
SPLITTINGS OF TORIC IDEALS OF GRAPHS

ANARGYROS KATSABEKIS AND APOSTOLOS THOMA

Abstract. Let G be a simple graph on the vertex set {v1, . . . , vn}. An algebraic object
attached to G is the toric ideal IG. We say that IG is splittable if there exist subgraphs
G1 and G2 of G such that IG = IG1 + IG2 , where both IG1 and IG2 are not equal to
IG. We show that IG is splittable if and only if it is edge splittable. We also prove that
the toric ideal of a complete bipartite graph is not splittable. In contrast, we show that
the toric ideal of a complete graph Kn is always splittable when n ≥ 4. Additionally, we
show that the toric ideal of Kn has a minimal splitting if and only if 4 ≤ n ≤ 5. Finally,
we prove that any minimal splitting of IG is also a reduced splitting.

1. Introduction

Let A = {a1, . . . ,am} be a subset of Nn such that A does not contain the zero vector.
Consider the polynomial ring K[x1, . . . , xm] over any field K. We grade K[x1, . . . , xm] by
the semigroup NA = {l1a1 + · · · + lmam} setting degA(xi) = ai for i = 1, . . . ,m. The A-
degree of a monomial xu = xu1

1 · · ·xum
m is defined by degA(x

u) = u1a1+ · · ·+umam ∈ NA.
The A-fiber of a vector b ∈ Nn is the set of all monomials in K[x1, . . . , xm] with A-degree
equal to b. The toric ideal IA is the prime ideal generated by all the binomials xu − xv

such that degA(x
u) = degA(x

v).
A recent direction in the theory of toric ideals is to decide when IA is splittable, see

[5, 6, 7]. The toric ideal IA is splittable if it has a toric splitting i.e. if there exist toric
ideals IA1 , IA2 such that IA = IA1 + IA2 and IAi ̸= IA, for all 1 ≤ i ≤ 2. To every simple
graph G one can associate the toric ideal IG. In [5] G. Favacchio, J. Hofscheier, G. Keiper,
and A. Van Tuyl consider the aforementioned problem for the toric ideal IG, namely they
study when IG has a toric splitting of the form IG = IG1 + IG2 , where IGi , 1 ≤ i ≤ 2, is
the toric ideal of Gi. More precisely, given a graph G and an even cycle C, they consider
the graph H which is formed by identifying any edge of G with an edge of C. They show
[5, Theorem 3.7] that IH = IG + IC is a splitting of IH . They also prove [5, Corollary 4.8]
that if G1 and G2 form a splitting of G along an edge e and at least one of G1 or G2 is
bipartite, then IG = IG1 +IG2 is a splitting of IG. Moreover, when IG has such a splitting,
they show [5, Theorem 4.11] how the graded Betti numbers of IG are related with those
of IG1 and IG2 . P. Gimenez and H. Srinivasan showed [6, Theorem 3.4] that if G1 and G2

form a splitting of G along an edge e, then IG splits into IG = IG1 + IG2 if and only if at
least one of G1 or G2 is bipartite.

This paper aims to answer [5, Question 5.1], namely for what graphs G can we find
graphs G1 and G2 so that their respective toric ideals satisfy IG = IG1 + IG2? More
generally, can we classify when IG is a splittable toric ideal in terms of G? We give a
complete answer to the latter question. Our approach is based on the graphs G\e and Ge

S
introduced in section 2, where e is an edge of G and S is a minimal system of binomial
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generators of IG. We show that IG is splittable if and only if there is an edge e of G and
a minimal generating set of binomials S of IG such that IG = IGe

S
+ IG\e is a splitting,

see Theorem 2.10. As an application of our results, we prove that the toric ideal of a
complete bipartite graph is not splittable (see Corollary 2.13) and the toric ideal of the
suspension of a cycle of length n ≥ 3 is splittable if and only if either n = 4 or n is odd, see
Theorem 2.14. In section 3 we study the case that G coincides with the complete graph
Kn on n vertices. We show that IKn is splittable if and only if n ≥ 4, see Theorem 3.1.
Moreover, we introduce minimal splittings and show (Theorem 3.10) that IKn does not
have a minimal splitting for n ≥ 6. In section 4 we define reduced splittings of toric ideals
and prove that every minimal splitting of IG is also reduced, see Theorem 4.7.

2. Edge splittings

In this section, we first collect important notations and definitions used in the paper.
For unexplained terminology in graph theory, we refer to [10]. Let G be a finite, connected
and undirected graph having no loops and no multiple edges on the vertex set V (G) =
{v1, . . . , vn}, and let E(G) = {e1, . . . , em} be the set of edges of G. Two edges of G are
called adjacent if they share a common vertex. To each edge e = {vi, vj} ∈ E(G), we
associate the vector ae ∈ {0, 1}n defined as follows: the ith entry is 1, the jth entry is 1,
and the remaining entries are zero. By IG we denote the toric ideal IAG

in K[e1, . . . , em],
where AG = {ae|e ∈ E(G)} ⊂ Nn.

A walk of length q of G connecting v1 ∈ V (G) with vq+1 is a finite sequence of the form
w = ({v1, v2}, {v2, v3}, . . . , {vq−1, vq}, {vq, vq+1}) with each {vi, vi+1} ∈ E(G), 1 ≤ i ≤ q.
An even (respectively, odd) walk is a walk of even (respectively, odd) length. The walk w
is called closed if vq+1 = v1. A cycle is a closed walk

w = ({v1, v2}, {v2, v3}, . . . , {vq−1, vq}, {vq, v1})
with q ≥ 3 and vi ̸= vj , for every 1 ≤ i < j ≤ q. A cut vertex is a vertex of G whose
removal increases the number of connected components of the remaining subgraph. A
graph is called biconnected if it is connected and does not contain a cut vertex. A block is
a maximal biconnected subgraph of G.

Given an even closed walk w = (ei1 , ei2 , . . . , ei2q) of G, we write Bw for the binomial

Bw =
∏q

k=1 ei2k−1
−

∏q
k=1 ei2k ∈ IG. By [13, Proposition 10.1.5] the ideal IG is generated

by all the binomials Bw, where w is an even closed walk of G. We say that w is a primitive
walk if the corresponding binomial Bw is primitive. Recall that given a set of vectors
A ⊂ Nn, the binomial xu − xv in IA is called primitive if there exists no other binomial
xw − xz ∈ IA such that xw divides xu and xz divides xv. Every minimal binomial
generator of IA is primitive, see [11].

Every even primitive walk w = (ei1 , ei2 , . . . , ei2q) partitions the set of edges of w in the
two sets E1 = {eij |j odd} and E2 = {eij |j even}. The edges of E1 are called odd edges of
w and those of E2 even. A sink of a block B is a common vertex of two odd or two even
edges of the primitive walk w which belongs to B. The primitive walk w is called strongly
primitive if it has no two sinks with distance one in any cyclic block.

