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Abstract:
We revisit pure quantum cosmology in three dimensions. The Wheeler-DeWitt equation

can be solved perturbatively and the dynamics reduces to a particle on moduli space. Its
time evolution is equivalent to the TT deformation. Focusing on spacetimes with torus
slices, we show that inflationary cosmologies correspond to particle trajectories in Artin’s
billiard. The resulting automorphic dynamics is developed both from a first and second
quantized perspectives. Our main application is to give an interpretation for the Hartle-
Hawking state which is here the analytic continuation of the Maloney-Witten partition
function. We obtain its spectral decomposition and an exact representation as an average
involving the Möbius function.
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How quantum mechanics should be applied to the entire universe remains a mystery.
In contrast to their AdS counterparts, cosmological spacetimes have no boundaries and
no region where gravity turns off. Thus it is unclear how to even define gauge-invariant
observables [1]. This is related to the existence of gravitational constraints [2] which are
especially strong for closed universes [3–6]. Moreover, expanding universes are intrinsically
time-dependent so we cannot avoid to study their non-trivial dynamics.

The canonical quantization of gravity [2, 7] does provide a roadmap to define and
understand quantum cosmology. There, the Hilbert space is defined as the set of solutions
of the Wheeler-DeWitt equation and the physical operators are those which commute with
the constraints. Recent progress has shown that the Wheeler-DeWitt equation can be
systematically solved in a large volume limit [8, 9]. In our view, this provides a starting
point for the systematic development of quantum cosmology from the canonical perspective.
In this work we start this program by going beyond the large volume limit in the simpler
context of pure three-dimensional gravity.

Hartle and Hawking defined a wavefunction for the universe using the gravity path
integral [10]. Their idea was to sum over all spacetimes with a fixed asymptotic boundary
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in the future and with a no-boundary condition in the past, resulting in a wavefunctional
that automatically solves the Wheeler-DeWitt equation. This proposal has been made
more precise in the context of (A)dS/CFT where the Hartle-Hawking state is realized as
an analytically continued CFT partition function [11–13]. Although it is unclear whether
the Hartle-Hawking state does describe our universe [14], it is a very natural state from the
gravitational perspective which deserves to be understood better. This will be one of our
goal in this paper.

We will consider pure three-dimensional gravity with a positive cosmological constant
and focus on spacetimes of the form R×Σ where Σ is a Riemann surface representing space.
Riemann surfaces are classified by a moduli space Mg for each genus. We will focus on the
simplest case of g = 1 which as we will see is already quite rich. For g = 1, the moduli
space is two-dimensional and is the modular curve, i.e. the fundamental domain

F = H/PSL(2,Z) (0.1)

for the action of Γ = PSL(2,Z) on the upper half-plane. We will show that the Wheeler-
DeWitt equation is equivalent to a Klein-Gordon equation so that quantum cosmology
reduces to a driven particle on F . There is a large literature on quantum cosmology in
three dimensions [15–20]. The fact that it should reduce to dynamics on moduli space
was suggested in many previous works [21–26] (see [27] for a review) but exactly how this
equivalence should be realized has remained unclear. See also [28–32] for more recent related
works. Our goal in this paper is to explain how this reduction should be understood and
use it as a starting point to develop quantum cosmology.

The notion of dynamics in a gravitational context has always been puzzling as there
is no time in the canonical description. In quantum cosmology, time evolution is “pure
gauge” but this should not stop us to study the dynamics after we identify an adequate
definition of time. York proposed to use one of the canonical variable, the trace of the
extrinsic curvature, as a canonical definition of time [33]. Here, we will see instead that
the total volume of space appears to be the adequate notion of canonical time, as already
pointed out in [8]. This is appropriate for inflationary universes and the resulting dynamics
turns out to be quite rich.

Recently, a particular deformation of two-dimensional CFTs has generated much in-
terest [34, 35]. The so-called TT deformation gives a solvable irrelevant deformation with
many interesting features. In particular, its close relationship with the Wheeler-DeWitt
equation has been noticed and discussed in many recent papers [28, 36–40]. We will show
that the dynamics governing the particle is equivalent to the TT flow. That is, we will
see that the TT deformation, viewed as an evolution equation, does describe inflationary
cosmological dynamics.

The classical solutions and the Hartle-Hawking state in the present context were dis-
cussed in [41]. They correspond to inflationary spacetime with torus slices, starting at a
singularity and inflating to large volume. The Hartle-Hawking state is obtained by sum-
ming over the solutions which admit a Euclidean continuation with no boundary. These
geometries are the set Mc,d of SL(2,Z) images of the leading geometry M0,1, correspond-
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ing to all possible ways of filling the torus. Thus the Hartle-Hawking state is the analytic
continuation of the Maloney-Witten partition function studied in the AdS3 context [42].

In the particle description, we will see that the Hartle-Hawking state is the sum over
trajectories coming from the infinite cusp. This provides an interpretation of the Hartle-
Hawking as a vacuum in the particle theory. The classical solutions Mc,d correspond to
trajectories in Artin’s billiard which leads to a rather intricate dynamics depending on the
integers (c, d). We will see that this dynamics can be discretized in terms of the Gauss map.

In some ways, the worldline theory of a particle is similar to quantum cosmology. For
the particle, the second-quantized theory gives a more powerful formalism in terms of a
quantum field theory in an auxiliary spacetime. As the Wheeler-DeWitt equation does
reduce here to the BRST equation of a worldline theory, the second-quantized formulation
appears more appropriate. Here it is really a “third-quantized” description where we can
discuss arbitrary number of universes. The mode decomposition involves harmonic analysis
on F and leads to a natural basis for the Hilbert space in terms of (non-holomorphic)
Eisenstein series and Maass cusp forms. Tools from harmonic analysis will be especially
useful. In particular we will obtain the spectral density for the Hartle-Hawking state. A
surprising application will be to derive an exact expression for the Maloney-Witten partition
function as a q-expansion with integer coefficients, with degeneracies given in by the Möbius
function. The appearance of such pseudo-random objects from number theory suggests
interesting connections between chaotic aspects of automorphic dynamics and gravity.

1 Cosmology as a particle

We consider pure Einstein gravity in three dimensions with a positive cosmological constant

S =
1

16πG

∫
M
d3x

√
−g (R− 2Λ)− 1

8πG

∫
∂M

√
hK . (1.1)

We focus on spacetimes with topology R × Σ where Σ is a Riemann surface that we take
to be a torus. The units are chosen such that Λ = ℓ−2

dS = 1.
In this section, we will argue that this theory is equivalent to a particle on the funda-

mental domain F = H/PSL(2,Z). The possibility of such a reduction is an old idea [21–27]
which we hope to put on firmer footing. We will explain how this reduction arises in a
perturbative expansion and how subleading corrections give dressing factors associated to
Virasoro modes.

1.1 Wheeler-DeWitt reduction

In canonical gravity, states are functionals Ψ[g] of the spatial metric g that must satisfy the
Wheeler-DeWitt equation. For pure three-dimensional gravity, it takes the form[

16πG
√
g

(
πijπ

ij − π2
)
− 1

16πG

√
g(R− 2)

]
Ψ[g] = 0 . (1.2)

Here πij = −i δ
δgij

is the conjugate momentum of the metric and R is the Ricci curvature
on the spatial slice. Writing a solution in the form

Ψ[g] = exp(iF [g]) (1.3)
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we obtain the Hamilton-Jacobi form of the equation

16πG
√
g

(
(πijF)(πijF)− (πF)2

)
+

1

16πG

√
g(R− 2) = 0 . (1.4)

The Hamilton-Jacobi form is convenient because it contains only the principal part of the
equation and ignores contact terms. Such terms are ambiguous as they depend on the
normal ordering prescription. They can be modified by multiplying the wavefunction by
counterterms so we will ignore them for now.

The spatial metric is two-dimensional and hence can be put in the conformally flat
form

ds2 = Ω(u, v)
|du+ τdv|2

y
, u ∼ u+ 2π, v ∼ v + 2π . (1.5)

Hence the degrees of freedom are the moduli τ = x+ iy and the Weyl factor Ω(u, v).
Of particular importance will be the total volume

T =
1

4π2

∫
d2u

√
g =

1

4π2

∫
dudvΩ(u, v) (1.6)

as this will be our definition of canonical time. It will be particularly useful to take the
limit T → +∞, which corresponds to a large volume regime. Taking T to be the canonical
definition of time is appropriate for inflationary universes.

We can impose the momentum constraints by restricting to wavefunctionals that are
invariant under spatial diffeomorphisms

Ψ[g(ξ)] = Ψ[g] . (1.7)

The Hamilton-Jacobi equation then takes the form

(4π2δΩF)2 − y2

Ω2

(
(∂xF)2 + (∂yF)2

)
=

π2

4G2
(1− 1

2R) . (1.8)

To obtain this we have performed separation of variables. The variation of the metric (1.5)
is given as

δgij = Ω−1gijδΩ+ ∂xgijdx+ ∂ygijdy (1.9)

and leads to

δΨ

δΩ
= Ω−1gij

δΨ

δgij
,

∂Ψ

∂x
=

∫
dudv ∂xgij

δΨ

δgij
,

∂Ψ

∂y
=

∫
dudv ∂ygij

δΨ

δgij
, (1.10)

which can be inverted as

δΨ

δgij
=

1

2
gijΩ

δΨ

δΩ
− 1

4π2
y2

2

(
∂xg

ij ∂Ψ

∂x
+ ∂yg

ij ∂Ψ

∂y

)
. (1.11)

This follows from the orthogonality relations

gij∂xgij = gij∂ygij = ∂xg
ij∂ygij = 0, ∂xg

ij∂xgij = ∂yg
ij∂ygij = − 2

y2
. (1.12)
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Thus we obtain ordinary derivatives in the moduli x and y. However we still have a
functional derivative in Ω(u, v).

