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Exploiting Sign Symmetries in Minimizing Sums of Rational Functions∗

Feng Guo† , Jie Wang‡ , and Jianhao Zheng§

Abstract. This paper is devoted to the problem of minimizing a sum of rational functions over a basic semialge-
braic set. We provide a hierarchy of sum of squares (SOS) relaxations that is dual to the generalized
moment problem approach due to Bugarin, Henrion, and Lasserre. The investigation of the dual
SOS aspect offers two benefits: 1) it allows us to conduct a convergence rate analysis for the hi-
erarchy; 2) it leads to a sign symmetry adapted hierarchy consisting of block-diagonal semidefinite
relaxations. When the problem possesses correlative sparsity as well as sign symmetries, we pro-
pose sparse semidefinite relaxations by exploiting both structures. Various numerical experiments
are performed to demonstrate the efficiency of our approach. Finally, an application to maximizing
sums of generalized Rayleigh quotients is presented.

Key words. sum of rational functions, sign symmetry, semidefinite relaxation, correlative sparsity, generalized
Rayleigh quotient

MSC codes. 90C23, 90C22, 90C26

1. Introduction. In this paper, we consider the optimization problem of minimizing a
sum of rational functions:

(SRFO) ρ := inf
x∈K

N
∑

i=1

pi(x)

qi(x)
,

where

(1.1) K := {x ∈ R
n | gj(x) ≥ 0, j = 1, . . . ,m},

and pi, qi, gj are polynomials in variables x = (x1, . . . , xn). Throughout the paper, we make
the following assumption on (SRFO):

Assumption 1.1. (i) K is compact; (ii) qi > 0 on K for i = 1, . . . , N .

The problem (SRFO) has applications in various fields, including computer vision [7, 9], multi-
user MIMO systems [21], sparse Fisher discriminant analysis in pattern recognition [4, 5, 32].

Given the potentially large number of terms N and the absence of convexity (resp. concav-
ity) assumptions on pi (resp. qi), globally solving (SRFO) or achieving a close approximation
of the optimum ρ presents significant challenges. In literature, (SRFO) is often called a sum-
of-ratios program which stands as one of the most complex fractional programs encountered to
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2 F. GUO, J. WANG, AND J. ZHENG

date. For strategies of tackling sum-of-ratios programs under specific assumptions regarding
concavity and linearity of ratios, the reader may refer to the survey [24] and [33, Table 1].

In the scenario where N = 1, by utilizing the polynomial structure in (SRFO) and Pos-
itivstellensätze from real algebraic geometry, some hierarchies of semidefinite programming
(SDP) relaxations were proposed in [8, 18]. The basic idea is to maximizing a number γ ∈ R

subject to the nonnegativity of p1−γq1 on K which can be ensured by certain sum of squares
(SOS) representations. In [6], the problem of minimizing a rational function was reformu-
lated as a polynomial optimization problem and solved by the exact Jacobian SDP relaxation
method proposed by Nie [17].

For the case that N > 1, one could attempt to reduce all rational functions pi/qi to the
same denominator and apply the hierarchies of SDP relaxations mentioned above. However,
due to the potentially large value of N , the resulting unified denominator may have a sig-
nificantly high degree, which makes it impractical to even solve the first order relaxations of
the hierarchies. To overcome this difficulty, Bugarin, Henrion, and Lasserre [3] reformulated
(SRFO) as an equivalent infinite-dimensional linear program which is a particular instance
of the generalized moment problem (GMP) with N unknown measures. The GMP can be
relaxed into a hierarchy of SDPs which provides increasingly tight lower bounds on ρ. When
a correlative sparsity pattern is present in the polynomial data of (SRFO), a sparse GMP
reformulation for (SRFO) and a corresponding hierarchy of sparse SDP relaxations were also
proposed in [3]. By employing pushforward measures, Lasserre et al. [12] gave an approach
yielding convergent upper bounds on ρ.

