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Abstract—The application of graph signal processing (GSP)
on partially observed graph signals with missing nodes has
gained attention recently. This is because processing data from
large graphs are difficult, if not impossible due to the lack of
availability of full observations. Many prior works have been
developed using the assumption that the generated graph signals
are smooth or low pass filtered. This paper treats a blind graph
filter detection problem under this context. We propose a detector
that certifies whether the partially observed graph signals are low
pass filtered, without requiring the graph topology knowledge.
As an example application, our detector leads to a pre-screening
method to filter out non low pass signals and thus robustify the
prior GSP algorithms. We also bound the sample complexity of
our detector in terms of the class of filters, number of observed
nodes, etc. Numerical experiments verify the efficacy of our
method.

Index Terms—graph signal processing, low pass graph filter,
partial observations.

I. INTRODUCTION

An important goal of graph signal processing (GSP) [1] is

to extract insights from complex network data. Using graph

shift operator (GSO), graph filters & signals as the underlying

constructs, GSP has led to many theoretically justified graph

learning methods [2], [3], e.g., prior works showed how to

estimate the structure of weather [4] and brain networks [5].

Meanwhile, the overwhelming size of complex networks has

necessitated practical methods to consider the partial obser-

vation setting where a fraction of nodes are never observed.

The partial observation setting may break a number of prop-

erties such as structure of eigenvectors, smoothness of graph

signals, etc., that are necessary for graph learning. To this end,

the early work [6] proposed to exploit the ‘low-rank+sparse’

structure in the precision matrix of partially observed graph

signal. Subsequent work such as [7] proposed a graph learning

criterion using smoothness of graph signals, [8] considered

time-series data, [9] considered a linear influence model, and

[10], [11] focused on identifiability of network dynamical

systems. Additionally, the authors have studied graph feature

learning from partial observations, such as community [12],

central nodes [13]. In the above works, a common assumption

made is that the graph signals are smooth, or more generally,

generated from a network process that can be modeled as

exciting a low-pass graph filter [14].

This work is supported in part by HKRGC Project #24203520.

While the low-pass graph filter assumption can be motivated

by modeling network processes from social-physical aspects

(e.g., [14], [15]), the latter often requires prior knowledge

on the given dataset. In the absence of prior knowledge or

when the dataset is corrupted, applying GSP methods may

lead to unexpected results. Under this context, it is natural

to ask: Do we know if a dataset of partially observed graph

signals is generated from a low-pass filter, without knowing

the underlying graph beforehand? Addressing the question

gives a certificate prior to applying the mentioned methods on

partially observed signals and guarantees reliable outcomes.

Our plan is to build on the authors’ prior work [16], which

tackled a similar detection problem but was focused on fully

observed graph signals. Particularly, as the detection problem

is ill-posed in general since smoothness/low-pass-ness are

defined with respect to the graph itself, [16] focuses on a

simplified case where the graph is known to be modular [17],

a common feature for graphs found in networked systems. It

then derives a detector based on the clusterizability of principal

components, i.e., spectral pattern, for observed graph signals.

For partially observed graph signals, the challenge lies on

how to account for the effect of missing nodes on the observed

spectral pattern. To this end, our contributions are:

• We show that the K-means score detector in [16] can

correctly detect the spectral pattern of partially observed

low-pass graph signals. Though the latter also exhibit spec-

tral pattern that distinguishes itself from any non-low-pass

signals, we prove that the sampling complexity critically

depends on the number of observed nodes.

• We demonstrate that the proposed detector can be used as

a pre-screening procedure to robustify community detection

from partially observed graph signals.

The rest of this paper is structured as follows. Section II

describes the partial observation setting and formulates the

blind detection problem. Section III develops the proposed

method and reports its sample complexity. Finally, Section IV

presents results from preliminary numerical experiments.

