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(Dated: LATEX-ed May 17, 2024)

In this work, we analyse black bounce solutions in the recently proposed “Conformal Killing
gravity” (CKG), by coupling the theory to nonlinear electrodynamics (NLED) and scalar fields. The
original motivation of the theory was essentially to fulfil specific criteria that are absent in existing
gravitational theories, namely, to obtain the cosmological constant as an integration constant, derive
the energy-momentum conservation law as a consequence of the gravitational field equations, rather
than assuming it, and not necessarily considering conformally flat metrics as vacuum solutions. In
this work, we extend the static and spherically symmetric solutions obtained in the literature, and
explore the possibility of black bounces in CKG, coupled to NLED and scalar fields. We find novel
NLED Lagrangian densities and scalar potentials, and extend the class of black bounce solutions
found in the literature. Furthermore, within black bounce geometries, we find generalizations of the
Bardeen-type and Simpson-Visser geometries and explore the regularity conditions of the solutions.

PACS numbers: 04.50.Kd,04.70.Bw

I. INTRODUCTION

Recently, Harada proposed a novel modified gravita-
tional theory [1], denoted as Conformal Killing Gravity
(CKG) [2], that satisfies several theoretical criteria for
gravitational theories beyond General Relativity (GR),
namely: (i) the cosmological constant is obtained as an
integration constant; (ii) the conservation of the energy-
momentum tensor, ∇µT

µ
α = 0, is a consequence of the

gravitational field equation, rather than being assumed;
and (iii) a conformally flat metric is not necessarily a
vacuum solution. More specifically, the field equations of
CKG are given by

Hαµν = 8πGTαµν , (1)

where G is the gravitational constant, and throughout
this work we use natural units, i.e. G = c = 1. The
tensors Hαµν and Tαµν are defined as

Hαµν ≡ ∇αRµν +∇µRνα +∇νRαµ

−1

3
(gµν∂α + gνα∂µ + gαµ∂ν)R, (2)

Tαµν ≡ ∇αTµν +∇µTνα +∇νTαµ

−1

6
(gµν∂α + gνα∂µ + gαµ∂ν)T , (3)

respectively, where Rµν is the Ricci tensor and Tµν is the
energy-momentum tensor, with their respective traces R
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and T . Note that Hαµν is totally symmetric in α, µ
and ν and satisfies gµνHαµν = 0 [1]. Therefore, as Tαµν

is also totally symmetric in α, µ and ν, and satisfies
gµνTαµν = 2∇µT

µ
α, consequently one obtains the con-

servation law ∇µT
µ
α = 0. Furthermore, solutions of GR

are also solutions of CKG [1].

Taking into account a static and spherically symmetric
metric of the form ds2 = ea(r)dt2 − e−a(r)dr2 − r2 dΩ2,
Harada also deduced the exact vacuum solution of the
field equation Hαµν = 0, which is given by ea(r) =

1− 2M
r − Λ

3 r
2− λ

5 r
4 [1]. Here, the term 2M/r corresponds

to the Schwarschild solution; the presence of Λr2/3 indi-
cates a de Sitter term, where the cosmological constant
Λ is an integration constant, and the final term with λ
arises as the novel solution of the theory, which dominates
at r → ∞. If λ = 0, the solution reduces to the standard
Schwarzschild-de Sitter solution of GR. Furthermore, the
most general spherically symmetric static vacuum solu-
tion of the theory was derived in [3]. It was also recently
shown that Eq. (1) is equivalent to Einstein’s equation
with an arbitrary conformal Killing tensor. This inter-
esting realization reduces the third order character with
respect to the metric tensor of Eq. (1) to second order
[2], and offers a simpler strategy of obtaining solutions of
Harada’s theory.

Recently, we further explored the theory by cou-
pling CKG to nonlinear electrodynamics (NLED) and
scalar fields, and found solutions of black holes and
regular black holes [4]. More specifically, by solving
the field equations of CKG, we deduced forms for the
NLED Lagrangian, the scalar field and the field po-
tential, and analysed the regularity of the solutions
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through the Kretschmann scalar. We found generaliza-
tions of the Schwarschild–Reissner-Nordström–AdS so-
lutions, and consequently further extended the class of
(regular) black hole solutions found in the literature. As
regular black holes are a topic currently of considerable
interest in the GR and astrophysics communities, it is
interesting to note that a number of spacetimes which
contains exact solutions denoted as “black bounces” have
been proposed in the literature [5], that generalize and
broaden the class of regular black holes beyond those usu-
ally considered [6]. The spacetime structure of a black
bounce always features an event horizon. Within this
horizon, there exists a bounce that leads from the inte-
rior region to another region of spacetime, which can be
another part of our universe or a copy of our universe.

The solution known as Simpson-Visser [5] has an event
horizon and a bounce at r = 0 within this horizon. The
bounce connects the region where r > 0 to another re-
gion with r < 0, but passage in the opposite direction
is not allowed. This solution also interpolates between a
Schwarzschild solution, for the bounce parameter equal
to zero, a regular black hole with a bounce at the ori-
gin, and a wormhole with a two-way timelike throat at
r = 0. In the case of the regular black hole with bounce,
as within the event horizon the metric signature becomes
(−+−−), the radial coordinate becomes a time coordi-
nate and t becomes spatial. Thus, this region is now
dynamic and resembles a Kantowski-Sachs metric, and
the function Σ(r) =

√
r2 + a2 resembles a cosmological

scale factor. Hence the name bounce for the origin r = 0.
This is not always true in general, as there exist other
black bounces with two horizons, the event horizon and
the Cauchy horizon, where in the region inside the latter,
the metric signature changes to (+−−−), and now the
coordinates t and r are as in the exterior of the event
horizon, akin to our usual universe [15].