Contributions. Our main contributions are summarized as follows:
1. By studying the Lagrange dual problem, we unveil that the core strategy of the GMP

approach is to replace the terms pi/qi, i = 2, . . . , N by polynomial approximations
from below on K, leading to a problem with a single denominator. As a result, we
provide a hierarchy of SOS relaxations that is dual to the GMP approach due to
Bugarin, Henrion, and Lasserre. Moreover, we are able to conduct a convergence rate
analysis for the hierarchy of SDP relaxations for (SRFO).

2. We present a sign symmetry adapted hierarchy consisting of block-diagonal SDP relax-
ations for (SRFO). Furthermore, when both correlative sparsity and sign symmetries
are present in the polynomial data of (SRFO), we show that the exploitation of sign
symmetries can be naturally incorporated into the sparse hierarchy of SDP relaxations
for (SRFO), thereby further reducing the computational cost. Various numerical ex-
periments demonstrate the efficiency of our approach.

The rest of the paper is organized as follows. We first recall some preliminaries and the
GMP approach for (SRFO) in Section 2. In Section 3, we investigate the dual aspect of the
GMP approach and conduct convergence rate analysis for the SDP hierarchy. In Section 4, we
develop sparse SDP relaxations for (SRFO) by exploiting sign symmetries as well as correlative
sparsity present in the problem data. Numerical experiments are presented in Section 5 and
an application to maximizing sums of generalized Rayleigh quotients is provided in Section 6.

2. Notation and Preliminaries. Let N denote the set of nonnegative integers. For n ∈
N \ {0}, let [n] := {1, 2, . . . , n}. For k ∈ N, let Nn

k := {α = (αi) ∈ N
n |
∑n

i=1 αi ≤ k}. We use
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| · | to denote the cardinality of a set. Let R[x] := R[x1, . . . , xn] be the ring of multivariate
polynomials in n variables x, and R[x]k denote the subset of polynomials of degree no greater
than k. A polynomial f ∈ R[x] can be written as f =

∑

α∈Nn fαx
α with fα ∈ R and

xα := xα1
1 · · · xαn

n . The support of f is defined by supp(f) := {α ∈ N
n | fα 6= 0}. For A ⊆ N

n,
R[A] denotes the set of polynomials with supports contained in A, i.e., R[A] := {f ∈ R[x] |
supp(f) ⊆ A}. For u = (u1, . . . , un) ∈ R

n, ‖u‖ denotes the standard Euclidean norm of u.
For t ∈ R, we use ⌈t⌉ to denote the smallest integer that is not smaller than t. We use A � 0
to indicate that the matrix A is positive semidefinite. For two matrices A,B of the same size,
let A ◦B denote the Hadamard product, defined by [A ◦B]ij = AijBij .

2.1. Sums of squares and moments. We recall some background about SOS polynomials
and the dual theory of moment matrices. A polynomial f(x) ∈ R[x] is said to be a sum of
squares if it can be written as f(x) =

∑t
i=1 fi(x)

2 for some f1(x), . . . , ft(x) ∈ R[x]. Let Σ[x]
denote the set of SOS polynomials in R[x].

Let g := {g1, . . . , gm} be the set of polynomials that defines the semialgebraic set K in
(1.1). We denote by

Q(g) :=







σ0 +
m
∑

j=1

σjgj

∣

∣

∣

∣

∣

∣

σj ∈ Σ[x], j ∈ {0} ∪ [m]







the quadratic module generated by g and denote by

Qk(g) :=







σ0 +

m
∑

j=1

σjgj

∣

∣

∣

∣

∣

∣

σ0, σj ∈ Σ[x],deg(σ0),deg(σjgj) ≤ 2k, j ∈ [m]







the k-th truncated quadratic module. It is clear that if f ∈ Q(g), then f(x) ≥ 0 for any x ∈ K

though the converse is not necessarily true.
Given a (pseudo-moment) sequence of real numbers y := (yα)α∈Nn , the k-th order moment

matrix is the matrix Mk(y) indexed by N
n
k with the (α,β)-th entry being yα+β. Given a

polynomial f(x) =
∑

α fαx
α, the k-th order localizing matrix Mk(fy) indexed by N

n
k is

defined by [Mk(fy)]β,γ =
∑

α fαyα+β+γ . The Riesz functional Ly on R[x] is defined by
Ly (

∑

α fαx
α) :=

∑

α fαyα.