Notations. We use ||·||2 to denote spectral norm for matrices

and Euclidean norm for vectors, and ||·||F to denote Frobenius

matrix norm. For a symmetric matrix X, λi(X) denotes the

ith smallest eigenvalue of a matrix.
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II. PROBLEM STATEMENT

Consider an undirected, connected N -node graph G =
(V,E) where V = {1, ..., N} and E ⊆ V × V . The graph

can be represented as an adjacency matrix A ∈ {0, 1}N×N ,

a Laplacian matrix L = D − A where D = diag(A1), or

a normalized Laplacian matrix Lnorm = I − D−1/2AD−1/2.

The aforementioned matrix representations of G qualify as

graph shift operators (GSO), which are any symmetric matrix

S ∈ R
N×N such that Sij 6= 0 only if (i, j) ∈ E. A

GSO admits an eigendecomposition S = VΛV⊤, where

the columns of V = [v1, · · · ,vN ] are the orthonormal

eigenvectors associated with eigenvalues sorted in ascending

order, and Λ is a diagonal matrix of eigenvalues, also known

as the graph frequencies. We focus on the case of S = Lnorm.

The graph filter is defined as a polynomial of the GSO:

H(S) =
∑T

t=0 htS
t = Vh(Λ)V⊤, (1)

where {ht}T−1
t=0 are the filter coefficients. The latter also de-

fines the frequency response function: h(λ) =
∑T

t=0 htλ
t and

h(Λ) = diag(h(λ1), ..., h(λn)). For simplicity, we assume

the magnitudes of frequency responses to be distinct, i.e.

|h(λi)| 6= |h(λj)| for all i 6= j. By sorting the magnitude of

frequency responses in descending order as |h1| > ... > |hN |,
the graph filter operator can be written as H(S) = UhU⊤,

where h = diag(h1, ..., hN) and U is accordingly the column

re-ordered version of V.

A graph signal on G is represented as a N -dimensional

vector that is the output of a graph filter (1):

y = H(S)x +w. (2)

The ith element of y denotes the signal on node i ∈ V ,

subjected to the excitation graph signal x ∈ R
N , and w ∈ R

n

is a zero-mean white noise with E[ww⊤] = σ2I for σ2 ≥ 0.

The observed signal y is assumed to be stationary, i.e.,

E[x] = 0 and E[xx⊤] = I [18], [19] for simplicity; however,

our analysis can be extended to the non-stationary case of

E[xx⊤] 6= I.

The graph signal y in (2) can also be modeled as the output

of a network process. Prior works in GSP have suggested

to categorize network process according to their frequency

response. Among others, an important class of graph filters

is the low-pass graph filters [14], [20], which is defined by:

Definition 1. A graph filter H(·) is said to be K-low-pass if

ηK :=
maxi=K+1,...,N |h(λi)|
mini=1,...,K |h(λi)|

< 1, (3)

where K is cut-off frequency, and ηK is the sharpness of H.

From the definition, a low-pass graph filter retains (resp. at-

tenuates) the energy of the excitation graph signal at low

(resp. high) frequencies. A graph signal is said to be low-pass

if it is the output of a low-pass graph filter.

We further consider the scenario when the graph signals in

(2) can only be partially observed. Without loss of generality,

we assume that the first n nodes are observed and denote

yo = [In×n,0n×(N−n)]y =: Eoy. (4)

As mentioned in the Introduction, the application of GSP on

partial observations has gained popularity as the model arises

naturally for large graphs where it is difficult to obtain obser-

vations on every nodes. Under this context, GSP applications

such as graph learning [7], community detection [12] have

exploited the smoothness property and motivate the latter by

modeling the graph signal observations as low pass signals.

We depart from the above works and inquire if the smooth-

ness property is valid for a given dataset. This leads to the

blind low-pass graph filter detection problem:

Problem 1. Given the parameter K and a set of partially

observed graph signals [cf. (2), (4)], determine if the under-

lying graph filter is K-low-pass or not [cf. Definition 1]. We

denote the null hypothesis T0 (resp. alternative hypothesis T1)

as ‘H(S) is (resp. not) K-low-pass’.

Notice that Problem 1 serves as a data-driven certificate to the

successful applications of the prior GSP works.

