
ar
X

iv
:2

40
5.

09
74

6v
1

 [
cs

.I
T

]
 1

6
M

ay
 2

02
4

Algebraic Geometric Rook Codes for Coded

Distributed Computing

Gretchen L. Matthews & Pedro Soto

Department of Mathematics

Virginia Tech

Blacksburg, Virginia 24061 USA

{gmatthews, pedrosoto}@vt.edu

Abstract—We extend coded distributed computing over finite
fields to allow the number of workers to be larger than the
field size. We give codes that work for fully general matrix
multiplication and show that in this case we serendipitously have
that all functions can be computed in a distributed fault-tolerant
fashion over finite fields. This generalizes previous results on
the topic. We prove that the associated codes achieve a recovery
threshold similar to the ones for characteristic zero fields but now
with a factor that is proportional to the genus of the underlying
function field. In particular, we have that the recovery threshold
of these codes is proportional to the classical complexity of matrix
multiplication by a factor of at most the genus.

I. INTRODUCTION

In this paper we consider the problem of coded distributed

computation over a finite field. Coded distributed computing

and, in particular, coded distributed matrix multiplication has

attracted a large surge of research interest as of late [1], [2], [3],

[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16].

In this paper we will extend the batch matrix multiplication

problem in [10], [11], [8], [9], [17] to the case where there are

more workers than there are elements in the field. We show

that over finite fields, our rook codes can encode all functions.

We use codes constructed from algebraic function fields. Prior

works that use algebraic geometry codes include [18], [19],

[20], and evaluation codes [21].

This paper is organized as follows. Section II gives an

implicit construction that solves the general coded distributed

matrix-matrix multiplication problem that is optimal to a factor

of 2(g+1) where g is the genus of a particular function field,

Section III gives an explicit construction that is good for small

values, and Section IV gives a construction that computes any

function which is optimal up to a factor of ℓ(g + 1) where ℓ
is the degree of the function and g is also the genus of a yet

unspecified function field.

Background and Notation: Consider a function field F of

genus g over a finite field F. The set of places of F is denoted

by PF . The divisor of a nonzero rational function f ∈ F is

(f) = (f)0 − (f)∞ where (f)0 :=
∑

P∈PF ,vP (f)>0 vP (f)P
and (f)∞ :=

∑

P∈PF ,vP (f)>0 vP (f)P denote the zero and

pole divisors of f and vP (f) denotes the discrete valuation of

f at the place P .

Consider a divisor G =
∑

P∈PF
aPP of F . Its de-

gree is deg(G) :=
∑

P∈PF
aP deg(P), and its support is

supp(G) := {P ∈ PF : aP 6= 0}. The Riemann-Roch space

of G is L(G) := {f : (f) ≥ −G} ∪ {0}, meaning f ∈ L(G)
if and only if f has a zero of order at least −aP for each

P ∈ supp(G) with aP < 0 and the only poles of f are

at P ∈ supp(G) with aP > 0 and of pole order at most

aP . The dimension of the divisor G is ℓ(G) := dimF L(G).
If deg(G) > 2g − 2, then according to the Riemann-Roch

Theorem, ℓ(G) = degG+ 1− g.

Given divisors G and D := P1 + · · · + Pn on F
with disjoint support where each Pi is a rational place,

the associated algebraic geometry code is C(D,G) :=
{(f(P1), . . . , f(Pn)) : f ∈ L(G)}. It is well known that

C(D,G) is an [n, k, d] code over F, with length n, dimension

k = ℓ(G)− ℓ(G−D) and minimum distance d ≥ n− degG.

Hence, if 2g − 2 < deg(G) < n, then k = deg(G) + 1 − g.

For additional details, see [22].

