ⇒ W±

0 = mexp

(
±
∫

dZ
√

3gK −
∫

dZKZ

)
. (2.5)

with ′ = d/dZ. E.g., if we select the Kähler potential:

• K =−3ln(T +T ∗) we obtain the well-known results [11] W−
0 = m but also W+

0 = 8mT 3 ;

• K = |Z|2 we obtain W±
0 =me±

√
3Z−Z2/2. Therefore we can obtain a nSM even with flat geometry.

This is a totally novel result [2].

2.3 dS VACUA IN NO-SCALE SUGRA

The models can be extended to support dS vacua. In this case 〈VSUGRA〉 may account for DE with-

out requiring any external mechanism for vacuum uplifting [9]. To accomplish this extra achievement

we consider the following linear combination of W±
0

WΛ =W+
0 −CΛW−

0 (2.6)

and we obtain the SUGRA potential

VΛ = eK
(

g−1
K

(
W ′

Λ +WΛKZ

)2 −3W 2
Λ

)
= 12eKCΛW−

0 W+
0 = 12m2CΛ. (2.7)

Finely tuning CΛ to a value CΛ ≃ 10−108 for m ∼ 10−6, e.g, we may identify VΛ with the present DE

energy density, i.e.,

VΛ = ΩΛρc = 7.3 ·10−121m4
P, (2.8)

where the density parameter of DE ΩΛ and the current critical energy density of the universe ρc are

given in Ref. [4].

2.4 REALISTIC NSMS

Although quite appealing, the nSMs above develop a completely flat VSUGRA, I.e.

VSUGRA =V ′
SUGRA =V ′′

SUGRA = 0. (2.9)

Therefore m3/2 and the soft SUSY-breaking terms remain undetermined. Moreover, a massless mode

arises in the spectrum. To cure these drawbacks, we may include in K a stabilization (higher order)

term

−k2Z4
v with Zv = Z +Z∗−

√
2v (2.10)

which selects the vacuum (〈z〉,〈z̄〉) = (v,0) from the flat direction and provides the real component of

sgoldstino with mass. The presence of k-dependent term is natural according to ’t Hooft argument [12]

since for k → 0 the symmetry becomes exact. The selection of this higher order term is arbitrary,

though.
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nSM K W±
0 /m WΛ/m ENHANCED SYMMETRY

OF THE KÄHLER MANIFOLD

1 −N ln
(
T +T ∗+ k2T 4

v /N
)
, (2T )n∓ , where (2T )n+C−

T , where SU(1,1)/U(1)

Tv = T +T ∗−
√

2v,N > 0 n± = (N ±
√

3N)/2 C−
T = 1−CΛ(2T )−

√
3N i.e., Hyperbolic Geometry with

2 −N ln
(
1−|Z|2/N + k2Z4

v/N
)
, v

−N/2
−−− u±1

−−− , where v−−−u−−−C−
u−−−, where • Half-plane coordinates for nSM1

Zv = Z +Z∗−
√

2v,N > 0 v−−− = 1−Z2/N C−
u−−− = 1−CΛu−2

−−− • Poincaré-disc coordinates for nSM2

u−−− = e
√

3Natnh(Z/N) atnh := arctanh

3 +N ln
(
1+|Z|2/N − k2Z4

v/N
)
, v

−N/2
+++ u±1

+++ , where v+++u+++C−
u+++, where SU(2)/U(1)

Zv = Z +Z∗−
√

2v,N > 0 v+++ = 1+Z2/N C−
u+++ = 1−CΛu−2

+++ i.e., Compact Geometry

u+++ = e
√

3Natn(Z/N) atn = arctan

4 |Z|2 − k2Z4
v , w f±1, where w fC−

f , where U(1)

Zv = Z +Z∗−
√

2v w = e−Z2/2 and f = e
√

3Z C−
f = 1−CΛ f−2 i.e., Flat Geometry

TABLE 1: Uni-Modular no-Scale Models (nSMs) with dS vacua.
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MASS OF SGOLDSTINO COMPONENTS m3/2 RESTRICTION

nSM REAL IMAGINARY

1 24kv3/2m3/2 2(1−3/N)1/2m3/2 m(2v2)
√

3N/4 N > 3

2 12k〈v−−−〉3/2m3/2 2(1−3/N)1/2m3/2 m〈u−−−〉 N > 3

3 12k〈v+++〉3/2m3/2 2(1+3/N)1/2m3/2 m〈u+++〉 -

4 12km3/2 2m3/2 me
√

3/2v -

TABLE 2: Particle mass spectrum at the vacuum for the nSMs presented in Table 1.