There are two challenges in solving Problem 1: (i) the graph

topology or the GSO S is unknown, (ii) the graph signals are

partially observed where Eo is unknown. Either challenge has

made it impossible to verify Definition 1 directly. Our prior

work [16] proposed to narrow down the detection problem

w.r.t. arbitrary graphs to the class of K-modular graphs

[17] with K densely connected components. The number

of densely connected components naturally determines the

parameter K for the low-pass filter. It then exploits the spectral

pattern of graphs to formulate a K-means score detector1.

The detector is proven to produce accurate result under mild

assumptions on the noise statistics and graph filter properties.

This paper aims to extend the aforementioned detector in

[16] to the partial observation context. Interestingly, we show

that the K-means score detector is still robust in this scenario,

whose performance loss depends naturally with the ratio n/N .

III. LOW-PASS DETECTION WITH PARTIAL OBSERVATIONS

This section develops a detector for Problem 1 under the

partial observation setting. Our development begins by inves-

tigating the covariance matrix of partially observed signals:

Co = E[yo,my⊤
o,m] = Voh(Λ)2V⊤

o + σ2I

= Uoh
2U⊤

o + σ2I,
(5)

where we have used yo,m to denote the mth realization of

the partially observed signal in (4). We have defined the row-

sampled eigenmatrices Vo = EoV,Uo = EoU ∈ R
n×N .

The noiseless covariance is Co = Co − σ2I = Uoh
2U⊤

o .

Following the insight from [12], we note that when the

graph filter has a sharp cut-off (e.g., ηK ≪ 1 under T0), the

following approximation holds

Co ≈ Uo,Kh2
KU⊤

o,K , (6)

where Uo,K takes the K left-most column vectors from Uo.

Under T0, the matrix Uo,K corresponds to the row-sampled

1We remark that when K = 1, i.e., the graph contains only one dense
component, applying the Perron Frobenius theorem [21] suffices to detect the
1-low-pass graph signals. Here, we shall focus on the case of K ≥ 2.



Algorithm 1 Low-pass Detection with Partial Observations

1: Input: Partially observed graph signals {yo,m}Mm=1, no.

of clusters K ≥ 2, detection threshold δ > 0.

2: Calculate “Co := (1/M)
∑M

m=1 yo,my⊤
o,m.

3: Compute the top-K eigenvectors “QK ∈ R
n×K of “Co.

4: Output: “T = T0 if K∗(“QK) < δ; or “T = T1 otherwise.

and column permuted version of VK = [v1, ...,vK ]. To

this end, the row vectors of VK are clusterizable when G
is K-modular. Meanwhile, under T1 when the graph filter

is not K-low-pass, Uo,K corresponds to the row sampled

versions of the bulk eigenvectors {vK+1, ...,vN} which are

not clusterizable [22]. Together, they motivate the following

K-means score: for any N ∈ R
N×K , we denote

K
∗(N) := minC K(N, C),

K(N, C) :=∑K
k=1

∑
i∈Ck

||nrow
i − 1

|Ck|

∑
j∈Ck

nrow
j ||22,

(7)

where C = {C1, . . . , CK} is a set of non-overlapping partition

for {1, ..., N} and nrow
i denotes the ith row vector of N.

Define the sampled covariance matrix “Co :=
(1/M)

∑M
m=1 yo,my⊤

o,m and its top-K eigenvectors are

stacked up as “QK . Following the insights from [12], [16] and

observe that “QK ≈ Uo,K when n is sufficiently close to N ,

we propose to tackle Problem 1 by detecting T0/T1 based on

K
∗(“QK). From the above discussions, K∗(“QK) will be small

(resp. large) when the graph filter is (resp. not) K-low-pass.

This motivates the proposed detector in Algorithm 1.

A. Performance Analysis and Theoretical Insights

We next present the analysis on the finite-sample perfor-

mance of Algorithm 1. In addition to verifying the correctness

of the detector, our analysis shall demonstrate the favorable

conditions where the detector is effective. Note that there are

multiple sources of error that need to be controlled carefully.

