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We present a Floquet framework for controlling topological features of a one-dimensional optical
lattice system with dual-mode resonant driving, in which both the amplitude and phase of the lat-
tice potential are modulated simultaneously. We investigate a three-band model consisting of the
three lowest orbitals and elucidate the formation of a cross-linked two-leg ladder through an indirect
interband coupling via an off-resonant band. We numerically demonstrate the emergence of topo-
logically nontrivial bands within the driven system, and a topological charge pumping phenomenon
with cyclic parameter changes in the dual-mode resonant driving. Finally, we show that the band
topology in the driven three-band system is protected by parity-time reversal symmetry.

I. INTRODUCTION

Ultracold atoms in optical lattices provide a flexible
platform to explore topological insulators and associated
phenomena, facilitated by the ability to adjust the lat-
tice configuration experimentally [1–5]. Periodic time-
dependent modulation techniques, also known as Flo-
quet engineering, have been established as an effective
method to examine topological bands within these sys-
tems. Tailored modulations of the lattice have success-
fully produced nontrivial bands with novel topological
characteristics [6–12], which have led to the observa-
tion of many interesting phenomena, including topolog-
ical charge pumping [13–16]. Floquet band engineering
has thus become a prominent path in the field of optical
lattice research.

Researchers have extensively studied topological bands
in one-dimensional (1D) optical lattices to gain essential
insight into topological matter. As a minimal representa-
tion for 1D topological insulators, in particular, a cross-
linked two-leg ladder system or similar models have been
investigated [12, 17–20]. As illustrated in Fig. 1(a), the
ladder system is composed of two lines of lattice sites
called legs, and the legs are interconnected both verti-
cally and diagonally, representing the hopping between
sites. The diagonal cross-links give rise to topological
features in the system. In experimental setups, the legs
can be assigned to different spin states of atoms or differ-
ent orbitals in the lattice, with the cross-linking provided
by spin-orbit coupling or band-mixing processes, respec-
tively. In recent experiments, a cross-linked two-leg lad-
der system employing s and p orbitals was implemented
successfully using a two-tone driving scheme [12, 20],
where the optical lattices were shaken resonantly with
two frequencies, and the cross links were produced by
two-photon resonant interband coupling [21]. Further-
more, the ability to dynamically adjust the linking prop-
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erties enabled the demonstration of topological charge
pumping [13, 22].

In this work, we propose an alternative Floquet ap-
proach to construct a tunable cross-linked two-leg lad-
der system. Our approach features creating the lad-
der with s and d orbitals, which share the same par-
ity, and using both the amplitude and phase modula-
tions of the lattice potential at an identical frequency.
When the modulation frequency is set close to the en-
ergy gap between the s and d bands, the amplitude mod-
ulation (AM) generates the on-site resonant coupling be-
tween the s and d orbitals, thus forming the ladder rungs
[Fig. 1(b)] [10, 21, 23, 24]. Meanwhile, the phase mod-
ulation (PM), which triggers lattice shaking, does not
generate a direct s-d interorbital coupling owing to par-
ity conservation; however, it establishes diagonal connec-
tions through three-photon resonant transitions via p or-
bital [Fig. 1(c)]. This three-photon process represents
an indirect resonant interband coupling that employs an
off-resonant third band as an intermediate state. To the
best of our knowledge, such indirect resonant coupling
has not been discussed as an effective interband coupling
mechanism in the literature on Floquet band engineering.
Owing to the dual-mode driving employing both AM and
PM, a cross-linked ladder is formed, comprising two or-
bitals with identical parity, which is not achievable with
the two-tone driving method used in previous studies.

Using a three-band model, we numerically demonstrate
the topological properties of the 1D optical lattice sys-
tem subjected to dual-mode resonant driving. We com-
prehensively analyzed the resultant Floquet bands under
a range of driving parameter conditions, including the
relative intensity and phase of AM and PM. Our anal-
ysis shows the emergence of a topologically nontrivial
phase under certain driving conditions, as evidenced by
the entanglement entropy and spectrum [25–30], along
with the observation of a topological phase transition.
Through numerical simulations, we illustrate a topolog-
ical charge pumping effect expected during slow cyclic
changes in driving parameters [31–35]. Lastly, we eluci-
date that the topological phases of the Floquet bands in
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FIG. 1. (a) Effective ladder model of a 1D optical lattice
under dual-mode resonant driving. s and d orbitals comprise
the two legs of the ladder, and the vertical (tv) and diagonal
(td) interleg links are formed by (b) the one-photon coupling
from the amplitude modulation (AM) of the lattice potential
and (c) the three-photon coupling from the phase modulation
(PM) that shakes the lattice, respectively. VL and ϕ denote
the amplitude and phase of the lattice potential, respectively.

the three-band model are protected by parity-time rever-
sal (PT ) symmetry.
The remainder of the paper is organized as follows.

