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Andreev (or superconducting) spin qubits (ASQs) have recently emerged as a promising qubit
platform that combines superconducting circuits with semiconductor spin degrees of freedom. While
recent experiments have successfully coupled two ASQs, how to realize a scalable architecture for
extending this coupling to multiple distant qubits remains an open question. In this work, we resolve
this challenge by introducing an architecture that achieves all-to-all connectivity between multiple
remote ASQs. Our approach enables selective connectivity between any qubit pair while maintaining
all other qubit pairs uncoupled. Furthermore, we demonstrate the feasibility of efficient readout
using circuit quantum electrodynamics techniques and compare different readout configurations.
Our architecture shows promise both for gate-based quantum computing and for analog quantum
simulation applications by offering higher qubit connectivity than alternative solid-state platforms.

To date, two of the most scalable solid-state qubit
platforms are semiconducting spin qubits and supercon-
ducting qubits. Recent experiments in these architec-
tures have realized systems with tens and hundreds of
qubits, respectively [1–9], as well as two-qubit gates with
fidelities above 99 % [3, 10–20]. However, both plat-
forms are currently limited to low qubit connectivity, of-
ten restricted to nearest neighbors in planar grids, and
typically featuring at most three to five connections per
qubit [7, 9, 21–27]. This sparse connectivity results in a
considerable overhead in qubit count, both when it comes
to error correction codes in gate-based quantum compu-
tation applications [27–30] and to analog quantum simu-
lations [31, 32].

An alternative platform to the aforementioned
qubits are Andreev (or superconducting) spin qubits
(ASQs) [33–40]. These qubits have their state encoded in
the spin of a quasiparticle localized within a semiconduct-
ing quantum dot that is tunnel-coupled to two supercon-
ducting leads, thus forming a Josephson junction [33, 34].
Recent experimental realizations have explored systems
with a single ASQ [36, 37] as well as the supercurrent-
mediated coupling between two distant ASQs [38]. Yet,
no experiments involving more than two ASQs have been
reported. Architectures for coupling either adjacent An-
dreev qubits via wavefunction overlap [39] or two dis-
tant qubits via virtual photons [41] have been proposed.
However, these architectures enable the short-distance
coupling of nearest-neighbour qubits in a planar layout
plus a reduced number of long-distance links, sharing the
same connectivity constraints as semiconducting and su-
perconducting qubits. Thus, it remains an open ques-
tion if the compact size of ASQs and their strong cou-
pling to supercurrent can be combined to provide archi-
tectural improvements over more conventional solid-state
platforms.

Here, we introduce an architecture that offers a solu-
tion to the connectivity challenge. Our design allows for
the coupling of multiple distant ASQs in a fully connected
and scalable way. As a particular example, we demon-
strate that this architecture permits selective connectiv-
ity between any qubit pair within the system while main-

taining all other qubit pairs uncoupled. Importantly, the
strength of the coupling between two qubits in the sys-
tem is independent of the distance between them. Fur-
thermore, we illustrate how this system can efficiently
perform quantum simulations of highly connected Ising
models with a reduced qubit count and a smaller foot-
print compared to alternative solid-state platforms. The
proposed architecture also facilitates sequential, individ-
ual, or joint qubit readout. Finally, we outline an exper-
imental protocol for systematically tuning up the system
to its operational setpoint.

I. CONCEPT

We propose a circuit that consists of a coupling junc-
tion, with Josephson energy EJ and phase drop ϕ across
it, connected in parallel to a number, N , of ASQs, see
Fig. 1(a). The subspace of each ASQ is spanned by two
spin states, denoted as |↑i⟩ and |↓i⟩ for ASQi, where i
is the qubit index. This configuration defines N loops
through which magnetic fluxes, Φi, are threaded, as in-
dicated in Fig. 1(a).
The individual ASQs are implemented using semicon-

ducting quantum dot Josephson junctions [42–49]. The
charging energy of each quantum dot is sufficiently large
such that the ground state manifold is composed only of
the two singly-occupied spin states. Due to the spin-orbit
coupling in the semiconductor, each ASQ is characterized
by a spin-dependent, in addition to a spin-independent,
Josephson energy, denoted as ESO,i and EJ,i, respec-
tively [34, 50]. The values of ESO,i and EJ,i can be tuned
independently via electrostatic gates for each qubit (not
shown in Fig. 1). The Hamiltonian of ASQi can be ex-
pressed in terms of these Josephson energies as

Hi = EJ,iσ
0
i cos (ϕi)−ESO,iσ

z
i sin (ϕi) +

1

2
E⃗Z,i · σ⃗i , (1)

where σz
i = |↑i⟩ ⟨↑i|− |↓i⟩ ⟨↓i| and σ0

i = |↑i⟩ ⟨↑i|+ |↓i⟩ ⟨↓i|
denote the z Pauli operator and the identity operator of
ASQi, respectively, σ⃗i is the vector of x, y and z Pauli
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Figure 1. Scalability of superconducting spin qubits. (a) Circuit diagram of N Andreev spin qubits connected in
parallel to a coupling Josephson junction with Josephson energy EJ, thus defining N loops. ASQi has spin-independent and
spin-dependent Josephson energies EJ,i and ESO,i, respectively. The magnetic flux through loop i is denoted as Φi. The
phase drop across ASQi is denoted as ϕi and that across the coupling junction as ϕ. The system is operated in the regime
EJ ≫ EJ,i, ESO,i, which results in ϕ ≃ 0. (b) Diagrams of four possible phase setpoints for an ASQ. When ϕi = π/2,−π/2
the spin-dependent component of the supercurrent vanishes and the qubit is labeled as OFF. When instead ϕi = 0, π the spin-
dependent component of the supercurrent is maximal and the qubit is labeled as ON. We use the notation of I|↑i⟩ = ⟨↑i| Ii |↑i⟩
and I|↓i⟩ = ⟨↓i| Ii |↓i⟩. (c) Supercurrent across ASQi versus the phase drop across it for its two basis states, |↑i⟩ and |↓i⟩.
Here we assume ESO,i/h = 300MHz, EJ,i/h = 0 for all ASQs and EJ/h = 10 GHz. (d) Coupling strength between two ASQs,
i and j, versus the phase drop across one of them, ϕi (see Eq. 6) with the same parameters as in (c) and with ϕk = 0 for
all other ASQs. The points on the ϕi-axis with extremal and zero coupling strength are indicated with ON and OFF labels,
respectively. (e) Example of a design that minimizes the flux cross-coupling between loops. Each loop is implemented with a
twisted gradiometric geometry that renders it insensitive to global magnetic field. The two subloops of each loop, shaded with
the same color, have identical areas. The magnetic flux through each loop is controlled with a flux bias line, indicated with a
hue-matching line.

operators of ASQi and E⃗Z,i is the externally applied Zee-
man field expressed in the coordinate system of ASQi.