For instance, the approximation in (6) is not exact, the columns

of Uo,K are not orthogonal, etc.

To set up the analysis, we require the following condition

on spectral gap of the covariance matrix:

H1. With probability at least 1− δgap, there exists ρgap such

that λn−K−1(Co)− λn−K(Co)− ||“Co −Co||2 ≥ ρgap > 0.

The above can be satisfied when “Co is sufficiently close to

Co, e.g., when sufficient number of samples are observed and

the noise level σ2 is small, and the noiseless covariance Co

is approximately rank K . We also let:

H2. The graph filter H(S) is at least η-sharp and γ-flat:

maxi=K+1,...,N |hi|
mini=1,...,K |hi|

≤ η < 1,
max1≤i≤K h2

i

min1≤j≤K h2
j

≤ γ. (8)

The above specifies the class of graph filters that we detect.

Notice if the graph filter is K-low-pass, then the above η takes

the same role as ηK in (3).

As mentioned in the previous section, the proposed detector

relies on the clusterizability of the top-K eigenvectors for

the normalized Laplacian in K-modular graphs. To obtain

theoretical insights, we assume that the full graph G is

generated from the stochastic block model (SBM) with:

H3. We have G ∼ SBM(N,K, r, p) with p ≥ r > 0, p/K +
r ≥ (32 logN + 1)/N .

By G ∼ SBM(N,K, r, p), we denote a random graph with

N nodes equally partitioned into K blocks, described by a

membership matrix Z ∈ {0, 1}N×K such that Zij = 1 if

and only if node i is in block j, and a connectivity matrix

B ∈ [0, 1]K×K , whose entries Bij being the probability of

edges between nodes in block i and block j. The parameters

r, p describes the connectivity such that B = pI+ r11⊤. We

also assume the following on the bulk eigenvectors of Lnorm:

H4. With probability at least 1− δSBM, there exists cSBM > 0
independent of N, r, p with minl=K+1,...,N K

∗(vl) ≥ cSBM.

Note that H4 is observed for G ∼ SBM(N,K, r, p) em-

pirically [16], yet it remains an open conjecture to be ver-

ified theoretically. With H3, H4, it is easy to deduce that

K
∗(VK) = O(logN/N) [23], while the K-means score for

the bulk eigenvectors is bounded away by cSBM > 0.

Let Tgnd ∈ {T0, T1} be the ground truth hypothesis. Our

main analytical result is summarized below:

Theorem 1. Under H1, H2, H3, H4. Suppose that the follow-

ing threshold-dependent term satisfies

δ̃min := min

{
δ −
…

N

n

 
1225K3 logN

p(N −K)
,

…
N

n

 
cSBM − 2450K3 logN

p(N −K)
− δ

}
> 0,

and that

σ̃ :=
ρgap(δ̃min −

√
K(||I−RK ||2 + 6γη))

2
√
K

− σ2 > 0,

where RK ∈ R
K×K is an upper triangular matrix in the

QR factorization of Uo,K =
√
N/nQKRK . If the number of

samples M satisfies
 

M

logM
≥

√
2c1 tr(Co)

σ̃
(9)

where c1 is a constant independent of N,M , then we have

P(“T = Tgnd) ≥ 1− 4/N − 5/M − δgap − δSBM. (10)

The above result considers randomnesses in the graph signals

generation (2) and the SBM graph properties in H3, H4.

The theorem asserts that when δ̃min > 0, σ̃ > 0, then with a

sufficiently large number of samples, Algorithm 1 will return

a correct detection with high probability as N,M → ∞. To

satisfy δ̃min > 0, as cSBM = Θ(1), the requirement can be

fulfilled with δ = Θ(
√
N/n). Furthermore, to satisfy σ̃ > 0,

we require two criterion: (i) the noise level σ2 is sufficiently

small, (ii) the filter constant γη, and the factor ‖I − RK‖2
are smaller than O(δ̃min). Note that ‖I−RK‖2 decreases to
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0 as n → N ; see Fig. 1 for illustration. Finally, we note that

the sample complexity, i.e., minimal M needed to satisfy (9),

is proportional to σ̃−1. From the above discussions, σ̃−1 is

reduced when the graph filters to be detected are sharp and

flat, i.e., η ≪ 1, γ ≈ 1, and the number of observed nodes is

large enough n → N . Lastly, we remark that the proof for

Theorem 1 is adapted from our prior works [12], [16] which

applied [23], [24]. It can be found in the online appendix2.