Sec. II introduces a three-band model of the 1D op-
tical lattice system under dual-mode resonant driving.
We further derive an effective two-band description of
the system by adiabatic elimination of the off-resonant
p band [36], which provides insight into the indirect res-
onant interband coupling and the topological structure
of the driven system. Sec. III presents our numerical re-
sults of the quasi-energy and entanglement spectrum of
the driven lattice system, and also illustrates the topolog-
ical charge pumping effect with cyclic parameter changes
in the dual-mode resonant driving. Sec. IV demonstrates
the role of PT symmetry in protecting the topology of the
Floquet bands. Finally, Section V provides a summary
and some concluding remarks.

II. DUAL-MODE RESONANT DRIVING OF
OPTICAL LATTICE

A. Three-band model

Let us consider a spinless fermionic atom in the driven
1D optical lattice potential Vlat(x, t), which is given by

Vlat(x, t) = VL(t) sin
2
(π
a
x− ϕ(t)

)
, (1)

where VL(t) and ϕ(t) are the amplitude and phase of the
lattice potential, respectively, and a is the lattice con-

stant. VL and ϕ are determined by the parameters of the
laser beams involved, such as intensity, polarization, and
phase, and can be dynamically controlled for Floquet en-
gineering. The two fundamental modulation approaches
are periodically modulating VL and ϕ in time, which we
refer to as AM and PM, respectively [Figs. 1(b) and 1(c)].
As the position of the lattice site is determined by the
phase ϕ(t), PM induces lattice shaking. When viewed
from the reference frame comoving with the driven opti-
cal lattice, the system’s Hamiltonian is described as fol-
lows [9]:

H(x, t) = H0 + λ(t)Vstat(x)− F (t)x (2)

H0 =
p2

2m
+ Vstat(x),

where p is the kinetic momentum of the atom, m denotes
its mass, Vstat(x) = V0 sin

2
(
π
ax
)
is the stationary lattice

potential, λ(t) denotes the relative variation of lattice
amplitude such that VL(t) = [1 + λ(t)]V0, and F (t) =

−m
(

a
π ϕ̈(t)

)
represents the inertial force resulting from

PM.
In the tight-binding approximation, the Hamiltonian

can be expressed in terms of Wannier states |j, α⟩ local-
ized on lattice site j in the α band, given by [9]

H(x, t) =
∑
jα

ϵαĉ
†
jαĉjα −

∑
jlα

t(l)α e−ilθ(t)ĉ†jαĉj+l α

+
∑
jlαβ

(
λ(t)u

(l)
αβ − F (t)η

(l)
αβ

)
e−ilθ(t)ĉ†jαĉj+l β ,

(3)

where ĉ†jα (ĉjα) is the creation (annihilation) operator for

the atom in the Wannier state |j, α⟩, ϵα = ⟨j, α|H0|j, α⟩
represents the on-site energy, and t

(l)
α = −⟨j, α|H0|j +

l, α⟩ denotes the hopping amplitude between the Wan-
nier states in the α band separated by l lattice sites.

In addition, u
(l)
αβ = ⟨j, α|Vstat(x)|j + l, β⟩ and η

(l)
αβ =

⟨j, α|x|j+l, β⟩ correspond to the lattice potential and lat-
tice displacement matrix elements for interorbital transi-
tions separated by l lattice sites, respectively. Lastly,

θ(t) = −a
ℏ
∫ t

0
dt′ F (t′) represents the time-dependent

Peierls phase [37]. By Fourier transforming this tight-
binding model Hamiltonian, we obtain the Bloch Hamil-
tonian for quasimomentum q in the presence of AM and
PM as follows:

H(q, t) =
∑
α

(
ϵα −

∑
l>0

2t(l)α cos[l(q − θ(t))]
)
ĉ†qαĉqα

+
∑
lαβ

(
λ(t)u

(l)
αβ − F (t)η

(l)
αβ

)
eil(q−θ(t))ĉ†qαĉqβ .