Definition 2.1 (Archimedean condition). We say that Q(g) is Archimedean if there exists
M > 0 such that M − x21 − · · · − x2n ∈ Q(g).

Note that the Archimedean condition implies that K is compact and the converse is not
necessarily true. However, for any compact set K, we could always force the associated
quadratic module to be Archimedean by adding a redundant constraint M −x21−· · ·−x2n ≥ 0
in the description of K for sufficiently large M .

Theorem 2.2. [22, Putinar’s Positivstellensatz] Suppose that Q(g) is Archimedean. If a
polynomial f ∈ R[x] is positive on K, then f ∈ Qk(g) for some k ∈ N.
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2.2. The GMP reformulation and SDP relaxations. In [3], Bugarin et al. reformulated
(SRFO) as the following GMP:

(P)







































inf
µi∈M(K)+

N
∑

i=1

∫

K

pidµi

s.t.

∫

K

q1dµ1 = 1,

∫

K

xαqidµi =

∫

K

xαq1dµ1, ∀α ∈ N
n, i ∈ [N ] \ {1},

where M(K)+ denotes the set of finite positive Borel measures supported on K.
Let

dj := ⌈deg(gj)/2⌉, j ∈ [m],

dmin := max {⌈deg(pi)/2⌉, ⌈deg(qi)/2⌉, i ∈ [N ]; dj , j ∈ [m]}.

Based on the reformulation (P), Bugarin et al. further proposed the following hierarchy of
SDP relaxations for (SRFO) (k ≥ dmin):

(Pk)















































inf
yi

N
∑

i=1

Lyi
(pi)

s.t. Mk(yi) � 0, i ∈ [N ],

Mk−dj(gjyi) � 0, i ∈ [N ], j ∈ [m],

Ly1(q1) = 1,

Lyi
(xαqi) = Ly1(x

αq1), ∀α ∈ N
n
2k−max{deg(q1),deg(qi)}

, i ∈ [N ] \ {1}.

It was shown in [3] that under Assumption 1.1 and the Archimedean condition, the sequence
of optima of (Pk) converges to ρ as k → ∞.

3. The dual perspective and convergence rate analysis. In this section, we will unveil
the underlying principle of the GMP reformulation (P) for (SRFO) from the dual perspective,
which enables us to achieve a convergence rate analysis of the hierarchy of SDP relaxations
for (SRFO).

3.1. The dual perspective. Let us derive the Lagrange dual problem of the GMP refor-
mulation (P) for (SRFO). Note that there are infinitely many constraints involved in (P).
To formulate the dual problem, we need to embed these constraints into an appropriate func-
tional space paired with a dual space [25]. Let Y be the space of all functions ω : Nn → R

equipped with natural algebraic operations of addition and multiplication by a scalar. We
associate this space with the dual space Y∗ consisting of functions ω∗ : Nn → R such that
only a finite number of values ω∗(α),α ∈ N

n are nonzero. For ω ∈ Y and ω∗ ∈ Y∗, define the
scalar product

〈ω∗, ω〉 :=
∑

α∈Nn

ω∗(α)ω(α),
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where the summation is performed over α in the finite support set of ω∗. Equivalently, we
can take Y∗ to be the polynomial ring R[x]. For any h(x) =

∑

α∈Nn hαx
α ∈ R[x] and ω ∈ Y,

define the scalar product

〈h, ω〉 :=
∑

α∈Nn

hαω(α).