To make further progress, we consider a perturbative expansion around a flat metric
where we set Ω(u, v) = T so we take the spatial metric to be

ds2 = T
|du+ τdv|2

y
(1 + εφ(u, v) +O(ε2)) (1.13)

where ε is a perturbative parameter. We will also take a perturbative ansatz for the
wavefunction of the form

Ψ[g] = eiF [g], F [g] = S(T, x, y) + εV[g] +O(ε2) . (1.14)

That is, we demand that at leading order in ε, F [g] depends only on the total volume
T = 1

4π2

∫
d2u

√
g and the moduli x, y. This is similar to a WKB approximation. Here, the

perturbative expansion could be the large volume expansion or the expansion in Newton’s
constant.

In this approximation, the action of δΩ is simply

δ

δΩ(u, v)
S(T, x, y) =

1

4π2
∂TS (1.15)

and reduces to a constant. The Ricci scalar is R = O(ε) so the Wheeler-DeWitt equation
reduces to an ordinary differential equation

(∂TS)
2 − y2

T 2

(
(∂xS)

2 + (∂yS)
2
)
− π2

4G2
= O(ε) . (1.16)

This is the Hamilton-Jacobi form of the Klein-Gordon equation for a particle

(□+M2)Ψ = 0, M =
π

2G
. (1.17)

living on the auxiliary spacetime

ds2Aux = dT 2 − T 2dx
2 + dy2

y2
. (1.18)

The mass M of the particle is the cosmological scale ℓdS in Planck units. Note that it is
actually equal to the dS3 entropy.

It is instructive to consider the first subleading correction. At O(ε) we obtain

δ

δΩ
V =

1

32πG
R+

G

2π3
y2

T 2
((∂xS)

2 + (∂yS)
2)φ (1.19)

The first term shows that eiV[g] transforms as a CFT partition function with central charge
c = 3i

2G . The second term is subleading in a small G or large T expansion. Thus we see
that the one-loop correction provides a dressing factor for the particle. As discussed below,
we will see that it corresponds to the contribution of the Virasoro modes.
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1.2 Time evolution from TT

The solutions of the Wheeler-DeWitt equation at late time have the same symmetries as
CFT partition functions [8]. In three dimensions, we have seen that the leading order
dynamics reduces to that of a Klein-Gordon particle. Here we will see that this dynamics
is equivalent to applying the TT deformation to the wavefunctional, viewed as a CFT
partition function. This could have been anticipated from the known relationship between
the TT deformation and the Wheeler-DeWitt equation [28, 36–40].

Let us consider again the Hamilton-Jacobi form (1.4) of the Wheeler-DeWitt equation.
After redefining F with a counterterm

F [g] = Sct[g] + F0[g], Sct[g] =
1

8πG

∫
d2x

√
g . (1.20)

the finite piece F0 satisfies the equation

2i(πF0)−
1

2κ2
√
gR =

16πG
√
g

(
(πijF0)(π

ijF0)− (πF0)
2
)
. (1.21)

At leading order we can ignore the RHS and this is the Weyl anomaly equation for a CFT
of central charge c = 3i

2G .
The other terms can be generated if we deformed the CFT by the TT operator

SQFT = SCFT +

∫
d2uλTT , (1.22)

with deformation parameter λ. Here the definition of the TT operator is

TT =
1

8

√
g(TijT

ij − (gijT
ij)2) . (1.23)

The Weyl anomaly equation is then modified to

⟨gijTij⟩ =
c

24π
R+ 2λ⟨TT ⟩ . (1.24)

Zamolodchikov showed that the expectation value of TT in a flat metric takes the form [34]

⟨TT ⟩ = ⟨T ⟩⟨T ⟩ − 1

16
⟨gijTij⟩2 . (1.25)

The stress tensor acts on CFT partition functions as T ij = − 2√
g

δ
δgij

which is essentially the
conjugate momentum πij . As a result, we see that if we consider the functional

Ψ[g] = eiSct[g]ZTT[g] , (1.26)

where ZTT[g] is the TT -deformed CFT partition function with central charge c and defor-
mation parameter λ, we have that Ψ solves the Wheeler-DeWitt equation with

c =
3i

2G
, λ =

16iπG
√
g

=
4iGy

πT
. (1.27)
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Thus we see that the deformation parameter λ is essentially the inverse volume of the
metric. Here the matching involves using holomorphic coordinates w = 1

2π (u + τv) in the
metric so that its determinant is √

g = T
4π2y

as we have

ds2 = T
|du+ τdv|2

y
=

T

4π2y
|dw|2 (1.28)

which is responsible for the additional factor of y. Here we have restricted to flat metrics
so this only captures the leading order solution as described in the previous section.

On the torus, the flow of TT -deformed partition functions have been extensively studied
[43–45]. CFT partition functions on the torus are modular functions and this leads to a
notion of TT -deformed modular forms [46]. It was shown that λ transforms under SL(2,Z)
in the same way as y = Im τ . As a result the combination

T =
4iG

π

y

λ
(1.29)

is modular invariant. This is expected because SL(2,Z) is a gauge symmetry here, as the
diffeomorphism τ → γτ can be compensated by a diffeomorphism (u, v) = (u, v).γ without
affecting T .

It was also shown that TT flow can be solved exactly and written as a kernel integral
[47–50]

Zλ(x, y) = − y

πλ

∫
dx′dy′

y′2
exp

(
|τ − τ ′|2

λy′

)
Z0(x

′, y′) , (1.30)

where we write τ = x+ iy, τ ′ = x′ + iy′. The wavefunctional then takes the form

Ψ(T, x, y) =
1

T
eiSct[g]Zλ(x, y) (1.31)

in terms of the TT -deformed partition function Zλ(x, y). Note that here we are considering
here the reduced wavefunctional, evaluated on the flat metric (1.28). In this expression the
value of λ should be set to (1.27) and the extra factor of T−1 can be viewed as a normal
ordering prescription.

Then we can verify that the wavefunction (1.31) defined from the kernel (1.30) does
satisfies the Klein-Gordon equation

(□+M2)Ψ = 0 (1.32)

on the auxiliary space (1.18). This shows that the dynamics of the particle is equivalent
to the TT deformation. This gives an explicit realization of the idea that the emergence of
time in cosmology corresponds to a renormalization group flow.

Note that the analysis here is only valid for flat spatial metrics so it only captures
the leading order approximation, as described in the previous section. One could hope
that TT also gives the general solution. This was suggested in [37] but it would require
understanding the TT deformation on curved spaces as the deformation parameter λ is
essentially the Weyl factor of the metric, see [36] for a discussion about this.
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1.3 Path integral reduction

It is also illuminating to consider the reduction from a path integral perspective where it
is simply Kaluza-Klein reduction on the torus. We can restrict to metrics of the form

ds2 = −N(t, u, v)2dt2 +Ω(t, u, v)
|du+ τ(t)dv|2

y(t)
, u ∼ u+ 2π, v ∼ v + 2π . (1.33)

Here we have used a redefinition of t to cancel the components gtu and gtv of the metric.
Then with a spatial diffeomorphism we can always bring the spatial metric to be a Weyl
factor Ω(t, u, v) times a flat metric. Thus the moduli τ(t) = x(t)+ iy(t) can be taken to be
a function of t only.

Evaluating the on-shell action gives

S = − 1

16πG

∫
dtdudv

[
1

2NΩ

(
Ω̇2 − Ω2 ẋ

2 + ẏ2

y2

)
+ (2−R)NT

]
, (1.34)

where the Gibbons-Hawking-York boundary term implements an integration by part in
time. We can then integrate over N which give

S = − 1

8πG

∫
dtdudv

√
1− 1

2R
√
Ω̇2 − Ω2 ẋ

2+ẏ2

y2
. (1.35)

This is almost the action of a particle but we still have spatial dependence Ω = Ω(t, u, v)

and a term involving the Ricci curvature of the slice R = −□T 2 log Ω. As a result this is a
complicated theory of the Weyl factor.

The particle is obtained when Ω is taken to be approximately spatially independent.
To investigate this we can use a decomposition

Ω(t, u, v) = T (t) eφ(t,u,v),

∫
dudv eφ = 1 , (1.36)

where to avoid redundancies we have imposed that φ does not change the total volume.
We then obtain

S = − 1

8πG

∫
dtdudv

√
1 + 1

2□T 2φ
√

(Ṫ + T φ̇(t, u, v))2 − T 2 ẋ
2+ẏ2

y2
. (1.37)

At leading order we set φ = 0 and we recover the particle

S = −M
∫
dt
√
Ṫ 2 − T 2 ẋ

2+ẏ2

y2
(1.38)

after integrating over space. At higher orders, there is a non-trivial coupling between the
particle and the Weyl factor of the metric. This provides a dressing factor for the particle.
At late time, we can take the metric to be flat and the only contribution will come from
Virasoro modes.

Note that by canonically quantizing this theory we obtain the Hamiltonian

H =

∫
dudv NT

(
8πG

(
−π2Ω +

y2

T 2
(π2x + π2y)

)
+

1

16πG
(2−R)

)
(1.39)
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which reproduces the Wheeler-DeWitt equation. This makes it clear that at leading order,
the Wheeler-DeWitt equation is the same as the BRST constraint of a worldline theory

QBRST = 0 , (1.40)

which is equivalent to the Klein-Gordon equation in the auxiliary spacetime. From this
perspective it is natural to consider the second-quantized formulation.