(4)

Here, q is expressed in units of 1/a.
In this work, we consider a model system that includes

only the three lowest bands, indexed by α ∈ {s, p, d}.
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FIG. 2. (a) Energy level scheme of the driven three-band
system in a rotating frame (see the text for details.). (b)
Floquet energy diagram with a driving frequency ω ≈ ωsd.

Considering the lowest-order effects of lattice modula-
tion, the Bloch Hamiltonian of the three-band system is
given by

H(q, t) =

 ϵ′s(q, t) −F (t)η(0)sp λ(t)u
(0)
sd

−F (t)η(0)ps ϵ′p(q, t) −F (t)η(0)pd

λ(t)u
(0)
ds −F (t)η(0)dp ϵ′d(q, t)

 (5)

with ϵ′α(q, t) = ϵα − 2t
(1)
α cos(q − θ(t)) + λ(t)u

(0)
αα. We

focus on a case where the system is subjected to dual-
mode resonant driving with

λ(t) = λ0 cos(ωt),

ϕ(t) = ϕ0 cos(ωt+ φ), (6)

and the driving frequency ω ≈ ωsd = (ϵd − ϵs)/ℏ. Here,
λ0 and ϕ0 are dimensionless parameters that represent
the strengths of AM and PM, respectively, and φ is the
relative phase of the two modulation modes.

B. Effective two-band model

When the three-band lattice system is driven with a
frequency ω ≈ ωsd, the couplings between the p orbital
and the others become off-resonant, resulting in the p
band being energetically isolated. We can project the
three-band system into an effective two-band system us-
ing an adiabatic elimination technique [36] owing to the
minimal involvement of the p band in band mixing.

First, let us take a proper rotating frame by applying
a unitary transformation of UR(t) = exp (+iR̂t) to the
Bloch Hamiltonian H(q, t) in Eq. (5), where

R̂ =

−ω + E0/ℏ 0 0
0 E0/ℏ 0
0 0 E0/ℏ

 (7)

with E0 = (ϵd + ϵs + ℏω)/2 representing the zero energy
point. In the rotating frame, the modified Hamiltonian

H ′(q, t) is given by

H ′(q, t) =

 ℏδs/2 −F (t)η(0)sp eiωt λ(t)u
(0)
sd e

iωt

−F (t)η(0)ps e−iωt −ℏ∆p −F (t)η(0)pd

λ(t)u
(0)
ds e

−iωt −F (t)η(0)dp −ℏδd/2


(8)

with ℏδs/2 = ϵ′s + ℏω−E0, ℏδd/2 = E0 − ϵ′d, and ℏ∆p =
E0 − ϵ′p. Note that |∆p| ≫ |δs|, |δd| when the driving
frequency is set to ω ≈ ωsd, providing a suitable condition
for adiabatic elimination of the p band. The energy level
structure is depicted in Fig. 2(a). It can be viewed as a
characteristic V-type system in which the two adjacent
upper states are coupled to each other by λ(t) and also to
a lower level simultaneously by F (t). For comparison, the
Floquet energy diagram of the driven three-band system
is illustrated in Fig. 2(b).

Simplifying the notation of H ′(q, t) as

H ′(q, t) =

H00 H01 H02

H10 H11 H12

H20 H21 H22

, (9)

the equation of motion for the system state |ψ⟩ =
(ρs, ρp, ρd)

T is written by

H ′(q, t)|ψ⟩ =

H00ρs +H01ρp +H02ρd
H10ρs +H11ρp +H12ρd
H20ρs +H21ρp +H22ρd

 = iℏ

ρ̇sρ̇p
ρ̇d

.
(10)

Claiming ρ̇p = 0 owing to the p band being negligibly
populated, we obtain ρp = −(H10ρs + H12ρd)/H11. In-
jecting this relation back into Eq. (10) yields the effective
Hamiltonian as

Heff(q, t) =

(
H00 − H01H10

H11
H02 − H01H12

H11

H20 − H21H10

H11
H22 − H21H12

H11

)
. (11)

The additional terms in the diagonal and the off-diagonal

element are proportional to F 2

∆p
, which represent additive

band energy shifts and sd interband couplings, respec-
tively, arising from the off-resonant couplings to the p
band.
In terms of the Pauli matrices σ = {σx, σy, σz}, we

obtain the modified effective Hamiltonian as

H ′
eff (q, t) =

[(
ℏδ
2

+ 2t− cos
(
q − θ0 sin(ωt+ φ)