II. DIAGONAL ALGEBRAIC GEOMETRIC ROOK PRODUCT

A. Batch Matrix Multiplication

We will consider the following problem: given k pairs of

matrices

A1, B1, . . . , Ak, Bk,

where Ai ∈ F
t1×t2 and Bi ∈ F

t2×t3 for i ∈ [k] and a field F,

compute the products

A1B1, . . . , AkBk

in the distributed master worker topology in which the master

node gives n worker nodes coded matrices of the form

Ãw =
∑

i∈[k]

α
(w)
i Ai ∈ F

t1×t2 , B̃w =
∑

i∈[k]

β
(w)
i Bi ∈ F

t2×t3

where α
(w)
i ∈ F and w ∈ [n] indexes over the worker

nodes. We are concerned with the minimum number of worker

nodes that need to return their values so that the master

can recover the desired products. This will be formalized in

Definition 1. Before we move on to constructing the actual

codes, we will show that this batch matrix problem is actually

the most general form of the distributed matrix multiplication

problem since it implicitly solves the general matrix-matrix

multiplication problem.

http://arxiv.org/abs/2405.09746v1

B. General Matrix-Matrix Multiplication

Given two matrices

A =







A1,1 . . . A1,ζ

...
. . .

...

Aχ,1 . . . Aχ,ζ






, B =







B1,1 . . . B1,υ

...
. . .

...

Bζ,1 . . . Bζ,υ






,

with Ai,j ∈ F
t1×t2 and Bi,j ∈ F

t2×t3 , we can take an optimal

(χ, υ, ζ) fast matrix multiplication tensor of rank r, i.e., for

t ∈ [r], take

Ât =
∑

i,j∈[χ]×[ζ]

γ
(t)
i,jAi,j , B̂t =

∑

i,j∈[ζ]×[υ]

δ
(t)
i,jBi,j ,

and then Ai, Bi := Âi, B̂i as in [23], which shows that the

general matrix-matrix multiplication problem reduces exactly

to the batch matrix multiplication. It seems that computing the

linear functions defined by γ, δ is an undesirable overhead,

but one must compute the functions given by α, β anyways;

in particular, one may compose the α, β and the γ, δ so that

there is no overhead. The number r above is often called the

tensor-rank or the bilinear complexity.

The primary goal of this paper is to generalize the main

result of [23] (which only holds in true generality generally

for characteristic zero) to more general cases over finite fields.

This paper overcomes the major obstacle when the field is

finite, namely the number of evaluation points (meaning the

number of workers) or more generally, the length of the code.

C. Implicit Construction

Let F/Fq be a function field of transcendence degree 1.

Definition 1. Given a divisor G on F , we say that L(G) is

R-recoverable for a positive integer R if there exist functions

x1, . . . , xk ∈ L(G1), y1, . . . , yk ∈ L(G2) for some divisors

G1 and G2 of F with G = G1 + G2 so that the values of

AiBi (i.e., the diagonal elements) can be recovered from any

R columns of the product

C



































x1y1(P1) x1y1(P2) . . . x1y1(Pn)
...

...
...

x1yk(P1) x1yk(P2) . . . x1yk(Pn)
x2y1(P1) x2y1(P2) . . . x2y1(Pn)

...
...

...

x2yk(P1) x2yk(P2) . . . x2yk(Pn)
xky1(P1) xky1(P2) . . . xky1(Pn)

...
...

...

xkyk(P1) xkyk(P2) . . . xkyk(Pn)



































(1)

for some matrix

C = (A1B1 · · ·A1BkA2B1 · · ·A2Bk · · ·AkB1 · · ·AkBk)
(2)

where AiBj ∈ F
t1×t3 for all i, j ∈ [k]. In this case, we may

say that G is R-recoverable.

Definition 2. Let G and D = P1 + · · ·+ Pn be divisors with

disjoint supports on F/Fq(x). We call C(G,D) a (diagonal)

[n, k]q−rook code if there exist bases {x1, . . . , xk} for L(G1)
and {y1, . . . , yk} for L(G2) satisfying for all i, j ∈ [k] and

l ∈ [n]

Pl 6∈ supp(xiyj) ⇐⇒ i = j = l (3)

where G1 and G2 are divisors on F/Fq(x) such that G =
G1 +G2.