This class of solutions inspired research in the area and
several solutions were found, such as specific solutions de-
scribing several physical situations of particular interest,
including sources of black bounces [7]; a growing black-
bounce, a wormhole to black-bounce transition, and the
opposite black-bounce to wormhole transition were anal-
ysed in [8]. In this reference, an Eddington-Finkelstein
coordinate transformation is performed in which the con-
stant mass parameter is now replaced by a dynamic mass
that depends on the null temporal coordinate w. The
resulting metric is a generalization of the Vaidya met-
ric. One can also replace the constant parameter a by
a parameter that depends on the time coordinate w;
electrically-charged wormhole and black hole solutions
in Einstein-Maxwell-scalar theory, in which the scalar is
a phantom field non-minimally coupled to the Maxwell
field [9]; the stability of dynamic thin-shell black-bounce
traversable wormholes were also explored [10]; the grav-
itational lensing was analysed in black bounce space-
times that interpolate between regular black holes and
traversable wormholes [11–14]; a plethora of novel geome-
tries, more complex than before, with two or more hori-

zons, with the possibility of an extremal case were found
[15], as well as charged black bounce solutions [16]; obser-
vational signatures were also explored [17–25]; solutions
in NLED and scalar fields were analysed [7, 26, 27, 31];
and black bounce solutions were also studied in several
modified theories of gravity [32–34], among other topics.
In this work, we build on the latter work, and explore

black bounce solutions in CKG coupled to NLED and
scalar fields. This work is outlined in the following man-
ner: In Sec. II, we briefly present the field equations of
CKG coupled to NLED and scalar fields, and consider so-
lutions solely described by magnetic charge. In Sec. III,
we analyse and generalize several black bounce geome-
tries, and finally, in Sec. IV, we summarize and discuss
our results.

II. CKG COUPLED TO NON-LINEAR
ELECTRODYNAMICS AND SCALAR FIELDS

As mentioned above, in this work, we couple CKG
to NLED and scalar fields as matter sources applied to
the energy-momentum tensor in the field equations (1).
Thus, consider the that energy-momentum tensor is given
by the following:

Tαµν =
F

Tαµν +
φ

Tαµν . (4)

where the explicit contributions of the energy-momentum
tensor described by the nonlinear electromagnetic field
and the scalar field are given by:

F

Tαµν ≡ ∇α

F

Tµν +∇µ

F

T να +∇ν

F

Tαµ

−1

6
(gµν∂α + gνα∂µ + gαµ∂ν)

F

T , (5)

φ

Tαµν ≡ ∇α

φ

Tµν +∇µ

φ

T να +∇ν

φ

Tαµ

−1

6
(gµν∂α + gνα∂µ + gαµ∂ν)

φ

T , (6)

respectively, with

F

Tµν = gµνLNLED(F )− LFFµαF
α

ν , (7)

F

T = 4LNLED(F )− 4LFF, (8)
φ

Tµν = 2 ϵ ∂µφ∂νφ− ϵgµν∂
σφ∂σφ+ gµνV (φ), (9)

φ

T = 2 ϵ ∂νφ∂νφ− ϵ4∂σφ∂σφ+ 4V (φ). (10)

The nature of the scalar field φ depends of the value
of ϵ, where ϵ = +1 corresponds to a canonical scalar
field, while ϵ = −1 represents the phantom field; V (φ)
denotes the scalar potential, LNLED(F ) is the NLED
Lagrangian density that depends of the electromagnetic
scalar F = 1

4F
µνFµν , and the Maxwell-Faraday antisym-

metric tensor is defined by Fµν = ∂µAν−∂νAµ where Aα

is the electromagnetic vector potential. We also present
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the following relevant expressions resulting from the in-
fluence of the gravitational field:

∇µ(LFF
µν) =

1√
−g

∂µ(
√
−gLFF

µν) = 0, (11)

2∇ν∇µφ = −dV (φ)

dφ
, (12)

where LF = ∂LNLED(F )/∂F .

In the solutions obtained below, we will also consider
the following useful consistency relationship

LF − ∂LNLED

∂r

(
∂F

∂r

)−1

= 0. (13)

Throughout this work we consider the following static
and spherically symmetric metric:

ds2 = ea(r)dt2 − eb(r)dr2 − Σ2(r) dΩ2, (14)

where the metric functions a(r), b(r) and Σ(r) depend
solely on the radial coordinate r, and dΩ2 ≡ dθ2 +
sin2 (θ) dϕ2. The function Σ(r) constrains the metric,
since this quantity is determined by its shape (14). In the
sections below, we will provide the corresponding metric
for the solutions of black-bounces.

Here, we only consider solutions described by the mag-
netic charge, where the components for Fµν and the elec-
tromagnetic scalar are F23 = q sin θ and the electromag-

netic scalar is given by F = q2

2Σ4(r) . The strategy that

we adopt throughout this work consists essentially in the
following: we consider a generalized metric that incorpo-
rates the term with λr4, that arises as the novel vacuum
solution of the theory. Then, we integrate the gravita-
tional field equations and determine the specific forms
of the NLED Lagrangian and its derivative, by check-
ing the consistency equation (13). Furthermore, we also

check the regularity of the solutions by analysing the
Kretschmann scalar.

III. BLACK-BOUNCE SOLUTIONS

As discussed in the introduction, the black-bounce is a
spacetime that interpolates between a black hole, a reg-
ular black hole, and a wormhole. This type of solution
has been studied in GR and in modified theories of grav-
ity [7, 27–30]. The matter source of these solutions was
obtained by coupling the nonlinear electrodynamics and
the scalar field with the potential. Thus, we follow an
analogous strategy and study the form of the nonlinear
Lagrangian and the potential of the scalar field for the
two examples that we discuss below.
In this section, we consider the contributions of NLED

and a scalar field as the source of matter in the field
equations (1). To derive these equations of motion, we
use the metric (14) with the following expression

Σ(r) =
√

L2
0 + r2 , (15)

where the parameter L0 ∈ ℜ is a regularization parame-
ter and possesses the dimension of a length.
The metric (14) is now described as

ds2 = ea(r)dt2− eb(r)dr2−
(
L2
0+ r2

) [
dθ2 + sin2 (θ) dϕ2

]
,

(16)
which is used to obtain black-bounce solutions in CKG.
In developing our calculations for this model, we as-

sume in the metric (16) that the parameter L0 = q rep-
resents the magnetic charge. We also consider the sym-
metry with

a(r) = −b(r). (17)

Thus, by solving the equations of motion (1) with the
constraints mentioned above, i.e., using the metric (16)
described with the magnetic charge and the symmetry
(17), we obtain the following quantities when solving the
“0, 0, 1” and “2, 1, 2” components of the field equations:

LNLED(r) = f0 − f1q
2r2 − q2r2

∫
ea(r)

{[
8r3 − 8re−a(r)

(
q2 + r2

)]
2κ2q2 (q2 + r2)

4 +
2ϵφ′2(r)

[(
q2 + r2

)
a′(r)− 2r

]
q2 (q2 + r2)

2 +
a(3)(r)

2κ2q2 (q2 + r2)

+
a′′(r)

[
3
(
q2 + r2

)
a′(r)− 2r

]
2κ2q2 (q2 + r2)