))

−
(
λ′− cos(ωt) + F ′

−
2
cos(2ωt+ 2φ) + F ′

−
2
)]

σz

+

(
λ′ cos(ωt) + F ′2 cos(2ωt+ 2φ) + F ′2

)
cos(ωt)σx

−
(
λ′ cos(ωt) + F ′2 cos(2ωt+ 2φ) + F ′2

)
sin(ωt)σy

(12)
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TABLE I. Tight-binding parameters of optical lattice for V0 = 10ER, where ER = (ℏkL)2

2m
is the recoil energy with kL = π/a,

and the parameters of the effective two-band model in Eq. (12). The values of the effective two-band parameters were calculated
for λ0 = 0.1, ϕ0 = 0.1, and ω = ωsd = (ϵd − ϵs)/ℏ.

Tight-binding parameters Effective two-band parameters

s p d t−
t
(1)
d

−t
(1)
s

2
0.388ER

ϵα ⟨j, α|H0|j, α⟩ 2.885ER 7.933ER 12.059ER λ′ λ0u
(0)
sd 0.173ER

t
(1)
α −⟨j, α|H0|j + 1, α⟩ 0.019ER 0.244ER 0.794ER F ′2 η

(0)
sp η

(0)
pd

2ℏ∆p
F0

2 0.663ER

u
(0)
αα ⟨j, α|Vstat(x)|j, α⟩ 1.602ER 4.832ER 6.315ER λ′

− λ0
u
(0)
d

−u
(0)
s

2
0.236ER

sp pd sd F ′
−

2 η
(0)
pd

2
−η

(0)
sp

2

4ℏ∆p
F0

2 0.317ER

u
(0)
αβ ⟨j, α|Vstat(x)|j, β⟩ 0 0 1.725ER F0 mω2 a

π
ϕ0 4.220ERkL

η
(0)
αβ ⟨j, α|x|j, β⟩ 0.440 /kL 0.698 /kL 0 θ0 − a

ℏωF0 -1.443

with δ = ω−ωsd. The definitions of θ0, λ
′
(−), and F

′
(−) are

listed in Table I. In the derivation of H ′
eff , we ignore the

trace part of the Hamiltonian, i.e., H ′
eff = Heff− tr(Heff )

2 I,
which does not affect the topological properties of the
system.

Next, we derive the approximated time-independent
Hamiltonian H̃eff(q) for H ′

eff(q, t) using the high-
frequency expansion method [38, 39]. When the Fourier
series expansion of H ′

eff(q, t) is given by H ′
eff(q, t) =

ΣmHm(q)eimωt, the second-order approximation of

H̃eff(q) is given by

H̃eff(q) = H0 +
∑
m>0

[Hm, H−m]

mℏω
. (13)

Neglecting the higher order terms [40], we obtain

H̃eff(q) =

(
ℏδ
2

+ 2t−J0(θ0) cos(q)− F ′
−
2
)
σz

−

(
6F ′2

ℏω
t−J1(θ0) sin(q) sin(φ)−

λ′

2

)
σx

+

(
6F ′2

ℏω
t−J1(θ0) sin(q) cos(φ)

)
σy

=
[
δ′ + 2t′− cos(q)

]
σz + tvσx

+2td sin(q)
[
sin(φ)σx − cos(φ)σy

]
, (14)

where δ′ = ℏδ/2 − F ′
−
2
, t′− = t−J0(θ0), tv = λ′/2, and

td = − 3F ′2

ℏω t−J1(θ0).

The final expression of H̃eff(q) in Eq. (14) reveals the
band topology of the driven lattice system. The terms
with tv and td correspond to the vertical and diagonal
interleg links in the two-leg-ladder description [Fig. 1(a)].

Notably,

tv ∝ λ0u
(0)
sd

td ∝ ϕ30η
(0)
sp η

(0)
pd (t

(1)
d − t(1)s ), (15)

indicating that the vertical links are generated by the
on-site one-photon interorbital transition |j, s⟩ ↔ |j, d⟩,
induced by AM, while the diagonal links originate from
the three-photon transitions involving site hopping, e.g.,
|j, s⟩ ↔ |j, p⟩ ↔ |j, d⟩ ↔ |j + 1, d⟩, induced by PM.