To lowest order in ESO,i/EJ and EJ,i/EJ, the phase
drop through the coupling junction becomes ϕ = 0 and
each ϕi is determined by the cumulative flux values from
1 to i,

ϕi =

i∑
j=1

φj , (2)

where φi = 2πΦi/Φ0, Φ0 = h/(2e) is the magnetic flux
quantum, h is the Planck constant and e is the absolute
value of the electron charge. Therefore, by controlling
the external fluxes, one can independently fix the values
of all phase drops, ϕi. Taking the phase derivative of the
ASQ Hamiltonian (Eq. 1) and assuming a magnetic field

aligned with the spin-polarization direction, E⃗Z,i · σ⃗i =
EZ,iσ

z
i , we obtain its current operator,

Ii =
π

Φ0

∂Hi

∂ϕi
=

Is,i
2

σz
i + I0,iσ

0
i , (3)

where I0,i = π
Φ0

EJ,i sin (ϕi) represents the spin-
independent component and the spin-dependent super-
current is

Is,i =
2π

Φ0
ESO,i cos (ϕi) . (4)

Notably, when ϕi is either π/2 or −π/2, Is,i vanishes,
rendering the supercurrent identical for both qubit states,
see Fig. 1(c). On the contrary, when ϕi is either 0 or π,
the magnitude of the spin-dependent component of the
supercurrent is maximal. Throughout this manuscript,
we refer to these two flux setpoints as OFF and ON,
respectively as depicted in Fig. 1(b).
The circuit can be implemented in practice with inde-

pendent control over the individual fluxes and with max-
imal addressability using the implementation illustrated
in Fig. 1(e). Each loop is implemented with a twisted
gradiometric loop geometry similar to the experimental
implementation in Ref. [38]. Each loop is inductively cou-
pled to a flux bias line with current Ii and a symmetrical
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Figure 2. Idling flux configuration. Chain with N = 10 showing the flux setpoint for an idling configuration in which all
qubits are uncoupled. The choice of Φ1 = Φ0/4 and Φi = Φ0/2 for all other loops sets alternating phase drops of π/2 and
−π/2 for all qubits.

design at its end, where currents flow in opposite direc-
tions. This combination of the loop and flux bias line
designs maximizes their mutual inductance while mini-
mizing unwanted cross-coupling to other loops. Firstly,
the two opposite currents on the flux line induce contri-
butions to the flux through the loop that add up due to
its twisted geometry. Secondly, the generated magnetic
field decreases with distance faster than for monopole flux
line configurations, resulting in reduced magnetic fields
at the locations of other loops. Thirdly, the gradiometric
loop design reduces the sensitivity to homogeneous fields,
again reducing the unwanted cross-coupling, as well as
the sensitivity to global magnetic noise.

We envision two possible driving mechanisms [35, 51–
53]: either using the flux bias lines for driving the spin-
flip transitions via their supercurrent matrix element or
applying microwave frequency pulses to the electrostatic
gates of each qubit, which induces spin-transitions via
the electric dipole spin resonance (EDSR) mechanism [54,
55].

The interactions between all pairs of qubits can be ad-
justed by varying the flux setpoints. For example, an
idling configuration where all qubits are OFF is shown
in Fig. 2. By setting Φ1 = Φ0/4, ASQ1 is set to its OFF
state, with ϕ1 = π/2, i.e., the qubit does not interact
with any other qubit. In turn, Φi = Φ0/2 for the re-
maining loops results in alternating phase drops of π/2
and −π/2 for all other ASQs, rendering them OFF as
well. Consequently, in this configuration all qubits are
uncoupled.

II. ALL-TO-ALL SELECTIVE COUPLING

Next, we discuss the full circuit Hamiltonian and how
we can control the interactions between multiple ASQs.

When either the Zeeman energy is low, |E⃗Z,i| ≪ ESO,i,
or the external magnetic field is applied along the spin-

polarization direction for all qubits, E⃗Z,i = EZ,iσ
z
i , the

qubits become pairwise longitudinally coupled to each
other [56], as first discussed in Ref. [34] for the case of
N = 2 and experimentally realized in Ref. [38]. In this
situation, the Hamiltonian describing the longitudinally
coupled system can be expressed in the ASQ basis as

HASQ =

N∑
i=1

1

2
Eiσ

z
i +

∑
j<i

1

2
Jijσ

z
i σ

z
j

 , (5)

where Ei = −2ESO,i sin (ϕi)+EZ,i, is the energy of qubit
i and Jij represents the longitudinal coupling energy be-
tween qubits i and j. In Eq. (5) and for the remainder of
this section, we have disregarded spin-independent terms,
as they have no influence on the spin dynamics. Follow-
ing Ref. [34] (see also Appendix A) the coupling strength
is, to first order in ESO,i/EJ, given by

Jij = −2
ESO,iESO,j

|Ẽ|
cos (

i∑
k=1

φk − φẼ) cos (

j∑
k=1

φk − φẼ),

(6)
where

Ẽ = EJ +

N∑
l=1

EJ,le
i
∑l

k=1 φk (7)

is the total spin-independent Josephson energy of the sys-
tem and φẼ is the argument of Ẽ.
In the limit of EJ,i/EJ → 0, the phase-offset φẼ van-

ishes. In such scenario, it directly follows from Eq. 6 that,

when two qubits are ON (with
∑i

k=1 φk = 0, π), the cou-
pling between them is maximal. Conversely, when either

one of the two qubits is OFF (with
∑i

k=1 φk = ±π/2),
the coupling between them becomes zero, as illustrated
in Fig. 3(a) and (b) for two possible flux configurations.
Away from the limit of EJ,i/EJ → 0, the ON and