Let w = (e1, e2, . . . , e2q) be an even primitive walk and f = {vi, vj} be a chord of w
with i < j, namely an edge f = {vi, vj} of G such that f /∈ E(w). Then f breaks w in two
walks: w1 = (e1, . . . , ei−1, f, ej , . . . , e2q) and w2 = (ei, . . . , ej−1, f). The chord f is called
bridge of w if there exist two different blocks Bi, Bj of w such that vi ∈ Bi and vj ∈ Bj .
The chord f is called even (respectively odd) if it is not a bridge and breaks w in two even
walks (respectively odd).
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Let f = {vi, vj} be an odd chord of w with i < j and f ′ = {vk, vl} be another odd chord
of w with k < l. We say that the odd chords f and f ′ cross effectively in w if k− i is odd
and either i < k < j < l or k < i < l < j. We call an F4 of the walk w a cycle (e, f, e′, f ′)
of length four which consists of two edges e, e′ of the walk w both odd or both even, and
two odd chords f and f ′ which cross effectively in w. We say that the odd chords f, f ′

cross strongly effectively in w if they cross effectively and they do not form an F4 in w.
A binomial Bw ∈ IG is called minimal if it belongs to a minimal system of binomial

generators of IG. Since IG is homogeneous, the graded version of Nakayama’s Lemma
implies that every minimal system of generators of IG has the same cardinality.

The next theorem provides a characterization for the minimal binomials of IG.

Theorem 2.1. ([10, Theorem 4.13]) Let w be an even closed walk of G. Then Bw is a
minimal binomial if and only if

(1) w is strongly primitive,
(2) all the chords of w are odd and there are not two of them which cross strongly

effectively and
(3) no odd chord crosses an F4 of the walk w.

A binomial Bw ∈ IG is called indispensable if every system of binomial generators of IG
contains Bw or −Bw. The next theorem provides a characterization for the indispensable
binomials of IG.

Theorem 2.2. ([10, Theorem 4.14]) Let w be an even closed walk of G. Then Bw is an
indispensable binomial if and only if w is a strongly primitive walk, all the chords of w are
odd and there are not two of them that cross effectively.

It follows from Theorems 2.1, 2.2 that the binomial Bw is not indispensable due to the
existence of F4’s in the walk w. Moreover, a minimal binomial Bw of IG is indispensable
if and only if the walk w does not have any F4.

Note that there may exist a subgraph H of the graph G such that IH = IG. This can
happen when there are edges in G that are not used in any walk w such that Bw is a
minimal binomial of IG.

Given an edge e of G, we denote by G\e the graph with the same vertex set as G and
whose edge set consists of all edges of G except e. For any set F ⊂ E(G) of edges of G,
we use G\F to denote the subgraph of G containing the same vertices as G but with all
the edges of F removed.

Let S = {Bw1 , Bw2 , . . . , Bwr} be a minimal generating set of IG. Given an edge e of G,
we define Ge

S to be the subgraph of G on the vertex set

V (Ge
S) =

⋃
1≤i≤r and e∈E(wi)

V (wi)

with edges

E(Ge
S) =

⋃
1≤i≤r and e∈E(wi)

E(wi).

Thus to form the graph Ge
S one needs first to find all binomials Bwi ∈ S, 1 ≤ i ≤ r, such

that e is an edge of the walk wi. Then we take all vertices and edges of such walks.
We use the symbol Ge

S to emphasize that the graph depends not only on the edge e
but also on the minimal system of binomial generators S, see Example 2.3. For a toric
ideal IG with a unique minimal system of binomial generators S, we will simply write Ge

instead of Ge
S .
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Example 2.3. Recall that the complete graph Kn is the graph with n vertices in which
each vertex is connected to every other vertex. Let G = K4 be the complete graph
on the vertex set {v1, . . . , v4}. Let w1 = (ε12, ε23, ε34, ε14), w2 = (ε12, ε24, ε34, ε13) and
w3 = (ε23, ε13, ε14, ε24), where εij = {vi, vj} for 1 ≤ i < j ≤ 4. Then S = {Bw1 =
ε12ε34 − ε23ε14, Bw2 = ε12ε34 − ε24ε13} and T = {Bw1 , Bw3 = ε23ε14 − ε13ε24} are minimal
generating sets of IG. Let e = ε23, then Ge

S is the cycle given by the walk w1 while Ge
T is

the whole graph G.

Theorem 2.4. Let G be a graph and e be an edge of G. Let S = {Bw1 , Bw2 , . . . , Bwr} be
a minimal generating set of IG, then IG = IGe

S
+ IG\e.

Proof. We have that G\e ⊂ G and Ge
S ⊂ G, so IG\e ⊂ IG and IGe

S
⊂ IG. Thus IGe

S
+IG\e ⊂

IG. Let Bwi , 1 ≤ i ≤ r, be a minimal binomial in S. Then there are two cases:

(1) e ∈ E(wi). Then Bwi belongs to the ideal IGe
S
.

(2) e ̸∈ E(wi). Then Bwi belongs to the ideal IG\e.

Consequently IG ⊂ IGe
S
+ IG\e. □

Example 2.5. We return to Example 2.3. We have that IGe
S
=< Bw1 > and IGe

T
= IG.

Also G\e is the graph with edges ε12, ε34, ε14, ε13, ε24, thus IG\e =< Bw2 >. Then IG =
IGe

S
+IG\e is a splitting of IG, while IG = IGe

T
+IG\e is not a splitting of IG since IGe

T
= IG.

Definition 2.6. A splitting IG = IG1 + IG2 of IG is called edge splitting if there exist an
edge e of G and a minimal generating set S of IG such that G1 = Ge

S and G2 = G\e or
G1 = G\e and G2 = Ge

S. The toric ideal IG is called edge splittable if there exists an edge
splitting of IG.

Remark 2.7. It is not necessary for all splittings (if any) of the toric ideal of a graph
to be edge splittings. Consider the complete graph K5 on the vertex set {v1, . . . , v5}.
Let εij = {vi, vj} for 1 ≤ i < j ≤ 5. Consider the subgraphs G1 = K5\{ε12, ε34} and
G2 = K5\{ε14, ε23} of K5. We have that S = {ε13ε24 − ε14ε23, ε14ε25 − ε15ε24, ε23ε45 −
ε24ε35, ε13ε25 − ε15ε23, ε13ε45 − ε14ε35} is a generating set of IG1 and T = {ε12ε34 −
ε13ε24, ε24ε35 − ε25ε34, ε13ε45 − ε15ε34, ε12ε45 − ε15ε24, ε12ε35 − ε13ε25} is a generating set
of IG2 . Also, S ∪ T is a generating set of IK5 and IGi ̸= IK5 for all 1 ≤ i ≤ 2, so
IK5 = IG1 + IG2 is a splitting of IK5 which is not an edge splitting.

Next two Theorems provide a necessary and sufficient condition for a toric ideal IG to
be splittable in terms of the graph G.

Theorem 2.8. The ideal IG is edge splittable if and only if there is a minimal system
of binomial generators S = {Bw1 , . . . , Bwr} of IG with r ≥ 2 and an edge e ∈ E(wi),
1 ≤ i ≤ r, such that IGe

S
̸= IG.