Applying the procedure above several nSMs with dS vacua can be established varying the Käh-

ler geometry. In Table 1 we arrange a catalogue of such models based exclusively on one modulus.

These models are introduced in Ref. [2] where multi-moduli models are also exposed – see also Ref. [1].

For each nSM we can see there the adopted Kähler potential, the solutions of Eq. (2.5) and the resulting

WΛ from Eq. (2.6). The enhanced symmetry (for k → 0) of the Kähler manifold is also shown in the

rightmost column of Table 1. For k = 0 the Kähler manifold of nSM1 enjoys the SU(1,1)/U(1) hy-

perbolic symmetry parameterized by the half-plane coordinates T and T ∗. As a result, the expression

in Eq. (2.5) is a polynomial of 2T . For the well-known nSM with N = 3 [11], we obtain n+ = 3 and

n−−− = 0 and so, we have the ingredients

K =−3ln(T +T ∗) and WΛ = 8mT 3C−
T where C−

T = 1−CΛ(2T )−3. (2.11)

The same enhanced symmetry parameterized in the Poincaré-disc coordinates Z and Z∗ is valid for

nSM2. That parametrization allows us to pass from the non-compact to the compact geometry of nSM3

by changing the signs in the relevant K’s. As a consequence we obtain a remarkable correspondence

between nSM2 and nSM3 as regards the relevant expressions of W±
0 . Namely v−−− and arctanh in nSM2

are replaced by v+++ and arctan in nSM3. Finally, we consider nSM4 where a flat Kähler potential is

adopted resulting to exponential W±
0 .

To check the stability of the vacuum of the nSMs in Table 1, we derive the mass spectrum at the

vacuum. The results are presented in Table 2. We remark that we need k > 0 and N > 3 when the

(enhanced) Kähler geometry is hyperbolic. In a such case we also obtain real values for the mass mz̄

of the imaginary component of Z. Note that we here decompose Z as Z = (z+ iz̄)/
√

2.

3. DE AND INFLECTION POINT FROM NO-SCALE SUGRA

We aspire to identify the radial component of the sgoldstino Z with the inflaton – for similar

attempts see Ref. [13]. We accomplish this aim by localizing an inflection point of the potential

VSUGRA(Z). Close to it we may obtain a stage of IPI according to formalism discussed in Ref. [14, 15].

To achieve it for z > v we adopt nSM1 in Table 1 with T = 1/2−Z/2. I.e., we set

K =−N lnΩ with Ω = 1− (Z+Z∗)/2+ k2Z4
v and Zv = Z +Z∗−2v. (3.1)
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m/mP CΛ/10−108 k/0.1

5.6 ·10−7 2.5 4.0167291

v/mP N (n+,n−)

0.5 12 (9,3)

FIGURE 1: The (dimensionless) SUGRA potential 102VΛ/m2m2
P in Eq. (3.5) as a function of z and θ defined

above Eq. (3.6). The location of the dS vacuum at (〈z〉,θ ) = (0.5,0) and the inflection point at (z0,θ )≃ (0.71,0)

is also depicted by two thick points. The input parameters are listed in the Table.

For k = 0, K enjoys a symmetry related to a subset of U(1,1) without to define specific Kähler manifold

[16]. Repeating the procedure in Sec. 2, we find that K may be associated with

WΛ = mωn+C−
ω with n+ = (N +

√
3N)/2, (3.2)

ω = Ω(Z = Z∗,k = 0) = 1−Z and C−
ω = 1−CΛω−

√
3N (3.3)

where m is an arbitrary mass scale which is constrained to values close to 10−7 from the normalization

of As – see below.