OFF flux setpoints deviate from their exact values of 0, π
and ±π/2, respectively. The offset is φẼ , which depends
on the global flux configuration and, importantly, can
be independently measured. Therefore, each individual
flux can still be set to either maximize or turn off the
couplings between any pair. At this point it is interesting
to note that when we adjust the flux configuration to the
corrected flux setpoints, there is no unwanted coupling
arising from the non-zero values of EJ,i. The effect of
EJ,i, on the other hand, is to reduce the magnitude of the
wanted coupling when their values become comparable to
EJ.
From Eq. 6, we calculate the coupling strength between

any selected pair of qubits, see Fig. 3(c) and (d) for two
examples with realistic parameter sets, with N = 10 and
N = 30, respectively. We find ON-ON coupling strengths
of around 10MHz that slowly decrease with increasing
EJ. The couplings are calculated here for a situation in
which two qubits, ASQn and ASQm, are coupled to each
other while the rest of the qubits are kept near their cor-
rected OFF flux setpoints but deviate from them, each
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Figure 3. All-to-all selective coupling. (a) and (b) Two chains with N = 10 showing two example flux setpoints needed
for selective two-qubit coupling between (a) qubits 5 and 8 and (b) qubits 1 and 9. In contrast to the idling configuration of
Fig. 1(c), the phase drops across the two selected qubits, labeled as ON, are either 0 or π, thus maximizing their spin-dependent
supercurrent. In these configurations, the rest of the qubits remain uncoupled. (c) - (d) Absolute value of the qubit-qubit
coupling strength, |Jij | obtained from Eq. 6, for two parameter configurations with random offsets added to the ideal flux bias
points. For each panel, the dark green line indicates the coupling strengths between the two qubits that are ON, n and m, the
light green lines indicate the (undesired) coupling strengths between either n or m and another qubit and the grey lines indicate
the (undesired) coupling strength between any other pair of qubits. (c) For N = 10, n = 3, m = 8, ESO,i/h = 300MHz and
EJ,i/h = 0 for all ASQs. The fluxes deviate from their ideal values by amounts ∆Φi that take random values from a uniform
distribution between plus and minus 0.001Φ0. (d) Same as (c) but for N = 30, n = 6 and m = 18.

by a random value drawn from a uniform distribution be-
tween plus and minus 0.001Φ0. For typical experimental
implementations, these deviations correspond to errors
in the flux bias lines currents of less 10µA [38, 57], well
above the resolution of typical current sources [58], and
thus well within experimental reach. The unwanted ON-
OFF and OFF-OFF couplings resulting from these im-
precise flux settings remain significantly lower than the
ON-ON coupling strength, by around 2 and 4 orders of
magnitude, respectively, and can be reduced further by
more precise flux control.

By flux pulsing, this selective coupling scheme en-
ables the implementation of CPHASE gates between any
qubit pair within the system [59]. In particular, coupling
strengths of more than 10MHz would allow to realize
CPHASE gates in less than h/(4J) = 25 ns. Starting
from an idling configuration, only the fluxes of the loops
adjacent to the two selected qubits must be swept to
reach the coupling configuration shown in Fig. 3(a) and
(b). Importantly, during pulsing, the two fluxes adjacent
to qubit m must be adjusted simultaneously to prevent
undesired coupling between qubits m and m+ 1.

III. QUANTUM SIMULATION OF HIGHLY
CONNECTED ISING SYSTEMS

Beyond its use for digital gate-based quantum com-
putation schemes, the system introduced in Fig. 1 holds
potential for applications in analog quantum simulation.
The Hamiltonian presented in Eq. 5, which corresponds
to either a reduced Zeeman field or a Zeeman field aligned
with all qubits, directly maps the Hamiltonian of an all-
to-all longitudinally connected Ising model. More gen-
erally, when the Zeeman field has Ex

Z,i ≥ ESO,i com-

ponents perpendicular to the spin directions, E⃗Z,i =
Ez

Z,iσ
z
i + Ex

Z,iσ
x
i , the coupling Hamiltonian also includes

transverse σx
i σ

x
j terms (see Appendix B):

HASQ =

N∑
i=1

Ei

2
σz
i +

∑
j<i

Jzz
ij

2
σz
i σ

z
j +

∑
j<i

Jxx
ij

2
σx
i σ

x
j

 .

(8)
Here, Jzz

ij and Jxx
ij denote the longitudinal and transverse

coupling energies, respectively.

Classically, efficient simulation is possible only for
sparsely connected longitudinal systems with planar cou-
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Figure 4. Quantum simulation with ASQs. (a) and (b) Circuit diagrams for N = 10 exemplifying two flux configurations
in which all qubits are coupled to each other, thus mapping a highly connected Ising system. (c) and (d) Graph diagrams
indicating the couplings (edges) between each pair of qubits (nodes). Panels (c) and (d) correspond to the flux configurations
depicted in (a) and (b), respectively. For (c), all coupling strengths have equal sign Jij = −|Jij | (black edges). For (d), the
coupling strengths have either a negative sign, Jij = −|Jij | if |i − j| = 2n (black edges), or a positive sign, Jij = +|Jij | if
|i− j| = 2n+ 1 (grey edges), with n being an integer number.

plings. However, when either transverse terms are
present in a planar system or when the system ex-
hibits higher connectivity, only nondeterministic polyno-
mial time (NP)-hard classical exact solutions exist [60].
Flux qubit systems have been used to approach the so-
lution of some problems using quantum annealing [61–
63]. Nonetheless, these quantum annealers have sparse
connectivity, which requires an initial embedding of the
desired problem into the qubit system at the cost of an in-
creased number of physical qubits [31]. Due to their high
connectivity, as we have introduced here, Andreev spin
qubits constitute a promising solid-state platform well-
suited for simulating a broader range of problems without
requiring additional overhead in terms of qubits. Besides
applications in quantum annealing, this system can be
used to explore the Ising spin dynamics without the need
for Trotterization [5]. The system presented here extends
the range of Ising problems that can be simulated to en-
compass all partitioning problems, defined by Jzz

ij = azi a
z
j

and Jxx
ij = axi a

x
j . However, a generic longitudinal Ising

system has a total of (N2−N)/2 independent couplings,
meaning that the ASQ system studied here, with N free
flux parameters, cannot simulate all possible connectivity
configurations of the Ising model. Note that the tuning of
the system from its fully uncoupled idling state (Fig. 2)
to a fully coupled state (Fig. 4(a) or (b)), only requires
the adjustment of the flux through loop 1 by a quarter

of a flux quantum. This provides straightforward control
over the evolution time of an analog quantum simulation
by only pulsing a single flux line.