Proof. (=⇒) Suppose that the ideal IG is edge splittable, then there exist a minimal
system of binomial generators S = {Bw1 , . . . , Bwr} of IG with r ≥ 2 and an edge e of G
such that IG = IGe

S
+ IG\e is a splitting. Thus IG\e ̸= IG, so there is Bwi ∈ IG, 1 ≤ i ≤ r,

such that Bwi /∈ IG\e and therefore e ∈ E(wi).
(⇐=) Suppose that there is a minimal system of binomial generators S = {Bw1 , . . . , Bwr}
of IG with r ≥ 2 and an edge e ∈ E(wi), 1 ≤ i ≤ r, such that IGe

S
̸= IG. Then from

Theorem 2.4 we have that IG = IGe
S
+ IG\e. Since e ∈ E(wi), we have that Bwi ̸∈ IG\e

and therefore IG\e ̸= IG. From the hypothesis, it holds that IGe
S
̸= IG. Consequently, IG

is edge splittable. □
4



Figure 1. The graph G8

Example 2.9. Let Pn be the graph with 2n + 1 vertices: the n vertices of a regular
n-gon, the n midpoints of the edges of the polygon and the center of the polygon. The
graph Pn has 3n edges: the n radii of the inscribed circle in the polygon corresponding
to the midpoints of the edges of the polygon and the 2n segments joining the vertices of
the polygon to the two adjacent midpoints. Consider the graph Gn which is the cartesian
product of the graph Pn with a single edge. Thus Gn has 4n+2 vertices and 8n+1 edges.
In Figure 1 we plot the graph G8 with 34 vertices and 65 edges. Since Gn is bipartite,
we have, from [8, Theorem 2.3], that IGn has a unique minimal system of generators
consisting of all binomials Bw, where w is an even cycle with no chords. The graph Gn

has exactly 5n + 2 cycles without a chord and all of them are of length 4, except two of
length 2n. Note that G8 has exactly 42 cycles with no chords, see Figure 1. Let e be
the edge of Gn joining the two centers of the polygons. We plot in Figure 2 the graph
G8\e and in Figure 3 the graph Ge

8. Note that the toric ideal of the graph G8\e has 62
minimal binomials, while the toric ideal of Ge

8 has 8 minimal binomials. In general, IGn\e
has 4n+

(
n
2

)
+ 2 minimal binomials, while the ideal IGe

n
has n minimal binomials. Notice

that the
(
n
2

)
minimal binomials of IGn\e correspond to cycles in Gn\e of length 6 that in

the graph Gn had e as an even chord. It follows from Theorem 2.8 that IGn = IGe
n
+ IG\e

is an edge splitting. Actually, for each edge b of Gn, there is a splitting IGn = IGb
n
+ IG\b

of IGn .

Next we state and prove the main result of this article, namely if the toric ideal of a
graph has a splitting then it has also an edge splitting.

Theorem 2.10. The toric ideal IG is splittable if and only if it is edge splittable.

Proof. (⇐=) If IG is edge splittable, then IG = IGe
S
+IG\e is a splitting of IG, and therefore

it is splittable.
(=⇒) Suppose that IG is splittable and let IG = IG1 + IG2 be a splitting of IG. Notice
that IG1 ⫋ IG and IG2 ⫋ IG. Let {f1, . . . , fs} be a binomial generating set of IG1 and
{g1, . . . , gt} be a binomial generating set of IG2 . Then {f1, . . . , fs, g1, . . . , gt} is a generating
set of IG, therefore it contains a minimal binomial generating set S = {Bw1 , . . . , Bwr} of
IG, since toric ideals of graphs are homogeneous. Note that r ≥ 2, since IG1 and IG2 are
nonzero ideals. But S ⊂ {f1, . . . , fs, g1, . . . , gt}, so each Bwi , 1 ≤ i ≤ r, belongs to at
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Figure 2. The graph G8\e

Figure 3. The graph Ge
8

least one of IG1 , IG2 . If for every 1 ≤ i ≤ r it holds that Bwi ∈ IG2 , then IG2 = IG a
contradiction. Thus there exists 1 ≤ i ≤ r such that Bwi ∈ IG1 and Bwi /∈ IG2 , so there is
e ∈ E(wi) such that e /∈ E(G2). For every even closed walk wj such that e ∈ E(wj) we
have that Bwj ∈ IG1 , thus IGe

S
⊂ IG1 and therefore IGe

S
̸= IG since IG1 ⫋ IG. By Theorem

2.8 the toric ideal IG is edge splittable. □

Example 2.11. Consider the graph G on the vertex set {v1, . . . , v10} with edges e1 =
{v1, v2}, e2 = {v2, v3}, e3 = {v3, v4}, e4 = {v4, v5}, e5 = {v5, v6}, e6 = {v6, v7}, e7 =
{v7, v8}, e8 = {v8, v9}, e9 = {v9, v10}, e10 = {v1, v10}, e11 = {v1, v5}, e12 = {v2, v6} and
e13 = {v6, v8}. Then S = {e1e5 − e11e12, e1e9e13 − e8e10e12, e5e8e10 − e9e11e13, e2e4e6e13 −
e3e5e7e12, e2e4e6e8e10 − e3e7e9e11e12} is a minimal generating set of IG. For the edge
f = e1 of G we have that IG\f =< e5e8e10 − e9e11e13, e2e4e6e13 − e3e5e7e12, e2e4e6e8e10 −
e3e7e9e11e12 >. Moreover E(Gf

S) = {e1, e5, e8, e9, e10, e11, e12, e13} and also I
Gf

S
=< e1e5−

e11e12, e1e9e13 − e8e10e12, e5e8e10 − e9e11e13 >. Thus IG ̸= I
Gf

S
and therefore IG = I

Gf
S
+

IG\f is a splitting of IG by Theorem 2.8.

Example 2.12. In [6, Example 3.5] P. Gimenez and H. Srinivasan provide an example of
a graph G obtained by gluing two bow ties G1 and G2 along an edge. Since neither G1
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nor G2 is bipartite, IG1 + IG2 is not a splitting of IG by [6, Theorem 3.4(1)]. The ideal IG
has a unique minimal system of generators S consisting of five binomials and IGe

S
= IG,

for every edge e of G. By Theorem 2.8, the ideal IG is not edge splittable, and therefore it
is not splittable by Theorem 2.10. Thus IG does not have a splitting in the form IH1 +IH2

for any subgraphs H1, H2 of G. It is worth mentioning that if a graph G is a gluing of two
arbitrary disjoint connected graphs G1 and G2, bipartite or not, along an edge, then from
[6, Theorem 3.4(3)] there exists a 3-uniform hypergraph H such that IH = IG1 + IG2 .

Theorems 2.8 and 2.10 are easier to apply when IG has a unique minimal system of
binomial generators. In particular, this is true for the toric ideal of a bipartite graph since
it is minimally generated by all binomials of the form Bw, where w is an even cycle with
no chords, see [8, Theorem 2.3].

A graph G is called a complete bipartite graph if its vertex set can be partitioned into
two subsets V1 and V2 such that each edge of G connects a vertex of V1 to a vertex of V2. It
is denoted by Km,n, where m and n are the numbers of vertices in V1 and V2 respectively.
The next corollary shows that toric ideals of complete bipartite graphs do not admit a
splitting.

Corollary 2.13. The toric ideal of Km,n is not splittable.

Proof. Let V1 = {x1, . . . , xm}, V2 = {y1, . . . , yn} be the bipartition of the complete
bipartite graph Km,n and E(Km,n) = {bij |1 ≤ i ≤ m, 1 ≤ j ≤ n}, where bij = {xi, yj}.
Then IKm,n is minimally generated by the 2 × 2 minors of the matrix M = (bij), see
[13, Proposition 10.6.2]. Thus IKm,n is minimally generated by the set S of all binomials
bijbkl − bilbkj which are in the form Bw, where w is a cycle in Km,n of length 4. Since
Km,n is bipartite, the set S is the unique minimal system of binomial generators of IKm,n .