The effective Hamiltonian H̃eff(q) exhibits chiral sym-

metry at φ = ±π
2 , as σyH̃eff(q)σy = −H̃eff(q); this means

that the spin states of the bands are restricted to the
xz plane, ensuring that the spin winding number across
the q space is well-defined and topologically protected
by symmetry. At δ′ = 0, a topologically critical point
emerges when td = ±tv/2, rendering H̃eff(q = ∓π

2 ) = 0.
Given the parameters of the optical lattice system at
V0 = 10ER (ER is the lattice recoil energy), as detailed in
Table I, the ratio |tv/td| = 2 is achieved when ϕ0

3/λ0 =
0.009. This modulation condition is experimentally fea-
sible, for example, with λ0 = 0.1 and ϕ0 ≈ 0.1, which
corresponds to the lattice-shaking amplitude of 0.03a.

Thus far, we have demonstrated that a cross-linked
ladder structure can be established in a three-band opti-
cal lattice by utilizing dual-mode resonant driving. De-
veloping an effective two-band description, we have clari-
fied the critical role of the off-resonant p band in Floquet
engineering, which is essential for determining the topo-
logical characteristics of the driven lattice system. In the
following section, we will confirm our theoretical findings
through a direct numerical simulation of the three-band
Hamiltonian H(q, t) in Eq. (5).
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FIG. 3. (a) Quasienergy spectrum εn(q) of the three-band
system driven at ω = ωsd with λ0 = 0.05, ϕ0 = 0.1, and
φ = 0. The Floquet Bloch bands are indexed by n = 0, 1, 2.
Fractional weights of the original orbitals |α = s, p, d⟩ in the
(b) n = 2, (c) n = 1, and (d) n = 0 Floquet bands in (a).
The blue, orange, and green solid lines indicate the weights
of the s, p, and d orbitals, respectively.

III. FLOQUET STATE ANALYSIS

A. Quasienergy spectrum

We investigate the quasienergy spectrum of the driven
three-band optical lattice system in accordance with Flo-
quet theory [41]. We numerically calculate the time-
evolution operator over one driving period T = 2π

ω , de-
fined as

Û(t+ T, t; q) = T exp

[
− i

ℏ

∫ t+T

t

H(q, t′)dt′

]
(16)

with T being the time-ordering operator, and obtain
the quasienergy spectrum εn(q) by directly diagonaliz-

ing Û(t + T, t; q). Here, n = 0, 1, 2 is the Floquet band
index and εn(q) ∈ [−ℏω

2 ,
ℏω
2 ) is independent of the choice

of time t. In the calculation, we use the parameter val-
ues listed in Table I and set the modulation frequency to
ω = ωsd.
In Fig. 3(a), the quasienergy spectrum is presented for

λ0 = 0.05, ϕ0 = 0.1, and φ = 0. The two upper (n = 1, 2)
Floquet bands demonstrate the avoided crossing of the
bare s and d bands of the stationary lattice system un-
der the resonant driving, while the lower (n = 0) Floquet
band is located apart from the upper bands, aligned with
the off-resonant p band. In Figs. 3(b)–3(d), we plot the

FIG. 4. Zak phases γn of the Floquet Bloch bands at t = 0,
as a function of λ0 and φ for ϕ0 = 0.1: (a) n = 2, (b) n = 1,
and (c) n = 0. Two topological singular points are identified
at {φ, λ0} = {±π/2, 0.082}. In (c), the value of the Zak
phase is magnified by 50 for clarity. (d) Temporal evolution
of the Zak phases over one driving period, 0 < t < T = 2π

ω
,

for {λ0, φ} = {0.05, π
2
}.

fractional weights of the α = s, p, d orbitals in the Flo-
quet Bloch states |ψn(q, t)⟩. The Floquet Bloch states

are eigenstates of Û(t+ T, t; q) such that

Û(t+ T, t; q)|ψn(q, t)⟩ = e−iεn(q)T/ℏ|ψn(q, t)⟩. (17)

It is observed that the p orbital contribution is minimal
in the upper Floquet bands, as expected from the off-
resonance nature of the p band. This observation sup-
ports the validity of our use of adiabatic elimination in
the previous section.