IV. READOUT

The spin-supercurrent coupling of superconducting
spin qubits provides a means for reading out their state
through the use of circuit quantum electrodynamics tech-
niques [35, 50, 64–66]. In this section, we detail different
readout alternatives that depend on the readout circuitry
and on the specific qubits that need to be measured. In
Sec. IVA we present a protocol for sequentially reading
out the state of all qubits in the computational basis for
a scenario in which the magnetic field is parallel to all
qubits. This can be achieved using either a transmon or
a fluxonium circuit [67]. Subsequently, in Sec. IVB, we
present a means to selectively read out the state of a sin-
gle qubit while keeping all qubits uncoupled. Lastly, in
Sec. IVC, we instead present the joint readout of multi-
ple qubits to determine the total number of qubits that
are in their excited state. Note that, in all cases, the
readout circuit must be detuned from all ASQ frequen-
cies to prevent transverse coupling between the qubits
and the readout.



6

EJ

ɸ≃0

�1

ESO,1

ɸ1

(b) (c)

Ec EJ

�1

ESO,1

ɸ1Ec

�≃�0/4

ɸ≃0EL
π/2

(d) (e) (f) (g)

(h) (i)

(a)

(j) (k)
(f) (g)(d)

(e)

OFFON OFFON ON OFFON OFFON ON

�10=�

0

ASQ10

�9=�

0

ASQ9

�8=�

0

ASQ8

�7=�

0

ASQ7

�6=-�0/4

0

ASQ6

�5=�0/4

π/2

ASQ5

�4=�

0

ASQ4

�3=�

0

ASQ3

�2=�

0

ASQ2

�1=�

0

ASQ1

0

ONONONON ONONONONONOFF

Figure 5. Sequential readout of qubits in their OFF setpoint. (a) Circuit for reading out the state of qubit 5. All
qubits except for ASQ5 are ON. The phase drop ϕ5 ∼ π/2 sets ASQ5 OFF. (b) and (c) Two alternative readout circuits, shown
for the case N = 1 for simplicity. (b) Transmon readout circuit diagram. A capacitor with charging energy Ec is connected in
parallel to the coupling junction and Andreev spin qubit. (c) Fluxonium readout circuit diagram, including also an inductor
with inductive energy EL connected in parallel. The inductor and the coupling junction define a loop with magnetic flux
Φ through it. (d) and (e) Transmon potential versus the phase drop across the coupling junction, ϕ, for Φ1 = 0 (ON) and
Φ1 = Φ0/4 (OFF), respectively. In both cases, EJ,1 = 0, Ec/h = 1.0GHz and EJ/h = 10.0GHz. The dotted lines indicate the
case ESO,1 = 0. The colored lines indicate the two possible potentials depending on the state of the ASQ, for ESO,1/h = 3GHz.
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A. Sequential readout of all qubits

The resonator and transmon circuits used to read out
the spin in previous work are sensitive to the ASQ induc-
tance [36–38, 50, 64–66]. As a result, these circuits are
maximally sensitive to an ASQ state when the ASQ is
in its OFF setpoint, and fully insensitive to it when the
setpoint is ON. In the absence of magnetic field or under
the presence of a magnetic field parallel to all qubits, if
all qubits are set to their ON setpoint, they are fully un-
coupled from the readout circuit, but they are also max-
imally longitudinally coupled to each other. In this case,
their relative phases rotate over time, but the popula-
tion in each computational basis state remains conserved
as the coupling is longitudinal, thus preserving the mea-

surement result. As illustrated in Fig. 5, we can use this
idea for reading out each of the qubits, by sequentially
switching each ASQ to their OFF setpoint one by one
(an example for qubit 5 is shown in Fig. 5(a)) since an
ASQ in its OFF setpoint couples strongly to the readout
circuit. We discuss two alternative circuits for selectively
reading out the state of a qubit when it is OFF while
being insensitive to the states of the qubits that are ON.

1. Transmon readout

The first approach employs a transmon circuit [52, 68,
69], as depicted in Fig. 5(b), for simplicity for the case
N = 1. The transmon consists of a capacitor, with charg-
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ing energy Ec, connected in parallel to the coupling and
ASQ junctions. Its Hamiltonian can be expressed as

Ht = −4Ec(n̂− ng)
2 + EJ(1− cos(ϕ)) +HASQ(ϕ), (9)

where HASQ(ϕ) denotes the Hamiltonian of all ASQs in
parallel, now including the spin-independent parts, which
depends on all fluxes. n̂ is the conjugate charge of ϕ, and
ng is the offset charge in the transmon island, expressed
in units of the Cooper pair charge 2e.
As shown in Fig. 5(d), when an ASQ is in its ON set-

point (φ1 = 0), the transmon’s eigenstates have the same
energy independently of the qubit state (|↑⟩ or |↓⟩). Con-
sequently, the transmon transition frequencies are iden-
tical for both qubit states (see Fig. 5(h)). If the ASQ
is instead in its OFF setpoint, the transmon eigenener-
gies change depending on the qubit state (red and blue
in Fig. 5(e))[37, 70]. Fig. 5(j) shows the resulting fre-
quencies of a readout resonator capacitively coupled to
the transmon with a coupling energy g. The resonator
frequencies are different when the qubit is in its OFF
setpoint and identical when it is ON, thus allowing to
selectively readout the state of individual OFF qubits.
The difference between the two resonator frequencies is
then the effective dispersive shift from the ASQ. For the
parameters used in Fig. 5, we find a maximal effective
dispersive shift of 7.4 MHz.