2 +
a′(r)

{(
q2 + r2

)
a′(r)

[(
q2 + r2

)
a′(r)− 2r

]
+ 2 (q − r) (q + r)

}
2κ2q2 (q2 + r2)

3

}
dr

+

∫
ea(r)

{
r2a′(r)

{(
q2 + r2

)
a′(r)

[(
q2 + r2

)
a′(r)− 2r

]
+ 2 (q − r) (q + r)

}
2κ2 (q2 + r2)

3 +
r2a(3)(r)

2κ2 (q2 + r2)

+
4r
(
3q4 + 3q2r2 + r4

)
− 4r3

(
q2 + r2

)
κ2 (q2 + r2)

4 +
r2a′′(r)

[
3
(
q2 + r2

)
a′(r)− 2r

]
2κ2 (q2 + r2)

2

+2ϵφ′(r)

(
φ′(r)

[(
q2 + r2

) (
q2 + 2r2

)
a′(r) + 2q2r

]
(q2 + r2)

2 − 2φ′′(r)

)
− e−a(r)V ′(r)

}
dr, (18)
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LF (r) = f1
(
q2 + r2

)3
+
(
q2 + r2

)3 ∫
ea(r)

{[
8r3 − 8re−a(r)

(
q2 + r2

)]
2κ2q2 (q2 + r2)

4 +
2ϵφ′2(r)

[(
q2 + r2

)
a′(r)− 2r

]
q2 (q2 + r2)

2

+
a′(r)

{(
q2 + r2

)
a′(r)

[(
q2 + r2

)
a′(r)− 2r

]
+ 2 (q − r) (q + r)

}
2κ2q2 (q2 + r2)

3

+
a(3)(r)

2κ2q2 (q2 + r2)
+

a′′(r)
[
3
(
q2 + r2

)
a′(r)− 2r

]
2κ2q2 (q2 + r2)

2

}
dr. (19)

In the following, we consider the scalar field φ accord-
ing to the particular case of GR [7], which is modeled as
follows:

φ(r) =
tan−1

(
r
q

)
√
κ2(−ϵ)

. (20)

Thus, substituting Eq. (20) in Eqs. (18) and (19), and
consecutively in condition (13), we arrive at:(

q2 + r2
)

2r

[
−2ea(r)a′(r)

κ2
−
(
q2 + r2

)2
V ′(r)

q2

]
= 0 , (21)

which yields the following solution for the potential:

V (r) = V0 +

∫
−2ea(r)q2a′(r)

κ2 (q2 + r2)
2 dr. (22)

Starting from the metric (16), taking into account
the symmetry (17) and consequently the results of the
expressions for the Lagrangian and LF (r), given by
Eqs. (18) and (19), respectively, and considering the
scalar field (20), which allows us to obtain V (r), pro-
vided by Eq. (22), we will use these results to find several
solutions for black bounce models, namely, generalized
Simpson-Visser type and Bardeen type solutions. We
present these solutions in subsections (IIIA) and (III B).

A. Simpson-Visser type solution

Consider the following metric function

ea(r) = e−b(r) = 1− 2M√
q2 + r2

− Λr2

3
− λr4

5
. (23)

The formation of event horizons, taking into account
the condition g−1

rr (rH) = 0 (that, in both cases in this
study, coincides with the Killing horizon gtt = 0), results
from the condition:

ea(rH) = 0, (24)

where the radius rH indicates the presence of the event
horizon. For higher order polynomials, it is nontrivial
to obtain analytic solutions of Eq. (24). Nevertheless,
one can tackle the problem numerically, and classify the

horizons, by imposing specific values of the parameters
by consider the following condition:

dea(r)

dr

∣∣∣∣
r=rH

= 0. (25)

This relation provides the critical values of the param-
eters of the model, namely, M , q, Λ or λ. Thus, here,
we will analyze the presence of events horizons numeri-
cally by using simultaneously the conditions described by
Eqs. (24) and (25) to determine the radius of the horizon
and the critical parameters from numerical solutions.
In the first solution, we consider Λ < 0, and choose the

following values for the parameters of the model: q = 0.5,
Λ = −0.2 and λ = 0. Here, we assume that λ = 0 as we
will discuss later, this quantity causes the Kretschmann
scalar to diverge. Thus, with these assumptions, we de-
termine the value for the extreme mass from the simul-
taneous solution of Eqs. (24) and (25), which is given by
Mc = 0.249.
Figure 1 depicts the behavior of the metric func-

tion (23) in terms of the radial coordinate r, with three
mass scenarios: M > Mc, M = Mc, and M < Mc.
When the mass exceeds the critical value, M > Mc, we
observe the presence of an event horizon in the region
where r > 0. Outside this horizon, the metric function
exp [a(r)] is positive, while inside the event horizon, it is
negative, and the signature of the metric in this latter
case is (−,+,−,−). Furthermore, in this same scenario
(M > Mc), at r = 0 we observe a bounce from the region
r > 0 to the region r < 0, and conversely, due to the sym-
metry with respect to r, a bounce from the region r < 0
to the region r > 0 is also possible. The region in r < 0
is symmetrical and exhibits the same characteristics as
the region r > 0, such as having only one event horizon.
We note in this case that the metric function is always
positive for r ≫ 1 and r ≪ 1. In the case where the
mass is equal to the critical mass, M = Mc, we observe a
degenerate double horizon at r = 0. However, at r = 0,
we have a bounce from the region r > 0 into the region
r < 0, and as before, due to the symmetry in r a bounce
from the region r < 0 to the region r > 0 is also possi-
ble. In this case, the metric function is always positive
for r ≫ 1 and r ≪ 1. However, when the mass is less
than the critical mass, M < Mc, there is no formation of
horizons, and the geometry we have is a wormhole with a
traversable throat at the origin, i.e., r = 0. Note that for
these three cases described above, the metric function is
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always positive for r ≫ 1 and r ≪ 1.

-3 -2 -1 0 1 2 3
-0.5

0.0

0.5

1.0

1.5

FIG. 1. The plot depicts exp [a(r)], described by Eq. (23), for
the values λ = 0, Λ = −0.2 and q = 0.5. If M > Mc, there
are two event horizons, one in each region r > 0 and also in
the region r < 0. The metric function is negative within the
event horizons, and there is a bounce connecting these two
regions. For M = Mc, we observe the presence of a double
degenerate horizon and a bounce at r = 0. When M < Mc,
there are no horizons. In this case we have a wormhole.