Notice that if m = 1 or n = 1, then IKm,n = {0}. Moreover if m = 2 and n = 2, then
IKm,n is minimally generated by b11b22 − b12b21 and therefore it is not splittable. Assume
that m ≥ 2, n ≥ 2 and IKm,n ̸= IK2,2 . Let e = bij be any edge of Km,n. We claim that
Ke

m,n = Km,n which implies the equality IKe
m,n

= IKm,n . By definition Ke
m,n is a subgraph

of Km,n. It suffices to show that all edges of Km,n belong also to the graph Ke
m,n. Let

ξ = bkl ∈ E(Km,n). There are four cases:

(1) k = i and l = j. Then ξ = e which belongs to Ke
m,n.

(2) k = i and l ̸= j. Let 1 ≤ i′ ≤ m with i′ ̸= i. Consider the cycle w = (e, ξ, bi′l, bi′j),
then Bw ∈ S and therefore ξ belongs to Ke

m,n.
(3) k ̸= i and l = j. Let 1 ≤ j′ ≤ n with j′ ̸= j. Consider the cycle w = (e, ξ, bkj′ , bij′),

then Bw ∈ S and therefore ξ belongs to Ke
m,n.

(4) k ̸= i and l ̸= j. Consider the cycle w = (e, bil, ξ, bkj), then Bw ∈ S and therefore
ξ belongs to Ke

m,n.

We conclude that in all cases ξ belongs to Ke
m,n, so Ke

m,n = Km,n. From Theorem 2.8 it
follows that IKm,n is not edge splittable, and therefore IKm,n is not splittable by Theorem
2.10. □

The suspension Ĝ of a graph G is the graph obtained from G by adding a new vertex
adjacent to all vertices of G. Given a cycle Cn in G of length n ≥ 3, the next theorem
determines when the toric ideal I

Ĉn
is splittable.

Theorem 2.14. Let Cn be a cycle of length n ≥ 3 and Ĉn be the suspension of Cn.

(1) Suppose that n is even. Then I
Ĉn

is splittable if and only if n = 4.
7



(2) If n is odd, then I
Ĉn

is splittable.

Proof. Let Cn = ({v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {v1, vn}) and G = Ĉn be the suspension
of Cn obtained by adding a new vertex vn+1 such that {vi, vn+1} is an edge of G, for every
1 ≤ i ≤ n.
(1) Suppose that n ≥ 4 is even. From [9, Proposition 5.5] there is a bipartite graph H
such that IG = IH , thus IG has a unique minimal system of generators. We distinguish
the following cases.

(a) n = 4. Let C4 = (ε12 = {v1, v2}, ε23 = {v2, v3}, ε34 = {v3, v4}, ε14 = {v1, v4}) and
εi5 = {vi, v5} for 1 ≤ i ≤ 4. Then

S = {ε12ε45 − ε14ε25, ε12ε35 − ε23ε15, ε12ε34 − ε23ε14, ε23ε45 − ε34ε25, ε15ε34 − ε14ε35}

is a minimal generating set of IG. Let e = ε15, then E(Ge) = {ε12, ε14, ε15, ε23, ε34, ε35}.
Notice that ε12ε45 − ε14ε25 ∈ IG and ε12ε45 − ε14ε25 /∈ IGe , so IGe ̸= IG. Also e is
an edge of the cycle w = (ε12, ε23, ε35, ε15). Thus IG = IGe + IG\e is a splitting of
IG by Theorem 2.8.

(b) n > 4. Let e be an edge of G then there are two cases:
(i) e is an edge of the cycle Cn, for the sake of simplicity let e = ε12. We will show

that G = Ge. Since Cn is a cycle with no chords, BCn is a minimal binomial of
IG by Theorem 2.2, and therefore E(Cn) ⊂ E(Ge). Consider now the odd cy-
cles w1 = (e, {v2, vn+1}, {vn+1, v1}) and w2 = ({vi, vi+1}, {vi+1, vn+1}, {vn+1, vi}),
where 4 ≤ i ≤ n − 2, which share only one vertex, namely vn+1. The even
closed walk w = (w1, w2) has no chords and no bridges, and therefore Bw

is a minimal binomial of IG by Theorem 2.2. Thus {vi, vn+1} ∈ E(Ge) for
i = 1, 2, 4, 5, . . . , n− 1. Consider now the cycle

γ = ({vn+1, v1}, e, {v2, v3}, {v3, vn+1})

and notice that γ has exactly one odd chord, namely {v2, vn+1}, so from The-
orem 2.2 Bγ is a minimal binomial of IG. Thus {v3, vn+1} ∈ E(Ge). Consider
the cycle δ = ({vn+1, v2}, e, {v1, vn}, {vn, vn+1}) and notice that δ has exactly
one odd chord, namely {v1, vn+1}. By Theorem 2.2 Bδ is a minimal binomial
of IG. Thus {vn, vn+1} ∈ E(Ge) and therefore E(G) = E(Ge). Consequently
G = Ge, so from Theorems 2.8, 2.10 the ideal IG is not splittable.

(ii) e = {vi, vn+1} with 1 ≤ i ≤ n. For the sake of simplicity we let i = 1,
namely e = {v1, vn+1}. Consider the odd cycles w1 = (e, {v2, vn+1}, {v1, v2})
and w2 = ({vi, vi+1}, {vi+1, vn+1}, {vn+1, vi}), where 4 ≤ i ≤ n − 2, which
share only one vertex, namely vn+1. The even closed walk w = (w1, w2)
has no chords and no bridges, so Bw is a minimal binomial of IG by The-
orem 2.2. Thus {vi, vn+1} ∈ E(Ge) for i = 2, 4, 5, . . . , n − 1. Moreover
{vi, vi+1} ∈ E(Ge) for i = 1, 4, 5, . . . , n − 2. Consider now the cycle γ =
(e, {v1, v2}, {v2, v3}, {v3, vn+1}) and notice that it has exactly one odd chord,
namely {v2, vn+1}. By Theorem 2.2 Bγ is a minimal binomial of IG. Thus
{v2, v3} ∈ E(Ge) and also {v3, vn+1} ∈ E(Ge). Consider the cycle δ =
({v2, vn+1}, e, {v1, vn}, {vn, vn+1}) and notice that δ has exactly one odd chord,
namely {v1, v2}. By Theorem 2.2 Bδ is a minimal binomial of IG. Thus
{v1, vn} ∈ E(Ge) and also {vn, vn+1} ∈ E(Ge). Furthermore

µ = ({vn−1, vn}, {vn, v1}, e, {vn−1, vn+1})
8



is an even cycle with exactly one odd chord, namely {vn, vn+1}. By The-
orem 2.2 Bµ is a minimal binomial of IG, and therefore {vn−1, vn} is an
edge of Ge. Consider the odd cycles ζ1 = (e, {v1, vn}, {vn, vn+1}), ζ2 =
({v3, v4}, {v4, vn+1}, {v3, vn+1}) and let ζ = (ζ1, ζ2). Then Bζ is a minimal
binomial of IG by Theorem 2.2, since ζ does not have any chords or bridges,
and therefore {v3, v4} ∈ E(Ge). Thus E(G) = E(Ge), so G = Ge and there-
fore IG is not splittable by Theorems 2.8, 2.10.