2. Fluxonium readout

An alternative readout circuit to realize the same pro-
tocol is a fluxonium circuit [71], shown in Fig. 5(c). Its
Hamiltonian can be expressed as

Hf = −4Ecn̂
2+

1

2
EL(ϕ−φ)2+EJ (1− cos (ϕ))+HASQ(ϕ),

(10)
where EL is the inductive energy of the fluxonium shunt-
ing inductor and φ = 2πΦ/Φ0 denotes the reduced flux
through the loop formed by the inductor and the cou-
pling junction. If the fluxonium flux is set to φ = π/2,
the circuit can be used to selectively read out qubits in
their OFF setpoint, analogously to the transmon case
(see Fig. 5(f, g, i, k)).

B. Selective readout of one qubit

In certain applications, such as ancilla-based parity
readout, there is a need to selectively read out the state
of an individual qubit without affecting any other qubits.
To facilitate this selective readout, we introduce the pro-
tocol illustrated in Fig. 6. This method consists of con-
figuring all qubits to their OFF setpoints, ensuring they
remain uncoupled. Simultaneously, the specific qubit
that needs to be measured is set to its ON setpoint (see
Fig. 6(a)). As only one qubit is ON, it does not interact
with any of the other qubits.

As discussed in the previous section, a qubit that is
ON can not be read out using the inductance-sensitive
readout circuits presented in Fig. 5. Instead, we use a
fluxonium circuit as the one shown in Fig. 6(b). This
circuit is tuned to a precise flux φ setpoint positioned
near an avoided crossing between a higher-order fluxo-
nium transition and the readout resonator. In fact, flux-
onium qubits often get most of their dispersive shift from
interactions with higher lying states [72, 73]. Fig. 6(c)
and (d) show an avoided crossing between the second
fluxonium transition and the readout resonator as φ is
varied, for the ON and OFF ASQ setpoints, respectively.
By setting φ close to this avoided crossing, the frequency
of the readout resonator depends on the ASQ state when
the ASQ is ON and remains unaffected when it is OFF.
This approach enables the selective readout of the state
of an individual qubit in the ON setpoint while being in-
sensitive to all other qubits that are in the OFF setpoint.
Note, however, that there is a balance between the prox-
imity to the avoided crossing and the number of readout
photons, as the closer the flux point is to the avoided
crossing the higher the hybridization between the read-
out resonator and the fluxonium states [74].

C. Joint readout of all qubits

In situations where the ESO,i values of all qubits are
similar, there is a third readout option available, which
allows differentiation between various joint states based
on the total number of qubits that are in their |↑i⟩ state.
This joint readout protocol entails configuring all qubits
to their OFF flux setpoints, which leaves them uncou-
pled and thereby does not affect their state, and using
the inductance-sensitive readout circuits introduced in
Fig. 5(b) and (c). As a result, all joint states with the
same number of qubits in their |↑i⟩ state lead to the
same dispersive shift on the resonator. In total, there
are N different resonator frequencies, each correspond-
ing to a different total number of |↑i⟩ spins. This con-
figuration has several potential applications: (i) Direct
counting of excited qubits. If the dispersive shifts and
resonator line-width are designed so that the N resulting
readout signals can be distinguished, this configuration
allows for the direct count of the total number of qubits
in their |↑i⟩ state. (ii) Measurement-induced state ini-
tialization. By selecting a specific readout frequency to
distinguish the |↓0↓1 ... ↓N ⟩ state from all other states,
this approach can be employed for state preparation, to
herald the system in this state [75, 76]. Such techniques
can also be used to herald entangled states [77]. (iii) Fi-
delity benchmarking of quantum gates. The ability to
differentiate the |↓0↓1 ... ↓N ⟩ state from all other states
can be used to benchmark gate sequences that should
have the global ground state as their final state, such as
randomized benchmarking protocols [78]. (iv) Finally,
in quantum simulation, distinguishing states with a fixed
number of |↑i⟩ spins from all other states can be useful to
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Figure 6. Selective readout of a qubit in its ON setpoint. (a) Circuit diagram for N = 10 exemplifying the flux
configuration for reading out the state of qubit 5. The phase drop ϕ5 ∼ 0 sets ASQ5 ON, while all other qubits are OFF
and thus uncoupled. (b) Same as Fig. 5(c). In this case, the value of Φ is not fixed. Ec/h = 4.0GHz, ESO,1/h = 1.5GHz,
fr,0 = 6.6GHz, g/h = 300MHz and the other parameters are the same as in Fig. 5. (c), (d) and (e) Show the frequencies
of the fluxonium (top) and a resonator capacitively coupled to it (bottom) for different flux configurations. For (c) and (d)
the ASQ is ON and OFF, respectively. As Φ is varied, there are different anticrossings between the resonator and the second
fluxonium transition. (e) Shows the Φ1 dependence when Φ is fixed near one of such anticrossings, at the value indicated with a
vertical dotted line in (c) and (d). This results in equal resonator frequencies when the ASQ is OFF and in different resonator
frequencies when it is ON.

verify if the final state falls within the correct subspace,
confirming the accuracy of the simulation [79].

These diverse applications underline the versatility of
the ASQ system. However, further research is essential
to address specific implementation details.

V. TUNE-UP PROTOCOL

To demonstrate the viability of this proposal, we now
discuss a tuning protocol assuming the physical realiza-
tion of ASQs as done in Refs. [36–38]. Implementing
each Andreev spin qubit in a semiconducting Josephson
junction permits pinching it off (i.e. setting both of its
Josephson energies to zero) by electrostatic gating. In
this section, we explain how, by selectively pinching off
different combinations of qubits, the global system can
be sequentially tuned up to its operational configuration,
as depicted in Fig. 7.

The tune-up process follows the procedure outlined in
Ref. [50] and [38] for the N = 1 and N = 2 cases, re-
spectively. In the initial step, illustrated in Fig. 7(a), all
ASQs are pinched off and the coupling junction is char-

acterized. As the Ec and EL values are known by design,
the value of EJ can be determined from the measured fre-
quency of the transmon or fluxonium readout circuitry.
If the coupling junction is implemented with a semicon-
ducting Josephson junction, EJ can be electrostatically
set at this step to a target value much larger than the
target value for ESO,i and EJ,i.