In contrast, when analyzing the metric function (23)
with Λ > 0, we verify the existence of a broader range
of scenarios by varying the mass between M > Mc,
M = Mc and M < Mc. In this context, and as before,
we assume certain values for the constants, for instance,
considering q = 0.5, Λ = 0.2 and λ = 0, the critical mass
value is given by Mc = 0.764. Lets begin our discus-
sion by considering that the mass is less than the critical
mass, M < Mc, where we observe more possibilities of
horizons due to the positive cosmological constant Λ > 0.
Thus, we note the formation of two different horizons in
the region where r > 0: the first corresponds to the event
horizon, and the second, the outermost one, is the cosmo-
logical horizon (we denote the radius of the cosmological
horizon as rΛ). Initially, we note that outside the cosmo-
logical horizon, the metric function exp a(r) is negative,
and the metric signature is (−,+,−,−). Meanwhile, be-
tween rH and rΛ, the metric function exp [a(r)] is posi-
tive, and the metric signature now becomes (+,−,−,−).
In turn, between r = 0 and rH , the function exp [a(r)] is
again negative, implying the metric signature described
again as (−,+,−,−). At r = 0, we have a bounce from
the region r > 0 into the region r < 0, and due to the
symmetry with respect to r, a bounce from the region
r < 0 to the region r > 0 is also possible. All these de-
scriptions are present in the region r < 0 symmetrically
to the region r > 0. In the case where the mass is equal
to the critical mass, M = Mc, we observe the existence
of a degenerate horizon in the region where r > 0. At
the center, at r = 0, we observe a bounce from the region
r > 0 to the region r < 0 and vice versa, due to the sym-
metry with respect to r, which also exhibits a horizon

symmetric to that of the region r > 0. When the mass
exceeds the critical value, M > Mc, there is no formation
of horizons, and the metric function remains negative in
the regions where r > 0 and r < 0. Additionally, we
observe at r = 0 the presence of a traversable throat in
both directions of the regions r > 0 and r < 0, config-
uring a wormhole. We emphasize that the description of
this spacetime is analogous to de Sitter’s Schwarzschild
model. Finally, we note that the metric function is al-
ways negative at r ≫ 1 and r ≪ 1. All this description
is illustrated in Fig. 2.

-6 -4 -2 0 2 4 6

-3

-2

-1

0

1

FIG. 2. The plot depicts exp [a(r)], given by Eq. (23), with
λ = 0, Λ = 0.2 and q = 0.5. When M > Mc, no horizons
form, and the metric function is always negative, we have
a wormhole. For M = Mc, we observe the presence of two
degenerate horizons, one in the region r > 0 and the other
in the region r < 0, along with a bounce at r = 0. In the
case where M < Mc, we find four horizons distributed in
the regions r > 0 and r < 0: one event horizon and one
cosmological horizon in each of these regions, in this case we
have a bounce at r = 0.

Now, considering the following values for the parame-
ters: λ = 0, M = 2.0, and Λ = −0.2, the critical charge
value is given by qc = 4.0. The behavior of exp [a(r)] is
depicted in Fig. 3, where the charge takes on the values
q > qc, q = qc, and q < qc. Now, when q > qc, there
is no event horizon formation in the region where r > 0,
and consequently, there are no event horizons in the re-
gion r < 0. This spacetime is described by a wormhole,
and at r = 0, we have a traversable throat. Note that
exp [a(r)] is always positive regardless of the value of r.
In the configuration where q = qc, we have a case similar
to that in Fig. 1 for M = Mc. However, when the charge
is less than the critical charge q < qc, we find ourselves in
a situation similar to the curve depicted in Fig. 1, which
corresponds to the scenario where M > Mc. Finally, it
is noteworthy that for values of r much larger r ≫ 1 and
much smaller r ≪ 1, the metric function remains always
positive.

In addition to this, we have also developed numeri-
cal solutions with Λ > 0 for the critical charge. In this
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-3 -2 -1 0 1 2 3

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3. The plot depicts exp [a(r)], described by Eq. (23),
for λ = 0, Λ = −0.2 and M = 2.0. When q > qc, we have a
wormhole with a throat at r = 0. When q = qc, we have a
case similar to that in Fig. 1 for M = Mc. In the case where
q < qc, the behavior corresponds to the case where M > Mc,
as described in Fig. 1.

case, we consider the following constant values for the
parameters: λ = 0, M = 0.8, and Λ = 0.12. The critical
charge for these conditions is qc = 1.6. The behavior of
exp [a(r)] as a function of r is shown in Fig. 4, where the
charge takes the values q > qc, q = qc, and q < qc. When
q > qc, we observe the presence of only the cosmologi-
cal horizon in the region where r > 0. Outside of rΛ,
the metric function exp[a(r)] is negative, and the met-
ric signature is (−,+,−,−). Between the center r = 0
and rΛ, the metric function exp[a(r)] is positive. Once
again at the origin, r = 0, we observe the presence of a
traversable throat, indicating a wormhole geometry. In
the case with q = qc, we have a cosmological horizon in
the region where r > 0, and at r = 0, we have degenerate
horizons and a bounce in both directions due to the sym-
metry of r. Outside rΛ in the r > 0 region, the metric
function exp[a(r)] is negative, and the metric signature is
(−,+,−,−). In turn, between r = 0 and rΛ, the metric
function is positive. These aspects appear symmetrically
in the region where r < 0. Finally, we have the case
where q < qc. This specific scenario is analogous to the
case represented in Fig. 2 with M < Mc. Note that
the metric function in the three cases described above is
always negative for r ≫ 1 and r ≪ 1.

Now, using Eq. (23), and the scalar field φ(r) given by
(20), we obtain LNLED, LF and V (r), given by

LNLED(r) = f0 +
q2

15κ2

[
18M

(q2 + r2)
5/2

− 5Λ + 3λr2

q2 + r2

−15f1κ
2r2 − 9λ

]
−

4λq2ln
(
q2 + r2

)
5κ2

, (26)

-6 -4 -2 0 2 4 6
-0.4

-0.2

0.0

0.2

0.4

FIG. 4. The plot depicts exp [a(r)], given by Eq. (23), with
respect to the coordinate r, for the values λ = 0, Λ = 0.12
and M = 0.8. When q > qc, we observe the presence of
two cosmological horizons, one in the region where r > 0 and
another in the region where r < 0, while at r = 0, in this case,
we observe the presence of a traversable throat. In the case
where q = qc, we also find two cosmological horizons, one in
each of the regions: r > 0 and r < 0. At r = 0, there are
degenerate horizons and a bounce. The scenario where q < qc
is analogous to the case depicted in Fig. 2 with M < Mc.