IV. NUMERICAL EXPERIMENTS

This section presents numerical experiments to validate our

findings. We first evaluate the direct detection performance

in tackling Problem 1, then we consider an application on

robustifying the blind community detection method.

A. Detecting Low-pass Signals from Partial Observations

We use synthetic data to evaluate the performance of

our proposed detector in various settings. In the follow-

ing experiment, the graph G with N = 150 nodes and

K = 3 blocks is generated according to H3 such that G ∼
SBM(150, 3, logN/N, 4 logN/N). The full graph signals in

(2) are generated with x ∈ R
N ∼ N (0, I) and w ∼ N (0, σ2I)

where σ2 = 10−2, then we select n nodes uniformly at

random to form the partial observations (4). We benchmark

Algorithm 1 in distinguishing signals generated by a low-pass

filter e−τLnorm (null hypothesis T0) from signals by a non-

low-pass filter eτLnorm (alternative hypothesis T1), where the

sharpness of the filter η decreases as τ > 0 increases. The

performance is measured by the area under ROC (AUROC)

such that AUROC = 1 when the detection is perfect. Figure 2

reports the results from 1000 Monte-Carlo trials.

We observe that the performance improves as n,M in-

creases, as well as the sharpness parameter η controlled by

τ . Moreover, Algorithm 1 delivers reliable performance (with

AUROC ≈ 1) when n ≥ 100,M ≥ 100. This indicates that

the spectral pattern of low-pass graph signals are significant

enough despite that 1/3 of the nodes are not observed and

only M ≈ n samples are observed. The above observations

coincide with our finite-sample analysis in Theorem 1.

B. Application: Robustifying Blind Community Detection

We illustrate an application of Algorithm 1 as a pre-

screening procedure before applying prior work that demands

low-pass graph signals. We consider the blind community

2https://www1.se.cuhk.edu.hk/∼htwai/pdf/sam24-appendix.pdf
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detection method [12] which directly infer communities in

a graph from low-pass graph signals that are partially ob-

served. To satisfy the low-pass graph signal requirement, we

apply Algorithm 1 on small batches of Mbatch graph signal

observations and retain (resp. drop) the small batches that are

identified as low-pass (resp. non-low-pass). The pre-screened

dataset is then provided to [12] to infer the communities.

We consider G ∼ SBM(150, 3, logN/N, 7 logN/N ), with

N = 150 nodes and K = 3 clusters. The normal graph signals

are generated using (2), (4) with σ2 = 10−2 and the filter

H(S) = (I−0.5Lnorm)
3, where 10% of samples are corrupted

in a burst of length mburst = 10, such that ps-fraction of nodal

observations are replaced with N (0, 1). For the pre-screening

procedure, we apply Algorithm 1 on small batches of size

Mbatch = 50 from M = 103 samples, with δ = 0.5. Figure 3

reports the results of 1000 Monte-Carlo trials.

Observe the dataset corruption severely affects the perfor-

mance of blind community detection [12]. Meanwhile, our

pre-screening procedure robustifies the method in [12]. We

note the effectiveness of pre-screening improves with n as it

approaches the performance of non-corrupted dataset, coin-

ciding with Theorem 1 that low-pass detection becomes more

accurate as n increases. Pre-screening also delivers consistent

improvement across different levels of signal corruption.