Subsequent steps involve selectively pinching off all
ASQs except one, allowing it to be tuned up indepen-
dently. This configuration is shown in Fig. 7(b), (c) and
(d) for qubits 1, 2 and 3, respectively. This sequential
approach permits the independent investigation of each
qubit’s gate and magnetic field dependences, enabling the
selection of an optimal gate setpoint.

Initially, the gate space is mapped out at zero mag-
netic field to identify regions with sizable ESO,i and low
EJ,i. This optimization aims at maximizing the coupling
strength (see Eq. 6). An efficient way to perform this
mapping is by detecting a frequency splitting of the read-
out resonator at fixed ASQ flux points (see Sec. IV).

Subsequently, the magnetic field is set to a non-zero
value, allowing for the investigation of the magnetic
field dependence. This step provides access to the spin-
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Figure 7. Sequential qubit tune-up. Each panel shows
the circuit diagram of the loops array in different configu-
rations, at subsequent steps in the tune-up process. (a) All
qubits are pinched off with their electrostatic gates so that
ESO,i = EJ,i = 0. In this configuration, there are no loops and
the value of EJ can be directly determined. (b) While keeping
the rest of ASQs pinched off, ASQ1 is tuned up with its elec-
trostatic gates following the procedure described in Ref. [50].
This allows to fix the desired values of ESO,1 and EJ,1, as well
as to determine the I1 setpoints that set Φ1 = 0,Φ0. (c) Sub-
sequently, the flux setpoint of ASQ1 is fixed at Φ1 = 0 and
the electrostatic gates of ASQ1 are pinched off. Following a
procedure analogous to that in (b) one can set the values of
ESO,2 and EJ,2 and determine the the I2 setpoints that set
Φ2 = 0,Φ0. (d) Same as (b) and (c) but for ASQ3.

polarization direction and the g-factor at each gate set-
point.

During operation, the global magnetic field will be
fixed at a predetermined value and direction, chosen to
align with the chip plane to maximize the magnetic field
resilience of the readout circuitry [80–84]. Therefore, for
each ASQ, a gate setpoint is selected so that the spin-
polarization direction aligns with the preferred direction
relative to the chosen magnetic field operation direction.
This relative alignment depends on the application. For
gate-based quantum computing, the operation is simpli-
fied if only longitudinal coupling terms are present (as in
Eq. 5). Thus, the spin direction must either be chosen
to be aligned with the magnetic field direction or, al-
ternatively, the system can be operated under magnetic
field strengths much lower than ESO,i. The latter option
avoids the need for the spin polarization directions of all
ASQs to be aligned with each other, thus simplifying the
system tune up, and at the same time reduces the charge
noise sensitivity [85]. For quantum simulation of Ising
systems, however, the spin direction can be adjusted to
determine the ratio between longitudinal and transverse

coupling terms. A consideration regarding the g-factors
is that the qubit frequencies should not match the fre-
quencies of the readout resonator or the readout super-
conducting qubit and that they lay within an experimen-
tally accessible frequency band. For InAs-based devices,
typical g-factor values range from 2 to 16 [50, 66, 86].
This corresponds to frequencies between 1.5 and 11.2
GHz for an applied magnetic field of 50 mT. Once the
setpoint for one qubit is determined in this manner, its
junction can be pinched off, and the next qubit can be
characterized and tuned up similarly.
The change in the global magnetic field during the pre-

ceding steps alters the Φi(Ii) mappings. Therefore, these
mappings can be determined in a subsequent round of
tune-up steps, carried out after fixing the global mag-
netic field at its operational setpoint. In this step, each
qubit is sequentially opened (i.e. set to its gate setpoint)
and an Ii dependence is performed to determine the Ii
values that set Φi = 0 and Φi = Φ0, as indicated in
Fig. 7.

VI. DISCUSSION

In the preceding sections, we discussed the potential
of highly connected Andreev spin qubits for quantum
computing and quantum simulation tasks. Our anal-
ysis focused on an estimation of the coupling strength
to first order in ESO,i/EJ, as detailed in Sec. II. How-
ever, it is crucial to consider the contribution of the
spin-dependent inductance of each ASQ, which becomes
significant away from the limit ESO,i/EJ → 0 (see Ap-
pendix A). These contributions introduce higher-order
coupling terms of the form ϵkJijσ

z
i σ

z
jσ

z
k, where ϵk ≈

ESO,k/EJ. For instance, the experimentally realistic val-
ues of ESO,i/h = 300MHz and EJ/h = 30GHz dis-
cussed in Fig. 3 result in an ON-ON coupling strength
of Jij/h = 6MHz and unwanted higher-order coupling
terms between two ON qubits, i and j, and an OFF qubit,
k, of the order of Jijk/h = 60 kHz.
To reduce the ESO,i/EJ ratio and, consequently, miti-

gate the magnitude of higher-order terms, one can reduce
the inductance of the coupling junction. A reduction
to ESO,i/EJ = 1/1000 within experimentally attainable
parameters can be realized by setting ESO,i/h = 1GHz
and EJ/h = 1000GHz. This, in turn, sets the ON-ON
coupling to Jij/h = 2 MHz. Under these conditions,
the higher-order coupling terms have an amplitude of
Jijk/h = 2 kHz. This magnitude of EJ can be achieved
by replacing the coupling junction with a linear inductor
and using a resonator, instead of a transmon or fluxo-
nium, for readout [36, 43, 64, 66, 87]. Note that the
reduced coupling strength in this regime leads to slower
dynamics and calls for qubit coherence higher than that
of previous ASQ implementations [36–38].

These higher-order terms reduce the CPHASE gate
fidelity, imposing a constraint, Nmax, on the maxi-
mum number of qubits in the system. In particular, if
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(a)

(b)

Figure 8. Quantum computing with superconducting
spin qubits. (a) One cluster of N coupled ASQs is repre-
sented with a star symbol. (b) Each cluster is read out with a
transmon circuit. Different clusters are capacitively coupled
to each other to mediate inter-cluster coupling.

Jijk/Jij = ϵ for all qubits, we expect a two-qubit gate
infidelity of 0.1875((N − 2)ϵπ)2 [88]. For ϵ = 0.001,
this results in Nmax,99 = 737 and Nmax,99.9 = 234 for
target gate fidelities of 99.0 % and 99.9 %, respectively.
Moreover, as discussed in Sec. II, imprecise flux control
would lead to residual ON-OFF couplings, further reduc-
ing the gate fidelity. If Jijk/Jij = Jik/Jij = Jjk/Jij = ϵ,
the gate infidelity is 1.1875((N − 2)ϵπ)2 which, for ϵ =
0.001, limits the number of qubits to Nmax,99 = 294 or
Nmax,99.9 = 94 for the same target gate fidelities.