The exponents n+ in Eq. (3.2) may, in principle, acquire any real value, if we consider WΛ as an

effective superpotential. When N/3 > 1 is a perfect square, integer n± values may arise too. E.g.,

For N = 12,27 and 48 we obtain (n−,n+) = (3,9),(9,18) and (18,30) respectively. (3.4)

The resulting SUGRA potential is [3]

VΛ(Z) = m2Ω−Nω2n+
(
|U/2ω |2 −3|C−

ω |2
)
, (3.5)

where we define the auxiliary quantity

U =

√
2N

JΩ

((√
3C+

ω +
√

NC−
ω

)
Ω+2

√
NC−

ω Ω,Zω

)
. (3.6)

The canonically normalized components of the complex scalar field Z = zeiθ are

dẑ

dz
=
√

2KZZ∗ = J and θ̂ = Jzθ , (3.7)

where J can be expressed in terms of Ω as follows

J =
√

2N

(
Ω2

,Z

Ω2
− Ω,ZZ∗

Ω

)1/2

with Ω,Z =−1/2+4k2Z3
v and Ω,ZZ∗ = 12k2Z2

v . (3.8)
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m/EeV mz/EeV mθ/EeV m3/2/EeV

1344 319 281 162

TABLE 3: Particle mass spectrum in EeV(1 EeV = 109 GeV) for the inputs in Fig. 1.

If we plot 102VΛ/m2m2
P as a function of z and θ for the inputs in shown the Table of Fig. 1 we see

that VΛ develops two critical points: The SUSY-breaking dS vacuum which is

〈z〉= v and 〈θ〉 = 0 with 〈VΛ〉= 12CΛm2 (3.9)

and an inflection point for z = z0 ≃ 0.71 > v which lets open the possibility of an inflationary stage.

The vacuum in Eq. (3.9) is stable against fluctuations of the various excitations for N > 3 which assures

m2
θ > 0 in accordance with our findings in Table 2. Indeed, we find

mz ≃ 48m3/2kN−1/2〈ω〉3/2 and mθ ≃ 2m3/2 (1− (3/N))1/2 with m3/2 = m〈ω〉
√

3N/2. (3.10)

Numerical values for the masses above are given in Table 3 and all of these are of the order of 100 EeV.

4. SUSY BREAKING AND HIGH-SCALE MSSM

The SUSY breaking occurred at the vacuum in Eq. (2.7) can be transmitted to the visible world if

we specify a reference low energy model. We here adopt MSSM and the total superpotential, WΛO and

Kähler potential KΛO, of the theory take the form [19]

WΛO =WΛ(Z)+WMSSM (Φα) and K1ΛO = K(Z)+∑
α

|Φα |2 or K2ΛO = K(Z)+NO ln

(
1+∑

α

|Φα |2
NO

)

(4.1)

where NO may remain unspecified and WMSSM has the well-known form written in short as

WMSSM = hαβγΦα Φβ Φγ/6+µHuHd with Φα = Q,L,dc,uc,ec,Hd and Hu (4.2)

the various chiral and Higgs superfields – we suppress the generation indices for simplicity. We also

denote the three non-vanishing Yukawa coupling constants as

hαβγ = hD,hU and hE for (α ,β ,γ) = (Q,Hd,d
c),(Q,Hu,u

c) and (L,Hd ,e
c)

respectively. Also, working in the regime of high-scale SUSY [18] µ acquires values close to m3/2 and

we handle it as a free parameter.