B. Topological characteristics

To examine the topological characteristics of the driven
lattice system, we calculate the Zak phases of the Floquet
bands [42, 43], which are defined over the Brillouin zone
(BZ) as

γn(t) = i

∫
BZ

dq ⟨ψn(q, t)|∂q|ψn(q, t)⟩. (18)

The numerical results of γn(t = 0) for ϕ0 = 0.1 are illus-
trated in Fig. 4, as a function of the driving parameters
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λ0 and φ. It is noted that critical points are found at
λ0 = 0.082 and φ = ±π

2 , accompanied by discontinu-
ous changes in γ1 and γ2 nearby. The effective two-band
model in the previous section predicts the critical points
at λ0 = 0.071 for δ = 0 and ϕ0 = 0.1, which is in a good
agreement with our numerical observations [44]. We note
that when φ = ±π

2 , the Zak phase takes only the values
of zero or π, while the Zak phase continuously varies in
the parameter space; this is consistent with the symme-
try protection condition discussed in the previous sec-
tion. Furthermore, we observe that γ1 + γ2 = 0 only
for φ = ±π

2 , i.e., the Zak phase of the lowest (n = 0)
Floquet band is γ0 ̸= 0 for φ ̸= ±π

2 [Fig. 4(c)]; this is a
characteristic of a three-band system.

In Fig. 4(d), we show the time evolution of the Zak
phases for φ = π

2 , revealing that they show quantized

values only at t = 0 and T
2 . For the effective two-

band Floquet system, the chiral symmetry is expressed
as σyHeff

′(q, t+ t0)σy = −Heff
′(q,−t+ t0) with a proper

choice of time frame t0 [6], and we find that the symme-
try condition is satisfied only with φ = ±π

2 (mod 2π) at

t0 = 0 and T
2 (mod T ), which is consistent with the times

when the Zak phases are well quantized.
As another topological characteristic of the system, we

examine the entanglement entropy and spectrum [25–30].
For a 1D non-interacting fermionic system, the entangle-
ment entropy S of the many-body ground state |Ψ⟩ is
defined as the trace of the reduced density matrix of the
system cut exactly in half, given by

S = −Tr(ρAlogρA), (19)

where ρA = TrB|Ψ⟩⟨Ψ|. Here, A and B represent two
subsystems obtained by dividing the system in half. The
entanglement entropy exhibits a sharp peak when the
system undergoes a quantum phase transition [30]. Fur-
thermore, the entanglement spectrum ξ, a set of eigenval-
ues of the reduced matrix, reveals the system’s mid-gap
states, of which the existence provides evidence of a sys-
tem’s nontrivial topological phase. This phenomenon is
analogous to the bulk-edge correspondence observed in
edge states [26, 27], and it holds even in the case of Flo-
quet systems [28, 29].

Figure 5 presents our calculation results of the entan-
glement entropy and spectrum of non-interacting spin-
less fermions for our three-band system. The many-body
ground state |Ψ⟩ is a uniformly filled topological Floquet
band, and we choose the n = 1 band in Fig. 3(a) as our
reference state. When φ = π/2, the entanglement en-
tropy exhibits a sharp peak at the critical point as λ0
varies [Fig. 5(a)], indicating a topological phase transi-
tion [26, 29]. In the entanglement spectrum, we also ob-
serve the presence of mid-gap states and their splitting
into upper and lower states at the same critical point of
λ0 [Fig. 5(b)]. These results are consistent with the Zak
phase in the parameter space [Fig. 4(b)].

Finally, we remark on the edge states in our sys-
tem, which are another characteristic of the topological
phase [45, 46]. In our three-band system, the global bulk

FIG. 5. Entanglement entropy S and spectrum ξ of the
driven three-band system with only the n = 1 Floquet band
being filled uniformly. (a) S and ξ as functions of λ0 for
ω = ωsd, φ0 = 0.1 and φ = π/2. At λ0 ≈ 0.08, the entan-
glement entropy exhibits a sharp peak, and the entanglement
spectrum shows mid-gap states splitting, indicating a topo-
logical phase transition.

gap may not exist because both the s and d bands ex-
hibit a similar curvature tendency, although varying in
degree. The absence of the global bulk gap implies that
symmetry-protected edge states may not manifest explic-
itly, which was the case in our numerical investigation.