To scale up beyond this limit, we envision defining in-
dependent unit cells, each containing Nmax qubits, as
illustrated in Fig. 8(a). A potential architecture for cou-
pling different clusters to each other involves capacitively
coupling the readout circuit of two separate clusters
(Fig. 8(b)). This hierarchical approach provides a scal-
able path for creating larger quantum processors while
mitigating the impact of higher-order coupling terms.

To conclude, we have presented an approach for scal-
ing up Andreev spin qubits in a highly connected way.
Our work demonstrates the ability to control the magni-
tude of the coupling strength between any pair of qubits,
independently of their physical distance, by varying the
applied flux. This feature enables the realization of fast
two-qubit gates across the entire system. Moreover, as all
couplings can be made of the longitudinal type, the cou-
pling strength remains independent of the relative qubit
frequencies. This characteristic offers great flexibility for
increasing the qubit count without encountering issues
associated with frequency crowding.

When it comes to gate-based digital quantum compu-
tation, this enhanced qubit connectivity opens up oppor-
tunities for exploring alternative quantum error correc-
tion codes, potentially requiring fewer physical qubits per
logical qubit compared to existing surface codes [30]. Re-
garding analog quantum simulation of Ising systems, the
all-to-all connectivity extends the range of NP-hard prob-
lems that can be simulated in solid-state qubit platforms
without the need for additional qubit overhead to encode
the relevant problems, presenting an advantageous alter-
native to other superconducting qubit approaches.
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Appendix A: Higher order longitudinal coupling
terms

Away from the limit ESO,i/EJ → 0 it becomes essential
to account for modifications to the coupling described in
Eq. 6 due to the presence of a state-dependent parallel
inductance. This inductance introduces a modification
to Ẽ, resulting in

Ẽ = EJ +

N∑
l=1

EJ,le
i
∑l

k=1 φk +

N∑
l=1

σz
l ESO,le

i(π
2 +

∑l
k=1 φk).

(A1)
The ESO,i/EJ term gives rise to higher order coupling

terms of the form σz
i σ

z
jσ

z
k that can be found by Taylor

expanding Eq. 6 around ESO,i/EJ = 0. The second-order
contribution from the denominator yields

J
(2)
ij = J

(1)
ij

(
1−

N∑
l=1

ESO,l

EJ
σz
l e

i(π
2 +

∑l
k=1 φk)

)
, (A2)

where J
(1)
ij is the first-order approximation from Eq. 6.

This results in a contribution to the three-qubit coupling
terms, Jijkσ

z
i σ

z
jσ

z
k, that is a factor of EJ/ESO,k times

smaller than the two-qubit coupling terms Jij (i.e. Jijk =
ESO,k/EJJijσ

z
k).

Additionally, Eq. A1 results in a σz
k-dependent contri-

bution to φẼ . This contribution can be as high as

φẼ = tan−1

(
N∑

k=1

ESO,k

EJ
σz
k

)
≈

N∑
k=1

ESO,k

EJ
σz
k (A3)

when all qubits are OFF. Here, the approximation is
again made to first order in ESO,k/EJ. Similarly, this
introduces a second contribution to the three-qubit cou-
pling terms, given again by

Jijk = Jij
ESO,k

EJ
σz
k. (A4)

Once again, this term is scaled by a factor of ESO,k/EJ

compared to the two-qubit coupling terms.

Appendix B: Transverse coupling under the
presence of a perpendicular Zeeman field

For the sake of simplicity and without loss of gener-
ality, we consider the case N = 2. The Hamiltonian of



11

the coupled ASQ system, expressed in the eigenbasis of
the system at zero magnetic field and disregarding spin-
independent terms, is given by

HASQ =
1

2
E1σ

z
1 +

1

2
E2σ

z
2 +

1

2
J12σ

z
1σ

z
2 . (B1)

If a perpendicular magnetic field is applied, the qubits
eigenstates are no longer the same. In particular, the
Hamiltonian of ASQi becomes

Hi(ϕi) = EJ,iσ
0
i cos (ϕi)− ESO,iσ

z
i sin (ϕi) (B2)

+
1

2
EZ,i cos (θi)σ

z
i +

1

2
EZ,i sin (θi)σ

x
i , (B3)

where EZ,i represents the magnitude of the Zeeman field
and θi is the angle between the direction of the external
Zeeman field and the zero-field spin direction of ASQi.
In the limit of EZ,i ≫ ESO,i, the eigenstates of ASQi,
expressed in its zero-field basis, become

∣∣↓i〉 = (cos (θi
2
), sin (

θi
2
)

)
and (B4)

∣∣↑i〉 = (− sin (
θi
2
), cos (

θi
2
)

)
. (B5)

Consequently, the zero-field σz
i and σx

i , expressed in the

new
{∣∣↓i〉 , ∣∣↑i〉} basis, become

σz
i = cos (θi)σ

z
i + sin (θi)σ

x
i , (B6)

σx
i = cos (θi)σ

x
i + sin (θi)σ

z
i , (B7)

where σz
i =

∣∣↑i〉 〈↑i∣∣ − ∣∣↓i〉 〈↓i∣∣ and σx
i =

∣∣↑i〉 〈↓i∣∣ +∣∣↓i〉 〈↑i∣∣. This leads to the coupling Hamiltonian, ex-
pressed in the new spin eigenbasis

HASQ =
1

2
E1σ

z
1 +

1

2
E2σ

z
2

+
1

2
J12 cos(θ1) cos(θ2)σ

z
1σ

z
2

+
1

2
J12 sin(θ1) cos(θ2)σ

x
1σ

z
2

+
1

2
J12 cos(θ1) sin(θ2)σ

z
1σ

x
2

+
1

2
J12 sin(θ1) sin(θ2)σ

x
1σ

x
2 .