Lemma 1. An [n, k]q rook code given by bases {x1, . . . , xk}
and {y1, . . . , yk} satisfies the following generalization of the

decodability condition of [17] for all i, j, k

(xk) + (yk) = (xi) + (yj) ⇐⇒ k = i ∧ k = j.

Proof. The proof is immediate from the fact that (xiyj) =
(xi)+(yj). Thus, the two expressions have the same supports.

Remark 1. The term rook code is inspired by the name given

to the codes in [17], since Lemma 1 shows that Definition 2

is a generalization of the decodability condition presented in

[17]. They are equivalent up to code equivalance.

Lemma 2. If x1, . . . , xk ∈ L(G1) and y1, . . . , yk ∈ L(G2)
satisfy Equation 3 and supp(G1 + G2) ∩ supp(D) = ∅, then

G1 +G2 is R-recoverable for some R ≤ d(G).

Proof. Worker w will receive the values

Ã(Pw) =
∑

i∈[k]

Aixi(Pw), B̃(Pw) =
∑

i∈[k]

Bixi(Pw).

The matrix consisting of their products will be exactly the

matrix given by Equation 1. In particular, worker w will return

C̃(Pw) = Ã(Pw)B̃(Pw)

to the master node. The proof now follows from the fact that

n − deg(G) ≤ d, where d denotes the minimum distance of

C(D,G), is the maximum number of rational places needed

to recover the k blocks of data AiBi which is a subset of the

indices in Equation 2.

D. Existence of Codes for All Fields and Numbers of Rational

Places

Next, we demonstrate that diagonal rook codes exist over

every field.

Theorem 1. Given a function field F/Fq with at least n
rational places, there exists an [n, k]q-rook code for any

k ∈ [n].

Proof. Fix an element x ∈ F that is transcendental over Fq

and rational places P1, . . . , Pk of F . By repeated application

of the Approximation Theorem (see [22, Theorem 1.3.1] for

instance), there exists some a1, . . . , ak ∈ F such that

vPi
(x− ai) = 0

and

vPj
(x − ai) = 1

for i 6= j. Then the functions

xi = yi =
∏

j∈[k]\{i}

x− ai.

satisfy Equation 3 by construction.

Remark 2. The proof of Theorem 1 suggests another possible

generalization of the decodability condition of [17], namely,

vPk
(xk) + vPk

(yk) = vPk
(xi) + vPk

(yj) ⇐⇒ k = i∧ k = j.

E. A More Efficient Construction

For i ∈ [k], let ri := min {α ∈ H(Pi) : α > 0} where

H(P) = {α ∈ N : ℓ(αP) 6= ℓ((α− 1)P)} is the Weierstrass

semigroup of a rational place P . Then there exist functions zi
such that

〈1, zi〉 = L(riPi).

Then we define

xi :=
∏

j∈[k]\{i}

z−1
j . (4)

Our coding scheme will send matrices

Ã(Pw) =
∑

i∈[k]

Aixi(Pw), B̃(Pw) =
∑

i∈[k]

Bixi(Pw)

to worker w. Let

b =
∑

i∈[k]

rideg(Pi).

Then we have that

〈1, x1, . . . , xk〉 ⊂ L(Q1 + · · ·+Qk),

where Qi = (z−1
i)∞ and deg(

∑

i Qi) ≤ b. Assume further

that there exist rational places Pk+1, . . . , Pn+k of F so that

supp(D) ∩ supp(G) = ∅

where G = Q1+ · · ·+Qb and D = Pk+1 + · · ·+Pn+k. Then

consider the code C(D,G).
Before proving that the previous construction is indeed a

rook code we introduce the following measure of complexity

which will turn out to (upper) bound the recovery threshold.