(2) Suppose that n is odd. Then any odd cycle of G either coincides with Cn or has at least
three vertices, namely vn+1 and two vertices of Cn. Thus G has no two odd vertex disjoint

cycles. For n = 3 we have that Ĉ3 is the complete graph on the vertex set {v1, . . . , v4},
so I

Ĉ3
is splittable by Example 2.5. Suppose that n ≥ 5. Consider a minimal binomial

Bw ∈ IG. For the walk w there are two cases:

(1) w is a cycle of length 4 with exactly one odd chord. Then Bw is indispensable of
IG by Theorem 2.2.

(2) w has no chords or bridges and it is of the form w = (w1, w2) where w1, w2 are odd
cycles of length 3 intersecting in exactly one vertex, namely vn+1. By Theorem
2.2 the binomial Bw is indispensable of IG.

Thus IG has a unique minimal system of generators.
Let e = {v1, v2}, then there is no cycle of length 4 in G containing the edges e

and ε34 = {v3, v4}. Consider the odd cycles γ1 = (e, {v2, vn+1}, {v1, vn+1}) and γ2 =
(ε34, {v4, vn+1}, {v3, vn+1}) intersecting in vn+1. Let γ = (γ1, γ2), then Bγ is not a mini-
mal binomial of IG since there is a bridge {v2, v3}. Thus the edge ε34 does not belong to
E(Ge). Consider the even cycle ζ = ({v2, v3}, {v3, v4}, {v4, vn+1}, {v2, vn+1}), then Bζ is
a minimal binomial of IG and also Bζ /∈ IGe . Thus IG ̸= IGe and therefore IG is splittable
by Theorem 2.8. □

3. The complete graph and minimal splittings

In this section, we study the special case of toric ideals of complete graphs. In contrast
to toric ideals of (complete) bipartite graphs which always have a unique minimal set
of binomial generators, toric ideals of complete graphs have a huge number of different
minimal systems of binomial generators.

Let n ≥ 4 be an integer and Kn be the complete graph on the vertex set {v1, . . . , vn}
with edges {εij |1 ≤ i < j ≤ n}, where εij = {vi, vj}. By [12, Theorem 3.3] the set

T = {εijεkl − εilεjk, εikεjl − εilεjk|1 ≤ i < j < k < l ≤ n}
is a minimal generating set of IKn . Let {e1, . . . , en} be the canonical basis of Rn. Since T
is a minimal generating set of IKn , the only AKn-fibers contributing to minimal generators
are those consisting of all monomials with AKn-degree ei + ej + ek + el, where 1 ≤ i <
j < k < l ≤ n. There are

(
n
4

)
such fibers and each one consists of three monomials,

namely εijεkl, εilεjk and εikεjl, which have no common factor other than 1. Therefore to
generate the ideal IKn we need to take any two of the three binomials εijεkl−εilεjk, εikεjl−
εilεjk, εijεkl − εikεjl, for every 1 ≤ i < j < k < l ≤ n, see [2, 4] for more details. The
monomials εijεkl, εilεjk and εikεjl, where 1 ≤ i < j ≤ n, are indispensable monomials,
namely each one is a monomial term of at least one binomial in every minimal system
of binomial generators of IKn . Thus every minimal system of binomial generators of IKn

consists of 2
(
n
4

)
binomials. By [2, Theorem 2.9] the ideal IKn has 3(

n
4) different minimal

systems of binomial generators, which is a huge number even for a small n.
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Theorem 3.1. The toric ideal of Kn is splittable if and only if n ≥ 4.

Proof. For n ∈ {1, 2, 3} we have that IKn = {0}, so IKn is not splittable. Suppose that
n ≥ 4. From the analysis above we deduce that

S = {εijεkl − εikεjl, εilεjk − εikεjl|1 ≤ i < j < k < l ≤ n}
is a minimal generating set for IKn . The set S has a nice geometric interpretation, see [3].

Let G = Kn and e = ε12. First we show that the graph Ge
S contains all edges of G,

except perhaps the edges ε1n and ε23. Let εij be an edge of G where {i, j}∩{1, 2} = ∅ and
3 ≤ i < j ≤ n. Since {v1, v2, vi, vj} is a set of vertices of Kn, the binomials ε12εij − ε1iε2j
and εi2ε1j − ε1iε2j belong to S, thus εij is an edge of Ge

S . From the above binomials we
also deduce that ε1i, for 3 ≤ i ≤ n− 1, and ε2j , for 4 ≤ j ≤ n, are edges of Ge

S . With the
possible exception of the edges ε1n and ε23, the graph Ge

S contains all edges of G. Suppose
that ε1n is an edge of Ge

S , so there exists a binomial B ∈ S in four variables which contains
the variables ε12 and ε1n. Then B = ε12εin−ε1nε2i where 3 ≤ i ≤ n−1. But {v1, v2, vi, vn}
is a set of vertices of Kn which contributes the binomials ε12εin−ε1iε2n and ε1nε2i−ε1iε2n
in S. Thus B does not belong to S, a contradiction. Consequently ε1n is not an edge of
Ge

S . Similar arguments show that ε23 is not an edge of Ge
S . Since ε12ε3n − ε1nε23 ∈ IG

and ε12ε3n − ε1nε23 ̸∈ IGe
S
, we get IGe

S
̸= IG and therefore IG = IGe

S
+ IG\e is a splitting

of IG by Theorem 2.8. □

Definition 3.2. Let IG = IG1 + IG2 be a splitting of IG, S = {f1, . . . , fr} be a minimal
system of binomial generators of IG1 and T = {g1, . . . , gt} be a minimal system of binomial
generators of IG2. We say that the splitting IG = IG1 + IG2 is a minimal splitting of IG if
{f1, . . . , fr, g1, . . . , gt} is a minimal system of generators of IG.

Remark 3.3. (1) The property of being minimal splitting does not depend on the minimal
systems of generators chosen in the definition. Suppose that {f ′

1, . . . , f
′
r} is a minimal

system of binomial generators of IG1 and {g′1, . . . , g′t} is a minimal system of binomial
generators of IG2 . But IG = IG1 + IG2 , so {f ′

1, . . . , f
′
r, g

′
1, . . . , g

′
t} is a generating set of IG

consisting of r + t elements and therefore it is a minimal system of generators.
(2) Let IG = IG1 + IG2 be a minimal splitting of IG. For any fi ∈ S, 1 ≤ i ≤ r, we have
that neither fi nor −fi belongs to T . For any gj ∈ T , 1 ≤ j ≤ t, we have that neither gj
nor −gj belongs to S.
(3) All the splittings which appeared in [5, 6] are minimal splittings.
(4) The splitting of IGn in Example 2.9 is not minimal, since the ideal IGn\e has a minimal

system of generators with 4n +
(
n
2

)
+ 2 binomials, while the ideal IGe

n
has a minimal

system of generators with n binomials and the ideal IGn is generated minimally with
5n+ 2 binomials.

Example 3.4. Let K4 be the complete graph on the vertex set {v1, . . . , v4}. Let G1 =
K4\{ε12, ε34} and G2 = K4\{ε14, ε23} be subgraphs of K4, then IK4 = IG1 + IG2 is a
minimal splitting of IK4 , since IG1 =< ε13ε24 − ε14ε23 >, IG2 =< ε13ε24 − ε12ε34 > and
IK4 =< ε13ε24 − ε14ε23, ε13ε24 − ε12ε34 >.

We will show that the toric ideal of Kn has no minimal splitting for n ≥ 6.

Proposition 3.5. Let n ≥ 4 be an integer and w = (a, b, c, d) be an even cycle of Kn.
Then

IKn = IKn\{a,c} + IKn\{b,d}

is a splitting of IKn .
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Proof. Since Kn is the complete graph, the cycle w has two chords, namely e and f . Then
ac − ef ∈ IKn does not belong to IKn\{a,c}, thus IKn\{a,c} ̸= IKn . Also IKn\{b,d} ̸= IKn

since ef − bd ∈ IKn does not belong to IKn\{b,d}.
It remains to show that IKn ⊂ IKn\{a,c} + IKn\{b,d}. Let Bγ be a binomial belonging

to the set S defined in the proof of Theorem 3.1. Clearly if Bγ belongs to IKn\{a,c} or
IKn\{b,d}, then Bγ belongs to IKn\{a,c} + IKn\{b,d}. Suppose that Bγ does not belong to
IKn\{a,c} or IKn\{b,d}. Then γ contains at least one edge from the set {a, c}, say a, and at
least one edge from the set {b, d}, say b. Let γ = (a, b, c′, d′) and e′, f ′ be the chords of
the walk γ. Notice that ac′ − e′f ′ belongs to IKn\{b,d} and bd′ − e′f ′ belongs to IKn\{a,c}.
Thus

Bγ = ac′ − bd′ = (ac′ − e′f ′)− (bd′ − e′f ′) ∈ IKn\{a,c} + IKn\{b,d}.

So IKn = IKn\{a,c} + IKn\{b,d} is a splitting. □

Remark 3.6. Let IA = IA1 + IA2 be a splitting of IA. If there exists a set A′
1 such

that IA1 ⊂ IA′
1
⫋ IA then IA = IA′

1
+ IA2 is also a splitting. By Proposition 3.5, IKn =

IKn\{a,c} + IKn\{b,d} is a splitting of IKn , and therefore IKn = IKn\a + IKn\b, IKn =
IKn\{a,c} + IKn\b and IKn = IKn\a + IKn\{b,d} are also splittings of IKn .

Proposition 3.7. Let n ≥ 4 be an integer and IKn = IG1 + IG2 be a splitting of IKn. If
e is an edge of Kn which does not belong to G1 and f is an edge of Kn which does not
belong to G2, then the edges e, f are adjacent in Kn. Moreover, if h is another edge of Kn

which does not belong to G2, then the edges f, h are not adjacent in Kn.

Proof. Suppose that the edges e, f are not adjacent. Let e = {vi, vj}, f = {vk, vl} and
e ∩ f = ∅. Let {g1, . . . , gr} be a system of binomial generators of IG1 and {h1, . . . , hs}
be a system of binomial generators of IG2 , then {g1, . . . , gr, h1, . . . , hs} is a generating
set of IG. Therefore we can find a minimal system of generators V of IKn formed by
binomials belonging to either IG1 or IG2 . From the introduction of section 3 the monomial
ef = εijεkl is indispensable of IKn , so it is a monomial term in a binomial Bw of IG1 or
IG2 . Since e is not an edge of G1, we have that Bw /∈ IG1 . But f is not an edge of G2,
so Bw /∈ IG2 . Thus Bw does not belong to IG1 or IG2 , a contradiction. Consequently, the
edges e, f are adjacent.
Let e = εij and f = εjk. Suppose that h is another edge of Kn which does not belong to
G2. Since e does not belong to G1, we have, from the first part of the Proposition, that
the edges e, h are adjacent. We claim that f and h are not adjacent. Suppose that f ,
h are adjacent. Since h is adjacent to both e and f , there are two cases for the edge h,
namely either h = εik or h = εjl for an index l different than i, j, k.

(1) h = εik. Let l be an index different than i, j, k. In a previous step we found that
there is a minimal system of generators V formed by binomials belonging to either
IG1 or IG2 . Moreover, V must contain exactly two of the following three binomials
εijεkl − εilεjk = eεkl − εilf, εikεjl − εilεjk = hεjl − εilf, εijεkl − εikεjl = eεkl − hεjl.
But none of them belongs to IG2 , since f, h ̸∈ E(G2), while eεkl−εilf and eεkl−hεjl
do not belong to IG1 , since e ̸∈ E(G1). A contradiction.

(2) h = εjl. We argue similarly as above. The set V must contain two of the following
three binomials eεkl − εilf, εikh − εilf, eεkl − εikh. But none of them belongs to
IG2 , since f, h ̸∈ E(G2), while eεkl − εilf and eεkl − εikh do not belong to IG1 ,
since e ̸∈ E(G1). A contradiction.

Consequently, the edges f, h are not adjacent. □
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Remark 3.8. From Proposition 3.7 we deduce that any of the graphs G1, G2 contains
all edges of Kn except at most two. Suppose not, and let e = εij ̸∈ E(G1), {f1, f2, f3} ⊂
E(Kn) such that fl ̸∈ E(G2), for every 1 ≤ l ≤ 3. By Proposition 3.7, any of the edges
f1, f2, f3 is adjacent to e = εij , so vi is a vertex of the edges f1, f2, f3 or vj is a vertex of
the edges f1, f2, f3. Thus either vi or vj is a vertex of at least two of the edges f1, f2, f3,
and therefore two of the edges f1, f2, f3 are adjacent, a contradiction to the second part
of Proposition 3.7.

Proposition 3.9. Let n ≥ 4 be an integer and IKn = IG1 + IG2 be a splitting of IKn.
Then there exists a cycle w = (a, b, c, d) in Kn such that

(1) G1 = Kn\a and G2 = Kn\b or
(2) G1 = Kn\{a, c} and G2 = Kn\b or
(3) G1 = Kn\a and G2 = Kn\{b, d} or
(4) G1 = Kn\{a, c} and G2 = Kn\{b, d}.

Proof. Since IG1 ⫋ IKn , there exists an edge a of Kn such that a is not an edge of G1.
Thus IG1 ⊂ IKn\a. Since IG2 ⫋ IKn , there exists an edge b of Kn such that b is not an edge
of G2. Thus IG2 ⊂ IKn\b. By Proposition 3.7, the edges a, b are adjacent. We distinguish
the following cases:

(1) G1 = Kn\a andG2 = Kn\b. Since a, b are adjacent edges in the complete graphKn

with n ≥ 4 vertices, there exists a cycle w of length 4 in Kn with two consecutive
edges a, b.