1.4 One-loop corrections

At subleading order, the correction to the particle is given by (1.19). The second term in
the RHS of that equation is subleading so this gives the Weyl anomaly equation for a CFT
partition function of central charge c = 3i

2G . As a result we can write a solution in terms of
the Polyakov action [51]

V[g] = 1

64πG

∫
d2x

√
g R

1

□
R . (1.41)

If we evaluate this on a flat metric, this will give rise to the geometric action for Virasoro
modes which computes the Virasoro character on the torus. This can be obtained by
decomposing the Polyakov action into different contributions [18, 52, 53]. A simple way to
see this here is to write the Polyakov action as

eiV[g] =

∫
DφeiSL[φ], SL[φ] =

1

32πG

∫
d2x

√
g (12(∂φ)

2 + φR) , (1.42)

and setting the metric to be flat simply gives a contribution of the determinant of the
Laplacian on the torus

1√
det(□T 2)

=
1

√
y|η(τ)|2

, (1.43)

which is equal to the Virasoro character, see for example [54, 55]. Thus we see that the late
time wavefunctional is

Ψ(T, x, y) =
1

√
y|η(τ)|2

ϕ(T, x, y) (1.44)

where ϕ is the Klein-Gordon field discussed above. This takes the form of a scalar field
dressed by a Virasoro factor. This is the exact late time expression since the path integral
is one-loop exact in this limit. If we view Ψ as a CFT partition function, we see that the
Klein-Gordon field ϕ captures the primary partition function obtained by removing the
Virasoro descendants.

Note that the Polyakov action also arises in a path integral representation of the late-
time wavefunction. There it appears explicitly as an integral over residual gauge modes as
explained in [52, 56].

It’s interesting to interpret this factor as coming from a Virasoro average. The point
is that, at late time, we can fix the diffeomorphism and Weyl gauge symmetries by setting
the metric to be flat. But this leaves a residual gauge group consisting in the Virasoro
modes. As the wavefunction transforms as a CFT partition function, upon changing the
Weyl factor we get

Ψ[eφγ(T, x, y)] = eiSL[φ]Ψ[γ(T, x, y)] . (1.45)
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The Virasoro average corresponds to integrating over φ which does reproduce the Polyakov
action.

More generally we expect that what appears here is the geometric action for the Vira-
soro group [57–60]. It was emphasized recently [61, 62] this is precisely the theory which
computes Virasoro blocks. This must be viewed as a proper way to integrate over the
Virasoro group in the same vein as the treatment of the de Sitter isometry group in pertur-
bative de Sitter quantum gravity where the perturbative solutions to the constraints can
be realized as group-averaged wavefunctionals [6, 8, 9, 63, 64].

1.5 Inner product

The natural inner product for the particle is the Klein-Gordon inner product

(ϕ, ϕ) = i

∫
dxdy

y2
(ϕT 2∂Tϕ

∗ − ϕT 2∂Tϕ
∗) . (1.46)

Note that this inner product is essentially fixed by consistency with the Hamiltonian con-
straint. It is the inner product that makes the time evolution unitary.

At late time, the finite piece of the functional can be defined as the limit

Z(x, y) = lim
T→+∞

TeiMTΨ(T, x, y) (1.47)

where the TeiMT are the necessary counterterms to obtain a finite limit. Then Z can be
interpreted as a CFT partition function.

From the relationship (1.44) we obtain the late time behavior

ϕ(T, x, y) ∼ 1

T
e−iMT√y|η|2Z(x, y) . (1.48)

The Klein-Gordon inner product is time-invariant so can be computed at any time. In
particular at late time we get

(ϕ, ϕ) = lim
T→+∞

(ϕ, ϕ) =

∫
dxdy

y2
|Z(x, y)|2y|η(τ)|4 . (1.49)

This is precisely the inner product that we expect on I+. It takes the form [9]

(Ψ,Ψ) =

∫
Dg

vol(diff × Weyl)
|Z[g]|2 (1.50)

and the gauge can be fixed in a way familiar from string theory [65]. The integral over
metrics splits into an integral over the diffeomorphism and Weyl groups and an integral
over moduli space

Dg = DξDφ
dxdy

y2
Zbc(x, y), Zbc(x, y) = y|η(τ)|4 (1.51)

with a Jacobian factor equal to the partition function of the bc ghost CFT with c = −26.
This reproduces the formula (1.49) which shows that the two prescriptions for the inner
product agree. The upshot is that the one-loop Virasoro prefactor in the wavefunction
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precisely cancels the factor of Zbc when computing an inner product on I+, resulting in the
Klein-Gordon inner product for the particle.

For the definition of the inner product (1.50) to be consistent we need that the central
charge of the CFT partition function Z to be

c = 13 +
3i

2G
+ iO(1), λ ∈ R (1.52)

so that the central charge of |Z|2 cancels the contribution c = −26 from the ghosts. Ad-
ditional corrections to c are allowed as long as they are pure imaginary. Note that the
correction by 13 can be derived from a one-loop computation in the path integral [55, 61].

2 First quantization

We have seen that pure quantum cosmology in three dimensions reduces at leading order
to a particle on moduli space described by the action

S = −M
∫
dt
√
Ṫ 2 − T 2 ẋ

2+ẏ2

y2
. (2.1)

The equations of motion are simply the geodesic equations on the auxiliary spacetime

ds2Aux = dT 2 − T 2dx
2 + dy2

y2
. (2.2)

Here τ = x + iy covers the fundamental domain F = H/PSL(2,Z). It will be simpler to
consider the theory as a particle in the Teichmüller space H and view PSL(2,Z) as a gauge
symmetry. Recall that this gauge symmetry corresponds to the fact that any transformation
of τ → γτ can be compensated by a spatial diffeomorphism (v, u) → (v, u).γ which must
be in SL(2,Z) to preserve the periodicity conditions u ∼ u+ 2π, v ∼ v + 2π.

2.1 SL(2,R) symmetry

The theory can be written in Polyakov form

S = −M
2

∫
dt

(
e−1
(
Ṫ 2 − T 2 ẋ

2 + ẏ2

y2

)
+ e

)
(2.3)

where e(t) is a Lagrange multiplier which is set to

e(t) =
√
Ṫ 2 − T 2 ẋ

2+ẏ2

y2
, (2.4)

and we could choose for example e = 1 in the affine parametrization of the trajectory. The
relation with the lapse N is e = 2NT .

The auxiliary metric (3.1) is flat so it corresponds to a patch of three-dimensional
Minkowski space

ds2Aux = dZ2 − dX2 − dY 2 (2.5)
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where the mapping between the coordinates is

T 2 = Z2 −X2 − Y 2, x =
X

Z − Y
, y2 =

Z2 −X2 − Y 2

(Z − Y )2
, (2.6)

and whose inverse is

X =
Tx

y
, Y =

T (x2 + y2 − 1)

2y
, Z =

T (x2 + y2 + 1)

2y
. (2.7)

The theory possesses a (local) SL(2,R) symmetry coming from the corresponding symmetry
on H. In the embedding space the SL(2,R) symmetry is realized as the SO(1, 2) symmetry
of R1,2. In particular the variable T is invariant under SL(2,R).

The coordinates (T, x, y) provide a slicing of the future wedge of R1,2 into hyperboloids
with T = const. In particular we see that the T = 0 surface corresponding to universes of
zero size is the light-cone in R1,2.

The SL(2,R) symmetry is generated by the Killing vectors

ξ−1 = ∂x, ξ0 = x∂x + y∂y, ξ+1 = (x2 − y2)∂x + 2xy∂y (2.8)

and the corresponding Noether charges associated with a trajectory t 7→ (T (t), x(t), y(t))

take the form

Q−1 =M
T 2

ey2
ẋ, Q0 =M

T 2

ey2
(xẋ+ yẏ), Q1 =M

T 2

ey2
((x2 − y2)ẋ+ 2xyẏ) . (2.9)

Of particular importance is the Casimir

C2 =
1

2
(Q−1Q1 +Q1Q−1)−Q2

0 = −M2 T
4

e2y2
(ẋ2 + ẏ2) . (2.10)

These charges are conserved for any solution of the equations of motion. In the Hamiltonian
formalism, they become operators

Q−1 = πx, Q0 = (xπx + yπy), Q1 = (x2 − y2)πx + 2xyπy (2.11)

where πx = −i∂x, πy = −i∂y are the conjugate momenta. We see that they implement the
SL(2,R) symmetry on the wavefunctions. The Casimir is the Laplacian

C2 = −y2(π2x + π2y) = −∆ , (2.12)

where in our conventions ∆ = −y2(∂2x + ∂2y) ≥ 0.
In particular we see that the Casimir is negative

C2 < 0 (2.13)

so the relevant SL(2,R) representations correspond to the continuous series. In Minkowski
coordinates, the Casimir depends on the initial point and direction of the trajectory

C2 = X⃗2
0 − (P⃗ · X⃗0)

2

P⃗ 2
. (2.14)
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We have X⃗2
0 = 0 as we consider trajectories starting on the light-cone T = 0. As we need

P⃗ 2 > 0 to be in the future light-cone, the Casimir is indeed negative.
Given a trajectory solution, the projected trajectory t 7→ (x(t), y(t)) is a geodesic of H

which satisfies the algebraic equation

(Q−1x(t)−Q0)
2 +Q2

−1y(t)
2 + C2 = 0 . (2.15)

For Q−1 ̸= 0, this corresponds to circles centered on the real line while for Q−1 = 0 this
gives vertical lines.

2.2 Trajectories as spacetimes

A particle trajectory
t 7→ (T (t), x(t), y(t)) (2.16)

is associated with a cosmological spacetime

ds2 = − e(t)2

4T (t)2
dt2 +

T (t)

y(t)
(du+ x(t)dv)2 + T (t) y(t) dv2 . (2.17)

In particular the equations of motion for the particle are equivalent to Einstein’s equation
for this spacetime

Rµν −
1

2
Rgµν + gµν = 0 . (2.18)

This follows from the reduction explained in the previous section and can be checked ex-
plicitly here.