Adapting the general formulae of Ref. [19], we find universal (i.e., m̃α = m̃ and Aαβγ = A) soft

SUSY-breaking terms in the effective low energy potential which can be written as

VSSB = m̃2|Φα |2+
(

1

6
AĥαβγΦα Φβ Φγ +Bµ̂HuHd +h.c.

)
with (ĥαβγ , µ̂)= 〈ω〉−N/2(hαβγ ,µ), (4.3)

the normalized (hatted) parameters. Also the soft SUSY-breaking parameters are found to be

m̃ = m3/2, |A|=
√

3Nm3/2 and |B|= (1+
√

3N)m3/2. (4.4)

7
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m/EeV µ̂/EeV m̃/EeV |A|/EeV |B|/EeV |Ma|/EeV

1344 81 162 1024 1200 81.1

TABLE 4: Soft SUSY-breaking parameters in EeV(1 EeV = 109 GeV) for the inputs in Fig. 1.

As regards the gauginos of MSSM we expect that we can obtain similar values selecting the gauge-

kinetic function as [19]

fa = λaZ (4.5)

where λa is a free parameter absorbed by a redefinition of the relevant spinors and a = 1,2,3 runs over

the factors of the gauge group of MSSM, U(1)Y , SU(2)L and SU(3)c respectively. In a such case, we

find [19]

|Ma|=
√

3/N〈ω/z〉m3/2, (4.6)

which is obviously of the order of m3/2.

Representative values for the soft SUSY parameters are displayed in Table 4 for µ̂ = m3/2/2. We

see that |A|> m3/2 and |B|> m3/2 due to large N adopted there. However, these parameters have very

suppressed impact on the SUSY mass spectra. Scenarios with large m̃, although not directly accessible

at the LHC, can be probed via the measured value of the Higgs boson mass. Within high-scale SUSY,

updated analysis requires [18]

3 . m̃/EeV . 300, (4.7)

for degenerate sparticle spectrum, low tanβ values and minimal stop mixing. From the values in Table 4

we conclude that our setting is comfortably compatible with the requirement above.

5. INFLECTION-POINT INFLATION (IPI)

The inflection point developed at large values of VI opens up the possibility of the establishment

of IPI [3] – cf. Ref. [14]. We below show how we can systematize the specification of this inflection

point in Sec. 5.1, present the inflationary dynamics and outputs consistently with the reheating stage

occurring after IPI.

5.1 LOCALIZATION OF THE INFLECTION-POINT

The inflationary potential VI =VI(z) is obtained from VΛ(Z) in Eq. (3.5) setting θ = 0 and CΛ ≃ 0.

I.e.,

VI = m2Ω−Nω2n+
(
|U/2ω |2 −3

)
with U =

√
2N

JΩ

((√
3+

√
N
)

Ω+2
√

NΩ,Zω

)
, (5.1)

where Ω = 1− z+ 16k2(z− v)4, ω = 1− z and Ω,Z = 24k2(z− v)3 − 1/2. To localize the position of

the inflection point, we impose the conditions

V ′
I (z) =V ′′

I (z) = 0 for v < z < 1, where ′ := d/dz. (5.2)

For every selected v and N and independently from m these conditions yield an inflection point (k0,z0).

E.g., as shown in Fig. 2-(a), for N = 12 and v = 0.5 we find (k0,z0) = (0.40166971,0.707433) whereas

8
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FIGURE 2: (a) Dimensionless inflationary potential VI/m2m2
P as a function of z for k = 0.40167291 (black line)

or k = 0.2 (dot-dashed line) or k = 0.6 (dashed line) and the remaining inputs in Fig. 1. The values of z⋆, zf and
z0 (for the first case) are also indicated. (b) Location of the inflection point in the k0 − z0 plane for various N’s
indicated in the plot. Shown is also the variation of v in gray along the lines.

no inflection point exists for k = 0.2 and k = 0.6. However, varying N and v we can specify inflection

points (z0,k0) for other k too. E.g., as shown in Fig. 2-(b), for N = 4,10 and 30 (dashed, solid and dot-

dashed line respectively) we show the inflection points (z0,k0). Along each line we show the variation

of v in gray. Therefore, the presence of inflection point is a systematic feature of the model.