(2) G1 ⫋ Kn\a and G2 = Kn\b. In this case, there exists an edge c of Kn\a such that
c is not an edge of G1. By Proposition 3.7, the edges a, c do not share a common
vertex and they are adjacent to b. Furthermore, G1 contains all edges of Kn except
at most two. Thus G1 = Kn\{a, c} and there exists a cycle w of length 4 in Kn

with three consecutive edges a, b, c.
(3) G1 = Kn\a and G2 ⫋ Kn\b. In this case, there exists an edge d of Kn\b such that

d is not an edge of G2. By Proposition 3.7, the edges b, d do not share a common
vertex and they are adjacent to a. Moreover, G2 contains all edges of Kn except
at most two. Thus G2 = Kn\{b, d} and there exists a cycle w of length 4 in Kn

with three consecutive edges d, a, b.
(4) G1 ⫋ Kn\a and G2 ⫋ Kn\b. Then there exists an edge c of Kn\a and an edge d of

Kn\b such that c is not an edge of G1 and d is not an edge of G2. By Proposition
3.7, the edges a, c do not share a common vertex and they are adjacent to both
b, d. Additionally G1 contains all edges of Kn except at most two. By the same
proposition, the edges b, d do not share a common vertex and they are adjacent
to both a, c. Furthermore G2 contains all edges of Kn except at most two. Thus
w = (a, b, c, d) is a cycle in Kn, G1 = Kn\{a, c} and G2 = Kn\{b, d}. □

Theorem 3.10. Let n ≥ 4 be an integer. Then IKn has a minimal splitting if and only if
4 ≤ n ≤ 5.

Proof. Suppose first that n = 4. Then IK4 = IK4\{ε12,ε34} + IK4\{ε14,ε23} is a minimal
splitting of IK4 by Example 3.4. Suppose now that n = 5 and let {v1, . . . , v5} be the
vertex set of K5. Let G1 = K5\{{v1, v2}, {v3, v4}} and G2 = K5\{{v1, v4}, {v2, v3}}
be subgraphs of K5. Then S = {ε13ε24 − ε14ε23, ε14ε25 − ε15ε24, ε23ε45 − ε24ε35, ε13ε25 −
ε15ε23, ε13ε45−ε14ε35} is a minimal generating set of IG1 and T = {ε12ε34−ε13ε24, ε24ε35−
ε25ε34, ε13ε45 − ε15ε34, ε12ε45 − ε15ε24, ε12ε35 − ε13ε25} is a minimal generating set of IG2 .
Also for any binomial B ∈ S we have that neither B nor −B belongs to T , while for any
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binomial B′ ∈ T we have that neither B′ nor −B′ belongs to S. Moreover S ∪ T is a
minimal generating set of IK5 , and therefore IK5 = IG1 + IG2 is a minimal splitting of IK5 .

Finally assume that n ≥ 6 and let IKn = IG1 + IG2 be a minimal splitting of IKn . Then
there exists a cycle w = (a, b, c, d) of Kn such that G1 and G2 are of one of the four types of
Proposition 3.9. Without loss of generality we can assume that a = {v1, v2}, b = {v2, v3},
c = {v3, v4} and d = {v1, v4}. Since n ≥ 6, the graph Kn has at least two more vertices,
say v5 and v6. Notice that the complete subgraph of Kn on the vertex set {v1, v3, v5, v6}
is also a subgraph of both G1 and G2. Let S be a minimal system of binomial generators
of IG1 and T be a minimal system of binomial generators of IG2 . Both S and T must
contain exactly two of the binomials ε13ε56 − ε15ε36, ε13ε56 − ε16ε35, ε15ε36 − ε16ε35. Thus
S and T have at least one minimal generator in common which contradicts the fact that
IKn = IG1 + IG2 is a minimal splitting of IKn . Consequently, for n ≥ 6 the ideal IKn has
no minimal splitting. □

4. Reduced splittings

In this section, we introduce reduced splittings of toric ideals and show that every
minimal splitting of the toric ideal of a graph is also a reduced splitting.

Definition 4.1. We say that the splitting IA = IA1 + IA2 of IA is reduced if for any toric
ideals IB1 ⊂ IA1 and IB2 ⊂ IA2 with IA = IB1 + IB2 it holds that IB1 = IA1 and IB2 = IA2 .

A basic step towards determining all splittings of the toric ideal of a graph is to find its
reduced splittings. All other splittings are found from a reduced splitting IG = IG1 + IG2

by adding edges to one of G1, G2 or both to get graphs G′
1, G

′
2, as long as IG = IG′

1
+ IG′

2

is a splitting.

Remark 4.2. The reduced splittings of IKn are those of the last type in Proposition 3.9,
namely IKn = IG1 + IG2 where G1 = Kn\{a, c} and G2 = Kn\{b, d}. The other two types
in Proposition 3.9 can be taken from the reduced splittings, by adding edges.

Proposition 4.3. If IG is splittable, then it has at least one reduced splitting.

Proof. Any splitting IG = IG′
1
+ IG′

2
of IG is either reduced or there exist a splitting

IG = IG1 + IG2 such that IG1 ⊂ IG′
1
and IG2 ⊂ IG′

2
, where G1 is a proper subgraph of

G′
1 or/and G2 is a proper subgraph of G′

2. In the latter case, G1 has fewer edges than G′
1

or/and G2 has fewer edges than G′
2. This procedure cannot be repeated indefinitely, since

the number of edges of G is finite. □

To understand the structure of reduced splittings one has to generalize first the notion
of edge splitting by replacing the edge with a set of edges.

Let S = {Bw1 , Bw2 , . . . , Bwr} be a minimal system of binomial generators of IG. Given
a set F ⊂ E(G), we define GF

S =
⋃

e∈F Ge
S and get IG = IGF

S
+ IG\F , by using similar

arguments as in the proof of Theorem 2.4.
Of particular interest is the case that F is the set of all edges of G having a common

vertex v. Given a vertex v of G, we let G− v be the subgraph of G obtained by deleting
the vertex v. We denote by Gv

S the subgraph of G with edges

E(Gv
S) =

⋃
1≤i≤r and v∈V (wi)

E(wi).
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It holds that IG = IGv
S
+ IG−v.

The next theorem asserts that the reduced splittings of IG are always in the form
IG = IGF

S
+ IG\F , for suitable sets S and F .

Theorem 4.4. Let IG = IG1 + IG2 be a reduced splitting of IG. Then there exist a set
F ⊂ E(G) and a minimal system of binomial generators S of IG such that IG1 = IGF

S
and

IG2 = IG\F .

Proof. Let IG = IG1 +IG2 be a reduced splitting of IG and set F = G\G2. Let {f1, . . . , fs}
be a system of binomial generators of IG1 , {g1, . . . , gt} be a system of binomial generators
of IG2 and S = {Bw1 , . . . , Bwr} ⊂ {f1, . . . , fs, g1, . . . , gt} be a minimal system of binomial
generators of IG as in the proof of Theorem 2.10. Then G\F = G2, so IG\F = IG2 ,
and IGF

S
⊂ IG1 since IGe

S
⊂ IG1 for each e ∈ F from the proof of Theorem 2.10. But

IG = IG1 +IG2 is a reduced splitting of IG and also IG = IGF
S
+IG2 , since IG = IGF

S
+IG\F

and IG\F = IG2 , with IGF
S
⊂ IG1 , therefore IGF

S
= IG1 . □

Remark 4.5. A reduced splitting IG = IG1 + IG2 can be also written in the form IG =
IG\F + IGF

S
where F = G\G1, IG1 = IG\F and IG2 = IGF

S
.

Example 4.6. Let G be the bipartite graph consisting of four 4-cycles w1, w2, w3, w4 in
a row, i.e. for i < j it holds that E(wi) ∩ E(wj) = ∅ except if j = i + 1 in which case
they have one edge in common. The ideal IG has a unique minimal system of binomial
generators consisting of the binomials Bw1 , Bw2 , Bw3 , Bw4 . Then there are 19 different
splittings. More precisely, four minimal and reduced splittings in the form IG =< Bwi >
+ < Bwj , Bwk

, Bwl
>, where {i, j, k, l} = {1, 2, 3, 4}. Also three minimal and reduced

splittings in the form IG =< Bwi , Bwj > + < Bwk
, Bwl

>. Finally twelve non-minimal
and non-reduced splittings in the form IG =< Bwi , Bwj > + < Bwj , Bwk

, Bwl
>.

The next Theorem asserts that minimal splittings are always reduced.

Theorem 4.7. Every minimal splitting of IG is also a reduced splitting.

Proof. Let IG = IG1 + IG2 be a minimal splitting which is not reduced. Then there exist
IG′

1
⊂ IG1 and IG′

2
⊂ IG2 such that IG = IG′

1
+ IG′

2
, where IG′

1
is a proper subset of IG1

or/and IG′
2
is a proper subset of IG2 . Suppose that for instance IG′

1
is a proper subset of

IG1 . Let {Bw1 , . . . , Bws} and {Bws+1 , . . . , Bwl
} be minimal systems of binomial generators

of the ideals IG1 and IG2 , respectively. Since IG = IG1+IG2 is a minimal splitting, the ideal
IG is minimally generated by the set {Bw1 , . . . , Bws , Bws+1 , . . . , Bwl

}. Let {f1, . . . , ft} be
a system of binomial generators of IG′

1
then from the equality IG = IG′

1
+IG′

2
we have that

IG = IG′
1
+IG2 , since G

′
2 ⊂ G2. Thus there exists a set {Bw′

1
, . . . , Bw′

s
} ⊂ {f1, . . . , ft} such

that {Bw′
1
, . . . , Bw′

s
, Bws+1 , . . . , Bwl

} is a minimal system of generators of IG, since toric
ideals of graphs are homogeneous and therefore any two minimal systems of generators
have the same cardinality. Then, after reordering Bw′

1
, . . . , Bw′

s
if necessary, we can assume

that Bw′
j
= Bwj if Bwj is indispensable, and the binomials Bw′

j
, Bwj are F4-equivalent if

Bwj is dispensable, namely Bwj is not indispensable, since dispensability of toric ideals of
graphs is only caused by F4’s. Recall that two primitive walks γ, γ′ are F4-equivalent if
either γ = γ′ or there exists a series of walks γ1 = γ, γ2, . . . , γr−1, γr = γ′ such that γi and
γi+1 differ by an F4, where 1 ≤ i ≤ r−1, see [10, Section 4]. Since G′

1 is a proper subgraph
of G1, there exists an edge e ∈ E(wi) ⊂ E(G1) which is not in E(G′

1), but e ̸∈ E(w′
i) for

at least one index 1 ≤ i ≤ s. Then Bwi is dispensable, thus wi, w
′
i are F4-equivalent and

e belongs to a common F4 of both wi, w
′
i. Suppose that the edges of the F4 belonging to
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wi are e, f and to w′
i are a, b, thus F4 = (e, a, f, b). Consider the binomial ef − ab ∈ IG,

we have that all e, f, a, b are edges of G1, since G′
1 ⊂ G1, and therefore ef − ab ∈ IG1 .

We distinguish the following cases.

(1) ef−ab is an indispensable binomial of IG. The set {Bw′
1
, . . . , Bw′

s
, Bws+1 , . . . , Bwl

}
is a minimal system of generators of IG and ef−ab is indispensable of IG, so ef−ab
is one of the binomials Bw′

i
, 1 ≤ k ≤ s or Bwk

, s + 1 ≤ k ≤ l. But ef − ab ̸∈ IG′
1

since e is not an edge of G′
1, thus ef − ab = Bwk

for an index s+ 1 ≤ k ≤ l. Since
the binomial ef−ab is indispensable of IG, the AG-fiber of degAG

(ef) has only two
elements, namely ef and ab, see [2]. Then the AG1-fiber of degAG1

(ef) has at most

two elements; in fact, it has exactly two with no common factor other than 1 since
ef − ab ∈ IG1 . Thus ef − ab is indispensable of IG1 , and therefore ef − ab = Bwq

for an index 1 ≤ q ≤ s a contradiction to the hypothesis that IG = IG1 + IG2 is a
minimal splitting.

(2) ef − ab is not an indispensable binomial of IG. Then there is a binomial ef − cd
in IG. In this case, the AG-fiber of degAG

(ef) corresponds to a subgraph of G
homomorphic to K4 and it consists of exactly three monomials, namely ef , ab,
and cd. Every minimal system of generators of IG should contain exactly two of
the binomials ef − ab, ef − cd, ab− cd. There are two subcases.
(i) Both edges c, d belong to G1. Then all binomials ef−ab, ef−cd, ab−cd belong

to IG1 , so any minimal system of binomial generators of IG1 should contain
exactly two of them. Since IG = IG1 +IG2 is a minimal splitting, the ideal IG2

cannot contain any of the above three binomials. But IG = IG′
1
+ IG2 is also

a splitting of IG and e is not an edge of G′
1, therefore only ab− cd can be an

element of IG′
1
. Then {Bw′

1
, . . . , Bw′

s
, Bws+1 , . . . , Bwl

} is a minimal generating
set of IG, which contains at most one of the binomials ef−ab, ef−cd, ab−cd,
a contradiction.

(ii) At least one of c, d does not belong to G1. Then the binomial ef − ab is
indispensable of IG1 , since the AG1-fiber of degAG1

(ef) has only two ele-

ments, namely ef and ab, with no common factor other than 1. Thus the set
{Bw1 , . . . , Bws} contains the binomial ef−ab. The set {Bw1 , . . . , Bws , Bws+1 , . . . , Bwl

}
is a minimal system of generators of IG, so {Bws+1 , . . . , Bwl

} contains exactly
one of the binomials ef − cd or ab − cd and does not contain ef − ab. But
IG = IG′

1
+ IG2 is a splitting of IG and none of the binomials ef − ab, ef −

cd, ab− cd belongs to IG′
1
, since e and at least one of c, d does not belong to

E(G′
1). Thus the set {Bws+1 , . . . , Bwl

} contains exactly two of the binomials
ef − ab, ef − cd, ab− cd, a contradiction.

In all cases we reach a contradiction, so every minimal splitting is reduced. □

Remark 4.8. The converse of Theorem 4.7 is not true. By Theorem 3.10, IKn does
not have a minimal splitting for n ≥ 6. But from Proposition 3.9 any splitting IG =
IKn\{a,c} + IKn\{b,d} is reduced.

Remark 4.9. In [5, Question 5.2] G. Favacchio, J. Hofscheier, G. Keiper, and A. Van
Tuyl pose the following question: Suppose that there exist graphs G,G1 and G2 such that
IG = IG1 + IG2 . How do the graded Betti numbers of IG related to those of IG1 and IG2?
This seems a very difficult question, especially given the existence of examples like the
edge splitting in Example 2.9 or the results about the splittings of Kn in section 3.
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