Clearly, for each i ∈ [N ] \ {1}, the mapping ωi : N
n → R defined by

ωi(α) :=

∫

K

xαqidµi −

∫

K

xαq1dµ1, ∀α ∈ N
n,

belongs to the space Y, and then the second part of constraints of (P) can be expressed as
ωi = 0, i ∈ [N ] \ {1}. Let hi =

∑

α∈Nn hiαx
α ∈ R[x] be the dual variable associated with the

constraint ωi = 0, i ∈ [N ] \ {1}, and let c be the dual variable associated with the constraint
∫

K
q1dµ1 = 1. The Lagrangian of (P) now can be written as

L({µi}, {hi}, c) :=
N
∑

i=1

∫

K

pidµi − c

(∫

K

q1dµ1 − 1

)

−
N
∑

i=2

〈hi, ωi〉

= c+

N
∑

i=1

∫

K

pidµi −

∫

K

cq1dµ1 −
N
∑

i=2

∑

α∈Nn

hiα

(
∫

K

xαqidµi −

∫

K

xαq1dµ1

)

= c+

∫

K

(

p1 − cq1 + q1

N
∑

i=2

hi

)

dµ1 +

N
∑

i=2

∫

K

(pi − qihi) dµi.

The Lagrange dual function of (P) is

inf
µi∈M(K)+

L({µi}, {hi}, c) =

{

c, if p1 − q1(c−
∑N

i=2 hi) ≥ 0, pi − qihi ≥ 0 on K,
−∞, otherwise.

Hence, the Lagrange dual problem of (P) is

(D)







































sup
c,hi

c

s.t. p1(x) +

(

N
∑

i=2

hi(x)− c

)

q1(x) ≥ 0, ∀x ∈ K,

pi(x)− hi(x)qi(x) ≥ 0, ∀x ∈ K, i ∈ [N ] \ {1},

hi ∈ R[x], i ∈ [N ] \ {1}.

For each i ∈ [N ] \ {1}, define

Hi :=

{

h ∈ R[x]

∣

∣

∣

∣

pi(x)

qi(x)
≥ h(x), ∀x ∈ K

}

.

Since each qi > 0 on K, the Lagrange dual problem of (P) can be also expressed as

sup
hi∈Hi

inf
x∈K

p1(x)

q1(x)
+

N
∑

i=2

hi(x).



6 F. GUO, J. WANG, AND J. ZHENG

Consequently, the underlying principle of the GMP reformulation (P) for (SRFO), derived
from the dual aspect, can be unfolded as follows: 1) replacing the terms pi

qi
, i ∈ [N ] \ {1}

by polynomial approximations hi ∈ R[x] from below on K; 2) computing the infimum of the
resulting function which contains only a single denominator; 3) letting the approximations
hi’s vary and taking the supremum.

Theorem 3.1. Under Assumption 1.1, the optimum of (D) equals ρ.

Proof. Denote the optimum of (D) by τ . Clearly, we have τ ≤ ρ. Fix an arbitrary ε > 0.
By the Stone-Weierstrass theorem, for each i ∈ [N ] \ {1}, there exists ĥi ∈ R[x] such that

sup
x∈K

∣

∣

∣

∣

pi(x)

qi(x)
− ĥi(x)

∣

∣

∣

∣

≤
ε

2(N − 1)
.

Letting hi := ĥi − ε/2(N − 1), we have

pi(x)

qi(x)
−

ε

N − 1
≤ hi(x) ≤

pi(x)

qi(x)
, ∀x ∈ K.

Hence, hi ∈ Hi and

τ ≥ inf
x∈K

p1(x)

q1(x)
+

N
∑

i=2

hi(x) ≥ inf
x∈K

N
∑

i=1

pi(x)

qi(x)
− ε ≥ ρ− ε.

Thus, (ρ− ε, h2, . . . , hN ) is feasible to (D). As ε is arbitrary, we obtain τ = ρ.

Remark 3.2. Theorem 3.1 can also be derived from strong duality between (P) and (D).
In fact, as K is compact, there exist constant polynomials ĥi’s and ĉ ∈ R such that pi/qi > ĥi,
i ∈ [N ] \ {1}, and p1/q1 +

∑N
i=2 ĥi > ĉ on K. That is, (ĉ, ĥ2, . . . , ĥN ) is a strictly feasible

solution of (D) and hence there is no dual gap between (P) and (D).

By truncating the polynomial degree, we obtain the following hierarchy of dual SOS re-
laxations for (SRFO) (k ≥ dmin):

(Dk) ρk :=







































sup
c,hi

c

s.t. p1(x) +

(

N
∑

i=2

hi(x)− c

)

q1(x) ∈ Qk(g),

pi(x)− hi(x)qi(x) ∈ Qk(g), i ∈ [N ] \ {1},

hi ∈ R[x]2k−max{deg(q1),deg(qi)}, i ∈ [N ] \ {1}.