5.2 APPROACHING THE INFLATIONARY DYNAMICS

Due to the complicate form of VI in Eq. (5.1), we limit ourselves in expanding numerically VI and

J about z = z0 with results

VI ≃ v0 + v1δ z+ v2δ z2 + v3δ z3 and J ≃ J0, where δ z = z− z0, v0 =VI(z0) and J0 = J(z0) (5.3)

For the inputs in Fig. 1 the expansion parameters above are given in Table 5. The relevant coefficients

depend on the selected parameters v,N,k,z0 and δk. Since v1 =V ′
I (z0) and v2 =V ′′

I (z0)/2 ≪ v0,v3 we

neglect henceforth terms with v2
1,v

2
2 and v1v2.

Taking as inputs the parameters above we can investigate the inflationary evolution by estimating:

(a) The slow-roll parameters. They are found to be

ε =

(
VI,ẑ√
2VI

)2

≃ v1 +δ z(2v2 +3δ zv3)√
2J0v0

and η =
VI,ẑẑ

VI
≃ 2(v2 +3δ zv3)

J2
0 v0

. (5.4)

The realization of IPI is delimited by the condition

max{ε(ẑ), |η(ẑ)|} ≤ 1, (5.5)

v0/(mmP)
2 v1/(mmP)

2 v2/(mmP)
2 v3/(mmP)

2 J0

3.9 ·10−3 1.5 ·10−6 −2.1 ·10−6 2.2 5.4

TABLE 5: Expansion parameters for the inputs in Fig. 1.
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which is saturated for δ z = δ zf found as follows

η (δ zf)≃ 1 ⇒ δ zf ≃−(J2
0v0 +2v2)/6v3 < 0. (5.6)

Given that J2
0 v0 ≫ v2, we expect δ zf < 0 or zf < z⋆.

(b) The number of e-foldings N⋆ that the scale k⋆ = 0.05/Mpc experiences during IPI. It is estimated

to be

N⋆ =

∫ ẑ⋆

ẑf

dẑ
VI

VI,ẑ
=

fN⋆− fNf

pN

where pN =

√
3v1v3

J2
0 v0

and fN(z) = arctan
v2 +3zv3√

3v1v3
. (5.7)

Also z⋆ [ẑ⋆] is the value of z [ẑ] when k⋆ crosses the inflationary horizon and we define fN⋆ = fN(δ z⋆)

and fNf = fN(δ zf). Solving it w.r.t δ z⋆ we obtain

δ z⋆ ≃− v2

3v3
+

√
v1

3v3
tan

(√
3N⋆

J2
0 v0

+ fNf

)
< 0 ⇒ z⋆ < z0. (5.8)

Therefore, we have no ultra slow roll for zf ≤ z ≤ z⋆. Note that N⋆, has to be sufficient to resolve the

horizon and flatness problems of standard big bang [4] i.e.

N⋆ ≃ 61+ ln
(
πv0T 2

rh

)1/6
, (5.9)

where Trh is the reheating temperature – see below.

(c) The amplitude As of the power spectrum of the curvature perturbations. Taking into account also the

normalization of As [4] we achieve a prediction for the m value. Indeed,

A
1/2
s =

1

2
√

3π

V
3/2
I (ẑ⋆)∣∣VI,̂z(ẑ⋆)

∣∣ ≃
J0v

3/2
0

2
√

3πv1
cos2 (pNN⋆+ fNf)≃ 4.588 ·10−5 ⇒ m ∼ 10−7mP. (5.10)

(d) The remaining inflationary observables. Namely, for the spectral index ns, its running, as, and the

tensor-to-scalar ratio r we obtain

ns = 1−6ε⋆ + 2η⋆ ≃ 1+4pN tan(pNN⋆+ fNf) , r = 16ε⋆ ≃ 8v2
1 cos−4 (pNN⋆+ fNf)/J2

0 v2
0, (5.11a)

as = 2
(
4η2

⋆ − (ns −1)2
)
/3−2ξ⋆ ≃−4pN cos−2 (pNN⋆+ fNf) with ξ =VI,ẑVI,ẑẑẑ/V 2

I . (5.11b)

Here the variables with subscript ⋆ are evaluated at z = z⋆. Note that the combined BICEP2/Keck

Array [6] and Planck data (fitted with the ΛCDM+r+as model) require [5]

ns = 0.9658±0.008, as =−0.0066±0.014 and r . 0.068 at 95% c.l. (5.12)

For the inputs of Fig. 1 we present some values of the inflationary parameters in Table 6 which turn

out to be consistent with Eq. (5.12). From the values accumulated there, we observe that the results

of our semianalytic approach – displayed in curly brackets – are quite close to the numerical ones.