C. Topological charge pumping

When the driving parameters {λ0, φ} vary slowly
enough compared to the timescale of the driving period
T , the system can adiabatically follow the change in driv-
ing conditions. In other words, the long-term dynamics
of the system is governed by the time-varying effective
Hamiltonian, Heff(q; t) = Heff(q; {λ0, φ}) [47, 48]. Using
this adiabatic following, topological charge pumping can
be achieved in a driven lattice system by slowly vary-
ing the driving parameters around a topological singular
point, as demonstrated in recent experiments [13, 16].
Given its experimental relevance, we numerically inves-

tigate the topological charge pumping effect in the driven
three-band system. A pumping protocol is considered,
where the driving parameters slowly revolve around a
singular point in the parameter space with the pumping
cycle time Tp, i.e.,

λ0(t) = 0.1− 0.025 cos (2πt/Tp) ,

φ(t) = φ0 + 0.5 sin (2πt/Tp) (20)

with φ0 = π/2. The system undergoes a 2π change in the
Zak phase for each cycle, leading to a charge transport
in which all atoms are shifted by one lattice site. Note
that this phenomenon only occurs when the trajectory of
the driving parameters encircles the singular point in the
parameter space, regardless of the specific details of the
pumping protocol used to modulate the driving parame-
ters [31–35]; this is why this charge pumping phenomenon
is a topological one.
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FIG. 6. Numerical simulation of the topological charge pump-
ing effect. (a) Pumped charge amount C(t) as a function of
the pumping time for the pumping protocol in Eq. (20) with
φ0 = π/2 and Tp = 900T . The pumping protocol is sketched
in the upper left inset with the dot denoting the topological
singular point (Fig. 4). The solid blue and red lines indicate
the results for the system initially prepared in the insulating
states of the n = 2 and n = 1 Floquet band, respectively.
The slightly faint and faintest lines show the results obtained
with Tp = 100T and 75T , respectively. The inset in the mid-
dle shows the evolution of the entanglement spectrum during
one pumping cycle, Tp. (b) Numerical results for a modified
pumping protocol with φ0 = 0 and Tp = 900T , where the
pumping trajectory does not encircle the topological singular
point in the parameter space.

In the numerical simulation, the system is initially
prepared in an insulating state of the Flquet band and
the amount of pumped charge is calculated as C(t) =∫ t

0
dt′j(t′), where j(t) is the charge current given by

j(t) = 1
2π

∫
BZ

⟨ψ(q, t)|v(q, t)|ψ(q, t)⟩ with velocity opera-
tor v(q, t) = ∂H(q, t)/∂(ℏq) [49, 50]. The time evolution
of the system state |ψ(q, t)⟩ is calculated directly from
its time-dependent Shrödinger equation i∂t|ψ(q, t)⟩ =
H(q, t)|ψ(q, t)⟩, including the cyclic modulations of the
driving parameters.

In Fig. 6(a), the pumped charge C(t) is displayed as
a function of time for various pumping parameter con-
ditions. We observe that when the change of driving
parameters is slow enough, C(t) increases (decreases) by
unity in every pumping cycle for the n = 2 (n = 1) Flo-
quet band. The observed timescale for the adiabaticity
of the charge pumping process is Tp ≈ 100T , attributed

to the local gap between the n = 1 and n = 2 Floquet
bands, estimated as ≈ 0.01ℏω [Fig. 3(a)]. Furthermore,
we confirm that if the trajectory of the driving parame-
ters, such as the case of φ0 = 0 in Eq. (20), does not encir-
cle any topological singular point in the parameter space,
then the charge transport does not occur [Fig. 6(b)]. The
middle inset of Fig. 6(a) shows the evolution of the en-
tanglement spectrum of the driven lattice system during
one pumping cycle, Tp. As expected, the mid-gap states
propagate like edge modes in the bulk gap [50, 51].

IV. SYMMETRY IN THREE-BAND MODEL

As predicted in the effective two-band model discussed
in Sec. II B and verified numerically in the preceding sec-
tion, topological phases arise in the driven three-band
system at φ = ±π/2. Given that φ = ±π/2 estab-
lishes the relationship H(x, t) = H(−x,−t) in Eq. (2),

we propose that PT symmetry P̂T̂ : (x, t) → (−x,−t)
is the symmetry that protects the topological phases in
this driven system. The topological phases protected by
PT symmetry were recently discussed in [52, 53] [54]. In
this section, we discuss the symmetry protection of the
three-band system.
If the Floquet Hamiltonian, which is defined as

HF (q, t) = i ℏT ln[U(t + T, t; q)], exhibits PT symmetry,
it should satisfy the relation of

U†
PTHF (q, t+ t0)