Theorem 3.3. Under Assumption 1.1 and the Archimedean condition, it holds ρk ր ρ as
k → ∞.

Proof. It is obvious that ρk ≤ ρk+1 ≤ ρ for all k ≥ dmin. Fix an arbitrary ε > 0 and we
will prove that there exists kε ∈ N such that ρkε̄ ≥ ρ− ε. For ε̄ := ε/3, let (ρ− ε̄, h̄2, . . . , h̄N )
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be the feasible solution to (D) provided in the proof of Theorem 3.1. For each i = 2, . . . , N ,
let

hi := h̄i −
ε̄

N − 1
.

Then, for x ∈ K, it holds that

(3.1) pi(x)− hi(x)qi(x) = pi(x)− h̄i(x)qi(x) +
ε̄

N − 1
qi(x) ≥

ε̄

N − 1
qi(x) > 0.

By Theorem 2.2, there exists ki ∈ N such that hi ∈ R[x]2ki−deg(qi) and pi − hiqi ∈ Qki(g).
Moreover, for x ∈ K, we have

p1(x) +

(

N
∑

i=2

hi(x)− (ρ− ε)

)

q1(x)

= p1(x) + q1(x)
N
∑

i=2

h̄i(x)− ε̄q1(x)− ρq1(x) + 3ε̄q1(x)

≥ (ρ− ε̄)q1(x)− ρq1(x) + 2ε̄q1(x) ≥ ε̄q1(x) > 0.

By Theorem 2.2 again, there exists k1 ∈ N such that

p1(x) +

(

N
∑

i=2

hi(x)− (ρ− ε)

)

q1(x) ∈ Qk1(g).

Let kε := max1≤i≤N ki. Then (ρ− ε, h2, . . . , hN ) is feasible to (Dk) with k = kε, which implies
ρkε ≥ ρ− ε.

3.2. Convergence rate analysis. The exploration of the dual aspect of the GMP reformu-
lation (P) allows us to perform a convergence rate analysis for the hierarchy of SDP relaxations
for (SRFO) by utilizing some existing results from the literature.

Lemma 3.4. For each i ∈ [N ] \ {1}, there exists a constant ci depending on pi, qi and K

such that for any k ∈ N, there exists h ∈ R[x]k satisfying

sup
x∈K

∣

∣

∣

∣

pi(x)

qi(x)
− h(x)

∣

∣

∣

∣

≤
ci
k
.

Proof. Denote by

ωK

(

pi
qi
, t

)

:= sup

{∣

∣

∣

∣

pi(x)

qi(x)
−

pi(y)

qi(y)

∣

∣

∣

∣

: x,y ∈ K, ‖x− y‖ ≤ t

}

the standard modulus of continuity of pi/qi on K. By the multivariate version of Jackson’s
theorem (see [27]), there exists a constant ĉi depending on pi, qi and K such that for any
k ∈ N, there exists h ∈ R[x]k satisfying

sup
x∈K

∣

∣

∣

∣

pi(x)

qi(x)
− h(x)

∣

∣

∣

∣

≤ ĉiωK

(

pi
qi
,
1

k

)

.

As qi(x) > 0 on K, pi/qi is Lipschitz on K. So there is a constant Li such that ωK(pi/qi, t) ≤
Lit. Then, the conclusion follows by letting ci := ĉiLi.



8 F. GUO, J. WANG, AND J. ZHENG

Assumption 3.5. The origin belongs to the interior of K.

The following result is a consequence of the fundamental result [19, Theorem 6] and [11,
Corollary 1].

Theorem 3.6. [10, Theorem 3] Let the Archimedean condition and Assumption 3.5 hold.
If φ(x) ∈ R[x] is strictly positive on K, then φ ∈ Qk(g) whenever

k ≥ CK exp

[

(

3deg(φ)+1κdeg(φ)(deg(φ))2ndeg φmaxx∈K φ(x)

minx∈K φ(x)

)CK

]

,

for some constant CK depending only on gj’s and

(3.2) κ :=
1

sup {t > 0: [−t, t]n ⊆ K}
.