The semiclassical approximation, used in our analysis, is perfectly valid since V
1/4
I⋆ ≪ mP. The θ = 0

direction is well stabilized and does not contribute to the curvature perturbation, since for the relevant

effective mass mθ I we find m2
θ I > 0 for N > 3 and mθ I⋆/HI⋆ > 1 where HI = (VI/3)1/2. The one-loop

radiative corrections, ∆V̂I, to VI induced by mθ I let intact our inflationary outputs.
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k0/0.1 z0/0.1mP δk/10−6 δ z⋆/10−4mP

4.0166971 7.07433 3.20232 −1.5 {−1.1}

V
1/4

I⋆ /EeV HI⋆/EeV δ zf/10−2mP mθ I⋆/HI⋆

4.6 ·105 49.5 −1.16 {−0.87} 5.1

ns r/10−8 −as/10−3 105A
1/2
s N⋆

0.966 {0.97} 4.8 {3.9} 3.3 {3.2} 4.59 {4.27} 46.5 {45}

TABLE 6: Sample values of inflationary parameters for the inputs in Fig. 1.

5.3 INFLATON DECAY AND REHEATING

Soon after the end of IPI, the (canonically normalized) sgoldstino

δ̂z = 〈J〉δz with δz = z−v and 〈J〉=
√

N

2

1

〈ω〉 (5.13)

settles into a phase of damped oscillations abound the minimum reheating the universe at a temperature

Trh =
(
72/5π2grh∗

)1/4
Γ

1/2
δz m

1/2
P where grh∗ = 106.75 and Γδz ≃ Γ3/2 +Γθ +Γh̃ (5.14)

the total decay width, Γδz, of δ̂z with the individual decay widths are found to be

Γ3/2 ≃
〈ω〉−

√
3Nm5

z

96πm2m2
P

, Γθ ≃ m3
z

16NπvmP
and Γh̃ =

N µ̂2

16πm2
P

mz . (5.15)

They express decay of δ̂z into gravitinos, pseudo-sgoldstinos and higgsinos via the µ term respectively.

Note that Γh̃ becomes rather enhanced for large N’s. Thanks to the high mz and µ̂ values, no moduli

problem arises in this context since Trh ∼ 1 PeV ≫ 1 MeV.

6. RESULTS

The free parameters of the model are

m,N,v,δk = k− k0 and δ z⋆ = z⋆− z0

Recall that (k0,z0) is the inflection point which can be computed self-consistently for any selected

N and v. Enforcing Eqs. (5.9) and (5.10) we restrict δk and m whereas the ns bounds in Eq. (5.12)

determines δ z⋆. Increasing δk allows us to increase the slope of the plateau around z0 decreasing,

thereby, N⋆. The model’s predictions regard as and r estimated from Eq. (5.11b).

The outputs of our numerical investigation are presented:

(a) In Fig. 3, where we plot allowed domains in the δk− (−δ z⋆) plane. In Fig. 3-(a) we fix N to three

representative values 4,10 and 30 and display the allowed curves (dot-dashed, solid and dashed lines

respectively) taking the central ns value in Eq. (5.12). The variation of v along each line is displayed

in gray. On the other hand, in Fig. 3-(b) we set v = 0.5 and identify the allowed (shaded) region by

11
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FIGURE 3: In the δk − (−δ z⋆) plane we present (a) allowed curves for ns ≃ 0.966 and various N’s and (b)
allowed (shaded) region varying continuously N. The variation of (a) v or (b) N is shown in gray along the
various lines. The constraint fulfilled along each line is shown in black.