Definition 3. Given a place P of F/Fq, the min pole number

of P , denoted µ(P) as the smallest integer r such that there

exists a non-constant z ∈ F such that

〈1, z〉 = L(rP);

that is, the min pole number of P is the multiplicity of the

Weierstrass semigroup of the place P . We define the (kth) min

pole sum as

σk(F) := min







∑

i∈[k]

µ(Pi) :
Pi ∈ PF , deg(Pi) = 1,
Pi 6= Pj ∀i, j ∈ [k],
with i 6= j







.

Theorem 2. The functions xi given in (4) satisfy Equation 3.

The associated construction has recovery threshold given by

R = 2σk(F). (5)

Proof. Since the Pi were chosen to be distinct and

supp(z−1
i)0 = supp(zi)∞ = {Pi}, we have that

⋃

j∈[k]\{i}

supp(zj)∞ =
⋃

j∈[k]\{i}

supp(z−1
j)0 = supp(xi)0

We have that

Pi /∈ supp(zj)∞,

for i 6= j by construction. Therefore,

Pi /∈
⋃

j∈[k]\{i}

supp(zj)∞ = supp(xi)0.

Similarly, we have that Pℓ ∈ supp(zj)∞ for ℓ = j by

construction; therefore,

Pℓ ∈
⋃

j∈[k]\{i}

supp(zj)∞ = supp(xi)0,

for any ℓ ∈ [k] such that ℓ 6= i, by construction. Therefore,

Equation 3 is satisfied. We then have that

b =
∑

i∈[k]

rideg(Pi) = σk(F),

for an optimal choice of P1, . . . , Pk.

F. Analysis: Upper Bounds on the Recovery Threshold

The bound in Theorem 2 can be given a coarse upper bound

as stated in the next result.

Theorem 3. The codes defined by Equation 4 have the

following upper bound:

R(n, k, q) ≤ (gn,q + 1) k

where gn,q is the smallest genus of a function field over Fq

with at least (gn,k + 1)k + n rational places.

Proof. According to the Weierstrass Gap Theorem, for any

rational place P of a function field F of genus g, N\H(P) ⊆
[1, . . . , 2g−1] and | N\H(P) |= g. Hence, µ(P) ≤ g+1 and

σk(F) ≤ (g + 1)k provided F has at least k rational places.

The result then follows from the fact that the scheme requires

n reserved rational places.

Corollary 1. The recovery threshold R of a scheme that

computes the corresponding general matrix-matrix coded dis-

tributed version satisfies the bound

T ≤ R ≤ 2σT (F) ≤ (gn,q + 1)T .

In particular, if we take χ = ζ = υ = τ , then we have that

the recovery threshold asymptotically bounded as

R = O(στω (F)) = O(gn,qτ
ω),

where ω is the matrix multiplication exponent.

Proof. Repeating the arguements in [23] and Section II-B, the

recovery threshold for batch matrix multiplication bounds the

complexity of general matrix multiplication by a factor of two.

Remark 3. It is possible that the recovery threshold is far

smaller than the genus. In particular, for hyperelliptic function

fields we have that σk(F) = 2k. Future research would involve

finding other families of curves where we can replace the genus

bound on recovery threshold with the gonality.

III. ENTANGLED ALGEBRAIC GEOMETRIC ROOK

PRODUCT

In order to separate the different constructions, we will call

the rook codes from the previous section diagonal rook codes

(diagonal codes for short) and the code from this section

entangled rook codes (entangled codes for short). However,

we will see in Section IV that diagonal rook codes can code

the most general functions in a straightforward way when the

field is finite. We will see that the difference between the two is

that the diagonal codes implicitly encode matrix multiplication

while the entangled codes attempt to do two things at once: 1)

code the matrices and 2) be a fast matrix multiplication tensor.

Diagonal codes, in contrast, simply take an already optimal fast

matrix multiplication tensor and encode that as a batch matrix

multiplication.