Let

qmax := max
2≤i≤N,x∈K

qi(x), qmin := min
2≤i≤N,x∈K

qi(x), ρmax := max
x∈K

N
∑

i=1

pi(x)

qi(x)
.

Using Theorem 3.6, we can establish the following convergence rate of the hierarchy (Dk).

Theorem 3.7. Let the Archimedean condition and Assumptions 1.1, 3.5 hold. Then, there
exist constants C1 and C2 depending on pi’s, qi’s, gj ’s and K, such that for any ε > 0, we
have ρk ≥ ρ− ε whenever

k ≥ C2 exp

[

(

3(3ωn)D(N,ε)D(N, ε)2
(4(ρmax − ρ) + 3ε)(N − 1)

ε

qmax

qmin

)C2
]

= O

(

exp

[

1

ε3C2
(3ωn)

4(N−1)C1C2
ε

])

,

where ω = max{1, κ} and

D(N, ε) := max

{

deg(pi),

⌈

4C1(N − 1)

ε

⌉

+ deg(qi) : i ∈ [N ]

}

.

Proof. Fix an arbitrary ε > 0. For each i ∈ [N ] \ {1}, let ci be the constant in Lemma 3.4
and C1 := max2≤i≤N ci. Then, there exists hi ∈ R[x] of degree ⌈4ci(N − 1)/ε⌉ satisfying

sup
x∈K

∣

∣

∣

∣

pi(x)

qi(x)
− hi(x)

∣

∣

∣

∣

≤
ci

⌈4ci(N − 1)/ε⌉
≤

ε

4(N − 1)
.

For i ∈ [N ] \ {1}, let ĥi := hi − ε/2(N − 1). Then, for any x ∈ K, it holds that

pi(x)− ĥi(x)qi(x) = qi(x)

(

pi(x)

qi(x)
− ĥi(x)

)

= qi(x)

(

pi(x)

qi(x)
− hi(x) +

ε

2(N − 1)

)

,
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and

p1(x) +

(

N
∑

i=2

ĥi(x)− (ρ− ε)

)

q1(x) = q1(x)

(

p1(x)

q1(x)
+

N
∑

i=2

hi(x)− ρ+
ε

2

)

.

Therefore, for any x ∈ K,

pi(x)− ĥi(x)qi(x) ≥
ε

4(N − 1)
qmin,

p1(x) +

(

N
∑

i=2

ĥi(x)− (ρ− ε)

)

q1(x) ≥ q1(x)

(

N
∑

i=1

pi(x)

qi(x)
−

ε

4
− ρ+

ε

2

)

≥
ε

4
qmin,

and

pi(x)− ĥi(x)qi(x) ≤
3ε

4(N − 1)
qmax,

p1(x) +

(

N
∑

i=2

ĥi(x)− (ρ− ε)

)

q1(x) ≤ q1(x)

(

N
∑

i=1

pi(x)

qi(x)
+

ε

4
− ρ+

ε

2

)

≤

(

ρmax − ρ+
3ε

4

)

qmax.

Note that

ε

4(N − 1)
qmin ≤

ε

4
qmin,

3ε

4(N − 1)
qmax ≤

(

ρmax − ρ+
3ε

4

)

qmax,

deg(pi − ĥi(x)qi), deg

(

p1 +

(

N
∑

i=2

ĥi − (ρ− ε)

)

q1

)

≤ D(N, ε).

Hence, by Theorem 3.6, there exists a constant C2 depending on gj ’s such that whenever

k ≥ C2 exp





(

3D(N,ε)+1ωD(N,ε)D(N, ε)2nD(N,ε)

(

ρmax − ρ+ 3ε
4

)

qmax

ε
4(N−1)q

min

)C2




= C2 exp

[

(

3(3ωn)D(N,ε)D(N, ε)2
(4(ρmax − ρ) + 3ε)(N − 1)

ε

qmax

qmin

)C2
]

= O

(

exp

[

1

ε3C2
(3ωn)

4(N−1)C1C2
ε

])

,

(ρ− ε, ĥ2, . . . , ĥN ) is feasible to (Dk) and thus ρk ≥ ρ− ε.