varying ns in the margin of Eq. (5.12). The variation of N is shown along each line. Besides the

bounds on ns in Eq. (5.12), which yield the dashed and dot-dashed lines, we take into account the upper

bound in Eq. (4.7) which is saturated along the dotted line and the lower bound on N, mentioned above

Eq. (3.10), along the double dotted dashed line. We remark that increasing |δ z⋆|, decreases ns with

fixed δk. For N = 10 and central ns in Eq. (5.12) the inflationary predictions are

as ≃−3 ·10−3 and r ≃ 5 ·10−8 for Trh ≃ 1.75 PeV and N⋆ ≃ 46.5 (6.1)

The obtained as might be detectable in the future [17]. The needed tuning is of the order of 10−6 which

is certainly ugly but milder than that needed for IPI within the conventional MSSM [14].

(b) In Fig. 4, where we plot the mass spectrum as a function of m for ns ≃ 0.966. Namely, in Fig. 4-(a)

we fix N = 10 and vary v whereas in Fig. 4-(b) we fix v = 0.5 and vary N. The variation of the variable

parameter is shown along the solid line in gray. The allowed values of m3/2, mz and mθ , estimated

by the expression in Eq. (3.10), are depicted by a solid, dashed and dot-dashed line respectively. From

Fig. 4-(a) we remark that the hierarchy of the particle masses remains constant for fixed N. They remain

of the order of 100 EeV whereas m becomes larger and larger than this level as v and/or N increases.

This is explained from Eq. (3.10) if we take into account that ω < 1 from Eq. (3.3) and
√

3N/2 > 1. In

total we obtain

3.
m

1 EeV
. 55600, 0.89 .

m3/2

100 EeV
. 3, 2.3 .

mz

100 EeV
. 4.4, and 0.89 .

mθ

100 EeV
. 59. (6.2)

This mass spectrum hints towards high-scale MSSM consistently with the LHC results on the Higgs

boson mass – see Eq. (4.7). Needless to say, the stability of the electroweak vacuum up to mP is

automatically assured within this framework [18]. On the other hand, the gauge hierarchy problem

becomes acute since the SUSY-mass scale is much higher than the electroweak scale and the relevant

fine-tuning needed remains unexplained. From Fig. 4-(b) we also infer that the δ̂z decay channel into

θ ’s is kinematically blocked for N & 20. We also find that for N . 10, Γδz ≃ Γ3/2 +Γh̃ whereas for

larger N’s Γδz ≃ Γh̃ and so Eq. (5.14) yields Trh ≃ (4−20) PeV resulting to N⋆ ≃ (45.5−46.7).
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ns ≃ 0.966 and (a) N = 10 or (b) v = 0.5. The variation of v (a) or (b) N is shown along the solid line in gray.

7. CONCLUSIONS

We proposed a SUGRA model with just one gauge-singlet chiral superfield (the Goldstino) that

offers at once:

• Tiny cosmological constant in the low-energy vacuum at the cost of a fine tuned parameter;

• Inflection-point inflation resulting to an adjustable ns, a small r and a sizable as ∼−10−3;

• Spontaneous SUSY breaking at the scale m̃ ∼ 100 EeV, which is consistent with the Higgs boson

mass measured at LHC within high-scale SUSY.

It would be interesting to investigate the following issues:

• The generation of primordial black holes, which is currently under debate [24,25] during an ultra

slow-roll phase. Here we did not address the question of how z reaches z0. Since z⋆ < z0, we

assumed that the slow-roll approximation offers a reliable description of IPI. This is true if z lies

initially near z0 with a small enough kinetic energy density [23].

• The candidacy of intermediate-scale lightest neutralino with mass M1 ∼ EeV in the interval Trh <

M1 < Tmax as a cold dark matter candidate adapting the production mechanism of WIMPZILLAS

[26].

• The realization baryogenesis via non-thermal leptogenesis taking into account similar attempts –

see e.g. Ref. [27].

• The reconciliation of our proposal with swampland conjectures [28] – see e.g. Ref. [29] for

relevant modifications which may render our setting more friendly with the string ultraviolet

completions.
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