∗
UPT = HF (q,−t+ t0), (21)

where UPT is a unitary matrix defined as

UPT =

1 0 0
0 −1 0
0 0 1

 (22)

for a non-interacting spinless fermionic system [55, 56].
Here, t0 is the preferred time frame for the Floquet
Hamiltonian ĤF (q, t) to exhibit PT symmetry and in
our system, t0 = 0 for φ = ±π/2. We consider the situa-
tion at t = 0 and omit the time notation in the following.
On the orbital basis |α⟩, the Floquet state |ψn(q)⟩ is ex-
pressed as

|ψn(q)⟩ =
∑
α

ρnα|α⟩ =
∑
α

|ρnα|eiΘnα |α⟩, (23)

where ρnα is a complex function defined on q, and Θnα is
the argument of ρnα. Then, the PT symmetry condition
ofHF (q) in Eq. (21) requires UPT |ψn(q)⟩∗ = eiϑn |ψn(q)⟩,
i.e.,  ρ∗ns

−ρ∗np
ρ∗nd

 = eiϑn

ρnsρnp
ρnd

 (24)

with ϑn being a real function of q. This requirement can
be encapsulated in two relations:

(I) 2Θns = 2Θnd (mod 2π)

(II) 2Θnp = 2Θns + π (mod 2π). (25)
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Here, we choose a gauge of |ψn(q)⟩ for Θnp to be π/2 and
then, under this gauge fixing, ρnp is imaginary and ρns
and ρnd are real-valued.

The constraints on |ψn(q)⟩ due to PT symmetry signif-
icantly affect the Zak phase of the Floquet band. Using
Eq. (23), the Zak phase is expressed as

γn = i

∫
BZ

dq ⟨ψn(q)|∂q|ψn(q)⟩ = −
∑
α

∫
BZ

|ρnα|2dΘnα.

(26)
This expression shows that γn can be interpreted as twice
the sum of the areas of the closed loops traced by ρnα on
the complex plane. When PT symmetry is present, the
enclosed area traced by ρnα becomes zero in general be-
cause ρnp is confined to the imaginary axis and ρns (ρnd)
to the real axis. Thus, the topological phase of the Flo-
quet band is trivial with γn = 0. However, in a special
situation where ρnp becomes zero at q = q0, the second
relation in Eq. (25) is not necessarily required so that
ρns and ρnd can have complex values even with the fixed
gauge of Θnp = π/2; this means that as q passes through
q0, ρns and ρnd can trace paths on the complex plane and
return to the real axis. In the trace, the angle between
ρns and ρnd must be maintained because of the first rela-
tion in Eq. (25). Then, in the vicinity of q = q0, Θns and
Θnd have identical variations of ∆Θ = 0 or π (mod 2π),
and it results in γn = −

(
|ρns(q0)|2 + |ρnd(q0)|2

)
∆Θ = 0

or π (mod 2π), where we use the normalization condition
of |ψn(q0)⟩. Consequently, the PT symmetry requires the
quantization of the Zak phase, thus protecting the topo-
logical phases of the three-band system.

V. SUMMARY

We introduced a Floquet framework for controlling the
topological features of a 1D optical lattice system with
dual-mode resonant driving. We investigated a three-
band model for the three lowest orbitals, clarifying how
a cross-linked ladder forms via indirect interband cou-
pling mediated by an off-resonant band. We provided nu-
merical evidence for the appearance of topologically non-
trivial bands in the driven system in conjunction with a
phenomenon of topological charge pumping due to cyclic
changes in parameters within the dual-mode resonant
driving. Furthermore, we examined the role of PT sym-
metry in protecting the band topology. The dual-mode
resonant driving approach facilitates the hybridization
of s and d orbitals with the same parity, which leads
to the formation of topological bands that exhibit min-
imal or absent bulk gaps; this method might be used
to explore the physics of topological semimetals [57, 58].
Moreover, given the unique driving mechanism relative
to previous studies on shaken lattices, our dual-mode ap-
proach may provide valuable insights into the reduction
of heating effects in the Floquet engineering of optical
lattices [9, 59, 60].
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monet, J. Struck, M. Weinberg, P. Windpassinger,
K. Sengstock, M. Lewenstein, and A. Eckardt, Non-
abelian gauge fields and topological insulators in shaken
optical lattices, Phys. Rev. Lett. 109, 145301 (2012).
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