.

LF (r) =
(
q2 + r2

)3 {
f1 +

[
45M +

(
q2 + r2

)3/2 ×(
−5Λ + 15λq2 + 12λr2

) ]/ [
15κ2

(
q2 + r2

)7/2]}
, (27)

V (r) = 4q2

15κ2

[
3M

(q2+r2)5/2
+ 6λq2−5Λ

2(q2+r2) + 3λln
(
q2 + r2

)]
,

(28)

respectively.
Expressing r(F ) and r(φ), we determine

LNLED(F ) = f0 −
f1q

3

√
2F

+ f1q
4 +

12 4
√
2MF 5/4

5κ2√q

−
√
2FΛq

3κ2
+

λq2
(√

2Fq − 4ln
(

q√
F

)
− 4 + ln(4)

)
5κ2

,

(29)

V (φ) =

4M cos6
(
φ
√

κ2(−ϵ)
)√

q2 sec2
(
φ
√
κ2(−ϵ)

)
5κ2q4

+
4λq2 cos2

(
φ
√
κ2(−ϵ)

)
5κ2

−
2Λ cos2

(
φ
√

κ2(−ϵ)
)

3κ2

+
4λq2 ln

(
q2 sec2

(
φ
√

κ2(−ϵ)
))

5κ2
. (30)

Note that considering f0 = 0, f1 = 0, λ = 0 and Λ = 0
in the Lagrangian (26), we obtain the same expression as
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the Lagrangian of GR as found in Ref. [7]. In expression
(30) that the scalar field must necessarily be a phantom
field, i.e. ϵ = −1, as is transparent in Eq. (20).
If we consider the limit of r → ∞ in Eq. (29), which

corresponds to the consideration of F ∼ 0, we obtain

LNLED(F ) = f0 −
f1q

3

√
2F

+ f1q
4 − 4λq2

5κ2
ln

(
q√
F

)
−4λq2

5κ2
+

λq2 ln(4)

5κ2
. (31)

Therefore, we see clearly that for this limit, this La-
grangian does not have linearity in F .

In GR, the Simpson-Visser solution can only be mod-
eled by coupling NLED with a phantom scalar field (see
Ref. [7] for more details). Here, since matter can take
on a more general functional form, it is also possible to
model a Simpson-Visser type solution using only NLED.

The Kretschmannn scalar is given by

K =
4Λ
{
6Mq2

(
−q4 + 8q2r2 + r4

)
+
√
q2 + r2

[
Λq8 + 4Λq6r2 + 8q4r2

(
2Λr2 − 3

)
+ 2q2r4

(
8Λr2 − 3

)
+ 6Λr8

]}
9 (q2 + r2)

9/2

+
4
[
3M2

(
3q4 − 4q2r2 + 4r4

)
+ 8Mq2

(
r2 − q2

)√
q2 + r2 + 3q4

(
q2 + r2

)]
(q2 + r2)

5

+
8λΛr2

(
6q8 + 24q6r2 + 52q4r4 + 46q2r6 + 15r8

)
15 (q2 + r2)

4 +
4λr2

25 (q2 + r2)
9/2

{
20M

(
−3q6 + 6q4r2 + 8q2r4 + 3r6

)
+ r2

√
q2 + r2

[
36λq8 + 144λq6r2 + q4

(
242λr4 − 60

)
+ 2q2r2

(
92λr4 − 15

)
+ 53λr8

]}
, (32)

which is regular in the limit of r → 0. Imposing λ → 0,
the limit r → ∞ is also regular.

The trace equation reads

κ2Θ+R = 4f0κ
2−2f1κ

2q2
(
q2 + 3r2

)
−4Λ− 6λq2

5
−6λr2,

(33)
which reduces to GR for f0 = f1 = λ = 0.

Figure (5) depicts the behavior of Eq. (29) using the
blue dashed curve for f0 = 0 and f1 = 0.2 and for the
case similar to GR with the red dotted-dashed curve with
the values f0 = 0 and f1 = 0. In turn, we illustrate the
behavior of Eq. (30) with respect to φ in Fig. 6.

B. Bardeen-type solution

Consider now the following metric function:

ea(r) = e−b(r) = 1− 2Mr2

(q2 + r2)
3/2

− Λr2

3
− λr4

5
. (34)

In order to analyse the possibility of horizons we use
Eqs. (24) and (25) to determine the radius of the horizon
and the critical parameters from numerical solutions.

Let us first look at Λ < 0 and choose the following
parameter values for this model: q = 0.1, Λ = −0.2 and
λ = 0. We will see later that λ ̸= 0 leads to a divergence
of the Kretschmann scalar. With these assumptions, we
determine the value of the critical mass from Eqs. (24)
and (25) and obtain Mc = 0.130. The behavior of the

0.0 0.5 1.0 1.5 2.0
-0.04

-0.02

0.00

0.02

0.04

FIG. 5. The plot depicts L(F ), given by Eq. (29), with respect
to F . The blue dashed curve represents the behavior of L(F )
versus F with f0 = 0 and f1 = 0.2, while the red dotted-
dashed curve illustrates the behavior of L(F ) versus F with
f0 = f1 = 0. The values of the constants used are λ = 0,
Λ = −0.2, q = 0.3, κ = 8π and M = 2.0.

metric function (34) is shown in Fig. 7 for three mass
scenarios: M > Mc, M = Mc, and M < Mc. When the
mass surpasses the critical mass, M > Mc, we observe
the formation of two horizons in the region where r > 0:
the Cauchy horizon (the innermost one, denoted by the
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FIG. 6. The plot depicts V (φ), described by Eq. (30), relative
to φ, for the values λ = 0, Λ = −0.2, κ = 8π, M = 2.0,
ϵ = −1.0 and q = 0.2 .

radius rC) and the event horizon (the outermost one). In
this same region, we note that outside the event horizon
rH , the metric function given by equation (34) is positive,
and the metric signature is the standard (+,−,−,−).
Meanwhile, between the Cauchy horizon rC and rH , the
metric function is negative, and the metric signature is
given by (−,+,−,−). Between r = 0 and rC , the metric
function is positive. At r = 0, we have a throat, and
the region at r < 0 is symmetrical to r > 0, presenting
these two horizons, along with the other aspects discussed
regarding the region where r > 0. In the case where
M = Mc, we have degenerate horizons in r > 0 and
r < 0, and now these regions are connected by a throat.
In the case where M < Mc, we observe a scenario similar
to that in Fig. 1 for M < Mc. In all these scenarios, we
emphasize that exp[a(r)] is positive for r ≫ 1 and also
r ≪ 1.

Now, for Λ > 0, assuming the following values for the
parameters: q = 0.5, Λ = 0.2, and λ = 0, this results
in the value for the critical mass of Mc = 0.805. In
the scenario where M > Mc, the formation of an event
horizon occurs in both the region where r > 0 and the
region where r < 0. These regions are connected at r = 0
by a bounce from the region r > 0 to r < 0, and from
region r < 0 to r > 0 is also possible, due to the sym-
metry with respect to r. In the region r > 0, the metric
function is negative outside the event horizon, and the
metric signature is (−,+,−,−). Between r = 0 and the
event horizon, the metric function is positive. All these
aspects are also evident in the region r < 0 for this case.
In the case where M = Mc, we observe the formation
of two horizons in both the regions where r > 0 and
r < 0. The innermost horizon is the Cauchy horizon
(rC), while the outermost horizon is the degenerate hori-
zon, resulting from the union of the cosmological and
event horizons in the case where M < Mc. At r = 0,
these regions are connected by a bounce in both regions
of r, due to symmetry, i.e. from r > 0 to r < 0 and
vice versa. Now, in the region where r > 0, outside the

-0.4 -0.2 0.0 0.2 0.4
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 7. The plot depicts exp [a(r)], described by Eq. (34),
with respect to the coordinate r. We considered the values
λ = 0, Λ = −0.2 and q = 0.1. When M > Mc, the Cauchy
and event horizons form in the region where r > 0, and these
horizons also occur symmetrically in the region where r < 0.
In the case where M = Mc, degenerate horizons exist both in
r > 0 and r < 0, with a throat at r = 0. When M < Mc,
we observe that are no horizons, we have a wormhole with a
throat at r = 0

.

outermost horizon and between these two horizons, the
metric function is negative, and the metric signature is
(−,+,−,−). Between r = 0 and the radius rC , the met-
ric function is positive. These aspects are also evident in
the region r < 0 for M = Mc. In the last scenario, where
M < Mc, we observe the formation of three horizons:
the innermost is the Cauchy horizon, the intermediate
is the event horizon, and the outermost is the cosmolog-
ical horizon. Outside the cosmological horizon rΛ and
between rC and rH , the metric function is negative, re-
sulting in the metric signature (−,+,−,−). Between the
center of the black bounce and rC , as well as between rH
and rΛ, the metric function is positive, maintaining the
usual metric signature. At r = 0, and again we have a
bounce from the region r > 0 to the region r < 0 and
due to the symmetry with respect to r a bounce from
the region r < 0 to the region r > 0 is also possible. All
these descriptions made for M < Mc in the region r > 0
are also present in the region r < 0. We also note that,
in these three scenarios, the metric function is negative
for r ≫ 1 and also for r ≪ 1. Fig. 8 illustrates all these
situations.

Consider now the following parameter values: λ = 0,
M = 2.0, and Λ = −0.2, which provides the value of
critical charge given by qc = 1.300. The behavior of
exp[a(r)] is shown in Fig. 9, for the ranges q > qc, q = qc
and q < qc. When the charge exceeds the critical charge,
q > qc, we observe a behavior similar to the curve de-
scribed in Fig. 7 for the case where M < Mc. Similarly,
we can note the same resemblance in the behavior of the
curve when q = qc compared to the curve for M = Mc

in Fig. 7. Furthermore, the scenario in which q < qc
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FIG. 8. The plot depicts exp [a(r)], given by Eq. (34), for the
values λ = 0, Λ = 0.2 and q = 0.5. In the scenario where
M > Mc, we observe the presence of an event horizon in the
region where r > 0 and another symmetrically in the region
where r < 0. At r = 0, there is a bounce from the region
r > 0 to r < 0 and vice versa due to the symmetry of r.
In the case where M = Mc, the formation of two horizons
occurs in both regions where r > 0 and r < 0. The innermost
horizon is the Cauchy horizon, while the outermost horizon is
the degenerate horizon. At r = 0, these regions are connected
by a bounce from the region r > 0 to the region r < 0, and a
bounce from the region r < 0 to r > 0 is also possible due to
the symmetry of r. In the last scenario, where M < Mc, we
observe the formation of three horizons in the region where
r > 0: the innermost is the Cauchy horizon, the intermediate
is the event horizon, and the outermost is the cosmological
horizon. In the region where r < 0, these three horizons are
also observed symmetrically. At r = 0, there is a bounce.

presents the same pattern of behavior as the case de-
picted in Fig. 7, but with M > Mc. Furthermore, we
observe that, for very large values of r and very small
values of r, the metric function in this approach remains
always positive.

For the case Λ > 0, we consider the following param-
eter values: λ = 0, M = 0.8 and Λ = 0.12, so that the
critical charge is given by qc = 0.637. The behavior of
exp[a(r)] is depicted in Fig. 10, where the charge assumes
the values q > qc, q = qc and q < qc. When the charge
exceeds the critical charge, q > qc, we observe a behavior
similar to the curve described in Fig. 4 for the case where
q > qc. In the case where q = qc, we note the presence of
a cosmological horizon and a degenerate horizon in both
regions r > 0 and r < 0. At r = 0, there is a bounce from
the region r > 0 into the region r < 0, and vice-versa due
to the symmetry in r. Outside the cosmological horizon,
the metric function is negative, and the metric signature
is (−,+,−,−). Meanwhile, between the bounce and the
degenerate horizon and between the degenerate horizon
and the cosmological horizon, the metric function in this
case is positive. This is valid for the region r < 0. In the
scenario where q < qc, it exhibits the same behavior as
the case depicted in Fig. 8, but with M < Mc. Finally,
we note that for r ≫ 1 and r ≪ 1, the metric function is
always negative. All these descriptions can be observed

-4 -2 0 2 4
-0.5

0.0

0.5

1.0

1.5

FIG. 9. The plot represents exp [a(r)], describe by Eq. (34),
for λ = 0, Λ = −0.2 and M = 2.0. When the charge exceeds
the critical charge, q > qc, there are no horizons in either the
r > 0 or r < 0 region. In the case where q = qc, we observe
the presence of two horizons, one in the region where r > 0
and another symmetric horizon in r < 0. The scenario where
q < qc presents a Cauchy horizon and an event horizon in
both regions: r > 0 and r < 0.

in Fig. 10.
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FIG. 10. The plot depicts exp [a(r)], given by Eq. (34), for
λ = 0, Λ = 0.12 and M = 0.8. In the scenario where q > qc,
we observe the presence of a cosmological horizon in the region
where r > 0 and another symmetrically in the region where
r < 0. In the case where q = qc, the formation of two horizons
occurs in both regions where r > 0 and r < 0. The innermost
horizon is the Cauchy horizon, while the outermost horizon is
the degenerate horizon. In the last scenario, where q < qc, we
observe the formation of three horizons in the region where
r > 0 and also three symmetrical horizons in the region where
r < 0, with the innermost being the Cauchy horizon, the
intermediate being the event horizon, and the outermost being
the cosmological horizon.

Using Eq. (23), we obtain LNLED(r), LF (r) and V (r),
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which are expressed as follows

LNLED(r) =
6M

(
16q4 + 91q2r2

)
(105κ2) (q2 + r2)

7/2
−
(
84λq2

)
ln
(
q2 + r2

)
105κ2

−
7q2

[
15f1κ

2r2
(
q2 + r2

)
+ 5Λ + 9λq2 + 12λr2

]
(105κ2) (q2 + r2)

+
105f0κ

2

105κ2
, (35)

LF (r) =
(
q2 + r2

)3 {
f1 +

[
M
(
195r2 − 30q2

)
+
(
− 5Λ

+15λq2 + 12λr2
) (

q2 + r2
)5/2 ]/[

15κ2
(
q2 + r2

)9/2]}
,

(36)

V (r) = − 2q2

105κ2

[
6M

(
8q2 − 7r2

)
(q2 + r2)

7/2
−

7
(
6λq2 − 5Λ

)
q2 + r2

−42λ ln
(
q2 + r2

) ]
, (37)

respectively.
Expressing r(F ) and r(φ), we determine

LNLED(F ) = f0 −
f1q

3

√
2F

+ f1q
4 −

60 23/4F 7/4M
√
q

7κ2

+
52 4

√
2F 5/4M

5κ2√q
+

√
2Fλq3

5κ2
− 4λq2

5κ2

−
4λq2 ln

(
q√
F

)
5κ2

−
√
2FΛq

3κ2
+

λq2 ln(4)

5κ2
. (38)

And

V (φ) = −
32M cos8

(
φ
√
κ2(−ϵ)

)√
q2 sec2

(
φ
√

κ2(−ϵ)
)

35κ2q4

−
2Λ cos2

(
φ
√
κ2(−ϵ)

)
3κ2

+
4λq2 ln

[
q2 sec2

(
φ
√
κ2(−ϵ)

)]
5κ2

+
4M sin2

(
φ
√

κ2(−ϵ)
)
cos6

(
φ
√
κ2(−ϵ)

)
5κ2q4

×

×
√

q2 sec2
(
φ
√
κ2(−ϵ)

)
+

4λq2 cos2
(
φ
√

κ2(−ϵ)
)

5κ2
. (39)

Considering again f0 = 0, f1 = 0, λ = 0 and Λ = 0
in the Lagrangian of equation (26), we obtain the same
expression as the Lagrangian of GR, found in Ref. [7].
If we take the limit of r → ∞ in Eq. (38) again, we

now obtain

LNLED(F ) = f0 + f1q
4 − f1q

3

√
2F

− 4λq2

5κ2
ln

(
q√
F

)
−4λq2

5κ2
+

λq2 ln(4)

5κ2
. (40)

Therefore, we observe once again that, in this result
above, this Lagrangian is not linear in F .
Figure 11 shows the behavior of Eq. (38) with the

dashed blue curve for the values f0 = 0 and f1 = 0.2.
The dotted-dashed red curve represents a similar case to
GR with the values f0 = 0 and f1 = 0. We also illustrate
the behavior of Eq. (39) with respect to φ in Fig. 12.
In this case, the Kretschmann scalar takes the follow-

ing form:

K =
4

225 (q2 + r2)
4

{
q8
(
5Λ + 18λr2

)2
+ 4q6

(
18λr3 + 5Λr

)2
+ 3r8

(
50Λ2 + 159λ2r4 + 150λΛr2

)
+ q4

[
18λr4

(
121λr4 − 30

)
+ 400Λ2r4 + 120Λr2

(
13λr4 − 5

)
+ 675

]
+ 2q2r4

{
r2
[
200Λ2 + 9λ

(
92λr4 − 15

)
+ 690λΛr2

]
− 75Λ

}}
+

4M2
(
4q8 − 44q6r2 + 169q4r4 − 68q2r6 + 12r8

)
(q2 + r2)

7 +

8M
[
2q8

(
5Λ + 18λr2

)
− 7q6

(
18λr4 + 5Λr2

)
− 2q4r2

(
114λr4 − 5Λr2 + 60

)
+ q2r4

(
−84λr4 − 5Λr2 + 60

)
+ 18λr10

]
15 (q2 + r2)

11/2
.

(41)

In the limit of r → 0, the Kretschmann scalar is regular,
and for r → ∞, the regularity is imposed if λ → 0.

The trace equation reads

κ2Θ+R = 4f0κ
2−2f1κ

2q2
(
q2 + 3r2

)
−4Λ− 6λq2

5
−6λr2,

(42)
which also reduces to GR for f0 = f1 = λ = 0.

IV. SUMMARY AND CONCLUSION

In this paper, we explored black bounce geometries
within a novel gravitational framework recently devel-
oped known as conformal Killing gravity (CKG). It is
noteworthy that this theory simultaneously satisfies three
fundamental theoretical criteria for gravitational theo-
ries, which is not achieved by previous gravitational the-
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FIG. 11. Graphical representation of the expression L(F ),
described by Eq. (38), with respect to the F . The blue dashed
curve represents the behavior of L(F ) versus F with f0 = 0
and f1 = 0.2, while the red dotted-dashed curve illustrates
the behavior of L(F ) versus F with f0 = f1 = 0. The values
of the constants used are λ = 0, Λ = −0.2, q = 0.3, κ = 8π
and M = 2.0
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FIG. 12. Graphical representation of V (φ), describe by ex-
pression (39), as a function of φ, for the specific values λ = 0,
Λ = −0.2, κ = 8π, M = 2.0, ϵ = −1.0 and q = 0.2 .

ories, including GR. We investigated black bounce solu-
tions by coupling the CKG field equations with NLED
and a scalar field. In particular, we studied two general-
izations of black bounce solutions, namely, the Simpson-
Visser type and the Bardeen type solutions. More specifi-
cally, we developed black-bounce solutions by considering
NLED and a scalar field as the source of the matter, by
using the symmetry given by a(r) = −b(r) metric func-
tions. We found the LNLED(r) and LF (r) functions from
the “0,0,1” and “2,1,1” components of the gravitational
field equations. To progress in our calculations, we con-
sidered a particular scalar field from GR, according to

Eq. (20), and used a Simpson-Visser and Bardeen type
metric function, which differs from GR by the additional
terms with λ and Λ.

In both GR and conformal Killing gravity, a necessary
condition for modeling black bounces is the coupling of
NLED and the scalar field with the potential. In this
context, in GR, it has been shown that the solutions of
black bounces in the form of equations (14)-(17) are ex-
act solutions of the equations of motion with a source
of Nonlinear Electrodynamics (NLED) matter coupled
with a scalar field [36]. While it is possible that black
bounce solutions can be modeled with the coupling of
other types of matter, no models have been developed in
the literature with matter fields other than those we have
discussed. Furthermore, the representation of the matter
field may not be unique.

In the first Simpson-Visser model, we simultaneously
solve equations (24) and (25) for Λ < 0, when M > Mc,
we find two horizons. For M = Mc, a bounce occurs at
r = 0. If M < Mc, no horizon is identified. In the case of
Λ > 0, no horizon formation occurs for M > Mc, while
for M = Mc, degenerate horizons are observed. Lastly,
when M < Mc, four horizons are found, including two
cosmological horizons. For Λ < 0, in the case of critical
charge, we observe that there is no horizon for q > qc. For
q < qc, we find two horizons. In the scenario where Λ > 0,
we identify two cosmological horizons, in all scenarios of
q > qc, q = qc, and q < qc.

By analyzing the Kretschmann scalar according to
Eq. (32) for this case, we see that it remains regular when
we take the limit of r → 0. In the limit of r → ∞, on
the other hand, we verify that the regularity in space-
time only occurs for the specific case of λ = 0. Moreover,
it is possible to recover GR if we examine the trace de-
scribed by Eq. (33), it is possible to recover GR if we set
f0 = f1 = λ = 0. We have also obtained the expressions
for L(F ) and V (φ) as shown in Eqs. (29) and (30). The
behavior of the first quantity is shown in Fig. 5 with two
curves, one of them for the case of f0 = 0 and f1 = 0, in
which we recover the model described by GR. In Fig. 6,
on the other hand, we verify the periodic nature of the
potential.

In the second model, we adopted the Bardeen-type
metric function and numerically determined the solutions
for the horizons. For Λ < 0, in determining the critical
mass, we observed the formation of four horizons when
M > Mc, with the innermost ones being the Cauchy hori-
zons. For M = Mc, degenerate horizons are observed.
Finally, if M < Mc, the geometry corresponds to that
of a wormhole. For Λ > 0, when M > Mc, we observe
the presence of two horizons. When M = Mc, we find
four horizons, with the innermost one being the Cauchy
horizon. In the scenario where M < Mc, we detect six
horizons, with the outermost ones being the cosmological
horizons.

In the scenario where Λ < 0, at the critical charge, if
q > qc, no horizon forms. For q = qc, we have two degen-
erate horizons. When q < qc, we observe the presence
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of four horizons, noting that the innermost ones are the
Cauchy horizons. When Λ > 0, we also note that in all
scenarios (q > qc, q = qc, q < qc), there are cosmological
horizons. It is noteworthy that for q < qc, we observe a
total of six horizons.

By analyzing the Kretschmann scalar of the Bardeen-
type model according to Eq. (41), we find that it remains
regular as we approach the limit r → 0. However, we only
find the regularity of spacetime in the limit of r → ∞
when λ = 0. If we also examine the trace described in
Eq. (42), we find GR again when f0 = f1 = λ = 0.
Finally, we obtained the expressions for L(F ) and V (φ)
as described in Eqs. (38) and (39)., respectively. Again,
we plotted the behavior of these quantities, where the
first illustrates L(F ) in Fig. 11 with two curves, one for
the case f0 = 0 and f1 = 0, in which we recover the
model described by GR. The behavior of the potential
was represented in Fig. 12.

To ensure accuracy, we calculated the numerical value
of lambda λ based on observations from the ‘Event Hori-
zon Telescope’ (EHT) collaboration of Sgr A*, using
the photon sphere radius as 2.9 MKeck, the mass as
M → MKeck = 5.827 × 109m, the charge as q =
0.5MKeck, the distance is DKeck = 2.4543 × 1020m,
the distance from the observer is r0 = 10−10 DKeck and
Λ = 1.3 × 10−52m−2 [37]. In this analysis, we verified
that the obtained value is given by λ = 5.902×10−43m−4.
Thus, based on these parameters, we have calculated the
shadow radius of the black hole for the CKG model, and
taking into account this specific value of λ, we verify that
the shadow radius of the black hole of CKG agrees with
the result estimated with EHT for Sgr. A*.

Although the stability issues are an important aspect
of these solutions, this analysis lies outside the scope of
the present paper. However, it is interesting to note that
one may explore the stability of our solutions in an anal-
ogous manner as outlined in Ref. [38] for the selfgravi-
tating spherically symmetric solutions found in f(T ) tor-

sion gravity [38, 39]. Here, the authors used a perturba-
tive approach by considering small deviations from GR
and found charged black hole solutions. The stability of
the motion around the obtained solutions, was explored
by analyzing the geodesic deviation, and the unstable
regimes in the parameter space was found. Additionally,
a detailed thermodynamic analysis was carried out by
examining the temperature, entropy, heat capacity and
Gibb’s free energy, and the analysis showed that f(T )
modifications of GR improve the thermodynamic stabil-
ity, which is not the case in other classes of modified
gravity. We aim to perform a similar analysis in future
work.

As a follow-up to this work, we plan to investigate sev-
eral other approaches within CKG, which include com-
prehensive studies of black hole thermodynamics, stabil-
ity of solutions through perturbation analysis, detailed
studies of black hole shadows, and gravitational lensing
analysis. These are several of the areas we plan to ad-
dress in our future work to deepen our understanding and
further contribute to the development of this generalised
new alternative approach to GR.
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