A. Entangled Codes Do Matrix-Matrix Multiplication Well for

Small Cases

In the classic characteristic zero case, codes of this form

achieve the naive cubic recovery threshold at best and thus it

is unlikely they perform as well as the diagonal ones. However,

for small values of k they do better. For example, using the

entangled polynomial codes construction from [23], we get

that for A a 2 × 2 matrix and B a 2 × 2 matrix, that the

entangled polynomial codes have a recovery threshold of 9 =
2∗2∗2+2−1 while the LCC [10] and CSA [11] constructions

achieves a recovery threshold of 13 = 2 ∗ 7 − 1. For more

explanation, please see [23].

B. Entangled Codes as an Explicit Construction

In the entangled rook code case, instead of implicitly giving

the general matrix multiplication as a batch of k = T matrix

multiplications, one directly looks for code that also performs

fast matrix multiplication simultaneously. Since the implicit

batch multiplication can already bring the recovery threshold

to within a factor of σK(F) ≤ 2(g + 1) (or just a factor of

2 in the case where F is an infinite field, since one can use

MDS-codes without running out of rational place), this entails

trying to get the factor down beneath the diagonal rook codes.

For the entangled codes, we need to redefine what recovery

and rook codes means.

Definition 4. Given x1,1, . . . , xχ,ζ ∈ L(G1), y1,1, . . . , yζ,υ ∈
L(G2), and xi,jyk,ℓ ∈ L(G1 +G2), we say that L(G1 +G2)
is R-recoverable if the values of

∑

j∈ζ Ai,jBj,k (i.e., the dot

products) can be recovered from any R columns of the result

of

C











x1,1y1,1(P1) x1,1y1,1(P2) . . . x1,1y1,1(Pn)
x1,1y1,2(P1) x1,1y1,2(P2) . . . x1,1y1,2(Pn)

...
...

. . .
...

xχ,ζyζ,υ(P1) xχ,ζyζ,υ(P2) . . . xχ,ζyζ,υ(Pn)











,

where

C =
[

A1,1B1,1 A1,1B1,2 . . . Aχ,ζB1,1 . . . Aχ,ζBζ,υ

]

.

Definition 5. Let G = G1 + G2 and D = P1 + · · · + Pn.

We call C(G,D) a [n, k]q−entangled rook code, if there are

bases xi,j for L(G1) and yk,ℓ for L(G2) such that,

(xi,jyk,ℓ) = (xi′,j′yk′,ℓ′) ⇐⇒ j = k = j′ = k′. (6)

is satisfied.

Assume there is some r such that 〈1, z〉 = L(rP) for some

rational places P . Then we define

xi,j := (zυζi+j)−1, yk,ℓ := (zζℓ+ζ−k)−1

then we have that

(xi,jyk,ℓ)0 = r((υζi + j + ζℓ + ζ − k)P0).

It should be clear that only when j = k do we have

(xi,jyk,ℓ)0 = r0(υζi + ζℓ+ ζ)P0,

and thus (after normalizing the xi,j and yk,ℓ) we

have that the coefficient of xi,kyk,ℓ in the product

(
∑

i,j Ai,jxi,j)(
∑

k,ℓ Bk,ℓyk,ℓ) is equal to
∑

k Ai,kBk,ℓ. Thus

we have an alternate coding scheme that achieves a cubic

recovery threshold.

Remark 4. We postpone the analysis of the previous con-

struction since it would asymptotically give a cubic recovery

threshold (i.e., the complexity of naive matrix multiplication)

up to a factor proportional to the genus. It is likely that one

can extend the impossibility results from [17] that were proven

using additive combinatorics to the case of the semigroup

of only one point. The main intuition behind the diagonal

design is to consider semigroups of many points, allowing for

more elbow room in the construction so that such impossibility

results do not hinder us.

IV. DIAGONAL ROOK CODES FOR TENSORS

A. Multi-linear Functions

By a tensor, T , we mean a function T : V1, . . . , Vℓ → F

T (v1, . . . , αvi + βw, . . . , vℓ)

= αT (v1, . . . , vi, . . . , vℓ) + βT (v1, . . . , w, . . . , vℓ)

for all i; we call ℓ the order of the tensor. Given bases Bi for

the Vi we can represent a tensor by the values T .

Definition 6. Given linear functions wi : Vi → F, we

define the rank-1 tensor associated to (w1, . . . , wℓ) as

w1w2 . . . wℓ(v1, . . . , vℓ) :=
∏

i∈[ℓ]

wi(vi) = [v1 ⊗ · · · ⊗ vℓ](v1, . . . , vℓ).

If V1 = · · · = Vℓ, then we can further define the ℓth power of

a linear form as the rank-1 tensor

vℓ = v · · · v.

Remark 5. For simplicity, we consider the case where V1 =
· · · = Vℓ.

B. Implicit Construction

Definition 7. Given x
(i)
1 , . . . , x

(i)
k ∈ L(Gi), and

∏

i∈[ℓ] x
(i)
ji

∈

L(G1+· · ·+Gℓ) for all (j1, . . . , jℓ) ∈ [k]ℓ, we say that L(G1+
· · ·+Gℓ) is R-recoverable if the values of wℓ

i (v1, . . . , vℓ), i.e.,

the diagonal elements, can be recovered from any R columns

of the result of the product of C =
[

w1 . . . w1 w1 . . . w2 . . . wk . . . w1 . . . wk . . . wk

]

(v1, . . . , vℓ)

with












x
(1)
1 . . . x

(ℓ)
1 (P1) x

(1)
1 . . . x

(ℓ)
1 (P2) . . . x

(1)
1 . . . x

(ℓ)
1 (Pn)

x
(1)
1 . . . x

(ℓ)
2 (P1) x

(1)
1 . . . x

(ℓ)
2 (P2) . . . x

(1)
1 . . . x

(ℓ)
2 (Pn)

.

.

.
.
.
.

. . .
.
.
.

x
(1)
k

. . . x
(ℓ)
k

(P1) x
(1)
k

. . . x
(ℓ)
k

(P2) . . . x
(1)
k

. . . x
(ℓ)
k

(Pn)













.

Here, C is the result of applying all of the possible products

wi1 . . . wiℓ to (v1, . . . , vℓ).

Definition 8. Let G = G1+ · · ·+Gℓ and D = P1+ · · ·+Pn.

We call C(G,D) a [n, k]q−tensor rook code, if there are bases

x
(i)
1 , . . . , x

(i)
k ∈ L(Gi) such that

Pk 6∈ supp(x
(1)
i1

. . . x
(ℓ)
iℓ

) ⇐⇒ i1 = · · · = iℓ = k.

is satisfied.

Remark 6. Definition 8 seems to only encode the “symmetric”

tensors. This is true for infinite fields but as we will see,

over finite fields this models all possible functions, so that

we don’t have to bother encoding more general tensors; thus,

for simplicity, we only consider the symmetric case. However,

it is straightforward to generalize the construction implied by

Definition 8 for non-symmetric tensors.

C. True Generality Over Finite Fields

Definition 9. A tensor T : V ℓ → F is symmetric if

T (v1, . . . , vi, . . . , vj , . . . , vℓ) = T (v1, . . . , vj , . . . , vi, . . . , vℓ)

for all i, j ∈ [l], and we call the symmetric rank the smallest

number r such that there exists some w1, . . . , wr ∈ V ∗ such

that

T (v1, . . . , vℓ) =
∑

i∈[r]

wℓ
i (v1, . . . , vℓ).

The space of all symmetric tensors on V of order ℓ is

commonly denoted as Sℓ(V).

Section 7.1 of [24] gives that the symmetric rank of a

symmetric tensor bounds its algebraic complexity in the arith-

metic circuits model; in particular, it bounds the complexity

in the diagonal depth-3 circuits or depth-3 powering circuits

sometimes denoted as ΣΠℓΣ circuits.

We now proceed to show that any function f : Ft
q → F

u
q

has its complexity bounded by the symmetric rank, and thus,

our model gives a scheme to perform coded distributed

computing of any function over a finite field.

Folk Lemma 1. Every function f : Ft
q → Fq over a finite field

is given by a multivariate polynomial pf ∈ Fq[x1, . . . , xt]. In

particular, any multivariate function (f1, . . . , fb) : Ft
q → F

u
q

is given by a polynomial map pf where pf,i ∈ Fq[x1, . . . , xt].

Folk Lemma 2. Every degree ℓ polynomial f on t variables

is the specialization of a symmetric tensor on Tf ∈ Sℓ(Ft+1
q);

i.e., f(x1, . . . , xt) = Tf(x1, . . . , xt, 1).

Corollary 2. Every function f : Ft
q → F

u
q is given by some

symmetric tensor Tf ∈
(

Sℓ(Ft
q)
)u

.

D. Explicit Construction

We define

xi :=
∏

j∈[k]\{i}

z−1
i .

just as before, but now define the code by sending the ℓ coded

vectors

w̃j(Pu) :=
∑

i∈[k]

wi(v1, . . . , vℓ)x
(j)
i (Pu),

to worker u, where x
(1)
i = ... = x

(ℓ)
i = xi, so that w̃1 = ... =

w̃ℓ =: w̃. The workers then return w̃ℓ(Pu).

Theorem 4. The construction of the zi satisfies Equation 3; in

particular, the construction given by Equation 4 has recovery

threshold given by R = ℓσk(F).

E. Analysis: Upper bounds on the Recovery Threshold for

Tensors

The bound in Theorem 4 can be given a coarse upper bound

as follows:

Theorem 5. The codes defined by Equation 4 satisfy

R(n, k, q) ≤ gn,qℓk where gn,q is the smallest genus of a

function field over Fq with at least gn,kk+ n rational places.

Corollary 3. Let T (f) be the ℓ-linear complexity of computing

the polynomial function f of degree ℓ, then the recovery thresh-

old of a scheme that computes the corresponding function is

bounded as follows

T ≤ R ≤ ℓσT (F) ≤ ℓgn,qT .

ACKNOWLEDGMENT

The first author is partially supported by NSF DMS-

2201075 and the Commonwealth Cyber Initiative.

REFERENCES

[1] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding Up Distributed Machine Learning Using Codes,” IEEE Trans.
Inf. Theory, pp. 1514–1529, 2018.

[2] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes:
An optimal design for high-dimensional coded matrix multiplication,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems (NIPS), 2017, p. 4406–4416.

[3] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix mul-
tiplication,” IEEE Trans. Inf. Theory, pp. 278–301, 2020.

[4] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” IEEE Transactions on Information Theory, vol. 66, no. 3, pp.
1920–1933, 2020.

[5] S. Dutra, Z. Bai, H. Jeong, T. M. Low, and P. Grover, “A
unified coded deep neural network training strategy based on
generalized polydot codes,” p. 1585–1589, 2018. [Online]. Available:
https://doi.org/10.1109/ISIT.2018.8437852

[6] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in ICML, 2017, pp.
3368–3376.

[7] P. J. Soto, I. Ilmer, H. Guan, and J. Li, “Lightweight projective
derivative codes for compressed asynchronous gradient descent,” in
Proceedings of the 39th International Conference on Machine Learning ,
ser. Proceedings of Machine Learning Research, K. Chaudhuri,
S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, Eds., vol.
162. PMLR, 17–23 Jul 2022, pp. 20 444–20 458. [Online]. Available:
https://proceedings.mlr.press/v162/soto22a.html

[8] P. Soto and J. Li, “Straggler-free coding for concurrent matrix multipli-
cations,” in 2020 IEEE International Symposium on Information Theory
(ISIT), 2020, pp. 233–238.

[9] P. Soto, X. Fan, A. Saldivia, and J. Li, “Rook coding for batch matrix
multiplication,” IEEE Transactions on Communications , pp. 1–1, 2022.

[10] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and
A. S. Avestimehr, “Lagrange coded computing: Optimal design for
resiliency, security, and privacy,” in The 22nd International Conference
on Artificial Intelligence and Statistics (AISTATS), ser. Proceedings of
Machine Learning Research, vol. 89. PMLR, 2019, pp. 1215–1225.
[Online]. Available: http://proceedings.mlr.press/v89/yu19b.html

[11] Z. Jia and S. A. Jafar, “Cross subspace alignment codes for coded dis-
tributed batch computation,” IEEE Transactions on Information Theory,
vol. 67, no. 5, pp. 2821–2846, 2021.

[12] M. Fahim and V. R. Cadambe, “Numerically stable polynomially coded
computing,” IEEE Transactions on Information Theory, vol. 67, no. 5,
pp. 2758–2785, 2021.

[13] M. Soleymani, H. Mahdavifar, and A. S. Avestimehr, “Analog lagrange
coded computing,” IEEE Journal on Selected Areas in Information
Theory, vol. 2, no. 1, pp. 283–295, 2021.

[14] N. Raviv and D. A. Karpuk, “Private polynomial computation from
lagrange encoding,” IEEE Transactions on Information Forensics and
Security, vol. 15, pp. 553–563, 2020.

[15] Z. Chen, Z. Jia, Z. Wang, and S. A. Jafar, “Gcsa codes with noise
alignment for secure coded multi-party batch matrix multiplication,”
IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 1,
pp. 306–316, 2021.

[16] Z. Jia and S. A. Jafar, “On the capacity of secure distributed batch matrix
multiplication,” IEEE Transactions on Information Theory, vol. 67,
no. 11, pp. 7420–7437, 2021.

[17] K. Censor-Hillel, Y. Machino, and P. Soto, “Near-optimal fault tolerance
for efficient batch matrix multiplication via an additive combinatorics
lens,” 2023.

[18] A. Fidalgo-Dı́az and U. Martı́nez-Peñas, “Distributed matrix multiplica-
tion with straggler tolerance using algebraic function fields,” 2024.

[19] O. Makkonen and C. Hollanti, “General framework for linear secure dis-
tributed matrix multiplication with byzantine servers,” IEEE Transactions
on Information Theory, pp. 1–1, 2024.

[20] R. A. Machado, G. L. Matthews, and W. Santos, “Hera scheme: Secure
distributed matrix multiplication via hermitian codes,” in 2023 IEEE
International Symposium on Information Theory (ISIT), 2023, pp. 1729–
1734.

[21] H. H. López, G. L. Matthews, and D. Valvo, “Secure matdot codes:
a secure, distributed matrix multiplication scheme,” in 2022 IEEE
Information Theory Workshop (ITW), 2022, pp. 149–154.

[22] H. Stichtenoth, Algebraic Function Fields and Codes , 2nd ed. Springer
Publishing Company, Incorporated, 2008.

[23] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” IEEE Transactions on Information Theory, vol. 66, no. 3, pp.
1920–1933, 2020.

[24] J. Landsberg, Geometry and Complexity Theory, ser. Cambridge Studies
in Advanced Mathematics. Cambridge University Press, 2017. [Online].
Available: https://books.google.com/books?id=210yDwAAQBAJ

https://doi.org/10.1109/ISIT.2018.8437852
https://proceedings.mlr.press/v162/soto22a.html
http://proceedings.mlr.press/v89/yu19b.html
https://books.google.com/books?id=210yDwAAQBAJ

	Introduction
	Diagonal Algebraic Geometric Rook Product
	Batch Matrix Multiplication
	General Matrix-Matrix Multiplication
	Implicit Construction
	Existence of Codes for All Fields and Numbers of Rational Places
	A More Efficient Construction
	Analysis: Upper Bounds on the Recovery Threshold

	Entangled Algebraic Geometric Rook Product
	Entangled Codes Do Matrix-Matrix Multiplication Well for Small Cases
	Entangled Codes as an Explicit Construction

	Diagonal Rook Codes for Tensors
	Multi-linear Functions
	Implicit Construction
	True Generality Over Finite Fields
	Explicit Construction
	Analysis: Upper bounds on the Recovery Threshold for Tensors

	References