Although the flat space realization makes affine trajectories particularly simple to study,
we will write the trajectories in Fefferman-Graham gauge corresponding to the choice of
parametrization

e(t)

T (t)
=

1

t
. (2.19)

We will fix a torus with moduli τ = x+ iy and consider trajectories which asymptote to it

lim
t→+∞

(T (t), x(t), y(t)) = (+∞, x, y) . (2.20)

The leading trajectory is a vertical trajectory and we can solve the equations of motion to
obtain

T (t) = t− t20
t
, x(t) = x, y(t) =

t+ t0
t− t0

y . (2.21)

This trajectory is defined for t > t0 where we take t0 > 0. We see that

lim
t→+∞

(T (t), x(t), y(t)) = (+∞, x, y), lim
t→t0

(T (t), x(t), y(t)) = (0, x,+∞) , (2.22)

so the trajectory starts at the cusp τ = i∞ and goes to the final point (x, y). This will be
the trajectory corresponding to M0,1.
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The other trajectories are represented by portions of circles centered on the real line.
The solutions can be parametrized by the final point (x, y) and the initial point (x0, 0) in
addition to the parameter t0. The solution takes the form

T (t) = t− t20
t
,

x(t) = x+
4t0t(x0 − x)y2

(t− t0)2(x− x0)2 + (t+ t0)2y2
, (2.23)

y(t) = y
(t2 − t20)(y

2 + (x− x0)
2)

(t− t0)2(x− x0)2 + (t+ t0)2y2
.

This corresponds to the general trajectory such that

lim
t→+∞

(T (t), x(t), y(t)) = (+∞, x, y), lim
t→t0

(T (t), x(t), y(t)) = (0, x0, 0) . (2.24)

In both cases the Casimir is given by

C2 = −4M2t20 , (2.25)

and the on-shell action can be computed as

S(T ) = −M
∫ t

t0

dt
(
1− t20

t2

)
= −MT + 2Mt0 +O(T−1) (2.26)

in the limit T → +∞. The first term is the familiar counterterm and the finite part of the
action is given by the Casimir

Sfinite = 2Mt0 =
√
|C2| . (2.27)

These trajectories correspond to inflationary spacetimes with torus slices. They were dis-
cussed in the present context in [41] and can be viewed as quotient spacetimes dS3/Z.

2.3 The no-boundary condition

For now we have discussed Lorentzian spacetimes corresponding to inflationary cosmologies.
The limit T → 0 is singular and one expects that the semi-classical approximation of gravity
breaks down here.

The Hartle-Hawking proposal suggests that one should consider complexified geome-
tries and impose a no-boundary condition. This leads to a well-defined semi-classical gravity
path integral, at least at the level of a sum over saddle-points. To obtain this we require
that as T → 0, the geometry caps off smoothly after an appropriate analytic continuation.

For the trajectory M0,1 the metric takes the explicit form

ds2 = −dt
2

4t2
+

1

t

(
(t− t0)

2

y
(du+ xdv)2 + (t+ t0)

2y dv2
)

(2.28)

The value T = 0 corresponds to t = t0 and we see that the geometry cannot be made
smooth because the signs of the first and second terms are opposite.

– 14 –



The proper way to analytically continue such geometries was suggested by Maldacena
[12, 13] and discussed by Castro-Maloney in the present context [41]. The usual Poincaré
coordinate is t = z2 for a metric normalized as ds2 = −dz2

z2
+ . . . . The prescription for

analytic continuation is to take z → iz to convert the asymptotically de Sitter metric into
a minus Euclidean AdS metric. Here we see that this corresponds to simply changing the
sign of t. As a result we will consider the Euclidean metric

ds2Euc = −dt
2

4t2
− 1

t

(
(t− t0)

2

y
(du+ xdv)2 + (t+ t0)

2y dv2
)

(2.29)

where we have also redefined the sign of t0 and we take t0 > 0 for definiteness. This metric
is defined for t > t0 and the first circle will shrink smoothly at t = t0. It still satisfies the
Einstein equation (2.18) and can be interpreted as minus the metric of the Euclidean BTZ
black hole which is just a filled torus S1 ×D2.

Expanding this metric around t = t0 using t = t0 + λr, we focus on the du circle by
taking a slice v = const, and the metric becomes

ds2Euc = − 1

4t20λ
2

(
dr2 +

4r2t0
y

du2
)
. (2.30)

From this we see that the circle shrinks smoothly at r = 0 if we impose the relation

t0 =
y

4
. (2.31)

In particular the on-shell action then becomes

Sfinite =
M

2
y , (2.32)

which is the expected on-shell action of theM0,1 spacetime. Thus the no-boundary condition
for a trajectory ending at τ = x+ iy fixes the parameter t0 in terms of y.

The discussion for Mc,d is similar. These geometries are obtained from M0,1 by acting
with an SL(2,Z) element corresponding to taking a linear combination of the two circles
to be the circle that shrinks smoothly. As a result the set of geometries considered here
corresponds to all possible ways of filling the torus.

By repeating the above analysis for the trajectory (2.23), we find that there are cross
terms between the two circles. To cancel them we can apply an SL(2,Z) transformation
(v, u) → (v, u).γ with γ =

(
a b
c d

)
∈ SL(2,Z). The cross terms can be canceled only if the

endpoint x0 is rational of the form x0 = −d
c . Then the no-boundary condition sets

t0 =
y

4((cx+ d)2 + c2y2)
, (2.33)

which is as expected the SL(2,Z) transform of (2.31) under γ. The lesson here is that
the no-boundary condition gives a strong restriction on the no-boundary trajectories, that
they must end up at rational points on the real line. This is equivalent to saying that the
no-boundary trajectories must be SL(2,Z)-equivalent to a trajectory coming from the cusp
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at i∞, since the rational points are its images under SL(2,Z). This interpretation will lead
to an interesting representation in Artin’s billiard.

Finally let us discuss the trajectories in flat space coordinates. With the no-boundary
condition, the leading trajectory intersects the light-cone T = 0 at the “Euclidean point”

X⃗0,1 = (X0, Y0, Z0) = (0, 12y
2, 12y

2) . (2.34)

This gives a simple way to compute the action simply from the distance in R1,2:

S0,1 = −MD(T, x, y; X⃗0) = −MT +
My

2
+O(T−1) . (2.35)

The corresponding Euclidean point for the Mc,d trajectory is obtained similarly

X⃗c,d =
y2

2((cx+ d)2 + c2y2)

(
−2cd, d2 − c2, d2 + c2

)
, (2.36)

and we can check that the distance reproduces the expected on-shell action

Sc,d = −MD(T, x, y; X⃗c,d) = −MT +
My

2((cx+ d)2 + c2y2)
+O(T−1) . (2.37)

It’s interesting to note that a similar structure was found in the canonical quantization
of dS2 JT gravity [13]. The classical solutions there also correspond to trajectories in an
auxiliary (two-dimensional) Minkowski space and the no-boundary condition fixes a position
on the light-cone.

2.4 Hartle-Hawking in Artin’s billiard

We have shown that the classical trajectories of the particle corresponds to cosmological
spacetimes. As discussed above, the no-boundary condition restricts the trajectories to be
SL(2,Z)-equivalent to a vertical trajectory, corresponding to a particle coming from the
cusp at i∞.

Now let’s discuss the sum over no-boundary trajectories which defines the Hartle-
Hawking state. This sum was considered in [42, 66] in the context of AdS3 and discussed
in [41] in the cosmological context. The sum over geometries is really a sum over the coset
Γ∞\PSL(2,Z). The classical geometries Mc,d are in one-to-one correspondence with choices
of two coprime integers (c, d) with c ≥ 0. Given two such integers, we can form an SL(2,Z)
matrix ( a b

c d ) where the integers (a, b) are uniquely fixed modulo the Γ∞ action generated
by shifts (a, b) → (a, b) + (c, d). We can always pick a representative satisfying |ac | <

1
2 so

that the image γτ remains in the vertical strip |x| < 1
2 .

As discussed above, the leading geometry M0,1 is just the vertical trajectory going from
i∞ to the point τ ∈ F , see Figure 1a. To obtain the Mc,d trajectory, we act with an element
of SL(2,Z) on τ . The image γτ of τ ∈ F is not in the fundamental domain anymore. The
trajectory Mc,d is the vertical trajectory going from i∞ to γτ . Although it looks vertical in
the covering space H, it is actually more complicated in F since its crosses the boundaries.
For example, M1,0 includes a bounce on the unit circle corresponding to the application of
the S transformation, see Figure 1b.
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a. M0,1 b. M1,0

Figure 1. Classical spacetimes correspond to particle trajectories in Artin’s billiard.

When a trajectory crosses a boundary at x = ±1
2 , it comes back to the other side

as these two sides are identified. To represent the resulting trajectory, it is convenient to
perform a Z2 quotient corresponding to the reflection x→ −x. The geodesic then becomes
a billiard trajectory in the positive half of the fundamental domain. This is known as
Artin’s billiard [67]. Note that this Z2 identification is natural in gravity since the torus
diffeomorphism (u, v) → (u,−v) does flip the sign of x and is part of the gauge group. A
general Mc,d then corresponds to a trajectory in Artin’s billiard as illustrated in Figure 2.

It’s interesting to ask whether we can predict some of the features of the trajectory from
the integers (c, d). In fact, the dynamics can be discretized and corresponds to iterating
the Gauss map starting from the rational c

d . This is an incarnation of the well-studied
relationship between SL(2,Z), continued fractions, and geodesics on the modular surface,
see for example [67–72].

In our context, the main point is that the trajectory corresponds to a decomposition
of the SL(2,Z) matrix as

γ =
(
a b
c d

)
= STnm . . . STn2STn1 (2.38)

where S =
(
0 −1
1 0

)
and T =

(
1 1
0 1

)
are the standard generators and (n1, . . . , nm) are integers

encoding the trajectory. This decomposition tells us the list of transformations we have
to perform to put back the particle in the fundamental domain after it crosses one of
its boundaries. Equivalently, it gives the sequences of images of the fundamental domain
crossed by the vertical trajectory in the covering space.

From the fact that γ−1(i∞) = −d
c , we see that this decomposition leads to the contin-

ued fraction representation
c

d
= n1 −

1

n2 − 1

. . .− 1
nm

. (2.39)
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(c, d) = (2, 1) (c, d) = (5, 11) (c, d) = (17, 41)

Figure 2. Some examples of the trajectoriesMc,d. The Hartle-Hawking state is defined by summing
over all these trajectories ending at the black point τ ∈ F .

Note that such continued fraction representation or decomposition of γ in S and T are
highly non-unique, due to the relations satisfied by the generators. To obtain the integers
nk corresponding to our problem, we can simply follow the trajectory so that it remains in
Artin’s billiard.

Given a choice of (c, d), the integers nk can be obtained by iterating the Gauss map
defined for x ∈ R as

G(x) =
1

x
−
⌊1
x

⌋
(2.40)

and G(0) = 0. Here ⌊·⌋ is the integer part or floor function. If we consider the sequence of
iterates of the Gauss map starting from c

d

q0 =
∣∣∣ c
d

∣∣∣, qk+1 = G(qk) , (2.41)

we get a finite sequence of rational numbers. The integers nk are then obtained as the
integer parts of their reciprocals:

nk = sign( cd) (−1)k+1
⌊ 1

qk−1

⌋
. (2.42)

Note that this algorithm gives the correct trajectory for many choices of (c, d). When d
c

is almost an integer, a small modification is necessary at the end of the sequence. The
condition is that when nm−1 = −1, we must use the relation ST−1S = TST to get the new
sequence (n1, n2, . . . , nm−2 + 1, nm + 1) of length m− 1. Ultimately these codings depend
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1
2

3
5

2
30

Figure 3. The trajectory for (c, d) = (5, 13). There are four bounces on the unit circle whose
intersections with the real axis are given by iterating the Gauss map starting from c

d .

on the choice of fundamental domain, and the Farey tessellation of H is more appropriate
to give the precise relation in general [68, 72]. See also [73, 74] for a different coding
appropriate for the relation between closed geodesics and Maass cusp forms.

To illustrate this procedure, let us explain how this goes for the choice (c, d) = (5, 13)

illustrated in Figure 3. By iterating the Gauss map, we get the sequence

G(k)( 5
13) = 5

13 ,
3
5 ,

2
3 ,

1
2 , 0, 0, . . . (2.43)

and the above formula gives the integers

(n1, n2, n3, n4) = (2,−1, 1,−2) , (2.44)

corresponding to the decomposition of γ and the continued fraction representation

γ =

(
2 5

5 13

)
= ST−2STST−1ST 2,

5

13
=

1

2− 1
−1− 1

1− 1
−2

. (2.45)

The Gauss map will always give zero after a finite number of iterations when we start
with a rational number. The number of non-zero values gives the number of bounces on
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the unit circle, or equivalently the number of times S appears in the decomposition of γ
corresponding to the trajectory. Moreover, the sequence (qk) gives the positions at which
these bounces intersect the real axis. As a result the Gauss map can be viewed as a
discretization of the dynamics. Note that the Gauss map is one of the simplest example of
a dynamical system which is chaotic, ergodic and exponentially mixing [75–77].

The Hartle-Hawking state is defined by summing over all trajectories coming from the
cusp at i∞. As a result, it is the wavefunction of a particle with the boundary condition
that it came from i∞. As such, it can be viewed as a notion of quantum vacuum for the
Artin particle.

Note that the Hartle-Hawking state is quite special as it only involves rational tra-
jectories, i.e. those that are SL(2,Z)-equivalent to a vertical trajectory on H. So this
corresponds to geodesics on H for which at least one endpoint is rational (or i∞). A
generic trajectory is irrational and those trajectories are much more complicated in Artin’s
billiard. One way to see this is that the Gauss map iterates won’t become stationary so we
expect an infinite number of bounces on the unit circle. In fact, Artin used his billiard to
give the first example of a geodesic on a Riemann surface with a dense trajectory [67]. Here
the restriction to rational trajectories is due to the no-boundary condition, i.e. that the
spacetime has a smooth continuation in Euclidean signature. Irrational trajectories corre-
spond to Lorentzian spacetimes starting at a singularity which cannot be smoothen out by
going to Euclidean signature. It would be interesting to see if the dynamics of irrational
trajectories in Artin’s billiard could help understand the Lorentzian singularity, see [78–81]
for ideas in this direction.

3 Second quantization

The second-quantized theory is the spacetime theory corresponding to the particle. Thus
it is a scalar field of mass M on the auxiliary spacetime

ds2Aux = GabdX
adXb = dT 2 − T 2dx

2 + dy2

y2
, (3.1)

and is described by the action

S = −1

2

∫
d3X

√
detG

(
−Gab∂aϕ∂bϕ+M2ϕ2

)
. (3.2)

The equation of motion is the Klein-Gordon equation

(□+M2)ϕ = 0 . (3.3)

The metric (3.1) is flat and corresponds to the hyperbolic slicing of the future diamond of
Minkowski space as given in (2.7). The quantization of a scalar field in this metric was
described in [82]. Although this is just a free scalar in flat space, the theory is not as simple
as it may seem because the particle does not live on H but on its PSL(2,Z) quotient. Indeed
the auxiliary spacetime is similar to the manifold SL(2,R)/SL(2,Z) which is topologically
the complement of the trefoil knot [83].
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The second-quantized theory should really be thought as a third-quantized theory from
the perspective of gravity as discussed for example in [84–86]. This formalism is useful
because it is more powerful than the first-quantized approach. For example a complicated
sum over particle trajectories becomes a two-point function in the second-quantized theory.

3.1 Mode decomposition and harmonic analysis

The Klein-Gordon equation takes the form

(DT + T 2M2 +∆)ϕ = 0 (3.4)

where we have defined DTχ = ∂T (T
2∂Tχ) and ∆ = −y2(∂2x + ∂2y). The inner product that

we should use is the Klein-Gordon inner product

(ϕ1, ϕ2) = i

∫
dxdy

y2
(ϕ1T

2∂Tϕ
∗
2 − ϕ2T

2∂Tϕ
∗
1) , (3.5)

as this is the inner product that is invariant with respect to time evolution, thus ensuring
unitarity. The field operator decomposes as

ϕ(T, x, y) =

∫
R
dµ (a†µϕ

+
µ + aµϕ

−
µ ) +

∑
n≥1

(b†nφ
+
n + bnφ

−
n ) (3.6)

and contains both a continuous and a discrete piece. These modes are orthonormal

(ϕ+µ , ϕ
+
ν ) = δ(µ− ν), (ϕ−µ , ϕ

−
ν ) = −δ(µ− ν), (ϕ+µ , ϕ

−
ν ) = 0 , (3.7)

and similarly for φ±
n . In particular we can check the canonical commutation relations. The

conjugate momentum is

π =
δS

δ∂Tϕ
=
T 2

y2
∂Tϕ (3.8)

and we see that
[π(T, x, y), ϕ(T, x′, y′)] = −iδ(2)(τ − τ ′) (3.9)

implies that we have

[a†µ, aν ] = δ(µ− ν) , [b†n, bm] = δm,n . (3.10)

As a result, a†ν is a creation operator for the wavefunction ϕ−ν which describes an expanding
universe. The wavefunction ϕ+ν is a contracting universe and corresponds to the annihilation
operator aν . We can define a second-quantized vacuum |0⟩ from the condition that aν |0⟩ =
bn|0⟩ = 0 for all ν and n.

The elementary modes decompose in a time part and a space part according to

ϕ±ν (T, x, y) = χ±
ν (T )ψν(x, y) , (3.11)

which satisfy

∆ψν(x, y) =
(
1
4 + ν2

)
ψν(x, y), (DT + T 2M2)χ±

ν (T ) = −
(
1
4 + ν2

)
χ±
ν (T ) . (3.12)
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The Klein-Gordon inner product (3.5) separates into an inner product on time and an inner
product on space. If we write

ϕi(T, x, y) = χi(T )ψi(x, y), i = 1, 2, (3.13)

we obtain
(ϕ1, ϕ2) = (χ1, χ2)T ⟨ψ1, ψ2⟩ . (3.14)

The spatial inner product is the Petersson inner product

⟨ψ1, ψ2⟩ ≡
∫
F

dxdy

y2
ψ1(x, y)ψ

∗
2(x, y) , (3.15)

while in time we get

(χ1, χ2)T ≡ i(χ1(T )T
2∂Tχ

∗
2(T )− χ∗

2(T )T
2∂Tχ1(T )) . (3.16)

The time-dependent modes χ±
ν (T ) will be discussed in the next section.

The spatial modes are automorphic eigenfunctions of the Laplacian. Thus the spa-
tial mode decomposition follows from the well-studied subject of harmonic analysis in the
fundamental domain [87, 88]. Any element ψ ∈ L2(F) can be decomposed as

ψ(x, y) =
1

4π

∫
R
dν ⟨ψ,E 1

2
+iν⟩E 1

2
+iν(x, y) +

∑
n

⟨ψ, fn⟩fn(x, y) , (3.17)

and this basis is orthonormal for the Petersson inner product. Thus we see that the spatial
modes ψν(x, y) consist in Eisenstein series and Maass cusp forms.

Note that this spectral decomposition has been discussed recently in the context of
asymptotically AdS3 quantum gravity [89–91]. It was used in particular to study the fac-
torization puzzle [92, 93]. Since AdS3 partition functions are not in L2(F), a subtraction
is necessary to apply the spectral decomposition. In quantum cosmology, the states are
defined to be in L2(F) so the spectral decomposition is unavoidable.

Let us review some facts about this decomposition. The continuous spectrum is given
by the Eisenstein series Es(x, y) for s = 1

2 + iν, ν ∈ R which satisfy

∆E 1
2
+iν = (14 + ν2)E 1

2
+iν . (3.18)

The Eisenstein series can be defined as Poincaré sums

Es(x, y) =
∑

γ∈Γ∞\Γ

Im(γτ)s (3.19)

which can be analytically continued to any s ∈ C. They have the Fourier expansion [94–96]

Es(x, y) = ys + φ(s)y1−s +
4
√
y

Λ(s)

∑
n≥1

cs− 1
2
(n)Ks− 1

2
(2πny) cos(2πnx) (3.20)

where the n-th Fourier coefficient involves

cs(n) = ns
∑
d≥1
d|n

d−2s =
∑
a,d≥1
ad=n

(a
d

)s
(3.21)
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and the completed Riemann zeta function

Λ(s) = π−sΓ(s)ζ(2s) (3.22)

which satisfies the functional equation Λ(s) = Λ(12 − s). The constant Fourier mode has a
reflected piece in terms of the phase

φ(s) =
Λ(1− s)

Λ(s)
, (3.23)

and it will be useful to note that

φ(12 + iν) =
Λ(12 − iν)

Λ(12 + iν)
=

Λ(iν)

Λ(−iν)
. (3.24)

The Eisenstein series satisfy the functional equation

Λ(s)Es(x, y) = Λ(1− s)E1−s(x, y) . (3.25)

Note that the Eisenstein series are not strictly in L2(F). Their inner product is divergent
but can be regularized by cutting the fundamental domain to some height and using the
Maass-Selberg relations [88, 94, 96].

The discrete spectrum {fn} consists of truly L2 functions, known as Maass cusp forms.
They are special and rather mysterious eigenfunctions of the Laplacian [97] which can only
be studied indirectly using the Selberg trace formula [98, 99] or the Selberg zeta function
[100–102]. The discrete spectrum is conjectured to be simple [103] and the corresponding
eigenvalues are only known numerically [104]. These functions are of interest in number
theory because they are related to L-functions. Here we see that they appear naturally as
quantum states of pure three-dimensional cosmology.

Maass cusp forms are pseudo-random objects [105, 106] so we might expect the cor-
responding eigenvalues to follow random matrix statistics. This is true for the Laplace
spectrum of generic Riemann surfaces but it is false here. Indeed the case at hand is special
because the modular surface H/PSL(2,Z) is arithmetic and its spectrum follows Poissonian
statistics. This is due to the existence of Hecke operators which provide an integrability-
like structure [107]. Hecke operators act as unitaries on the Hilbert space so it would be
interesting to see if they can be given a physical interpretation in the present context and if
one can understand the integrability structure they realize. See also [108, 109] for relevant
ideas about automorphic dynamics.

3.2 Time evolution and Hamiltonian

The elementary solutions of (3.12) can be written in terms of Hankel functions with imag-
inary order

χ+
µ (T ) = e−

πµ
2

√
π

4T
H

(1)
iµ (MT ), χ−

µ (T ) = e
πµ
2

√
π

4T
H

(2)
iµ (MT ) . (3.26)

We note that they are complex conjugates of each other and symmetric

(χ+
µ )

∗ = χ−
µ (χ−

µ )
∗ = χ+

µ , χ+
−µ = χ+

µ , χ−
−µ = χ−

µ , (3.27)
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and have a normalized inner product

(χ+
µ , χ

+
µ )T = 1, (χ−

µ , χ
−
µ )T = −1, (χ+

µ , χ
−
µ )T = 0 . (3.28)

Let’s discuss the asymptotic behavior of these modes. At late time we have

χ±
µ (T ) ∼

1√
2MT

e±i(MT−π
4
), T → +∞ . (3.29)

In particular we note that χ±
µ (T ) captures the counterterms in the wavefunctional discussed

above. From the sign of the divergent phase, we see that χ−
µ (T ) corresponds to an expanding

universe while χ+
µ (T ) is a contracting one.

In the limit T → 0 we have an oscillatory behavior

χ±
µ (T ) ∼ ∓ i

2

√
M

2π

(
e±

πµ
2 Γ(−iµ)(12MT )−

1
2
+iµ + e∓

πµ
2 Γ(iµ)(12MT )−

1
2
−iµ
)
, T → 0 .

(3.30)
This is expected since T → 0 corresponds to the singularity.

We can also consider the second-quantized Hamiltonian which takes the form

HT =
1

2

∫
dxdy

y2

(
y4

T 2
π2 + ϕ∆ϕ+ T 2M2ϕ2

)
. (3.31)

Note that it depends on the slice T = const on which we evaluate it. Hence it is a time-
dependent Hamiltonian. From the mode decomposition, we obtain

HT =
1

2

∫
dµ
(
ωT (µ)a

†
µaµ + h.c.

)
, (3.32)

in terms of the energy density

ωT (µ) = T 2∂Tχ
+
µ (T )∂Tχ

−
µ (T ) +

(
1
4 + µ2 + T 2M2

)
χ+
µ (T )χ

−
µ (T ) . (3.33)

At late and early times, this takes the form

ωT→∞(µ) = M +O(T−2) , (3.34)

ωT→0(µ) =
(14 + µ2)

µ tanh(πµ)T
+O(1) + oscillatory . (3.35)

At early times, the energy density is peaked around µ = 0 but becomes uniform under time
evolution. Thus the system has a diffusive/dissipative behavior.

The second-quantized formulation suggests a way to define a kind of cosmological S-
matrix. In terms of the Hamiltonian it can be written as the unitary evolving from T = 0

to T = ∞:

S = T exp

(
i

∫ +∞

0
dT HT

)
. (3.36)

In the Minkowski embedding, this is an S-matrix where the initial state is defined on the
future light-cone and the final state is at future infinity.
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3.3 Green function and automorphic kernels

A sum over particle trajectories computes the Green function in the second-quantized for-
malism. The auxiliary spacetime is flat so the Green function is especially simple. The
standard Green function for a massive scalar field in R1,2 gives

G0(X⃗, X⃗0) =
1

D
e−iMD (3.37)

where D is the distance

D(X⃗, X⃗0) =
√

(Z − Z0)2 − (X −X0)2 − (Y − Y0)2 . (3.38)

which after writing in (T, x, y) coordinates gives at late time

G0(T, x, y;T0, x0, y0) =
1

T
exp

(
−iMT + iMT0

(x− x0)
2 + y2

2yy0

)
, T → +∞ . (3.39)

The divergent terms are the counterterms discussed above so the finite Green function can
be defined as

G0(x, y;T0, x0, y0) = lim
T→∞

TeiMTG0(T, x, y;T0, x0, y0) = eiMT0 cosh d(τ,τ0) , (3.40)

where d(τ, τ0) is the hyperbolic distance on H:

cosh d(τ, τ0) = 1 + 1
2 t(τ, τ0), t(τ, τ0) =

|τ − τ0|2

yy0
. (3.41)

In particular, this reproduces the TT kernel given in (1.30). This is expected as the Green
function of the second-quantized theory captures time evolution of the particle theory.

The above discussion was for the covering space so we still have to sum over PSL(2,Z)
images. The Green function is then

G(τ ;T0, τ0) =
∑
γ∈Γ

G0(τ ;T0, γτ0) . (3.42)

More generally, for any function k(t) of the point-pair invariant t(τ, τ0), we can consider
the automorphic kernel

K(τ, τ0) =
∑
γ∈Γ

k(t(τ, γτ0)) . (3.43)

These automorphic kernels are the operators acting on the first-quantized Hilbert space.
Quantities of this type can be studied using the spectral decomposition [98]. For any

point-pair invariant k(t), the kernel can be written as

K(τ, τ0) =
1

4π

∫
R
dν h(ν)E 1

2
+iν(τ)E 1

2
−iν(τ0) , (3.44)

where the spectral density h(ν) is obtained from k(t) by the so-called Selberg/Harish-
Chandra transform [88, 94]. Let us briefly recall this procedure. From k(t), we first define
a function Q(w) as ∫ +∞

w
dt

k(t)√
t− w

= Q(w) , (3.45)
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and then the function

g(u) = Q(2 coshu− 2) . (3.46)

The spectral density h(ν) is then obtained by Fourier transform

h(ν) =

∫
R
du g(u) eiνu . (3.47)

For the Green function (3.40) we have

k(t) = eiMT0e
iMT0

2
t , (3.48)

so we can compute Q(w) and we get

g(u) = e
iπ
4

√
2π

MT0
eiMT0 coshu . (3.49)

The Fourier transform with respect to u then shows that the spectral density is given by a
Hankel function

h(ν) =

∫
du eiuνg(u) = iπe−πν/2e

iπ
4

√
2π

MT0
H

(1)
iν (MT0) . (3.50)

It is instructive to match this with a direct computation using the scalar field operator.
The quantity of interest is simply the two-point function

G(T, x, y;T0, x0, y0) = ⟨0|ϕ(T, x, y)ϕ(T0, x0, y0)|0⟩ . (3.51)

Using the mode decomposition, we obtain

G(T, x, y;T0, x0, y0) =
∫
R
dν χ−

ν (T )χ
+
ν (T0)E 1

2
+iν(τ)E 1

2
−iν(τ0) (3.52)

so this gives the spectral decomposition of the Green function. In the limit T → ∞, what
remains is

lim
T→+∞

TeiMTχ−
ν (T )χ

+
ν (T0) =

1√
2M

e−
iπ
4 e−

πν
2

√
π

4T0
H

(1)
iν (MT0) =

1

4π
h(ν) (3.53)

which precisely reproduces the expected density.
We are particularly interested in the limit T0 → 0 corresponding to an initial condition

for universes of zero size. We can define states by integrating the Green function over a
source λT0(x0, y0) and taking the limit T0 → 0. In this case the Hankel function behaves
as (3.30). So we need a source with a particular dependence on T0 as to get a finite
limit T0 → 0. This is the second-quantized version of the no-boundary condition discussed
previously in the first-quantized setting.
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3.4 The Hartle-Hawking spectrum

The Hartle-Hawking state is defined as

ΨHH(τ) =
∑

γ∈Γ∞\Γ

Ψ0,1(γτ), Ψ0,1(τ) =
√
y|q|−

c−1
12 |1− q|2 , (3.54)

using q = e2iπτ with τ = x+ iy. This is the same as the Maloney-Witten partition function
[42]. As explained above we have multiplied by √

y|η(τ)|2 to focus on the primary partition
function which corresponds to removing the Virasoro modes. This combination is modular
invariant and doesn’t affect the Poincaré sum.

In section 2.4, we have seen that the Hartle-Hawking state can be viewed as the sum
over rational particle trajectories, i.e. trajectories coming from the cusp at i∞. As such the
Hartle-Hawking state appears to define a notion of vacuum for the particle theory. However,
this picture is insufficient because it only captures the leading contribution |q|−

c−1
12 and the

one-loop piece √
y|1 − q|2 is crucial to obtain a well-defined Poincaré sum. This one-loop

piece reflects the fact that the CFT vacuum lies in a degenerate representation due to
SL(2,R) zero modes. In the second-quantized theory, the effect of the one-loop piece can
be interpreted as a non-trivial source that can be derived from the spectral decomposition.

The Hartle-Hawking spectral density is defined as the Rankin-Selberg transform of
ΨHH, i.e. as the Petersson inner product with the Eisenstein series:

ρHH(ν) = (ΨHH, E 1
2
+iν) =

∫
F

dxdy

y2
ΨHH(x, y)E 1

2
−iν(x, y) . (3.55)

Since the Hartle-Hawking state is expressed as a Poincaré sum, we can unfold the integration
domain from the fundamental domain F to the strip |x| < 1

2 . This gives the formula

ρHH(ν) =

∫ +∞

0

dy

y2

∫ 1
2

− 1
2

dxΨ0,1(x, y)E 1
2
−iν(x, y) . (3.56)

To perform this integral, we will parametrize the central charge as

c = 1− 6Q2 = 25− 6Q̃2, Q = b− 1

b
, Q̃ = b+

1

b
. (3.57)

This parametrization is purely for convenience. We expect that the Hartle-Hawking state
can be defined for any complex value of c. The Poincaré sum definition is manifestly conver-
gent in the region Re(c) < 1 which corresponds to b real so we can define the wavefunction
in this region and analytically continue it in c. The AdS case corresponds to c = 3

2G +O(1)

real and large. As discussed above, in the cosmological context we need

c =
3i

2G
+ 13 +O(1)i (3.58)

where we allow only purely imaginary corrections. This corresponds to taking

b = e±
iπ
4 λ, λ ∈ R . (3.59)
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We expect that our expressions will be valid for generic values of the central charge if we
define them by analytic continuation from convergent regions where Re(c) is sufficiently
small. Hence our considerations will also apply to the AdS3 context.

Explicitly the seed can be written as a sum of four exponentials

Ψ0,1 =
√
y(e−Q2πy + e−Q̃2πy − 2e−(b2+ 1

b2
)πy cos(2πx)) , (3.60)

and only the constant and first Fourier coefficients of the Eisenstein series contribute

E 1
2
−iν(x, y) = y

1
2
−iν +

Λ(−iν)
Λ(iν)

y
1
2
+iν +

4
√
y

Λ(iν)
K−iν(2πy) cos(2πx) + . . . (3.61)

The contribution from the constant Fourier modes follows from the Cahen–Mellin integral∫ +∞

0
dy e−αyys−1 = α−sΓ(s) . (3.62)

For the first Fourier mode, we can use the integral representation

Kν(z) =
1
2(

1
2z)

ν

∫ +∞

0

dt

t1+ν
exp
(
−t− z2

4t

)
, (3.63)

to obtain the identity

1

π

∫
R
dµ∆iµKiµ(2πy) =

1

2π

∫ +∞

0

dt

t

∫
R
dµ
(πy∆

t

)iµ
exp
(
−t− π2y2

t

)
, (3.64)

= exp
(
−πy

(
∆+

1

∆

))
.

The Kontorovich–Lebedev transform then gives the answer for the integral that we want
to evaluate:∫ +∞

0

dy

y
Kiµ(2πy) exp

(
−πy

(
∆+

1

∆

))
=

π

2µ sinh(πµ)
(∆iµ +∆−iµ) . (3.65)

Note that the application of the Kontorovich–Lebedev transform is formal here since the
LHS has a pole at y = 0 which should be removed. The RHS should be viewed as the
regularized definition. As we will see, this turns out to be equivalent to the regularization
used by Maloney-Witten.

Our final result for the Hartle-Hawking spectral density takes the form

ρHH(ν) = πiνΓ(−iν)
[
Q2iν + Q̃2iν +

ζ(−2iν)

ζ(2iν)
(Q−2iν + Q̃−2iν)− 2

ζ(2iν)
(b2iν + b−2iν)

]
(3.66)

so that the spectral representation of the Hartle-Hawking state is

ΨHH(x, y) =
1

4π

∫
R
dν ρHH(ν)E 1

2
+iν(x, y) . (3.67)

Note that, as any Rankin-Selberg transform, ρHH satisfies the functional equation

ρHH(ν) = φ(12 + iν)ρHH(−ν) , (3.68)
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which follows from the corresponding equation for the Eisenstein series. It appears more
appropriate to think of ρHH as an L-function rather than as a density. In particular, it
would be interesting to see if ρHH admits an Euler product formula.

This result also gives the source necessary to produce the Hartle-Hawking state follow-
ing the discussion in the previous section. The effect of time evolution corresponds to the
Hankel function (3.50) which produces the factor Γ(−iν) in the T0 → 0 limit. So up to scal-
ing by a T0-dependent prefactor necessary to get a finite T0 → 0 limit, the Hartle-Hawking
source is essentially the expression in bracket in (3.66).

As a consistency check, we can compare to the expansion of the constant Fourier mode
obtained by Maloney-Witten [42]:

Ψ
(0)
HH =

∑
m≥0

wm y
1
2
−m , (3.69)

where w0 = −6 and

wm =
πm+ 1

2

mΓ(m+ 1
2)ζ(2m+ 1)

[
ζ(2m)

(
( c−1

6 )m + ( c−25
6 )m

)
− 4Tm( c−13

12 )
]
, (3.70)

with Tm the Chebyshev polynomial of the first kind.
From our spectral representation, we see that the constant Fourier mode is

Ψ
(0)
HH =

1

4π

∫
R
dν ρHH(ν)(y

1
2
+iν + φ(12 + iν)y

1
2
−iν) =

1

2π

∫
R
dν ρHH(ν) y

1
2
+iν , (3.71)

where we used the functional equation to rewrite it as a single term. Now we can close the
contour by picking up all the poles with Im(ν) > 0. The gamma function only has poles
for Im(ν) ≤ 0 so the only poles in (3.66) come from the trivial zeros of the zeta function
ν = in, n ≥ 1. The non-trivial zeros of the zeta function also don’t contribute as the critical
strip corresponds to −1

2 < Im(ν) < 0.
This gives the expansion

Ψ
(0)
HH =

∑
n≥1

Resν=in ρHH(ν) y
1
2
−n (3.72)

and we can check that the residues precisely match the Maloney-Witten coefficients

Resν=in ρHH(ν) = wn . (3.73)

In particular, the Chebyshev polynomial is correctly reproduced using the identity

Tm(12(x+ x−1)) =
1

2
(xm + x−m) , (3.74)

as we have c−13
12 = −1

2(b
2 + b−2) in our parametrization.

Interestingly the constant term w0 = −6 is also correctly reproduced from the pole of
the gamma function at ν = 0. For this note that given the presence of a pole at ν = 0,
the contour of integration should be shifted to ν ∈ R+ iϵ. Then when combining ρHH with
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its reflection, only one of the two contributes after we close the contour so the constant
contribution is

1

2
× Resν=0 ρHH(ν) = −6 . (3.75)

Thus the density (3.66) is precisely what is needed to reproduce the Maloney-Witten ex-
pansion of the constant Fourier mode. This implies that the spectral representation (3.67)
matches the Maloney-Witten partition function as the constant Fourier mode uniquely
fixes the Eisenstein spectrum. In principle, discrete contributions due to Maass cusp forms
could be present but studying this is more difficult and cannot be done with the present
considerations, as Maass cusp forms have a vanishing constant Fourier mode.

3.5 Hartle-Hawking as a Möbius average

In the AdS context, the meaning of the Maloney-Witten partition function remains a subject
of debate due to its unphysical features, notably an apparently continuous spectrum and
non-positive density of states. See [66, 110–119] for a sample of discussions on the subject.
In the cosmological context, it is viewed as a wavefunction so there is a priori no requirement
for either positivity or discreteness.

Interestingly the spectral representation derived in the previous section gives a way to
rewrite the Maloney-Witten partition function as a q-expansion with integer coefficients.
This is surprising but is possible here because we allow negative degeneracies and accumu-
lation points in the spectrum. As we will explain, this representation gives a precise way
to view the Hartle-Hawking state, or the Maloney-Witten partition function in the AdS
context, as an average.

We can separate the Hartle-Hawking state in three terms, each separately modular
invariant:

ΨHH = ψ[Q] + ψ[Q̃]− χ[b] , (3.76)

corresponding to different pieces of (3.66)

ψ[Q] =
1

4π

∫
R
dν πiνΓ(−iν)

[
Q2iν +

ζ(−2iν)

ζ(2iν)
Q−2iν

]
E 1

2
+iν , (3.77)

χ[b] =
1

2π

∫
R
dν πiνΓ(−iν)

[
1

ζ(2iν)
(b2iν + b−2iν)

]
E 1

2
+iν .

They separately compute the Poincaré sums appearing in the Hartle-Hawking state:

ψ[Q] =
∑

γ∈Γ∞\Γ

√
y|q|

Q2

2

∣∣
γ
, χ[b] = 2

∑
γ∈Γ∞\Γ

√
y|q|

1
2
(b2+ 1

b2
) cos(2πx)

∣∣
γ
, (3.78)

where q = e2iπτ and |γ denotes the action of γ on τ = x+ iy.
The main idea is that we can rewrite them as discrete sums of exponentials by using

the Dirichlet series representations of the zeta function

ζ(−2iν) =
∑
n≥1

n2iν ,
1

ζ(2iν)
=
∑
m≥1

µ(m)m−2iν . (3.79)
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The series for the reciprocal of the zeta function involves the Möbius function µ(m) defined
as µ(m) = (−1)k when m is the product of k distinct primes and 0 when m contains a
square factor.

For example the constant Fourier coefficient of ψ[Q] gives

ψ(0)[Q] =
1

2π

∫
R
dν πiνΓ(−iν)

(
Q2iν +

∑
m,n≥1

µ(m)
( n

Qm

)2iν)
y

1
2
+iν , (3.80)

=
√
y|q|

Q2

2 +
√
y
∑

m,n≥1

µ(m)|q|
n2

2m2Q2 ,

which becomes a discrete sum of exponentials. The non-zero Fourier coefficients can also
be computed from the Fourier decomposition (3.20) of the Eisenstein series and using
repeatedly the identity (3.64).

After the dust settles we obtain the expression

ZHH =
1

√
y|η(τ)|2

(
ψ[Q] + ψ[Q̃]− χ[b]

)
(3.81)

where we write here the full partition function including the Virasoro prefactor. The dif-
ferent contributions take the form

ψ[Q] =
√
y |q|Q2/2 +

√
y
∑

m,n≥1

µ(m)|q|
n2

2m2Q2 (3.82)

+
√
y
∑
m≥1

µ(m)
∑
a,d≥1

(qh
+
m,a,d q̄h

−
m,a,d + q̄h

+
m,a,dqh

−
m,a,d) ,

χ[b] =
√
y
∑
m≥1

µ(m)(|q|
b2

2m2 + |q|
1

2m2b2 ) (3.83)

+
√
y
∑

m,ℓ≥1

µ(m)µ(ℓ)
∑
a,d≥1

(qh
+
m,ℓ,a,d q̄h

−
m,ℓ,a,d + q̄h

+
m,ℓ,a,dqh

−
m,ℓ,a,d)

]
,

and the conformal dimensions that appear are

h±m,a,d =
1

4
(p±m,a,d)

2, h̃±m,a,d =
1

4
(p̃±m,a,d)

2 h±m,ℓ,a,d =
1

4
(p±m,ℓ,a,d)

2, (3.84)

which we have parametrized in terms of Liouville momenta

p±m,a,d = amQ± d
1

mQ
, p̃±m,a,d = amQ̃± d

1

mQ̃
, p±m,ℓ,a,d = a

ℓb

m
± d

m

ℓb
. (3.85)

The expansion of ψ[Q̃] is the same as that of ψ[Q] but with Q replaced by Q̃. For χ[b],
the sum over m, ℓ has an apparent divergence at the diagonal m = ℓ but this should be
zeta-regularized using

∑
m≥1 |µ(m)|m−s = ζ(s)

ζ(2s) so that
∑

m≥1 µ(m)2 = 1.
This gives an exact expression for the Maloney-Witten partition function as a q-

expansion with integer coefficients. The existence of such an expression is surprising but
is possible here as it involves a rather exotic spectrum with negative degeneracies and
accumulation points.
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The signs of the degeneracies are governed by the Möbius function which is valued
in {−1, 0, 1}. This function is central in analytic number theory and is known to display
chaotic behavior [120–122]. In particular, its sign is essentially random as it is believed that∑

n≤N

µ(n) = O(N
1
2
+ϵ) , (3.86)

which is what would be expected from a random walk. Such pseudo-random behavior is
intimately related to the distribution of prime numbers and in fact (3.86) is equivalent
to the Riemann hypothesis. Additional conjectures by Chowla and Sarnak suggest that
the Möbius function is as random as one could expect [123]. The “Möbius randomness
hypothesis” is the idea that summing µ(n) against any reasonable function will lead to
significant cancellations [124].

From this perspective the Hartle-Hawking state can be viewed as a random average
obtained as follows. For the term ψ[Q] and ψ[Q̃], we replace Q → mQ and Q̃ → mQ̃. For
the term χ[b], we replace b → ℓ

mb. We then perform the average by summing over m, ℓ
with the Möbius function. This can be viewed as an average over the central charge. From
the pseudo-random nature of the Möbius function we expect large cancellations ensuring
convergence. It would be interesting to make this more precise and identify the seed CFT
that is averaged here. The conformal dimensions (3.84) suggest that degenerate Virasoro
representations make an appearance but there are also other operators in the spectrum.

4 Future directions

This paper has only explored the simplest case of pure three-dimensional quantum cos-
mology with a spatial Riemann surface with g = 1. A similar story should exist for Mg,n

corresponding to a surface of genus g with n perturbative insertions. Adding operator inser-
tions (metric or matter fluctuations) gives a way to define a perturbative Hilbert space, as
described in [8]. In three dimensions it should be the Hilbert space of Virasoro blocks dis-
cussed for example in [125]. It would be interesting to develop this more general story. The
case of the sphere g = 0 presents additional challenges due to the existence of a cosmological
horizon and a static patch.

The equivalence with the particle suggests an avenue to understand off-shell gravity
in three dimensions [112, 126]. As classical spacetimes correspond to classical particle
trajectories, a consistent prescription to sum over off-shell spacetimes would be to sum over
all particle trajectories. Such particle path integrals do make sense and can be studied more
easily in the second-quantized formalism.

In particular it is interesting to think about closed geodesics on moduli space which
would correspond to time-periodic cosmologies. They cannot arise as on-shell spacetimes
but they could appear as off-shell contributions in the second-quantized theory. The Selberg
zeta function relates Maass cusp forms to the lengths of closed geodesics on the modular
surface [74, 127–129] so it would be interesting to obtain gravitational incarnations of this
and other zeta functions [99, 101, 130, 131].
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In this paper, we have focused on the semi-classical story. Non-perturbative effects
include for example topology change. In the particle picture, this would correspond to a
particle jumping from one topological sector to another. Whether such effects can be made
sense of is an interesting avenue for future research. The gravity path integral gives a way
to study this by integrating over suitable cobordisms. In particular, it would be interesting
to give an interpretation in our context of the wormholes discussed in [132–134].

Recently it has been suggested that the Hilbert space of quantum cosmology is one-
dimensional so that the theory would be trivial. In particular this follows from arguments
based on factorization [135–138]. The Hilbert space discussed in this paper is infinite-
dimensional as well as the one constructed in [8]. There is no discrepancy because a Hilbert
space depends on a choice of inner product and such choice must be viewed as part of the
definition of the theory. The inner product appearing naturally in considerations about
factorization may not be the one we should use to discuss cosmology. This point was
already made by Higuchi in the perturbative de Sitter case [5] where a redefinition of the
inner product was necessary to obtain a non-trivial Hilbert space [6]. This redefinition is
natural because it corresponds to dividing by the infinite volume of the residual conformal
group [9] and necessary in order to have an interesting theory of quantum cosmology.

An important but conceptually more difficult question concerns the role of the observer.
The perspective taken in this paper is that of the meta-observer who is probing the universe
externally. Instead, we have arisen as emergent observers in the universe and we are probing
it from the inside. Discussing quantum mechanics in this context is more challenging, see
[139, 140] for some recent ideas about this.

Finally we would like to comment on the potential connections to number theory. Mod-
ular forms are familiar to physicists as they arise as partition functions of two-dimensional
CFTs. However, these are mostly not the modular forms that are of interest in number
theory as they behave badly at the cusps and hence don’t give rise to L-functions. Instead,
the automorphic forms appearing as quantum states in cosmology are precisely the ones
studied by number theorists because by definition we want the wavefunctions to be in L2.

Our real interest is to understand quantum cosmology in higher dimensions. The
ideas and tools used in this paper could be applied more generally. In higher dimensions,
wavefunctionals in each topological sector should also be automorphic forms but of more
general types. The existence of the TT deformation in higher dimensions [141, 142] and
its expected relation to the Laplace operator suggest that, at least in the large volume
regime, the dynamics will also involve harmonic analysis on moduli space. These are the
ingredients appearing in the Langlands program [143, 144]. It would be interesting to
understand whether Hecke operators or Galois representations can be realized in quantum
cosmology and if semi-classical gravity can be related to number-theoretic trace formulas.
From a physics perspective, number theory is interesting because it provides a wealth of
pseudo-random objects, some of which having already appeared in this work. Despite
displaying chaotic behavior, these quantities are also exact, so it is natural to speculate
that they could play a role in a microscopic description of gravity.
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