4. Sign symmetry adapted SDP relaxations. In this section, we propose block-diagonal
SDP relaxations for (SRFO) by exploiting sign symmetries as well as correlative sparsity,
which would significantly reduce the computational burden for structured problems.
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4.1. Sparse SDP relaxations by exploiting sign symmetries. Let us first define the sign
symmetries of a subset A ⊆ N

n.

Definition 4.1. Given a finite set A ⊆ N
n, the sign symmetries R(A) of A consist of all

vectors r ∈ Z
n
2 := {0, 1}n satisfying r⊺α ≡ 0 (mod 2) for all α ∈ A. Moreover, we define the

associated set A := {α ∈ N
n | r⊺α ≡ 0 (mod 2), ∀r ∈ R(A)}.

Note that R(A) is a linear subspace of Zn
2 for any A ⊆ N

n. The notion of sign symmetries
stems from the invariance of polynomials under sign flips on variables [13, 29]. For any r ∈ Z

n
2 ,

we define the map θr : R[x] → R[x] by θr(f)(x1, . . . , xn) = f((−1)r1x1, . . . , (−1)rnxn). A
polynomial f is said to have the sign symmetry r if θr(f) = f . Note that a polynomial f has the
set of sign symmetries R ⊆ Z

n
2 if and only if supp(f) ⊆ {α ∈ N

n | r⊺α ≡ 0 (mod 2), ∀r ∈ R}.
For i ∈ [N ] \ {1}, let

(4.1) Ai := supp(pi) ∪ supp(qi) ∪
m
⋃

j=1

supp(gj),

and let

(4.2) A1 := supp(p1) ∪ supp(q1) ∪
N
⋃

i=2

Ai.

For the remainder of this section, we denote the set of sign symmetries of Ai by Ri.
Given r ∈ Z

n
2 , let r(a) := ((−1)r1a1, . . . , (−1)rnan) for a ∈ R

n and for a set S ⊆ R
n, let

r(S) := {r(a) ∈ R
n | a ∈ S}.

Lemma 4.2. One has r(K) = K, θr(pi) = pi, and θr(qi) = qi for all r ∈ Ri, i ∈ [N ].

Proof. It is straightforward to verify from the definitions.

In order to take the inherent sign symmetries of (SRFO) into account, let us consider the
following sign symmetry adapted version of (D):

(SD) ρs :=















































sup
c,hi

c

s.t.
p1(x)

q1(x)
+

N
∑

i=2

hi(x) ≥ c, ∀x ∈ K,

pi(x)

qi(x)
≥ hi(x), ∀x ∈ K,

c ∈ R, hi ∈ R[Ai], i ∈ [N ] \ {1}.

Theorem 4.3. Under Assumption 1.1, it holds ρs = ρ.

Proof. Clearly, we have ρs ≤ ρ by Theorem 3.1. To show the converse, fix an arbitrary
ε > 0 and let (ρ − ε, h2, . . . , hN ) be the feasible solution to (D) provided in the proof of
Theorem 3.1 so that

(4.3)
pi(x)

qi(x)
−

ε

N − 1
≤ hi(x) ≤

pi(x)

qi(x)
, ∀x ∈ K.
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For each i ∈ [N ] \ {1}, let h̃i := 1
|Ri|

∑

r∈Ri
θr(hi). We have

∑

r∈Ri
θr(x

α) = 0 for each

α ∈ N
n \ Ai. In fact, as α ∈ N

n \ Ai, there exists r̃ ∈ Ri such that

−
∑

r∈Ri

θr(x
α) = r̃





∑

r∈Ri

θr(x
α)



 =
∑

r∈Ri

θr̃+r(x
α) =

∑

r∈r̃+Ri

θr(x
α) =

∑

r∈Ri

θr(x
α).

Therefore, we have h̃i ∈ R[Ai]. