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Abstract

Causal estimation (e.g. of the average treatment effect) requires estimating com-
plex nuisance parameters (e.g. outcome models). To adjust for errors in nuisance
parameter estimation, we present a novel correction method that solves for the best
plug-in estimator under the constraint that the first-order error of the estimator with
respect to the nuisance parameter estimate is zero. Our constrained learning frame-
work provides a unifying perspective to prominent first-order correction approaches
including one-step estimation (a.k.a. augmented inverse probability weighting) and
targeting (a.k.a. targeted maximum likelihood estimation). Our semiparametric in-
ference approach, which we call the “C-Learner”, can be implemented with modern
machine learning methods such as neural networks and tree ensembles, and enjoys
standard guarantees like semiparametric efficiency and double robustness. Empirically,
we demonstrate our approach on several datasets, including those with text features
that require fine-tuning language models. We observe the C-Learner matches or out-
performs other asymptotically optimal estimators, with better performance in settings
with less estimated overlap.

1 Introduction

Causal inference is the bedrock of scientific decision-making. To reliably estimate causal
effects, a modeler often needs to fit high-dimensional and complex nuisance parameters.
For example, optimal estimation of the average treatment effect (ATE) requires model-
ing outcomes and/or treatment assignments as a function of baseline covariates, even for
a randomized controlled trial [21]. Modern machine learning models provide substan-
tial flexibility in fitting nuisance parameters, but they optimize predictive accuracy and
are agnostic to the downstream estimation task. As a result, a naive plug-in estimator
that entirely trusts the fitted ML model is suboptimal and sensitive to errors in the ML
model [15, 19, 10].

To improve upon the naive plug-in estimator, the semiparametric statistics literature
analyzes the sensitivity of the causal estimand with respect to the nuisance parameter
by taking a first-order distributional Taylor expansion [4, 26, 27, 22, 24]. There are two
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prominent approaches to correcting the first-order error term due to nuisance parameter
estimation. One-step estimation corrects the plug-in estimator by subtracting (an estimate
of) the first-order error term, which can be estimated using the pathwise derivative of the
estimand (a.k.a. efficient influence function). On the other hand, targeting uses the plug-
in estimator but adjusts the nuisance parameter estimate by a pathwise derivative-based
(“clever”) covariate term designed to set (an estimate of) the first-order estimation error to
zero [40]. In the case of estimating the ATE, the two approaches respectively give rise to the
well-known augmented inverse probability weighting (AIPW) estimator [7, 33, 31] and the
targeted maximum likelihood estimator (TMLE) [40] which are both semiparametrically
efficient and doubly robust.

We present a new approach to correcting the first-order estimation error in causal in-
ference and semiparametric statistics, which we make concrete in the case of estimating
the ATE. Our approach reframes the problem of constructing an asymptotically optimal
ATE estimator as a constrained optimization problem. Consider binary treatments (ac-
tions) A, covariates X, and potential outcomes Y (1), Y (0) under treatment (A = 1) and
control (A = 0), respectively. Under standard identification assumptions for the ATE,
letting (X,A, Y ) ∼ P for some distribution P , and also assuming Y (0) := 0 for simpler
exposition, the ATE depends on the outcome model µ(·):
ATE = EP [Y (1)− Y (0)] = EP [Y (1)] = EP [µ(X)] where µ(X) := EP [Y | A = 1,X].

Instead of fitting µ(·) to minimize predictive error, we explicitly take into account the
downstream causal estimation task by minimizing predictive error subject to the constraint
that the first-order estimation error must be zero

µ̂C ∈ argminµ̃∈F

{
PredError(µ̃) : First-order error of plug-in estimator from µ̃ is 0

}
(1)

where the minimization is over the class of outcome models µ̃(·) over the model class F .
The resulting plug-in estimator 1

n

∑n
i=1 µ̂

C(Xi) based on the constrained learning ap-
proach (1) enjoys the usual fruits of first-order correction, such as semiparametric efficiency
and double robustness. Our theory provides a unifying perspective for standard first-order
correction methods like one-step estimation and targeting. These existing methods can
be thought of as solving the optimization problem (1) with a restrictive model class given
by augmenting an fitted nuisance estimator along a specific direction. For estimating the
ATE, a version of one-step estimation uses an existing outcome model µ̂(X) plus an ad-
ditive constant term F := {µ̂(·) + c : c ∈ R}, and a version of targeting uses a pathwise
derivative-based covariate term F := {µ̂(·) + c A

π̂(·) : c ∈ R} where A is treatment and π̂ is

a fitted propensity score model (treatment model). We elaborate further in Section 3.1.
More importantly, the constrained learning perspective (1) gives rise to a natural and

novel estimation approach, which we call the “C-Learner”. Instead of adjusting an existing
nuisance parameter estimate along a pre-specified direction, we directly train the nuisance
parameter to minimize prediction error, subject to the constraint that the first-order esti-
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mation error must be zero. Unlike one-step estimation and targeting, our approach utilizes
the entire class of ML models to make the first-order correction. Intuitively, we expect the
C-Learner to enjoy practical finite-sample advantages over one-step estimation and target-
ing by virtue of directly optimizing the plug-in model over this originally chosen model
class F . In practice, we observe the plug-in estimator using outcome models fitted under
the constrained framework to exhibit numerical stability.

Since the constrained learning problem (1) is a first-order correction method, the result-
ing plug-in estimator satisfies standard asymptotic optimality guarantees such as semipara-
metric efficiency and double robustness. In Section 6, we identify conditions under which a
constrained learning estimator enjoys these results, and we verify that one-step estimation
and targeting methods also satisfy these necessary conditions. While all first-order correc-
tion methods enjoy standard asymptotic optimality guarantees, several authors have noted
that there is a salient gap between the asymptotic and finite-sample performance of differ-
ent estimation approaches [23, 8]. This leaves room for new methodological development
(including ours) and necessitates a rigorous and thorough empirical comparison.

We demonstrate the versatility of the C-Learner by providing implementations in which
the outcome models are linear models, gradient-boosted regression trees, or neural networks
(Seection 4). We study a range of datasets where different outcome models are appropri-
ate: standard tabular settings where linear models and gradient-boosted trees excel, and a
large-scale setting involving text features that require finetuning language models for causal
estimation. Empirically, we find the C-Learner outperforms or matches other asymptoti-
cally optimal estimation methods (Section 5). In particular, in our experiment settings, we
observe that the C-Learner has better estimation error in challenging settings where there
are covariate regions with little estimated overlap between treatment and control groups.

Machine learning approaches for nuisance estimation have received much attention
[1, 2, 3, 29, 18, 44]. These approaches can be naturally combined with first-order correc-
tion methods like one-step estimation and targeting, and recent advancements including
DragonNet [38] and RieszNet [12] explicitly consider these ideas during model training
through novel objectives and model classes. Like other first-order correction methods,
the C-Learner can be combined with various nuisance model estimation approaches; for
example, in Appendix C.3.2, we demonstrate how C-Learner can effectively use Riesz rep-
resenters learned by RieszNet [12]. Our constrained optimization view reframes the con-
struction of an asymptotically optimal estimator as a constrained optimization problem,
and provides new ways to achieve asymptotic optimality in practice.

2 Background

Although C-Learner is applicable to more general estimands (Section A), we illustrate our
ideas by studying the average treatment effect (ATE).
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2.1 Average Treatment Effect and Missing Outcomes

As in Section 1, consider binary treatments (actions) A ∈ {0, 1}, covariates X ∈ R
d, and

potential outcomes Y (1), Y (0) under treatment (A = 1) and control (A = 0), respectively.
The key difficulty in causal inference is that we do not observe counterfactuals: we only
observe the outcome Y := Y (A) corresponding to the observed binary treatment. Let
Z := (X,A, Y ). Based on i.i.d. observations Z ∼ P , our goal is to estimate the average
treatment effect ψ(P ) = P [Y (1) − Y (0)] :=

∫
[Y (1) − Y (0)]dP . Here P denotes both

the joint probability measure and expectation operator under such measure. We require
standard identification conditions that make this goal feasible: (i) Y = Y (A) (SUTVA),
(ii) (Y (1), Y (0)) ⊥ A | X (ignorability), and (iii) for some η > 0, η ≤ P (A = 1 | X) ≤ 1−η
a.s. (overlap) [15].

To simplify our exposition, we assume Y (0) := 0 throughout so that we are estimating
the mean of a censored outcome (censored when A = 0). This setting is also known as
mean missing outcome [24], which is the focus of some of our experiments. In this case,
we can write the ATE as a functional of the joint measure P , as

ψ(P ) := P [Y (1)] = P [P [Y | A = 1,X]] . (2)

The outcome model µ(X) := P [Y | A = 1,X] (shorthand for µ(A,X) := P [Y | A,X]
with µ(0,X) := 0) and propensity (treatment) model π(X) := P (A = 1 | X) are key nui-
sance parameters; notably, they are high-dimensional in contrast to the single-dimensional
ATE (2). Note that we can write ψ(P ) = P [µ(1,X)−µ(0,X)] = P [µ(1,X)] = P [µ(X)] in
this setting. The corresponding nuisance estimators µ̂(X) and π̂(X) can be implemented
as ML models that are trained on held-out data.

2.2 First-Order Correction and Asymptotic Optimality

By analyzing the error of blindly trusting an ML-based estimate of the nuisance parameters
to estimate the ATE (2), we can develop better estimation approaches. We sketch intuition
here and leave a more rigorous treatment to Section 6. We begin by noting that the joint
distribution over the observed data can be decomposed as P = PY,A|X × PX . Since the
marginal PX can be simply estimated with an empirical distribution (plug-in), we focus on
the error induced by approximating PY,A|X using an estimate P̂Y,A|X .

Recalling the statistical functional ψ(P ) (2), the error of a naive plug-in estimator,
assuming access to the true PX , is given by

PX [µ̂(X)]− PX [µ(X)] = PX [P̂ [Y | A = 1,X]] − PX [P [Y | A = 1,X]]

= ψ(PX × P̂Y,A|X)− ψ(PX × PY,A|X).

For the statistical functional Q 7→ ψ(Q), let ϕ be its pathwise derivative with respect to
QY,A|X ; we normalize it w.l.o.g. so that Q[ϕ(Z;Q)|X] = 0 for all Q. For the ATE (2), it
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is well-known that

ϕ(Z;P ) =
A

P [A = 1|X]
(Y − P [Y |A = 1,X]) =

A

π(X)
(Y − µ(X)). (3)

See Kennedy [24] for an accessible primer on such derivations. Then, a (distributional)
first-order Taylor expansion gives

ψ(PX × P̂Y,A|X)− ψ(PX × PY,A|X) =

∫∫
ϕ(Z; P̂ )d(P̂Y,A|X − PY,A|X)dPX +R2(P̂ , P )

= −
∫∫

ϕ(Z; P̂ )dPY,A|XdPX +R2(P̂ , P )

= −P [ϕ(Z; P̂ )] +R2(P̂ , P ) (4)

where R2 is a second-order remainder term. Conclude that the first-order error term of
the plug-in approach PX [µ̂(X)] is given by −P [ϕ(Z; P̂ )].

A common approach in semiparametric statistics to better estimate ψ(P ) is to explicitly
correct for this first-order error term. As we discuss later in Section 6, the first-order cor-
rection leads to asymptotic optimality properties like semiparametric efficiency—providing
the shortest possible confidence interval—and double robustness—achieving estimator con-
sistency even if only one of µ̂(X), π̂(X) is consistent.

One-Step Correction (Augmented Inverse Propensity Weighting) [33, 31] The
most popular first-order correction approach adjusts the plug-in estimator to account for
the error term by moving the first-order error term to the left-hand side in the Taylor
expansion (4), to achieve second-order error rates

P
[
µ̂(X) + ϕ(Z; P̂ )

]
− P [µ(X)] = R2(P̂ , P ).

Using the empirical distribution to approximate the debiased estimator, we arrive at the
augmented inverse propensity weighted estimator

ψ̂debiased :=
1

n

n∑

i=1

(
µ̂(Xi) + ϕ(Zi; P̂ )

)

=
1

n

n∑

i=1

(
µ̂(Xi) +

Ai

π̂(Xi)
(Yi − µ̂(Xi))

)
. (5)

Targeting (Targeted Maximum Likelihood Estimation) [40] Targeting takes an
alternative approach to first-order correction. It commits to the use of the plug-in esti-
mator, and constructs a tailored adjustment to the existing nuisance parameter estimate
µ̂(X) to set the first-order error to zero. The fluctuation takes place in the direction of a
task-specific random variable (“clever covariate”), which takes different forms depending
on the estimand [40].
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In the case of the ATE with Y (0) := 0 and general outcomes Y (including continuous
and unbounded Y ), the functional form of the pathwise derivative (3) motivates the use of
A

π̂(X) as the clever covariate: targeting uses an adjusted nuisance estimate µ̂(A,X)+ǫ⋆ A
π̂(X)

in place of µ̂(A,X) in the plug-in for ψ(P ) = P [µ(1,X)], where ǫ⋆ is chosen to solve the
targeted maximum likelihood problem

ǫ⋆ := argmin
ǫ∈R

1

n

n∑

i=1

A

(
Y − µ̂(A,X) − ǫ A

π̂(X)

)2

. (6)

From the KKT conditions, it is easy to see that the solution to this problem removes the
finite-sample estimate of the first-order error term (4) of the plug-in estimator relying on
µ̂(A,X) + ǫ⋆ A

π̂(X) .

Taking the empirical approximation to the targeted maximum likelihood problem (6),
the optimal solution is given by

ǫ⋆ :=

(
1

n

n∑

i=1

Ai

π̂(Xi)2

)−1
1

n

n∑

i=1

Ai

π̂(Xi)
(Yi − µ̂(Xi)). (7)

Thus, we arrive at an explicit formula for the targeted maximum likelihood estimator

ψ̂targeted :=
1

n

n∑

i=1

(
µ̂(Xi) + ǫ⋆

1

π̂(Xi)

)

=
1

n

n∑

i=1

µ̂(Xi) +

∑n
i=1

1
π̂(Xi)∑n

i=1
Ai

π̂(Xi)2

· 1
n

n∑

i=1

Ai

π̂(Xi)
(Yi − µ̂(Xi)). (8)

Targeted Regularization [12, 38] Instead of modifying the outcome model through
a post-processing step (6), we can instead regularize the usual training objective for the
outcome model using a similar adjustment term, an approach referred to as targeted reg-
ularization in the literature [12, 38], where it is demonstrated on e.g. neural networks
learned via gradient descent. An additional difference between TMLE and targeted regu-
larization is the data splits involved. In TMLE, the targeting objective (6) is applied to
the dataset used for plug-in estimation (Z1:n in the expressions above), while in targeted
regularization, the targeting objective is applied to the dataset used for training µ̂, which
has not explicitly described above, as so far, µ̂, π̂ are taken as given. These data splits
are often different; see Section 4 for more discussion on data splits, and Section 6 for a
recommended data splitting setup.

3 Constrained Learning Framework

The aforementioned approaches to first-order correction take the fitted nuisance estimate
as given, and make adjustments to either the estimator (one-step estimation (5)) or the
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nuisance estimate (targeting (6)). In this section, we propose the constrained learning
framework to first-order correction where we train the nuisance parameter to be the best
nuisance estimator subject to the constraint that the first-order error term (4) is zero.

Our method, which we call the C-Learner, is a general method for adapting machine
learning models to explicitly consider the semiparametric nature of the downstream task
during training. For one-step estimation and targeting, in the sections before, we would
use a fitted outcome model µ̂ that minimizes the squared prediction loss, with

µ̂ ∈ argmin
µ̃∈F

Ptrain[A(Y − µ̃(X))2], (9)

where the loss minimization is performed over the (often separate, auxiliary) training data
split Ptrain (which we discuss in more detail in Section 4). In contrast, for C-Learner, we
instead solve the constrained optimization problem

µ̂C ∈ argmin
µ̃∈F

{
Ptrain[A(Y − µ̃(X))2] :

1

n

n∑

i=1

Ai

π̂(Xi)
(Yi − µ̃(Xi)) = 0

}
, (10)

and our final estimator is a plug-in using nuisance estimator µ̂C :

ψ̂C−Learner :=
1

n

n∑

i=1

µ̂C(Xi) (11)

so that the constraint in Equation (10) is applied to the same data used in the plug-in (11).
The constraint (10) ensures the corresponding plug-in estimator has a finite-sample

estimate of the first-order error term (4) of 0. The training objective for µ̂C thus optimizes
for the best outcome model fit using the training data, subject to the constraint that the
plug-in estimator is asymptotically optimal. In practice, there are several computational
approaches to (approximately) solve the stochastic optimization problem (10) depending
on the function class F . In Section 4, we describe how to instantiate C-Learner in several
different ways: with µ̂C being linear models, gradient boosted regression trees (XGBoost),
and neural networks. We empircally demonstrate these in Section 5.

Like other first-order correction methods, the C-Learner can be implemented with cross-
fitting [10], which we discuss further in Sections 4 and 6. Although we illustrate the C-
Learner in the ATE setting to simplify the exposition, our estimation approach generalizes
to other estimands that are continuous linear functions of the outcome. See Appendix A
for a discussion.

3.1 Comparison with Other Approaches to Asymptotic Optimality

The constrained learning framework provides a unifying perspective to existing approaches
to first-order correction. First, a variant of AIPW (5), a standard debiased estimator,
is a C-Learner over a very restricted class F of outcome models. For a pre-trained
outcome model µ̂, consider the constrained optimization problem (10) over the model
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class F := {µ̂(X) + ǫ : ǫ ∈ R}. In order to satisfy the constraint (10), we must have

ǫ∗ =
(

1
n

∑n
i=1

Ai
π̂(Xi)

)−1
1
n

∑n
i=1

[
Ai

π̂(Xi)
(Yi − µ̂(Xi))

]
, which gives

1

n

n∑

i=1

µ̂C(Xi) =
1

n

n∑

i=1

µ̂(Xi) +

(
1

n

n∑

i=1

Ai

π̂(Xi)

)−1
1

n

n∑

i=1

[
Ai

π̂(Xi)
(Yi − µ̂(Xi))

]
. (12)

Compared to the AIPW (5), the above estimator uses a different normalization for the
correction term. This normalization term 1

n

∑n
i=1

Ai
π̂(Xi)

has expectation 1 if we use the

true propensity score π in place of π̂. We refer to this estimator as the self-normalized
AIPW.

For general outcome variables (including continuous and unbounded random variables),
we can also show that targeting (8) can be viewed as a C-Learner over a limited model
class. By inspection, the first-order condition to the TMLE problem (6) is given by

1

n

n∑

i=1

[
Ai

π̂(Xi)

(
Yi − µ̂(Xi)− ǫ

Ai

π̂(Xi)

)]
= 0. (13)

Thus, targeting is a C-Learner where a pre-trained outcome model µ̂(X) is perturbed along
a specific direction to become µ̂C(X) := µ̂(X) + ǫ A

π̂(X) . Although contrived, reframing the

constrained optimization problem (10) with F := {µ̂(X) + ǫ A
π̂(X) : ǫ ∈ R} thus provides a

new way to view TMLE (8).
These existing approaches to first-order correction rely on adding estimated ratios

(A/π̂(X)) (one-step estimation (5)) or fluctuating the outcome model µ̂ in a specific
direction—along 1/π̂(X)—in order to achieve unbiased plug-in estimators (targeting (6)).
In contrast, our proposed method achieves asymptotic optimality without such limited ad-
justments to the model class. It simply trains the nuisance parameter µ̂C(·) so the plug-in
estimator 1

n

∑n
i=1 µ̂

C(Xi) satisfies the criterion for asymptotic optimality in the most direct
way possible, within the originally chosen model class of interest.

In practice, we observe that compared to one-step estimation and targeting, our formu-
lation avoids the potential numerical instability that comes from 1/π̂(X) taking extreme
values when the estimated treatment probability π̂(X) is small. Plug-in estimators of
learned outcome models have been observed to be numerically stable (e.g., [23]) and em-
pirically, the C-Learner inherits these benefits as we showcase Section 5.

4 Methodology

The constrained learning framework can be instantiated in many ways depending on the
function class F for outcome models. Concretely, we illustrate the versatility of the C-
Learner by presenting approximate solution methods to the constrained optimization prob-
lem (10) for linear models, gradient boosted regression trees, and deep neural networks.
We empirically demonstrate these instantiations later in Section 5.
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We rely on sample splitting and cross-fitting. Let Ptrain be the split on which nuisance
parameters such as outcome model or the propensity score π̂(·) are trained, and let Pval

be the split on which we perform model selection on them. We use a separate split Peval

to evaluate our final causal estimators, as well as assessing their first-order errors. Our
constrained learning framework (10) can thus be rewritten as

ψ̂C−Learner := Peval

[
µ̂C(X)

]
where

µ̂C ∈ argmin
µ̃∈F

{
Ptrain[A(Y − µ̃(X))2] : Peval

[
A

π̂(X)
(Y − µ̃(X))

]
= 0

}
, (14)

We let Peval = Pval except when replicating results from other works.

4.1 Linear Models

When outcome models are linear functions of X, the constrained learning problem (14)
has an analytic solution. Using~· to denote stacked observations, define



~Ytrain
~Xtrain

~Htrain


 :=



{Yi}i∈Itrain
{Xi}i∈Itrain{
Ai

π̂(Xi)

}
i∈Itrain


 and



~Yeval
~Xeval

~Heval


 :=



{Yi}i∈Ieval
{Xi}i∈Ieval{
Ai

π̂(Xi)

}
i∈Ieval




where Itrain = {i ∈ train : Ai = 1} and Ieval = {i ∈ eval : Ai = 1} are indices with
observations in each data split. Using this notation, the constrained learning problem (14)
can be rewritten as

θ̂C = argmin
θ

{
1

2
‖~Ytrain − ~Xtrainθ‖2 : ~H⊤

eval(
~Yeval − ~Xevalθ)

}
.

The KKT conditions characterize the primal-dual optimum (θ̂C , λ̂)

θ̂C = ( ~X⊤
train

~Xtrain)
−1 ~X⊤

train(
~Ytrain+λ̂ ~Htrain) where λ̂ =

~H⊤
eval(

~Yeval − ~Yols)

~H⊤
eval

~Xeval( ~X
⊤
train

~Xtrain)−1 ~X⊤
train

~Htrain

and ~Yols := ~X⊤
train(

~X⊤
train

~Xtrain)
−1 ~X⊤

train
~Ytrain. Note that θ̂C is the OLS with respect to

the pseudo-label ~Ytrain + λ̂ ~Htrain and the dual variable shifts the observed outcomes in the
direction of ~Htrain similarly to targeting, but with additional reweighting using covariates.

4.2 Gradient boosted regression trees

We consider outcome models that are gradient boosted regression trees. The gradient
boosting framework [17] iteratively estimates the functional gradient gj of the loss function
evaluated on the current function estimate µ̂j . For the standard MSE loss ℓ(µ;X,A, Y ) :=
A(Y − µ(X))2, we use weak learners in G (e.g., shallow decision trees) to compute

ĝj+1 ∈ argmin
g∈G

Ptrain[(A(gj(X,Y )− g(X))2] where gj(X,Y ; µ̂j) :=
∂

∂µ
ℓ(µ;X,Y )

∣∣∣
µ=µ̂j

.
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Algorithm 1 C-Learner with Gradient Boosted Regression Trees

1: Input: learning rate η, max trees J and K, µ̂0 := 0
2: for j = 0, 2, . . . , J − 1 do
3: Modify functional gradient gj = Y − µ̂j(X) to g̃j = gj + ǫ⋆j · A/π̂(X) where ǫ⋆j :=

Ptrain[(Y−µ̂j(X))·A/π̂(X)]
Ptrain[A/π̂(X)2] as in (15)

4: Compute ĝj = argming∈G Ptrain[A(g̃j − g(X))2] and update µ̂j+1 = µ̂j − ηĝj
5: end for
6: for k = 0, 2, . . . ,K − 1 do

7: Compute gradient g̃k = ǫ⋆J+k ·A/π̂(X) where ǫ⋆J+k =
Peval[(Y−µ̂J+k(X))·A/π̂(X)]

Peval[A/π̂(X)2]

8: Compute ĝk = argming∈G Peval[A(g̃k − g(X))2] and update µ̂J+k+1 = µ̂J+k − ηĝk
9: end for

10: Return final outcome model µ̂CXGB := µ̂J+K

and set µ̂j+1 = µ̂j − ηĝj+1 for some step size η. As we assume Y := 0 in our setting, we let
µ(X), gj(X,Y ), and g(X,Y ) be shorthand for µ(A,X), gj(X,A, Y ), and g(X,A, Y ) when
setting A = 1, and we let µ(0,X), gj (0,X), g(0,X) = 0. The process repeats J times until
a maximum number of weak learners are fitted or an early stopping criterion is met.

Constrained gradient boosting We are interested in minimizing the squared loss sub-
ject to the constraint (10). We consider a two stage procedure. First, we perform gradient
boosting where instead of the functional gradient of the loss gj , we use a modified version

g̃j := gj + ǫ⋆j ·
A

π̂(X)
where ǫ⋆j = argmin

ǫ

{
Ptrain

[
A

(
Y − µ̂j(X)− ǫ · A

π̂(X)

)2
]}

(15)

given by the targeting objective (6) applied to µ̂j on the dataset Ptrain. The modification
g̃j allows subsequent weak learners to be fit in a direction that reduces the loss and makes
the plug-in estimator closer to satisfying our constraint on Ptrain. To ensure that the
constraint (14) is satisfied on Peval, the second stage fits weak learners to the following
gradient of constraint violation

g̃k := ǫ⋆J+k ·
A

π̂(X)
where ǫ⋆J+k = argmin

ǫ

{
Peval

[
A

(
Y − µ̂J+k(X)− ǫ · A

π̂(X)

)2
]}

.

We summarize the method above in pseudo-code in Algorithm 1, which we implement using
the XGBoost package with custom objectives [9]. Hyperparameters for the first stage
(learning rate η, and other properties of the weak learners such as max tree depth) are
selected to have the lowest MSE loss on Pval. Other hyperparameters such as max number
of trees J and K, may be set on Pval, or alternatively, by early stopping, with evaluation
on different splits within Ptrain. These hyperparameters are re-used in the second stage.
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4.3 Neural Networks

When outcome models are neural networks µ̂θ(x) with weights θ, we consider the usual
MSE loss with a Lagrangian regularizer for the constraint (14)

R(θ) = Ptrain

[
A(Y − µ̂θ(X))2

]
+ λ · Peval

[
A

π̂(X)
(Y − µ̂θ(X))

]2
.

We optimize the above objective using stochastic gradient descent, where we take mini-
batches of the training set to approximate the gradient of the first term and take a full-batch
gradient on the evaluation set for the second term. At the end of every training epoch,
the constraint on Peval is enforced exactly by adjusting the constant bias term θbias in the
neural network:

θbias ← θbias +

(
Peval

[
A

π̂(X)

])−1

Peval

[
A

π̂(X)
(Y − µ̂θ(X))

]
. (16)

We choose the early stopping epoch to be the one that minimizes MSE loss on Pval

[
A(Y − µ̂θ(X))2

]
.

For choosing hyperparameters (e.g. learning rate, λ), we consider two options: (1) choosing
the hyperparameters that minimize MSE loss on Pval, and (2) choosing hyperparameters
(among ones with reasonable MSE loss on Pval that minimize the size of the bias shift (16)
in the first epoch, as a small bias shift indicates a regularizer that is successful. While the
first method is more standard, the second more closely encourages satisfying the constraint
over the course of training, to avoid big jumps in optimization. We note that model selec-
tion for nuisance parameters is an active area of research [18, 35, 37]. We explore these in
Section 5.2.

5 Experiments

In this section, we present a series of experiments to demonstrate the flexibility and em-
pirical performance of the C-Learner. In Section 5.1, we consider well-studied tabular sim-
ulated settings where one-step estimation and targeting methods perform poorly [23, 30],
and we observe that the C-Learner, implemented with linear models and gradient boosted
regression trees, performs better in comparison. To test the scalability of our approach, in
Section 5.2 we construct and study a high-dimensional causal inference setting with text
features. We fine-tune a language model [36] under our constrained learning framework. In
both settings, we observe that C-Learner outperforms one-step estimation and targeting.
Lastly, in Appendix C.3, we study a common tabular dataset (Infant Health and Devel-
opment Program [6]); the C-Learner implemented with gradient boosted regression trees
matches the performance of one-step estimation and targeting.
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5.1 Kang & Schafer Dataset [23] (tabular)

We start with the synthetic tabular setting constructed by Kang and Schafer [23], who
demonstrate empirically that the direct method (“OLS” plug-in estimator with a linear
outcome model) achieves better performance than asymptotically optimal methods in their
setting. In response, Robins et al. [30] note that settings in which some subpopulations have
a much higher probability of being treated than others [34, 32, 23] can be very challenging
for asymptotically optimal methods, as such methods are sensitive to propensity weights
that can take extreme values in these settings. Thus, investigating the performance of the
C-Learner in this challenging setting contributes to understanding its empirical stability
on a well-known dataset.

Our goal is to estimate ψ := P [Y (1)] = P [P [Y |A = 1]] = P [µ(X)] from data (X,A,AY )
(assuming Y (0) := 0). The true outcome and treatment mechanisms to depend on covari-
ates ξ ∼ N(0, I) ∈ R

4 and ε ∼ N(0, 1)

Y = 210 + 27.4ξ1 + 13.7ξ2 + 13.7ξ3 + 13.7ξ4 + ε,

π(ξ) =
exp(−ξ1 + 0.5ξ2 − 0.25ξ3 − 0.1ξ4)

1 + exp(−ξ1 + 0.5ξ2 − 0.25ξ3 − 0.1ξ4)
.

Here, P [Y (1)] = P [Y | A = 1] = 200 and P [Y ] = 210 so that a naive average of the treated
units is biased by -10. For a random sample of 100 data points, the true propensity score
can be as low as 1% and as high as 95%. Instead of observing ξ, the modeler observes

X1 = exp(ξ1/2), X2 = ξ2/(1 + exp(ξ1)) + 10, X3 = (ξ1ξ3/25 + 0.6)3, X4 = (ξ2 + ξ4 +20)2.

Next, we demonstrate the instantiations of the C-Learner with two different function
classes: linear function classes and gradient boosted regression trees.

Linear Outcome Models. Following Kang and Schafer [23], we consider outcome mod-
els that are linear in X and propensity models that are linear logistic regressions of the
treatment on X. Therefore, both models are misspecified, as is common in real world ap-
plications. We use squared loss to train the outcome model on treated units (A = 1) and
we use the logistic loss to learn the propensity (treatment) model. This leads to outcome
models with R2 close to 0.99 and propensity models with ROC around 0.75. Following
Kang & Schafer, we do not distinguish between Ptrain = Pval = Peval.

We present a comparison of methods in Table 1. In this table, “Direct” refers to
the plug-in with the outcome model trained as usual (“OLS” in [23]), “IPW-POP” [23]
refers to self-normalized IPW and “AIPW-POP” refers to self-normalized AIPW. Observe
that the C-Learner outperforms other asymptotically optimal methods in terms of mean
absolute error (MAE).1 In Appendix C.1.2, we also show that this is the case for other
metrics such as RMSE and Median Absolute Error. Our method is the only asymptotically

1The median absolute error is reported in [23]. Qualitative results are the same under this additional
metric, which we omit for easier exposition.
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optimal method that is comparable to the direct method in this setting, indicating strong
numerical stability, despite extreme inverse propensity weights. In some cases, the C-
Learner improves upon AIPW and TMLE by orders of magnitude.

(a) N = 200

Method Bias Mean Abs Err

Direct -0.00 (0.10) 2.60 (0.06)
IPW 22.10 (2.58) 27.28 (2.53)
IPW-POP 3.36 (0.29) 5.42 (0.26)

AIPW -5.08 (0.474) 6.16 (0.46)
AIPW-POP -3.65 (0.20) 4.73 (0.18)
TMLE -111.59 (41.07) 112.15 (41.07)
C-Learner -2.45 0.12) 3.57 (0.09)

(b) N = 1000

Bias Mean Abs Err

-0.43 (0.04) 1.17 (0.03)
105.46 (59.84) 105.67 (59.84)

6.83 (0.33) 7.02 (0.32)

-41.37 (24.82) 41.39 (24.82)
-8.35 (0.43) 8.37 (0.43)

-17.51 (3.49) 17.51 (3.49)
-4.40 (0.077) 4.42 (0.07)

Table 1. Comparison of estimator performance on misspecified datasets from Kang and
Schafer [23] in 1000 tabular simulations. Asymptotically optimal methods are listed beneath
the horizontal divider. We highlight the best-performing asymptotically optimal method in
bold. Standard errors are displayed within parentheses to the right of the point estimate.

As methods such as IPW and AIPW are known to be unstable if the propensity score
π̂(X) is close to 0, a common ad-hoc heuristic is to clip π̂(X) for a chosen small η > 0
so that if π̂(X) < η, we redefine π̂(X) := η. Dealing with extreme π̂(X) is an an active
area of research; choosing such an η is an art, and some works propose to avoid these
difficult X entirely by adjusting the estimand to exclude or down-weight those low-overlap
covariates [14, 25]. We show in Appendix C.1.1 that, notably, clipping seems essential for
asymptotically optimal methods AIPW and TMLE to perform well.

While the direct method performs extremely well on this dataset, this estimator per-
forms poorly on the flipped version of this task in which we would like to estimate ψ′ :=
P [Y (0)] instead. In their comment to Kang and Schafer [23], Robins et al. [30] thus asks
the following question (rewritten to match our notation): “Can we find doubly-robust
estimators that, under the authors’ chosen joint distribution for (X,A, (1 − A)Y ), both
perform almost as well as the direct method for P [Y (1)] and yet perform better than the
direct method for P [Y (0)]?” We observe that the C-Learner is such an estimator. In Ap-
pendix C.1.2, we show that, indeed, when estimating P [Y (0)], the performance of all the
asymptotically efficient methods are equivalent and superior to the direct method, and in
the original version for estimating P [Y (0)], C-Learner had the best performance across all
estimators other than the direct method.

Gradient Boosted Regression Tree Outcome Models. We now demonstrate the
flexibility of the C-Learner by using gradient boosted regression trees as outlined in Sec-
tion 4.2. As before, the propensity model π̂ is fit as a logistic regression on covariates
X. Since sample splitting is more appropriate for this flexible model class, we use with
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cross-fitting as we describe in Section 6, with K = 2 folds. Additional implementation
details, such as the grid of hyperparameters for tuning and coverage results are deferred
to Appendix C.1.1.

The results for the mean absolute error and their respective standard errors are dis-
played in Table 2. The C-Learner outperforms the direct method and achieves the best
mean absolute error (MAE) among all estimators and across all sample sizes. For com-
parison, we also include a plug-in method where the outcome model is learned using only
the first stage in Section 4.2. In the results in Table 2 it is labeled as “Lagrangian”, as it
can be seen as a Lagrangian relaxation of the C-Learner framework. Especially for small
sample sizes (e.g. N = 200), the IPW, AIPW, and TMLE estimators perform very poorly,
likely due to being sensitive to extreme propensity weights. Self-normalization for both
IPW (“IPW-POP”) and AIPW (“AIPW-POP”) is crucial in these settings.

In Appendix C.1.1, we also present the results when arbitrary values of clipping of
0.1% and 5% are used. In this case, C-Learner again performs better (clipping 0.1%) or
equivalently to TMLE and AIPW-POP (clipping 5%) and is superior to other methods.

(a) N = 200

Method Bias Mean Abs Err

Direct -5.12 (0.10) 5.30 (0.09)
IPW 1192 (919) 1206 (919)
IPW-POP -1.01 (0.10) 7.29 (0.33)
Lagrangian -4.44 (0.10) 3.57 (0.09)

AIPW 275 (215) 280 (215)
AIPW-POP -0.82 (0.24) 4.53 (0.19)
TMLE 487 (345) 10927 (493)
C-Learner -2.89 (0.10) 3.53 (0.07)

(b) N = 1000

Bias Mean Abs Err

-3.48 (0.04) 3.49 (0.04)
28.3 (3.23) 32.30 (3.23)
2.26 (0.29) 4.85 (0.26)
-2.29 (0.04) 2.34 (0.05)

2.28 (0.52) 4.58 (0.51)
0.36 (0.14) 2.74 (0.15)
17.3 (10.20) 20.05 (10.23)
-1.92 (0.04) 2.03 (0.04)

Table 2. Comparison of estimator performance on misspecified datasets from Kang and
Schafer [23] in 1000 tabular simulations using gradient boosted regression trees. Asymp-
totically optimal methods are listed beneath the horizontal divider. We highlight the best-
performing asymptotically optimal method in bold. Standard errors are displayed within
parentheses to the right of the point estimate.

5.2 CivilComments Dataset (NLP)

Neural networks can learn good feature representations for image and text data. Despite
the recent interest in using neural networks for fitting nuisance parameters [12, 38], prior
work do not evaluate their methods outside of tabular settings. To fill this gap, we construct
a semisynthetic causal inference dataset using text covariates.

Setting Content moderation is a fundamental problem for maintaining the integrity of
social media platforms. We consider a setting in which we wish to measure the average
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level of toxicity across all user comments. It is infeasible to have human experts label all
comments for toxicity, and the comments that get flagged for human labeling may be a
biased sample. We pose this as a missing data problem, which is equivalent to our usual
goal of estimating the ATE (2) as in Section 2.1.

We use the CivilComments dataset [13], which contains real-world online comments and
corresponding human-labeled toxicity scores. The dataset contains toxicity labels Y (1) for
all comments X (which provides a ground truth to compare to), and we construct the
labeling (treatment) mechanism A ∈ {0, 1} to induce selection bias. Specifically, whether
the toxicity label for a comment can be observed is drawn according to the Bernoulli
random variable

A ∼ Bernoulli(g(X)) where g(X) = clip(b(X), l, u), clip(y, l, u) =





l if y < l

y if l ≤ y ≤ u
u if y > u

.

In practice, we set u = 0.9 and l = 10−4. Note that a lower l implies less overlap and more
extreme propensity weights. Here, b(X) ∈ [0, 1] is a continuous measure of whether com-
ment X relates to the demographic identity “Black”, as provided available in the dataset.
The labeled data suffers from selection bias: comments mentioning the demographic iden-
tity “Black” are positively correlated to toxicity within this dataset. Therefore, a naive
average of toxicity over labeled units would overestimate the overall toxicity. From a causal
perspective, we have confounding, induced by selection bias, which we can handle by using
estimators for the ATE.

Procedure We demonstrate how C-Learner can be instantiated with neural networks.
To learn π̂, µ̂, and µ̂C , we fine-tune a pre-trained DistilBERT model [36] with a linear
head using stochastic gradient descent, with µ̂C learned using the procedure described in
Section 4.3. We train µ̂ using squared loss on labeled units, and propensity models π̂ using
the logistic loss.

We construct nuisance estimators on 100 re-drawn datasets of size 2000 each, from
the full dataset of size 405,130. On each dataset draw, we use cross-fitting, as described
in Section 6, with K = 2 folds, for all estimators. We consider two ways of picking
hyperparameters (λ and learning rate), as described in Section 4.3: one in which we choose
hyperparameters for the best mean squared error on validation data, and one in which we
choose hyperparameters that minimize the size of the bias shift. Additional experiment
details are in Appendix C.2.1.

Results In Table 3, we find that C-Learner with both variants for hyperparameter section
has the best mean absolute error compared to other methods. In this setting, C-Learner
beats both not only other asymptotically optimal methods, but all methods. We observe
that C-Learner performs better compared to other asymptotically optimal methods in
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Method Bias Mean Abs Err

Direct 0.173 (0.008) 0.177 (0.007)
IPW 0.504 (0.084) 0.546 (0.081)
IPW-POP 0.114 (0.017) 0.153 (0.014)

AIPW 0.084 (0.043) 0.307 (0.032)
AIPW-POP 0.116 (0.018) 0.161 (0.014)
TMLE -1.264 (1.361) 1.802 (1.355)
C-Learner (best val MSE) 0.103 (0.015) 0.141 (0.011)
C-Learner (smallest bias shift) 0.075 (0.012) 0.115 (0.008)

Table 3. Comparison of estimators in the CivilComments [13] semi-synthetic dataset over
100 re-drawn datasets, with l = 10−4. Asymptotically optimal methods are listed beneath
the horizontal divider. We highlight the best-performing method in bold. Standard errors
are displayed within parentheses to the right of the point estimate.

datasets with low overlap in the data generating process (lower l; we investigate l =
10−2, 10−3, 10−4) in Appendix C.2.2.

The results in this NLP setting echo the results in our tabular experiments, suggesting
that C-Learner’s reliable performance extends to settings with more complex covariates
and where nuisance parameters are modeled as neural networks trained with standard
stochastic optimization methods.

6 Asymptotic Optimality

In this section, we identify conditions under which the C-Learner is semiparametrically
efficient and doubly robust. In particular, our theoretical treatment provides the asymp-
totic optimality of one-step estimation (self-normalized AIPW) and targeting (TMLE with
unbounded continuous outcomes) since they are also C-Learners satisfying these condi-
tions. We focus on the cross-fitted formulation of the C-Learner. We split the data so that
nuisance estimators are fitted on a training (auxiliary) fold and evaluated to form a causal
estimator on an evaluation (main) fold. To utilize the entire dataset, we evaluate over the
entire dataset, over multiple splits [42, 10].

Formally, we divide a dataset of size n into K disjoint cross-fitting splits. Assuming
K evenly divides n for simplicity, let Pk,n be the empirical measure over data from the
k-th split, and P−k,n be the empirical measure over data from all other splits. For each
k = 1, . . . ,K, on the training fold P−k,n, we train a propensity score model π̂−k,n(x) to
estimate P [A | X = x]. The C-Learner optimizes the prediction loss evaluated under P−k,n,
subject to the first-order correction constraint evaluated on the evaluation fold Pk,n:

µ̂C−k,n ∈ argmin
µ̃∈F

{
P−k,n[A(Y − µ̃(X))2] : Pk,n

[
A

π̂−k,n(X)
(Y − µ̃(X))

]
= 0

}
. (17)
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The final C-Learner estimator is given by

ψ̂C
n :=

1

K

K∑

k=1

Pk,n[µ̂
C
−k,n(X)]. (18)

Using the terminology in Section 4, for fold k, we let Ptrain = P−k,n, and Pval = Peval = Pk,n.
In addition to its practical benefits, cross-fitting simplifies the proof of asymptotic

optimality, especially when nuisance parameter models can be large and complex. (When
nuisance model classes are simpler, asymptotic optimality can be shown without explicit
sample splitting [24, 39, 43].) In contrast to standard cross-fitting, the constraint (17) is
over Pk,n, which is the same as the data on which it is evaluated in Equation (18). We
shortly identify sufficient conditions that guarantee asymptotic optimality (Assumption D).

We require standard conditions on the nuisance parameters π̂−k,n, µ̂
C
−k,n in order to

show asymptotic optimality.

Assumption A (Overlap). For some η > 0 and for all k, n, we have

η ≤ π(X) ≤ 1− η, η ≤ π̂−k,n(X) ≤ 1− η a.s.

Assumption B (Convergence rates of propensity and constrained outcome models). For
all k ∈ [K], both π̂, µ̂C are consistent,

‖π̂−k,n − π‖L2(P ) = op(1), ‖µ̂C−k,n − µ‖L2(P ) = op(1)

and also
‖π̂−k,n − π‖L2(P ) · ‖µ̂C−k,n − µ‖L2(P ) = op(n

− 1
2 ).

As we discuss below, we can relax these assumptions when guaranteeing double robust-
ness (consistency under misspecified nuisance parameters). As is typical, we assume that
outcomes do not differ too much from their means, conditional on covariates.

Assumption C (Outcomes are close to their conditional means). For all k, n, and for
some 0 < B <∞,

‖A(Y − P [Y | X])‖L2(P ) = ‖A(Y − µ(X))‖L2(P ) ≤ B.

To show the validity of the distributional Taylor expansion (4) for the C-Learner, we
require the following condition on the C-Learner outcome model.

Assumption D (Empirical process assumption).

(Pk,n − P )(µ̂C−k,n(X) − µ(X)) = op(n
−1/2).

In Section 3.1, we showed how versions of one-step estimation and targeting can also
be considered C-Learners. We show in Appendix B.4 and Appendix B.5 that cross-fitted
versions of the self-normalized AIPW and TMLE for continuous and unbounded outcomes,
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under standard assumptions on π̂−k,n, µ̂−k,n (with µ̂−k,n the usual outcome model learned
using Equation (9)) also satisfy D. Thus, the C-Learner results in the Theorems 1, 2 to
come apply directly to these versions of one-step estimation and targeting as well.

Under these assumptions, the C-Learner (18) enjoys the following asymptotics; see
Appendix B.1 for the proof.

Theorem 1. Under Assumptions A, B, C, and D,

√
n(ψ̂C

n − ψ(P ))
d
 N(0, σ2) where σ2 := VarP

(
A

π(X)
(Y − µ(X)) + µ(X)

)
.

Since σ2 is the semiparametric efficiency bound [21], the C-Learner (18) achieves the tight-
est confident interval and is optimal in the usual local asymptotic minimax sense [43,
Theorem 25.21].

Double robustness By virtue of their first-order correction, standard approaches like
one-step estimation and targeting enjoy double robustness: if either of the propensity model
or the outcome model are consistent, then the resulting estimator is consistent. We can
show a similar guarantee for the C-Learner. Here, we assume only that either π̂−k,n µ̂

C
−k,n

is consistent.

Assumption E (At least one of π̂, µ̂C is consistent). For all k, the product of the errors
for the outcome and propensity models decays as

‖π̂−k,n − π‖L2(P ) · ‖µ̂C−k,n − µ‖L2(P ) = oP (1).

Using Assumption E in place of Assumption B, we arrive at the following result; see
Appendix B.2 for the proof.

Theorem 2. The C-Learner (18) is consistent under Assumptions A, C, D, E.

7 Discussion

We introduced a constrained learning perspective to causal estimation and semiparametric
inference. We pose asymptotically optimal plug-in estimators as those whose nuisance
parameters are solutions to a optimization problem, under the constraint that the first-
order error of the plug-in estimator with respect to the nuisance parameter estimate is zero.
This perspective encompasses versions of one-step estimation and targeting, two existing
approaches to achieving asymptotically optimal estimators.

The constrained learning framework enables the development of a new method which
we call the Constrained Learner, or C-Learner, which solves this constrained optimization
problem in the most direct way. We demonstrate C-Learner’s versatility by instantiating it
diverse model classes including linear models, gradient boosted trees, and neural networks.
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On datasets with tabular and text covariates, we observe the C-Learner performs better
than other asymptotically optimal methods in settings with low overlap, and similarly in
other settings. Building a theoretical understanding of precisely when and why C-Learner
works better than one-step estimation and targeting is a fruitful direction of future work.

We hope this work spurs further investigation of how constrained optimization algo-
rithms [28] can provide more robust causal estimators. Alternative ways to instantiate
C-Learner using gradient boosted regression trees include, for example, alternating direc-
tion method of multipliers (ADMM) [5]. However, in practice, we found that implementing
ADMM in conjunction with XGBoost was enormously slower than Algorithm 1.
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A Extending C-Learner to other estimands

We briefly sketch how the C-Learner can be extended to other estimands, beyond just the
ATE with Y (0) = 0 as in Section 2.1. Let Z := (W,Y ) ∼ P and let the target functional
ψ(P ) be continuous and linear in µ(W ) = P (Y | W ), the conditional distribution of Y
given W . For example, we let W = (X,A) in the ATE setting. For other functionals that
admit a distributional Taylor expansion with pathwise derivative with respect to PY,W |X ,
ϕ(Z), then we can similarly formulate the C-Learner again as learning the best µ̂, subject
to the constraint that the estimate of the first-order error term is 0.

When ψ(P ) is continuous and linear in µ, by the Riesz representation theorem, if ψ(P )
is L2(P )-continuous in µ (see for example Equation (4.4) from [27]), then there exists
a ∈ L2(P ) such that for all µ ∈ L2(P ),

ψ(P ) = P [a(W )µ(W )].

This a(·) is commonly referred to as the Riesz representer [11], and the corresponding ran-
dom variable a(W ) can be referred to as the clever covariate [40]. These linear functionals
satisfy the following mixed bias property:

ψ(P̂ )− ψ(P ) + P [â(W )(Y − µ̂(W ))] = P [(â(W )− a(W ))(µ̂(W )− µ(W ))],

where the first-order term in the distributional Taylor expansion as discussed in Section 2.2
is given by P [â(W )(Y − µ̂(W ))]. We refer the reader to [11] or Proposition 4 of [27] for
a discussion about this mixed bias property. Therefore, the C-Learner can be formulated
more generally as

µ̂C ∈ argmin
µ̃∈F

{Ptrain[ℓ(W,Y ; µ̃)] : Peval[â(W )(Y − µ̃(W ))] = 0} ,

where ℓ is an appropriate loss function for the outcome model.
Below, we provide several specific examples demonstrating how C-Learner could be

adapted to various target functionals when W = (X,A).

Average Treatment Effect We have seen the mean missing outcome setting (10) for
estimating the target functional ψ(P ) = P [µ(X)] where µ(x) := P [Y | A = 1,X = x]. The
loss function is ℓ(W,Y ; µ̂) = A(Y − µ̂(X))2. The Riesz representer is a(X,A) = A/π(X).

If we no longer assume that Y (0) = 0 and we are interested in estimating the standard
average treatment effect

ψ(P ) = P [Y (1)− Y (0)] = P [P [Y | A = 1,X]] − P [P [Y | A = 0,X]] ,

then the Riesz representer, constrained outcome model, and estimator are, respectively,

a(W ) =
A

π(X)
− 1−A

1− π(X)
,

µ̂C ∈ argmin
µ̃∈F

{
Ptrain[ℓ(X,A, Y ; µ̃)] : Peval

[(
A

π̂(X)
− 1−A

1− π̂(X)

)
(Y − µ̃(X,A))

]
= 0

}
,
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ψ̂C := Peval

[
µ̂C(X, 1) − µ̂C(X, 0)

]
.

Average Policy Effect For off-policy evaluation, the goal is to optimize over assignment
policies c(X) ∈ {0, 1} to maximize the expected reward under the policy, using observa-
tional data collected under an unknown policy π(x) := P (A = 1 | X). Assume the usual
causal inference assumptions (SUTVA, ignorability, overlap in Section 2.1). Fixing c(X),
the average policy effect is

ψ(P ) = P [c(X)Y (1) + (1− c(X))Y (0)]

= P [c(X)P [Y (1) | X] + (1− c(X))P [Y (0) | X]]

= P [c(X)P [Y | A = 1,X]] + (1− c(X))P [Y | A = 0,X]]

Here, the Riesz representer, constrained outcome model, and estimator are, respectively,

a(X,A) = c(X)
A

π(X)
+ (1− c(X))

1−A
1 − π(X)

,

µ̂C ∈ argmin
µ̃∈F

{
Ptrain[ℓ(X,A, Y ; µ̃)] : Peval

(
c(X)

A

π(X)
+ (1− c(X))

1−A
1 − π(X)

)
(Y − µ̃(X,A)) = 0

}
,

ψ̂C := Peval

[
c(X)µ̂C(X, 1) + (1− c(X))µ̂C (X, 0)

]
.

B Proofs

Here, we prove results in Section 6. We show that C-Learner is semiparametrically efficient
(Appendix B.1) and doubly robust (Appendix B.2), under assumptions in Section 6. We
also show that versions of one-step estimation methods (AIPW) and targeting methods
(TMLE) can satisfy these assumptions (Appendix B.4, Appendix B.5), so that semipara-
metric efficiency and double robustness hold for them immediately as well.

B.1 Proof of Theorem 1

Our proof follows a standard argument. We first use the distributional Taylor expan-
sion (19) to rewrite the estimation error ψ̂C

n − ψ as the sum of three terms. Then, we
address these terms one by one, and we will show how only one of these terms contributes
to asymptotic variance.

Let Z = (X,A, Y ) as defined in Section 2.1. Let P denote the true population distri-
bution of Z. Functionals ψ may admit a distributional Taylor expansion, also known as a
von Mises expansion [16], where for any distributions P, P̄ on Z, we can write

ψ(P̄ )− ψ(P ) = −
∫
ϕ(z; P̄ )dP (z) +R2(P̄ , P ) (19)
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where ϕ(z;P ) which can be thought of as a ”gradient”, satisfying the directional derivative
formula ∂

∂tψ(P + t(P̄ − P )) |t=0=
∫
ϕ(z;P )d(P̄ − P )(z). (W.l.o.g. we assume ϕ(z;P ) is

centered so that
∫
ϕ(z;P )dP (z) = 0.) Here, −

∫
ϕ(z; P̄ )dP (z) is the first-order term, and

R2(P̄ , P ) is the second-order remainder term, which only depends on products or squares
of differences between P, P̄ .

When ψ is the ATE as in our setting, ψ admits such an expansion [21]

ϕ(Z; P̄ ) :=
A

π̄(X)
(Y − µ̄(X)) + µ̄(X)− ψ(P̄ ), (20)

where π̄(x) := P̄ [A = 1 | X] and µ̄(x) := P̄ [Y | A = 1,X]. In particular, we get the
following explicit formula for the second-order term

R2(P̄ , P ) :=

∫
π(x)

(
1

π̄(x)
− 1

π(x)

)
(µ̄(x)− µ(x)) dP (x). (21)

We will apply this to our C-Learner estimator as defined in Section 6. Recall that π̂−k,n is
trained to predict treatment A given X using P−k,n, and µ̂

C
−k,n is trained to predict outcome

given X and A = 1 on P−k,n, under the constraint that Pk,n[
A

π̂
−k,n(X)(Y − µ̂C−k,n(X)] = 0.

Our C-Learner estimator is the mean of plug-in estimators across folds: for each fold, write
ψ̂C
k,n = ψ(P̂C

k,n) so the C-Learner estimate is the average ψ̂C
n = 1

K

∑K
k=1 ψ̂

C
k,n.

Noting that any distribution decomposes P̄ = P̄X × P̄A|X × P̄Y |A,X and ψ(P̄ ) =
P̄X [µ(X)], the following definitions

P̂C
X;k,n := PX;k,n

P̂C
A|X;k,n[A = 1 | X = x] := π̂−k,n(x)

P̂C
Y |A,X;k,n[Y | A = 1,X = x] := µ̂C−k,n(x)

provide a well-defined joint distribution P̂C
k,n.

For each data fold k, we use the distributional Taylor expansion above, where we replace
P̄ with the joint distribution P̂C

k,n

ψ(P̂C
k,n)− ψ(P ) = −Pϕ(Z; P̂C

k,n) +R2(P̂
C
k,n, P )

= (Pk,n − P )ϕ(Z;P ) − Pk,nϕ(Z; P̂
C
k,n)

+ (Pk,n − P )(ϕ(Z; P̂C
k,n)− ϕ(Z;P )) +R2(P̂

C
k,n, P ). (22)

Observe that by using Equation (20) and the definition of the C-Learner,

Pk,nϕ(Z; P̂
C
k,n) = Pk,n

[
A

π̂−k,n(X)
(Y − µ̂C−k,n(X)) + µ̂C−k,n − ψ(P̂C

k,n)

]

= Pk,n

[
A

π̂−k,n(X)
(Y − µ̂C−k,n(X))

]

︸ ︷︷ ︸
=0by C-Learner constraint

+Pk,n[µ̂
C
−k,n]− Pk,n[µ̂

C
−k,n]︸ ︷︷ ︸

=0

= 0.
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Taking the average of Equation (22) over k = 1, . . . ,K, we can write the error ψ̂C
n − ψ as

the sum of three terms.

ψ̂C
n − ψ =

1

K

K∑

k=1

(Pk,n − P )ϕ(Z;P )︸ ︷︷ ︸
S∗

k

+
1

K

K∑

k=1

(Pk,n − P )
(
ϕ(Z; P̂C

k,n)− ϕ(Z;P )
)

︸ ︷︷ ︸
T1k

+
1

K

K∑

k=1

R2(P̂
C
k,n, P )︸ ︷︷ ︸
T2k

. (23)

Using the decomposition (23), we write

S∗ =
1

K

K∑

k=1

S∗
k , T1 =

1

K

K∑

k=1

T1k, T2 =
1

K

K∑

k=1

T2k, (24)

so that ψ̂C
n − ψ = S∗ + T1 + T2. We address the terms S∗, T1 and T2 separately. The first

term can be rewritten as

S∗ =
1

K

K∑

i=1

(Pk,n − P )ϕ(Z;P ) = (Pn − P )ϕ(Z;P )

so that by the central limit theorem,

√
nS∗ d
 N (0,Var(ϕ(Z;P ))) .

Observe that this quantity depends only on ψ and P , so that it cannot be made smaller
by choice of estimator. If the variance of an estimator for ψ is Var(ϕ(Z;P )), then it is
semiparametrically efficient in the local asymptotic minimax sense (Theorem 25.21 of [43]).
Thus, it suffices to show that the rest of the terms, T1 and T2, are oP (n

−1/2), so that

√
n(ψ̂C − ψ) =

√
nS∗ + oP (1)

d
 N (0,Var(ϕ(Z;P ))) .

For a fixed k, |T1k| = oP (n
−1/2) by Assumption D so that |T1| = oP (n

−1/2) as desired. The
second-order remainder term in the distributional Taylor expansion (19) where we replace
P̄ with P̂C

k,n is

T2k =

∫
π(x)

(
1

π̂−k,n(x)
− 1

π(x)

)(
µ̂C−k,n(x)− µ(x)

)
dP (x).

Under the overlap assumption (Assumption A) and Cauchy-Schwarz,

|T2k| ≤
1

η

∫
|π̂−k,n(x)− π(x)|

∣∣µ̂C−k,n(x)− µ(x)
∣∣ dP (x)

≤ 1

η
‖π̂−k,n − π‖L2(P )

∥∥µ̂C−k,n − µ
∥∥
L2(P )

. (25)

By Assumption B, |T2k| = oP (n
−1/2) so that |T2| = oP (n

−1/2) as desired.

26



B.2 Proof of Theorem 2

We briefly sketch the proof as it is a minor modification of our previous proof in Section B.1.
To show the C-Learner estimator ψ̂C

n is consistent (rather than that our estimator has the
desired asymptotics) under Assumption (E) (rather than Assumption (B)), we again rewrite
the error ψ̂C

n − ψ as a sum of three terms and show each converges to 0 in probability:

• S∗: this term converges to 0 in probability.

• T2k: This also converges to 0 in probability by the same logic as before. Note we only
need this to be oP (1) and not oP (n

−1/2) as we would have required for efficiency.

• T1k: this converges to 0 in probability by Assumption D.

B.3 Showing self-normalized AIPW and TMLE satisfy C-Learner con-
ditions for Theorems (1) and (2)

As self-normalized AIPW and TMLE involve simple adjustments to the unconstrained
outcome models, in this section, we state assumptions on the unconstrained outcome model
µ̂−k,n, fitted in the usual manner on the auxiliary fold P−k,n

µ̂−k,n ∈ argmin
µ̃∈F

P−k,n[A(Y − µ̃(X))2],

and also assumptions on the gap between the constrained and unconstrained outcome
models. Also in this section, we show how these aforementioned assumptions satisfy the
C-Learner assumptions required for Theorems (1) and (2).

Then in the following sections, we show how self-normalized AIPW and TMLE satisfy
the assumptions stated in this section on the gap between the constrained and uncon-
strained outcome models.

Assumptions on unconstrained outcome models The following assumption on un-
constrained outcome models is analogous to Assumption (B). This assumption is standard.

Assumption F (Convergence rates of propensity and unconstrained outcome models).
For all k ∈ [K],

‖π̂−k,n − π‖L2(P ) = op(n
− 1

4 ), ‖µ̂C−k,n − µ‖L2(P ) = op(n
− 1

4 ).

Assumptions on the difference between constrained and unconstrained outcome
models These assumptions essentially ensure that the first-order constraint (17) does
not change the outcome model too much asymptotically, i.e., µ̂C−k,n and µ̂−k,n are similar
asymptotically. This first constraint is used to show Assumption (B):

27



Assumption G (The constraint is negligible asymptotically). For all k = 1, . . . , K,

‖µ̂C−k,n − µ̂−k,n‖L2(P ) = op(n
−1/4).

Notably, the distance between the constrained solution µ̂C−k,n and its unconstrained
counterpart µ̂−k,n can be as large as that between µ̂−k,n and the true parameter µ, asymp-
totically.

This next assumption is used to show Assumption (D):

Assumption H (Empirical process assumption on µ̂C−k,n vs µ̂−k,n).

(Pk,n − P )(µ̂C−k,n(X) − µ̂−k,n(X)) = op(n
−1/2).

See Appendix E.1 for an example of why this assumption is necessary. Given these
assumptions, we show the C-Learner assumptions hold.

Proposition 3 (C-Learner assumptions hold, given assumptions on unconstrained out-
come models and the gap between constrained and unconstrained models).

Assume Assumptions (A), (C), (F), and (H). Then Assumptions (A), (C), (B), (D)
are satisfied.

To show this proposition, it suffices to show Assumptions B and D. We will show these
assumptions in the rest of this section.

Showing Assumption (B) By the triangle inequality,

‖µ̂C−k,n − µ‖L2(P ) ≤ ‖µ̂−k,n − µ‖L2(P ) + ‖µ̂C−k,n − µ̂−k,n‖L2(P ). (26)

Showing Assumption (D) By the triangle inequality,

|T1k| :=
∣∣∣(Pk,n − P )

(
ϕ(Z; P̂C

k,n)− ϕ(Z;P )
)∣∣∣

≤
∣∣∣(Pk,n − P )

(
ϕ(Z; P̂C

k,n)− ϕ(Z; P̂−k,n)
)∣∣∣+

∣∣∣(Pk,n − P )
(
ϕ(Z; P̂−k,n)− ϕ(Z;P )

)∣∣∣
(27)

where P̂k,n is defined as

P̂X;k,n := PX;k,n

P̂A|X;k,n[A = 1 | X = x] := π̂−k,n(x)

P̂Y |A,X;k,n[Y | A = 1,X = x] := µ̂−k,n(x)

with π̂−k,n, µ̂−k,n as defined in Section 6, and P̂C
k,n is defined as in Section 6. The second

term in (27) is addressed using a standard argument for cross-fitting, as Pk,n and P̂−k,n

(and therefore ϕ(Z; P̂−k,n)) use disjoint data. In contrast, the first term is not handled by
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standard cross-fitting arguments: P̂−k,n only uses data from all but the k-th fold, while

P̂C
k,n uses the k-th fold, except that µ̂C−k,n is made to satisfy a constraint that does use the
k-th fold, as described in Section 6. We begin by addressing the second term, which is
more standard.

Lemma 1 (Cross-fitting lemma). Let f̂(z) be a function estimated from an iid sample
ZN = (Zn+1, . . . , ZN ), and let Pn denote the empirical measure over (Z1, . . . , Zn), which
is independent of ZN . Then (omitting arguments for brevity)

(Pn − P ) (f̂ − f)
has mean 0 and variance that is upper bounded by

‖f̂ − f‖2L2(P )

n
.

Proof First note that the conditional mean is 0, i.e. P
[
(Pn − P )(f̂ − f) | ZN

]
= 0 since

P
[
Pn(f̂ − f) | ZN

]
= P

(
f̂ − f | ZN

)
= P (f̂ − f).

The conditional variance is

Var
{
(Pn − P ) (f̂ − f) | ZN

}
= Var

{
Pn(f̂ − f) | ZN

}
=

1

n
Var

(
f̂ − f | ZN

)
≤
‖f̂ − f‖2L2(P )

n
.

Then for (unconditional) mean and variance, P
[
(Pn − P )(f̂ − f)

]
= 0 and

Var
{
(Pn − P )(f̂ − f)

}
= Var

{
P
[
(Pn − P )(f̂ − f) | ZN

]}
+ E

[
Var

{
(Pn − P )(f̂ − f) | ZN

}]

≤ 0 +
‖f̂ − f‖2L2(P )

n
.

Now we show the second term in the RHS in Equation (27) is oP (n
−1/2). To do this, write

ϕ(Z;P ) =
A

π(X)
(Y − µ(X)) + µ(X)− ψ(P ) (28)

ϕ(Z; P̂−k,n) =
A

π̂−k,n(X)
(Y − µ̂−k,n(X)) + µ̂−k,n(X)− ψ(P̂−k,n). (29)

Observe that (Pk,n − P )ψ(P ) = (Pk,n − P )ψ(P̂−k,n) = 0 as ψ(P ), ψ(P̂−k,n) are constants.

Thus, it remains to show that for a fixed k, (Pk,n − P )(f̂k,n − f) = oP (n
−1/2), where we

omit arguments for brevity and let

f̂k,n =
A

π̂−k,n
(Y − µ̂−k,n) + µ−k,n, (30)
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f =
A

π
(Y − µ) + µ. (31)

We do this by using Lemma (1). Observe that

f̂k,n − f =

(
1 +

A

π

)
(µ− µ̂−k,n) +

A

π̂−k,n · π
(Y − µ̂−k,n)(π − π̂−k,n). (32)

Then using Assumption (A),

‖f̂k,n − f‖L2(P ) ≤
(
1 +

1

η

)
‖µ̂−k,n − µ‖L2(P ) +

1

η2
‖A(Y − µ̂−k,n)‖L2(P )‖π − π̂−k,n‖L2(P ).

(33)

The leftmost term on the RHS converges to 0, using Assumption (F). Note that we can
bound the rightmost term using the triangle inequality

(
1 +

1

η2

)(
‖A(Y − µ)‖L2(P ) + ‖µ− µ̂−k,n‖L2(P )

)
‖π − π̂−k,n‖L2(P ), (34)

which also converges to 0 by Assumption (F) and Assumption (C). Thus combining with
Lemma (1) we obtain that the second term on the RHS of Equation (27) is oP (n

−1/2), as
n1/2(Pk,n − P )(f̂k,n − f) has mean 0 and variance ≤ ‖f̂k,n − f‖L2(P ) which converges to 0
as n→∞.

Now we address the remaining term: we show the first term on the RHS of Equation (27)
is oP (n

−1/2). We use a similar argument to before: let f̂k,n be as before, and f̂Ck,n as below:

f̂k,n :=
A

π̂−k,n
(Y − µ̂−k,n) + µ̂−k,n (35)

f̂Ck,n :=
A

π̂−k,n
(Y − µ̂C−k,n) + µ̂C−k,n (36)

where we again omit the ψ(P̂C
−k,n), ψ(P̂−k,n) terms in ϕ(P̂C

k,n), ϕ(P̂k,n) from f̂Ck,n, f̂k,n above

as they are constants. We can’t use Lemma (1) since f̂Ck,n also uses Pk,n to fit, so instead,
by using Assumptions (A) and then (H),

(Pk,n − P )
(
ϕ(Z; P̂C

k,n)− ϕ(Z; P̂k,n)
)
= (Pk,n − P )

(
f̂Ck,n − f̂k,n

)
(37)

≤
(
1 +

1

η

)
(Pk,n − P )(µ̂C−k,n(X) − µ̂−k,n(X)) (38)

= oP (n
−1/2). (39)

B.4 Self-normalized AIPW satisfies Assumptions G and H

Recall that we showed how self-normalized AIPW also satisfies the C-Learner formulation
in Section 3.1. Here we show that Assumptions G and H hold for self-normalized AIPW,
so that Theorems 1 and 2 follow through Proposition (3).
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As in the discussion in Section 3.1, self-normalized AIPW is equivalent to the specific
C-Learner µ̂C−k,n that is defined by adjusting µ̂−k,n by an additive constant:

µ̂C−k,n(x) = µ̂−k,n(x) + ck,n where ck,n :=
Pk,n

[
A

π̂
−k,n(X)(Y − µ̂−k,n(X))

]

Pk,n

[
A

π̂
−k,n(X)

] .

Showing Assumption (G): Since µ̂C−k,n is just a constant offset from µ̂−k,n, it suffices

to show that ck,n = oP (n
−1/4), for a fixed k.

First, we address the denominator of ck,n. Let cdenk,n := Pk,n

[
A

π̂
−k,n(X)

]
and we will

show 1/cdenk,n = OP (1). First note cdenk,n = Pk,n

[
A

π̂
−k,n(X)

]
≥ Pk,n[A]. Then observe that

Pk,n[A]
p→ P [A], and that 1/Pk,n[A] <∞ a.s. for large enough n by Borel-Cantelli lemma

(as the probability of the event that Pk,n[A] = 0 is finitely-summable, as P (A = 0) < 1 by

the overlap assumption (Assumption (A)). Then 1/Pk,n[A]
p→ 1/P [A] for large enough n,

so that 1/Pk,n[A] = OP (1).
Now we address the numerator of ck,n. For brevity, call this c

num
k,n .

cnumk,n = Pk,n

[
A

π̂−k,n(X)
(Y − µ̂−k,n(X))

]
(40)

= P

[
A

π̂−k,n(X)
(Y − µ̂−k,n(X))

]
+ (Pk,n − P )

[
A

π̂−k,n(X)
(Y − µ̂−k,n(X))

]
(41)

= P

[
A

π̂−k,n(X)
(Y − µ(X))

]

︸ ︷︷ ︸
=0

+P

[
A

π̂−k,n(X)
(µ(X) − µ̂−k,n(X))

]
(42)

+ (Pk,n − P )
[

A

π̂−k,n(X)
(Y − µ̂−k,n(X))

]

= P

[
A

π̂−k,n(X)
(µ(X)− µ̂−k,n(X))

]
+ (Pk,n − P )

[
A

π̂−k,n(X)
(Y − µ̂−k,n(X))

]
(43)

so that

|cnumk,n | ≤
1

η
P |µ(X)− µ̂−k,n(X)| + 1

η
(Pk,n − P ) |Y − µ̂−k,n(X)| (44)

where the inequality is by the overlap assumption (Assumption (A)) as A/π̂−k,n(X) ≤ 1/η.
We show the terms in the last line are all oP (n

−1/4). The first term is upper bounded by
1
η‖µ̂−k,n(X) − µ(X)‖L2(P ) = oP (n

−1/4) by Assumption (F). For the second term, we use

Lemma (1) to show n1/4(Pk,n − P )|Y − µ̂−k,n(X)| p→ 0: it has mean of 0 and variance

≤ n1/2

n ‖Y − µ̂−k,n‖L2(P ). This upper bound on variance goes to 0, which follows from
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Assumptions (F) and (C):

‖Y − µ̂−k,n‖L2(P ) ≤ ‖Y − µ‖L2(P ) + ‖A(µ − µ̂−k,n)‖L2(P )

≤ B + ‖µ − µ̂−k,n‖L2(P )

= B + oP (n
−1/4).

We arrive at the desired result ck,n = oP (n
−1/4) as ck,n = cnumk,n /c

den
k,n , and we just showed

that 1/cdenk,n = OP (1) and c
num
k,n = oP (n

−1/4). Note that we have shown Assumption (G) for
any sequence of π̂−k,n’s, as they are bounded by a constant.

Showing Assumption (H): To show (Pk,n−P )(µ̂C−k,n(X)− µ̂−k,n(X)) = oP (n
−1/2), in

the case of the constant shift µ̂C(X) = µ̂(X) + ck,n, note that µ̂C−k,n(X)− µ̂−k,n(X) = ck,n
for every X. Therefore,

(Pk,n − P )(µ̂C−k,n(X)− µ̂−k,n(X)) = (Pk,n − P )ck,n = 0,

with ck,n < ∞ a.s. for large enough n (which exists by Borel-Cantelli, as in when we
showed Assumption (G)).

B.5 TMLE satisfies Assumptions G and H

Recall that we showed how a version of the TMLE for estimating the ATE with continuous
unbounded outcomes also satisfies the C-Learner formulation in Section 3.1. Here we show
that a cross-fitted version of the TMLE for estimating the ATE with continuous unbounded
outcomes additionally satisfies Assumptions (G) and (H), so that Theorems (1) and 2 follow
through Proposition (3). Note that the formulation below fits a separate ǫ⋆k,n per cross-
fitting split for consistency with C-Learner, rather than one ǫ⋆ overall as described in the
cross-validated version of TMLE in [40].

µ̂C−k,n(X) = µ̂−k,n(X) + ǫ⋆k,n
A

π̂−k,n(X)
, where ǫ⋆k,n =

Pk,n

[
A

π̂
−k,n(X)(Y − µ̂−k,n(X))

]

Pk,n

[
A

π̂2
−k,n(X)

] .

Showing Assumption (G): Observe that by Assumption (A)
∥∥∥∥ǫ

⋆
k,n

A

π̂−k,n(X)

∥∥∥∥
L2(P )

≤ 1

η
‖ǫ⋆k,n‖L2(P )

so it suffices to show that ǫ⋆k,n = oP (n
−1/4). Note that since π̂−k,n(x) ≤ 1 for all x,

|ǫ⋆k,n| ≤
Pk,n

[
A

π̂
−k,n(X)(Y − µ̂−k,n(X))

]

Pk,n

[
A

π̂
−k,n(X)

] ≤ |ck,n| (45)
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where ck,n is the constant adjustment in Section B.4, so that ǫ⋆k,n = oP (n
−1/4).

Showing Assumption (H): We want to show

(Pk,n − P )(µ̂⋆−k,n(X)− µ̂−k,n(X)) = (Pk,n − P )
(
ǫ⋆k,n

A

π̂−k,n(X)

)
= oP (n

−1/2).

Note that

(Pk,n − P )
(
ǫ⋆k,n

A

π̂−k,n(X)

)
= ǫ⋆k,n(Pk,n − P )

(
A

π̂−k,n(X)

)

and that (Pk,n − P )
(

A
π̂
−k,n(X)

)
= OP (n

−1/2) by Lemma (1), since |A/π̂−k,n(X)| ≤ 1/η

a.s. by Assumption (A). Additionally, ǫ⋆k,n = oP (n
−1/4), by the argument above where we

showed Assumption (G). The desired result follows by taking the product of the rates for

ǫ⋆k,n and (Pk,n − P )
(

A
π̂
−k,n(X)

)
.

C Additional experiment details and results

C.1 Kang & Schafer experiment

C.1.1 Additional Kang & Schafer experiment details

Linear outcome models. Here, Ptrain = Peval, as consistent with the original paper by
Kang and Schafer [23]2. There is no Pval as there are no hyperparameters to tune.

For the direct method and initial outcome model for AIPW, self-normalized AIPW, and
TMLE, we simply regress the dependent variable Y on the observed covariates X using the
samples with labels. We use all the samples available to fit a logistic regression model for
the treatment variable A (outcome was observed) using the covariates X. Following [23],
in both models, we omit the intercept term when fitting the propensity scores and initial
outcome model. Our main insights do not change if an intercept is added to the outcome
and propensity models.

We run datasets with 200 and 1000 observations, with and without a clip of 5%. For
each configuration, we generate 1000 seeds.

Table 4 displays the results for the bias, mean absolute error, root mean squared error
(RMSE), and median absolute error over 1000 simulations with sample sizes equal to 200
and 1000. We also include the results when clipping of 5% is performed, meaning that
π̂(X) is truncated to have a lower bound of 0.05. Note that clipping greatly improves the
performance of propensity-based methods such as AIPW and TMLE. Without clipping,
C-Learner is the best method across all samples when compared to other unbiased methods
and is outperformed only by the direct method. When clipping is introduced, the C-Learner
is similar in performance to other asymptotically optimal methods.

2Although sample splitting could be better, we have chosen to replicate [23] as closely as possible.
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For the coverage computation, we construct the confidence intervals as described in
Appendix D and empirically check for each method if it covers the true populational mean.
Table 6 presents the coverage results for a 95% confidence level. It is worth noticing that
coverage results greatly deteriorate when the sample size increases for all asymptotically
optimal methods, most likely because both the outcome model and the propensity model
are mispecified, and consistency is ensured when at least one of the models is consistent
(see Section 6).

Finally, Table 7 displays the results for bias and mean absolute error (MAE) for es-
timating P [Y (0)] rather than P [Y (1)]. In this case, all the asymptotic optimal methods
perform very similarly, and all are better than the direct method with OLS. To conclude,
we emphasize that the C-Learner is the only asymptotically optimal method that demon-
strated good performance across all configurations of data size, clipping procedure, and
data-generating process by either achieving comparable performance to other asymptoti-
cally optimal methods, or by improving performance, sometimes by an order of magnitude.

C.1.2 Additional Kang & Schafer results
We present in Table 4 the mean absolute error, root mean square error and median absolute
error for the linear specification described in Section 5.1 with their respective standard
errors for different sample sizes 5% clipping. We highlight the best performance estimator
other than the direct method.
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(a) N = 200, no clip

method Bias Mean Abs Err RMSE Median Abs Err

Direct -0.00 (0.103) 2.60 (0.061) 3.24 (0.457) 2.13
IPW 22.10 (2.579) 27.28 (2.52) 84.45 (2733) 9.87
IPW-POP 3.36 (0.292) 5.42 (0.260) 9.83 (13.45) 3.01

AIPW -5.08 (0.474) 6.16 (0.461) 15.82 (87.1) 3.43
AIPW-POP -3.65 (0.203) 4.73 (0.179) 7.38 (6.14) 3.26
TMLE -111.59 (41.073) 112.15 (41.1) 1302.98 (106) 3.95
C-Learner -2.45 (0.120) 3.57 (0.088) 4.52 (0.912) 2.93

(b) N = 1000, no clip

Method Bias Mean Abs Err RMSE Median Abs Err

Direct -0.43 (0.044 ) 1.17 (0.028) 1.46 (0.095) 1.00
IPW 105.46 (59.843) 105.67 (59.8) 1894.40 (106) 17.95
IPW-POP 6.83 (0.331) 7.02 (0.327) 12.50 (24.0) 4.09

AIPW -41.37 (24.821) 41.39 (24.8) 785.60 (105) 5.22
AIPW-POP -8.35 (0.431) 8.37 (0.430) 15.97 (46.4) 4.92
TMLE -17.51 (3.493) 17.51 (3.49) 111.77 (104) 4.25
C-Learner -4.40 (0.077) 4.42 (0.076) 5.03 (0.795) 4.21

(c) N = 200, clip 5%

Method Bias Mean Abs Err RMSE Median Abs Err

Direct -0.00 (0.103) 2.60 (0.061) 3.24 (0.457) 2.13
IPW 5.13 (0.398) 10.47 (0.275) 13.60 (10.055) 8.35
IPW-POP 1.17 (0.132) 3.33 (0.087) 4.32 (0.969) 2.59

AIPW -2.45 (0.121) 3.59 (0.088) 4.54 (0.913) 3.02
AIPW-POP -2.37 (0.118) 3.50 (0.085) 4.42 (0.859) 2.92
TMLE -2.01 (0.107) 3.15 (0.075) 3.95 (0.665) 2.62
C-Learner -2.15 (0.112) 3.31 (0.079) 4.14 (0.734) 2.83

(d) N = 1000, clip 5%

Method Bias Mean Abs Err RMSE Median Abs Err

Direct -0.43 (0.044) 1.17 (0.028) 1.46 (0.095) 1.00
IPW 8.35 (0.179) 8.67 (0.163) 10.08 (3.413) 8.23
IPW-POP 1.95 (0.062) 2.27 (0.050) 2.76 (0.293) 2.01

AIPW -3.41 (0.053) 3.44 (0.051) 3.80 (0.378) 3.44
AIPW-POP -3.31 (0.052) 3.34 (0.050) 3.70 (0.358) 3.35
TMLE -2.81 (0.046) 2.85 (0.044) 3.17 (0.274) 2.86
C-Learner -3.07 (0.049) 3.10 (0.047) 3.43 (0.310) 3.10

Table 4. Estimator performance in 1000 tabular simulations for the linear specification
of outcome models. “Clip” refers to clipping π̂(X) away from 0. Standard error is in
parentheses. Asymptotically optimal methods are listed beneath the horizontal divider. We
highlight the best-performing overall method other than the direct method in bold.
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(a) N = 200, clip = 5%

Method Bias Mean Abs Err

Direct -6.10 (0.10) 6.18 (0.10)
IPW 4.45 (0.75) 17.8 (0.52)
IPW-POP -3.40 (0.16) 5.06 (0.10)
Lagrangian -4.94 (0.10) 5.14 (0.09)

AIPW -1.80 (0.14) 3.85 (0.09)
AIPW-POP -2.10 (0.12) 3.64 (0.08)
TMLE -2.84 (0.10) 3.51 (0.08)
C-Learner -3.10 (0.10) 3.68 (0.08)

(b) N = 200, clip = 0.1%

Bias Mean Abs Err

-6.10 (0.10) 6.18 (0.10)
41 (5.82) 54.2 (5.72)

-1.10 (0.38) 7.20 (0.31)
-4.96 (0.10) 5.16 (0.09)

4.82 (1.27) 10.4 (1.23)
-0.57 (0.26) 5.02 (0.21)
-1.42 (0.17) 4.19 (0.12)
-3.24 (0.09) 3.79 (0.08)

Table 5. Comparison of estimator performance on misspecified datasets from Kang and
Schafer [23] in 1000 tabular simulations using gradient boosted regression trees with 200
samples, 5%, and 0.1% clipping. Asymptotically optimal methods are listed beneath the
horizontal divider. We highlight the best-performing method in bold. Standard errors are
displayed within parentheses to the right of the point estimate. “Lagrangian” refers to only
performing the first stage in Algorithm 1.

N = 200 N = 1000

Method No Clip 5% Clip No Clip 5% Clip

Direct 0.89 0.89 0.88 0.88
IPW 1.00 1.00 1.00 1.00
IPW-POP 1.00 1.00 1.00 1.00

AIPW 0.88 0.90 0.59 0.56
AIPW-POP 0.92 0.91 0.72 0.58
TMLE 0.84 0.90 0.48 0.60
C-Learner 0.91 0.90 0.68 0.58

Table 6. Coverage results for 1000 simulations in the linear specification. Confidence
intervals were set to achieve 95% confidence. Asymptotically optimal methods are listed
beneath the horizontal divider.
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(a) N = 200

Method Bias Mean Abs Err

Direct 4.82 (0.091) 4.94 (0.085)
IPW -0.70 (0.141) 3.44 (0.092)
IPW-POP 2.48 (0.097) 3.23 (0.072)

AIPW 3.23 (0.093) 3.63 (0.077)
AIPW-POP 3.22 (0.092) 3.61 (0.076)
TMLE 3.11 (0.091) 3.50 (0.076)
C-Learner 3.19 (0.092) 3.58 (0.076)

(b) N = 1000

Bias Mean Abs Err

4.80 (0.041) 4.80 (0.041)
-0.83 (0.054) 1.52 (0.036)
2.43 (0.042) 2.47 (0.040)

3.14 (0.041) 3.15 (0.040)
3.12 (0.041) 3.13 (0.040)
3.03 (0.041) 3.04 (0.040)
3.09 (0.041) 3.10 (0.040)

Table 7. Results of 1000 simulations for estimating P [Y (0)] instead of P [Y (1)] with the
linear specification. The standard error is in parentheses. Asymptotically optimal methods
are listed beneath the horizontal divider.

Method N = 200 N = 1000

Direct 0.35 (0.01) 0.12 (0.01)
IPW 1.00 (0.00) 0.98 (0.01)
IPW-POP 0.85 (0.01) 1.00 (0.00)
Lagrangian 0.84 (0.01) 0.71 (0.01)

AIPW 0.85 (0.01) 0.85 (0.01)
AIPW-POP 0.85 (0.01) 0.85 (0.01)
TMLE 0.86 (0.01) 0.87 (0.01)
C-Learner 0.82 (0.01) 0.77 (0.01)

Table 8. Coverage results for 1000 simulations using gradient boosted regression trees.
Confidence intervals were set to achieve 95% confidence. Asymptotically optimal methods
are listed beneath the horizontal divider. “Lagrangian” refers to only performing the first
stage in Algorithm 1.

Gradient boosted regression trees. We demonstrate the flexibility and performance
of the C-Learner in which we instantiate C-Learner using gradient boosted regression trees
using the XGBoost package [9] with a custom objective, as outlined in Section 4.2. π̂ is fit
as a logistic regression on covariates X using L1 regularization (LASSO).

For each seed, and sample size, we randomly take half of the data for Ptrain and half of
the data for Peval. For the first phase of Algorithm 1, we perform hyperparameter tuning
using Pval = Peval. Hyperparameter tuning is performed using a grid search for the following
parameters: learning rate (0.01, 0.05, 0.1, 0.2), feature subsample by tree (0.5, 0.8, 1), and
max tree depth (3, 4, 5). We also set the maximum number of weak learners to 2 thousand,
and we perform early stopping using MSE loss on Pval for 20 rounds. Hyperparameter
tuning is performed separately for C-Learner and the initial outcome model.

For the second phase of Algorithm 1, we use the set of hyperparameters found in the
first stage. The weak learners are fitted using Peval and Pval = Peval. In order to avoid
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overfitting in the targeting step, we use a subsampling of 50% and early stopping after 20
rounds.

In Table 5 we provided additional details with clipping in order to understand the
impact in the results of AIPW and TMLE that produced unreliable estimates for sample
sizes of 200 and 1000 as well as the impact of clipping in the other estimates. When
“small” clipping is performed (0.1%), C-Learner is still better than any other estimator.
When clipping of 5% is performed, TMLE achieves the best pointwise performance, and
C-Leaner and AIPW-POP are statically equal in terms of MAE.

Finally, in Table 8 we present the coverage results for the estimators computed without
clipping and sample size of 200 and 1000 presented in the main text on Table 2. For a
sample size of 200, asymptotically optimal methods have similar coverage and substantially
lower than the target of 95%. When the sample size increases, the coverage results of C-
Learner deteriorate, although it still presents the best performance in terms of MAE.

C.2 CivilComments experiment

C.2.1 Additional CivilComments experiment details

Model and training objectives Both propensity and outcome models are a linear layer
on top of a DistilBERT featurizer, with either softmax and cross-entropy loss for propensity
score, or mean squared error for outcome models. For training outcome models, we only
consider training data on which A = 1, as only those terms contribute to the loss.

Hyperparameters and settings For propensity models, we tried learning rates of
{10−3, 10−4, 10−5} for the setting of l = 10−4 and found that a learning rate of 10−4

performed the best in terms of val loss. Because of computational constraints, we also used
this learning rate for l = 10−2, 10−3.

For outcome models (including C-Learner) in the settings of l ∈ {10−2, 10−3, 10−4},
we tried learning rates of {10−3, 10−4, 10−5, 10−6}. For C-Learner regularization, we tried
λ taking on values of λ0/Peval[A/π̂(X)]2 where λ0 ∈ {0, 1, 4, 16, 64, 256}. Essentially, the
penalty is λ0 times the square of the bias shift that would be required to satisfy the
condition.

Because of computational constraints, for choosing these hyperparameters (learning
rate, λ), we select a subset of dataset draws, and choose the best hyperparameters based
on each model’s criteria on that small set of dataset draws. Then, after the hyperparameters
are chosen, we run over the entire set of dataset draws.

While hyperparameters for the (usual) outcome model are chosen to minimize val loss,
in contrast, the hyperparameters (learning rate, regularization λ) for the C-Learner out-
come model were selected to minimize the magnitude of the constant shift at the end of
the first epoch, as in Section 4.3. The idea is that if the size of the constant shift is small,
then the regularizer is doing a good job of enforcing the constraint. Although one might
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think that larger regularization λ’s would automatically lead to smaller constant shifts, we
do not find this to be the case; the best λ in our settings (64) is not the largest value that
we try (up to 256). Furthermore, the set of hyperparameter values we choose between in
this process are ones that seem to result in reasonable performance, e.g. in terms of MSE
on treated units in the validation set.

The best hyperparameters chosen are in Table 9. We trained all models with batch
size 64. Learning rates decayed linearly over 10 epochs. Optimization was done using the
AdamW optimizer. Weight decay was fixed at 0.1.

We choose the training epoch with the best val loss for each model (cross entropy for
propensity, and MSE for outcome). For C-Learner, we choose the epoch with the best val
MSE.

C.2.2 Additional CivilComments results

We consider three data generating processes as in Section 5.2, where treatment assign-
ment is parameterized by l = 10−4, 10−3, 10−2, respectively. Hyperparameters for outcome
models are in Table 9. Results are in Tables 10, 11, 12.

l = 10−4
l = 10−3

l = 10−2

Outcome model learning rate 10−3 10−3 10−4

C-Learner learning rate (best val MSE) 10−4 10−4 10−4

C-Learner learning rate (min bias shift) 10−5 10−5 10−5

C-Learner λ (best val MSE) 0 16 16
C-Learner λ (min bias shift) 64 64 64

Table 9: Hyperparameters for l = 10−4, 10−3, 10−2 for Section 5.2

Method Bias Mean Abs Err Coverage

Direct 0.173 (0.008) 0.177 (0.007) 0.010 (0.001)
IPW 0.504 (0.084) 0.546 (0.081) 0.760 (0.018)
IPW-POP 0.114 (0.017) 0.153 (0.014) 0.890 (0.010)

AIPW 0.084 (0.043) 0.307 (0.032) 0.830 (0.014)
AIPW-POP 0.116 (0.018) 0.161 (0.014) 0.850 (0.013)
TMLE -1.264 (1.361) 1.802 (1.355) 0.810 (0.015)
C-Learner (best val MSE) 0.103 (0.015) 0.141 (0.011) 0.870 (0.011)
C-Learner (min bias shift) 0.075 (0.012) 0.115 (0.008) 0.900 (0.009)

Table 10. Comparison of estimators in the CivilComments [13] semi-synthetic dataset
over 100 re-drawn datasets, with l = 10−4. Confidence intervals were set to achieve 95%
confidence. Asymptotically optimal methods are listed beneath the horizontal divider. We
highlight the best-performing overall method in bold. Standard errors are displayed within
parentheses to the right of the point estimate.
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Method Bias Mean Abs Err Coverage

Direct 0.147 (0.028) 0.200 (0.025) 0.000 (0.000)
IPW 0.417 (0.064) 0.437 (0.063) 0.840 (0.013)
IPW-POP 0.079 (0.015) 0.120 (0.013) 0.910 (0.008)

AIPW -0.056 (0.052) 0.344 (0.039) 0.950 (0.005)
AIPW-POP 0.089 (0.020) 0.134 (0.018) 0.950 (0.005)
TMLE 0.074 (0.025) 0.144 (0.022) 0.940 (0.006)
C-Learner (best val MSE) 0.067 (0.012) 0.110 (0.009) 0.980 (0.002)
C-Learner (min bias shift) 0.060 (0.011) 0.099 (0.008) 0.990 (0.001)

Table 11. Comparison of estimators in the CivilComments [13] semi-synthetic dataset
over 100 re-drawn datasets, with l = 10−3. Confidence intervals were set to achieve 95%
confidence. Asymptotically optimal methods are listed beneath the horizontal divider. We
highlight the best-performing overall method in bold. Standard errors are displayed within
parentheses to the right of the point estimate.

Method Bias Mean Abs Err Coverage

Direct 0.091 (0.007) 0.099 (0.006) 0.040 (0.004)
IPW 0.346 (0.041) 0.353 (0.040) 0.710 (0.021)
IPW-POP 0.004 (0.005) 0.038 (0.003) 0.950 (0.005)

AIPW -0.172 (0.029) 0.220 (0.026) 0.890 (0.010)
AIPW-POP 0.002 (0.005) 0.040 (0.003) 1.000 (0.000)
TMLE 0.027 (0.005) 0.042 (0.003) 0.990 (0.001)
C-Learner (best val MSE) 0.009 (0.007) 0.053 (0.004) 1.000 (0.000)
C-Learner (min bias shift) 0.001 (0.006) 0.045 (0.003) 1.000 (0.000)

Table 12. Comparison of estimators in the CivilComments [13] semi-synthetic dataset
over 100 re-drawn datasets, with l = 10−2. Confidence intervals were set to achieve 95%
confidence. Asymptotically optimal methods are listed beneath the horizontal divider. We
highlight the best-performing asymptotically optimal method in bold. Standard errors are
displayed within parentheses to the right of the point estimate. C-Learner’s performance is
within standard error of AIPW-POP and TMLE.

C-Learner errors are comparatively more stable for l = 10−4, 10−3. For l = 10−2,
C-Learner is comparable to other asymptotically optimal methods.

C.3 IHDP Dataset (tabular)

The Infant Health and Development Program (IHDP) dataset is a tabular semisynthetic
dataset [6] that was first introduced as a benchmark for ATE estimation by Hill [20].
IHDP is based on a randomized experiment studying the effect of specialized healthcare
interventions on the cognitive scores of premature infants with low birth weight. The
dataset consists of a continuous outcome variable Y , a binary treatment variable A, and 25
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covariates X that affect the outcome variable and are also correlated with the treatment
assignment. We use 1000 datasets as in [38, 12].

C.3.1 Gradient boosted regression trees

We instantiate C-Learner using gradient boosted regression trees using the XGBoost pack-
age [9] with a custom objective, as outlined in Section 4.2. π̂ is fit as a logistic regression
on covariates X. Different to the applications presented in the main text, we are interested
in estimating the ATE P [Y (1)−Y (0)] where Y (0) is nonzero. We discuss two alternatives
to instantiate the C-Learner. First, we find an outcome model that takes as input both
covariates and the treatment variable, which leads to the following formulation

µ̂C−k,n = argmin
µ̃∈F

{
P−k,n[(Y − µ̃(A,X))2] : Pk,n

[(
A

π̂(X)
− 1−A

1− π̂(X)

)
(Y − µ̃(A,X))

]
= 0

}
,

and the final estimator becomes

ψ̂C
n :=

1

K

K∑

k=1

Pk,n[µ̂
C
−k,n(1,X) − µ̂C−k,n(0,X)].

This approach is often referred to as the “S-Learner”.
Another alternative is to model the ATE as the difference of two missing outcomes

and fit two outcome models for treated vs. non-treated units. This approach is commonly
referred to as the “T-Learner”. In this case, we estimate two models by solving

µ̂C−k,n,1 ∈ argmin
µ̃∈F

{
P−k,n[A(Y − µ̃(X))2] : Pk,n

[
A

π̂−k,n(X)
(Y − µ̃(X))

]
= 0

}
,

µ̂C−k,n,0 ∈ argmin
µ̃∈F

{
P−k,n[(1 −A)(Y − µ̃(X))2] : Pk,n

[
1−A

1− π̂−k,n(X)
(Y − µ̃(X))

]
= 0

}
,

and the final estimator becomes

ψ̂C
n := Peval

1

K

K∑

k=1

Pk,n[µ̂
C
−k,n,1(X)− µ̂C−k,n,0(X)].

We empirically observe that the latter approach (T-Learner) is critical for performance in
this setting: using a simple XGBoost T-Learner model significantly improves upon sophisti-
cated S-Learner variants, including state-of-the-art methods such as RieszNet, RieszForest,
and DragonNet [12, 38].

For consistency with prior work [41, 12, 38], for each dataset run, we split the data
in 80% training and 20% for hyperparameter tuning, and use the whole dataset when
evaluating the first-order error term, i.e., Peval = Ptrain ∪ Pval. For each outcome model,
µ̂C−k,n,1 and µ̂

C
−k,n,0, we follow the same setup described in the Kang & Schafer experiment.

Hyperparameter tuning is performed using a grid search for the following parameters:
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Method Bias Mean Abs Err

Direct (Boosting) -0.16 (0.004) 0.188 (0.004)
IPW -1.50 (0.040) 1.500 (0.040)
IPW-POP -0.01 (0.003) 0.110 (0.003)
Lagrangian -0.09 (0.004) 0.144 (0.004)

AIPW -0.05 (0.002) 0.103 (0.003)
AIPW-POP -0.04 (0.002) 0.103 (0.003)
TMLE 0.007 (0.003) 0.103 (0.003)
C-Learner -0.004 (0.003) 0.104 (0.003)

Table 13. Comparison of gradient boosted regression tree-based estimators in the IHDP
semi-synthetic dataset over 1000 simulations. Asymptotically optimal methods are listed
beneath the horizontal divider. We highlight the best-performing method in bold. Standard
errors are displayed within parentheses to the right of the point estimate. “Lagrangian”
refers to only performing the first stage in Algorithm 1. C-Learner’s performance is within
standard error of AIPW-POP.

learning rate (0.01, 0.05, 0.1, 0.2), feature subsample by tree (0.5, 0.8, 1), and max tree
depth (3, 4, 5). We also set the maximum number of weak learners to 2000, and we perform
early stopping using MSE loss on Pval for 20 rounds. Hyperparameter tuning is performed
separately for C-Learner and the initial outcome model. For the second phase of Algorithm
1, we use the set of hyperparameters found in the first stage. The weak learners are fitted
using Peval. In order to avoid overfitting in the targeting step, we use a subsampling of
50% and early stopping after 20 rounds.

The results for the mean absolute error and their respective standard errors are dis-
played in Table 13. The C-Learner improves upon the direct method while using an identi-
cal model class. The asymptotically optimal estimators perform similarly, and C-Learner’s
advantage over other asymptotically optimal methods is not statistically significant. This
is perhaps not surprising in this setting as the propensity weights do not vary as much here,
in contrast to Kang & Shafer’s example where existing asymptotically optimal methods
performed poorly as estimated propensity weights varied dramatically.

C.3.2 Neural networks

We also instantiate C-Learner as neural networks (Section 4.3 on the IHDP dataset. In
particular, we demonstrate how C-Learner can use Riesz representers (A), or equivalently,
propensity models in the ATE setting, that are learned by other methods. This demon-
strates the versatility of C-Learner as it is able to leverage new methods for learning Riesz
representers. In Table 14, we demonstrate C-Learner using Riesz representers learned by
RieszNet [12]. C-Learner achieves very similar performance to RieszNet while using the
same Riesz representer. All methods use an outcome model trained in the usual way, except
for RieszNet and C-Learner. In all settings where applicable, we use the Riesz representer
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(A/π(X) − (1−A)/(1 − π(X)) learned by RieszNet.

Method Bias Mean Abs Err Coverage

Direct -0.005 (-0.000) 0.118 (0.003) 0.783 (0.025)
IPW -0.789 (-0.025) 0.903 (0.034) 0.455 (0.014)
IPW-POP -0.449 (-0.014) 0.654 (0.035) 0.819 (0.026)

AIPW -0.044 (-0.001) 0.106 (0.003) 0.940 (0.030)
AIPW-POP -0.042 (-0.001) 0.106 (0.003) 0.961 (0.030)
RieszNet (“DR”) -0.033 (-0.001) 0.098 (0.003) 0.972 (0.031)
C-Learner -0.038 (-0.001) 0.098 (0.002) 0.955 (0.030)

Table 14. Comparison of neural network based estimators in the IHDP semi-synthetic
dataset over 1000 simulations. Asymptotically optimal methods are listed beneath the
horizontal divider. We highlight the best-performing asymptotically optimal method in
bold. Standard errors are displayed within parentheses to the right of the point estimate.
All methods use an outcome model trained in the usual way, except for RieszNet and C-
Learner. In all settings where applicable, we use the Riesz representer learned by RieszNet.

Training procedure We use lightly modified RieszNet code [12] to generate the Riesz
representers used in all methods. We use the same neural network architecture for RieszNet
outcome models for C-Learner. We use Ptrain, Pval, Peval as in Appendix C.3.1. Hyper-
parameters (learning rate, λ) are selected for best mean squared error on Pval for each
individual dataset. For the training objective, we largely follow Section 4.3, with the fol-
lowing modifications for the full ATE rather than assuming that Y (0) = 0: we use the
mean squared error across the full dataset (as it was originally for RieszNet), and we have
separate penalties and bias shifts for A = 1 and A = 0. As in RieszNet training, there is a
phase of “pre-training” with a higher learning rate, and then a phase with a lower learning
rate; for “pre-training” we sweep over learning rates of {10−3, 10−4} for 100 epochs; regular
training uses a learning rate of 10−5 for 600 epochs. Both use the Adam optimizer. For
λ we sweep over values of {0, 0.01, 0.02, 0.04, 0.1, 0.2, 0.4, 1, 2, 4, 8}. Our implementation of
RieszNet as a baseline is almost identical to that of the original paper, except for how we
set the random seed, for initializing neural networks and for choosing train and test split.

Comparisons with RieszNet paper Surprisingly, our mean absolute error results in
Section C.3.2, including the ones using regular RieszNet (including their algorithm code
and hyperparameters), often outperform the results reported in the original RieszNet paper
[12]. One difference between our code and the RieszNet code is how random seeds were
set. The random seed affects the train/test split, and also weight initialization for the
neural network. We re-ran the original RieszNet code, and then again with a fixed seed
(set to 123) for every dataset, and we found that the results were noticeably different.
In particular, the RieszNet mean absolute error is smaller with seeds set the second way.
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Compare Table 15 and Table 16. In our experiments on this setting, we fix seeds in the
second way.

Method Mean absolute error (s.e.)

Doubly robust 0.115 (0.003)
Direct 0.124 (0.004)
IPW 0.801 (0.040)

Table 15: Original RieszNet IHDP results

Method Mean absolute error (s.e.)

Doubly robust 0.098 (0.003)
Direct 0.118 (0.003)
IPW 0.903 (0.034)

Table 16: RieszNet IHDP results, with fixed seeds

Relative performance We’ve seen in Section 5.2 that C-Learner tends to outperform
one-step estimation and targeting in settings with low overlap. Here, it merely performs
about the same as one-step estimation and targeting. It seems as though overlap is not
very low in IHDP, however, based on propensity scores from trained models not taking
on extreme values. Using RieszNet’s learned Riesz representers, the smallest value for
min(π̂, 1 − π̂) across all IHDP datasets is 0.11, which is a fair bit of overlap, especially in
comparison to, say, the settings with low overlap in Section 5.2 where C-Learner outper-
formed one-step estimation and targeting methods. To recap, over all of our experiments,
C-Learner appears to perform either comparably to or better than one-step estimation and
targeting, and outperform one-step estimation and targeting in settings with less overlap.

D ATE estimators and confidence interval calculations

We calculate asymptotic variance for estimators considered in the experiments, which are
then used to calculate confidence intervals and coverage in the experiments.

D.1 Direct Method

The direct method involves the outcome model fitted on the partition P−k,n and evaluated
on Pk,n. The estimator is given by:

ψ̂direct
n =

1

K

K∑

k=1

ψ̂direct
k,n =

1

K

K∑

k=1

Pk,n[µ̂−k,n(X)]. (46)
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For clarity, albeit with a slight abuse of notation, let n denote the number of data points in
the k-th fold of the evaluation set. Denote by Vark,n(X) = Pk,n(X − Pk,nX)2 the sample

variance of X. The variance of the estimator ψ̂direct
k,n evaluated on k-th fold is then

Var(ψ̂direct
k,n ) =

1

n
Var(µ̂−k,n(X)) ≍ 1

n
Vark,n(µ̂−k,n(X)),

from which we estimate the variance of the direct-method estimator.

D.2 Inverse Propensity Weighting (IPW)

Under similar notations, the inverse probability weighting method gives the estimator

ψ̂IPW
n =

1

K

K∑

k=1

ψ̂IPW
k,n =

1

K

K∑

k=1

Pk,n

[
AY

π̂−k,n(X)

]
.

The variance of the estimator is given by

Var(ψ̂IPW
k,n ) =

1

n
Var

(
AY

π̂−k,n(X)

)
≍ 1

n
Vark,n

(
AY

π̂−k,n(X)

)
.

D.3 Self-Normalized IPW (IPW-POP, or Hajek)

Consider π̂. Then the Hajek (self-normalized IPW) estimator is

ψ̂Hajek =

1
n

∑n
i=1

AiYi
π̂(Xi)

1
n

∑n
i=1

Ai
π̂(Xi)

Let π̃(Xi) = π̂(X) · 1n
∑ Ai

π̂(Xi)
so that

ψ̂Hajek =
1

n

n∑

i=1

AiYi
π̃(Xi)

If we assume that π̃(Xi) does not change with n (a false assumption, but a reasonable
simplification in this case), then we can consider AiYi

π̃(Xi)
to be IID, and then we can apply

the CLT. Then we have

√
n(ψ̂Hajek − ψ) = N

(
0,Var

(
AY

π̃(X)

))
.

D.4 Any asymptotically optimal method

This applies to the AIPW, normalized AIPW, TMLE and C-Learner. These are asymp-
totically optimal and have asymptotic variance Var(ϕ(Z;P )), where ϕ is given in (20).
Therefore, we use the plug-in for ϕ(Z;P ) and take its empirical variance.
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E Additional proof notes

E.1 Why we have Assumption H

In settings where µ̂C−k,n is independent of Pk,n, Assumption G can be used to show As-
sumption H, e.g using Lemma 1. As a reminder, these assumptions are as follows:

• Repeat of Assumption G: For all k,

‖µ̂C−k,n − µ̂−k,n‖L2(P ) = oP (n
−1/4).

• Repeat of Assumption H:

(Pk,n − P )(µ̂C−k,n(X) − µ̂−k,n(X)) = oP (n
−1/2).

However, Assumption G may not imply Assumption H in our setting, as µ̂C−k,n is con-

structed to depend on Pk,n. If we allow µ̂C−k,n to be related to µ̂−k,n in an arbitrary way

that follows Assumption G, we can construct µ̂C−k,n, µ̂−k,n where Assumption H does not
hold. Here is an example:

Let µ̂−k,n be whatever it would be (it doesn’t matter because of how we’ll define µ̂C−k,n

in terms of µ̂−k,n), and let Pk,n consist of x1, . . . , xn/K . Recall that µ̂C−k,n can depend on
x1, . . . , xn/K . Here, we define

µ̂C−k,n(x) = µ̂−k,n(x) +

n/K∑

i=1

1 {x = xi}

so that µ̂C−k,n = µ̂−k,n +
∑n/K

i=1 δ(xi) with δ the dirac delta function. Then

P |µ̂C−k,n(X) − µ̂−k,n(X)| = 0

Pk,n|µ̂C−k,n(X)− µ̂−k,n(X)| = 1

so that
(Pk,n − P )|µ̂C−k,n(X)− µ̂−k,n(X)| = 1

so that Assumption H does not hold. However, Assumption G still holds as

P |µ̂C−k,n(X)− µ̂−k,n(X)|2 = 0.

Even though µ̂C−k,n is some weird measure 0 modification of µ̂−k,n, we can also construct
other, less weird modifications: for example, instead of adding dirac deltas δ(xi), we could
instead add kernels of height 1 around x1, . . . , xn/K and decreasing width (while adjusting
kernels to make sure kernels for different xi, xj do not overlap) to again satisfy Assump-
tion G but not Assumption H.
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