Conclusions. This paper studies the low-pass graph signal

detection problem with partial observations. We showed that a

simple K-means score detector can distinguish spectral pattern

of the low-pass/non-low-pass signals and analyzed its sample

complexity. Our work can robustify GSP on partially observed

signals. Future work includes deriving an explicit bound

w.r.t. no. of observed nodes n and explore other applications.

https://www1.se.cuhk.edu.hk/~htwai/pdf/sam24-appendix.pdf
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APPENDIX: PROOF OF THEOREM 1

Additional Notations. In the following analysis, we define

the QR decomposition of Uo,K as Uo,K = c0QKRK , in

which c0 =
√

n/N is a normalization parameter, QK ∈
R

n×K is an orthogonal matrix spanning the range of Uo,K

and RK is upper-triangular. We also set the diagonal of

RK to be non-negative. Moreover, under H3, A satisfies

E[A] = ZBZ⊤ =: A; the population normalized Laplacian

matrix of the SBM is then Lnorm = I−D−1/2AD−1/2, where

D = diag(
∑N

j=1 A1j , ...,
∑N

j=1 ANj). Lastly, the set Rm×n
K

consists of m× n matrices having at most K unique rows.

Our proof is adapted from [12], [16]. First, consider the

ground truth as Tgnd = T0, which implies UK = VKΠ for

some permutation matrix Π. Define the indicator matrix X∗

be associated with the partition C∗ ∈ argminC K(QK , C):

X∗
ik :=

®
1/
√
|C∗

i | if i ∈ C∗
i ,

0 otherwise.

We observe that

»
K∗(“QK) ≤ ||(I−X∗(X∗)⊤)“QK ||F

= ||(I−X∗(X∗)⊤)“QK
“Q⊤

K ||F
≤ ||(I−X∗(X∗)⊤)QKQ⊤

K ||F + ||QKQ⊤
K − “QK

“QK ||F
=
»
K∗(QK) + ||QKQ⊤

K − “QK
“QK ||F.

Similarly, we further have

»
K∗(QK) ≤ c−1

0

»
K∗(Uo,K) + ||QK − c−1

0 Uo,K ||F
≤ c−1

0

»
K∗(Uo,K) + ||QK ||F||I−RK ||2

= c−1
0

»
K∗(Uo,K) +

√
K||I−RK ||2.

Define the orthogonal matrix OK = OKΠ, where OK is from

Lemma 4. Since VKOK ∈ RN×K
K [23], we have EoVKOK ∈

Rn×K
K . Consequently, by H3 and Lemma 4, with probability

at least 1− 2/N ,

»
K∗(Uo,K) = min

U∈Rn×K

K

||Uo,K −U||F

≤ ||Uo,K −EoVKOK ||F ≤ ||Eo||2||UK − VKOK ||F

= ||UK − VKOK ||F ≤ 35
√
K3 logN√

p(N −K)
.

Combining the upper-bound of
√
K∗(QK) with Lemma 2 as

well as H1, H2, we conclude that when the null hypothesis

holds, with probability at least 1− 2/N − 5/M − δgap,

K
∗(“QK) ≤

[…
N

n

35
√
K3 logN√

p(N −K)
+
√
K||I−RK ||2

+ 2
√
K

(
3γη +

c1 tr(Co)
√
2 logM/M + σ2

ρgap

)]2
. (11)

The next case is to consider the ground truth as Tgnd = T1.

Define “X associated with Ĉ ∈ argminC K(“QK , C). Similar to

the previous case, we have

»
K∗(QK) ≤ ||(I− “X“X⊤)QK ||F

= ||(I− “X“X⊤)QKQ⊤
K ||F

≤ ||(I− “X“X⊤)“QK
“Q⊤

K ||F + ||QKQ⊤
K − “QK

“QK ||F
=
»
K∗(“QK) + ||QKQ⊤

K − “QK
“QK ||F,

which implies

»
K∗(“QK) ≥

√
K∗(QK) − ||QKQ⊤

K −
“QK
“QK ||F. By the same technique, we obtain

√
K∗(QK) ≥

c−1
0

√
K∗(Uo,K)−

√
K||I−RK ||2.

Our remaining task is to lower bound
√
K∗(Uo,K) using

H4. Let Ur,s = [ur, ...,us] consist of column vectors from

U, with r ≤ s. Also, let π be a permutation function on

{1, ..., N}, satisfying |hi| = |h(λπ(i))|. We can see that the

set P := {i : 1 ≤ i ≤ K,K + 1 ≤ π(i) ≤ N} is non-empty

under Tgnd = T1. Then, for any r ≤ s such that [r, s] ∈ P , by

Lemma 1,

K
∗(Uo,K) ≥ K

∗(UK)− |K∗(Uo,K)−K
∗(UK)|

≥ K
∗(UK)− 2450K3 logN

p(N −K)

≥ K
∗(Ur,s)−

2450K3 logN

p(N −K)
.

By H4, we have K
∗(Ur,s) ≥ cSBM. Together with H1, H2,

with probability at least 1 − 4/N − 5/M − δgap − δSBM, the

following lower bound holds

K
∗(“QK) ≥

[…
N

n

 
cSBM − 2450K3 logN

p(N −K)
−
√
K||I−RK ||2

− 2
√
K

(
3γη +

c1 tr(Co)
√
2 logM/M + σ2

ρgap

)]2
. (12)

Finally, we can conclude the proof by noting that “T = Tgnd
holds when δ upper bounds the right-hand side of (11) and also

lower bounds the right-hand side of (12).

Technical Lemmas

Lemma 1. Under H3. Let UK denote the columns of the

first K eigenvectors of Lnorm, and Uo,K = EoUK . With

probability at least 1− 4/N ,

|K∗(Uo,K)−K
∗(UK)| ≤ 2450K3 logN

p(N −K)
.

Proof. By the triangular inequality,

|K∗(Uo,K)−K
∗(UK)| ≤ K

∗(Uo,K) +K
∗(UK).

Applying Lemma 3 yields K
∗(UK) ≤ 352K3 logN

pN(N−K) with

probability at least 1− 2/N .



We now derive an upper-bound for K∗(Uo,K). As VKOK ∈
RN×K

K , we have EoVKOK ∈ Rn×K
K . Then, with probability

at least 1− 2/N ,

K
∗(Uo,K) ≤ ||Uo,K −EoVKOK ||2F ≤ ||Eo||22||UK − VKOK ||2F

= ||UK − VKOK ||2F =
352K3 logN

p(N −K)
.

This concludes the proof.

Lemma 2. Under H1, H2, the following inequality holds with

probability at least 1− 5/M

||QKQ⊤
K − “QK

“QK ||F ≤

2
√
K

(
3γη +

c1 tr(Co)
√

2 logM/M + σ2

ρgap

)
.

where c1 is a constant independent of N,M [24].

Proof. By [12, Proposition 1], we have a deterministic upper-

bound:

||QKQ⊤
K − “QK

“QK ||F ≤
√
2K

Ç√
2γ(2||UK ||2 + ||UN−K ||2)ηK +

||“Co −Co||2
ρgap

å

where we further have ||UK ||2 ≤ 1 and ||UN−K ||2 ≤ 1 due to

their orthogonality. In addition, applying [24, Theorem 2.1] on

{yo,m}Mm=1 yields the following inequality: with probability

at least 1− 5/M ,

||“Co −Co||2 ≤ 2c1 tr(Co)

…
logM

M
+ σ2.

This concludes the proof.

The last two auxiliary lemmas are borrowed from [16],

which have been inspired by [23], [24]:

Lemma 3 ( [16, Proposition 2]). Under H3. For VK consist-

ing of K bottom eigenvectors of Lnorm, with probability at

least 1− 2/N ,

K
∗(VK) ≤ 352K3 logN

p(N −K)
.

Lemma 4 ( [16, Lemma 2]). Under H3. Let VK ,VK denote

the columns of the first K eigenvectors of Lnorm,Lnorm. With

probability at least 1−2/N , there exists an orthogonal matrix

OK ∈ R
K×K such that

||VK − VKOK ||F ≤ 35
√
K3 logN√

p(N −K)
.
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