(B8)

This expression comprises both transversal (XX) and
longitudinal (ZZ) coupling terms, along with ZX and
XZ terms, with amplitudes

Jzz
12 =J12 cos(θ1) cos(θ2), (B9)

Jxz
12 =J12 sin(θ1) cos(θ2), (B10)

Jzx
12 =J12 cos(θ1) sin(θ2) and (B11)

Jxx
12 =J12 sin(θ1) sin(θ2). (B12)

If the Zeeman field is perpendicular to both qubits,
θ1 = θ2 = π/2, the longitudinal, XZ and ZX terms
vanish, leaving only the transverse coupling term with
an amplitude of Jxx

12 = J12.
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[69] U. Güngördü, R. Ruskov, S. Hoffman, K. Serniak,
A. J. Kerman, and C. Tahan, Quantum dynamics
of superconductor-quantum dot-superconductor Joseph-
son junctions, arXiv e-prints 10.48550/arXiv.2402.10330
(2024).

[70] A. Bargerbos, L. J. Splitthoff, M. Pita-Vidal, J. J. Wes-
dorp, Y. Liu, P. Krogstrup, L. P. Kouwenhoven, C. K.
Andersen, and L. Grünhaupt, Mitigation of quasiparti-
cle loss in superconducting qubits by phonon scattering,
Phys. Rev. Appl. 19, 024014 (2023).

[71] V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H.
Devoret, Fluxonium: Single Cooper-pair circuit free of
charge offsets, Science 326, 113 (2009).

[72] G. Zhu, D. G. Ferguson, V. E. Manucharyan, and
J. Koch, Circuit QED with fluxonium qubits: Theory of
the dispersive regime, Phys. Rev. B 87, 024510 (2013).

[73] T. V. Stefanski and C. Kraglund Andersen, Flux-pulse-
assisted Readout of a Fluxonium Qubit, arXiv e-prints ,
arXiv:2309.17286 (2023).

[74] K. N. Nesterov and I. V. Pechenezhskiy, Measurement-
induced state transitions in dispersive qubit readout
schemes, arXiv e-prints , arXiv:2402.07360 (2024).

[75] J. E. Johnson, C. Macklin, D. H. Slichter, R. Vijay, E. B.
Weingarten, J. Clarke, and I. Siddiqi, Heralded state
preparation in a superconducting qubit, Phys. Rev. Lett.
109, 050506 (2012).
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[86] S. Vaitiekėnas, M.-T. Deng, J. Nyg̊ard, P. Krogstrup,
and C. M. Marcus, Effective g factor of subgap states in
hybrid nanowires, Phys. Rev. Lett. 121, 037703 (2018).

[87] J. J. Wesdorp, L. Grünhaupt, A. Vaartjes, M. Pita-Vidal,
A. Bargerbos, L. J. Splitthoff, P. Krogstrup, B. van Heck,
and G. de Lange, Dynamical polarization of the fermion
parity in a nanowire Josephson junction, Phys. Rev. Lett.
131, 117001 (2023).

[88] S. Krinner, S. Lazar, A. Remm, C. Andersen, N. Lacroix,
G. Norris, C. Hellings, M. Gabureac, C. Eichler, and
A. Wallraff, Benchmarking coherent errors in controlled-
phase gates due to spectator qubits, Phys. Rev. Appl.
14, 024042 (2020).

[89] L. Tosi, C. Metzger, M. F. Goffman, C. Urbina, H. Poth-
ier, S. Park, A. L. Yeyati, J. Nyg̊ard, and P. Krogstrup,
Spin-orbit splitting of Andreev states revealed by mi-
crowave spectroscopy, Phys. Rev. X 9, 10.1103/Phys-
RevX.9.011010 (2018).

https://doi.org/10.1103/PhysRevB.109.045302
https://doi.org/10.1103/PhysRevB.109.045302
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.48550/arXiv.2402.10330
https://doi.org/10.1103/PhysRevApplied.19.024014
https://doi.org/10.1126/science.1175552
https://doi.org/10.1103/PhysRevB.87.024510
https://doi.org/10.48550/arXiv.2309.17286
https://doi.org/10.48550/arXiv.2309.17286
https://doi.org/10.48550/arXiv.2402.07360
https://doi.org/10.1103/PhysRevLett.109.050506
https://doi.org/10.1103/PhysRevLett.109.050506
https://doi.org/10.1103/PhysRevLett.109.050507
https://doi.org/10.1103/PhysRevLett.109.050507
https://doi.org/10.1038/nature12513
https://doi.org/10.1103/PhysRevLett.106.180504
https://doi.org/10.1103/PhysRevA.100.010302
https://doi.org/10.1103/PhysRevA.100.010302
https://doi.org/10.1063/1.4769208
https://doi.org/10.1063/1.4769208
https://doi.org/10.1103/PhysRevApplied.5.044004
https://doi.org/10.1103/PhysRevApplied.5.044004
https://doi.org/10.1103/PhysRevApplied.11.064053
https://doi.org/10.1063/1.5129032
https://doi.org/10.1063/1.5129032
http://resolver.tudelft.nl/uuid:777aaeac-d4a8-4a5a-ad78-e4d99f6d06c8
https://doi.org/10.4233/UUID:9CD36947-5E27-4436-9BBB-D7FC5DAA6047
https://doi.org/10.4233/UUID:9CD36947-5E27-4436-9BBB-D7FC5DAA6047
https://doi.org/10.1103/PhysRevLett.121.037703
https://doi.org/10.1103/PhysRevLett.131.117001
https://doi.org/10.1103/PhysRevLett.131.117001
https://doi.org/10.1103/PhysRevApplied.14.024042
https://doi.org/10.1103/PhysRevApplied.14.024042
https://doi.org/10.1103/PhysRevX.9.011010
https://doi.org/10.1103/PhysRevX.9.011010

	Blueprint for all-to-all connected superconducting spin qubits
	Abstract
	Concept
	All-to-all selective coupling
	Quantum simulation of highly connected Ising systems
	Readout
	Sequential readout of all qubits
	Transmon readout
	Fluxonium readout

	Selective readout of one qubit
	Joint readout of all qubits

	Tune-up protocol
	Discussion
	Acknowledgments
	Higher order longitudinal coupling terms
	Transverse coupling under the presence of a perpendicular Zeeman field
	References


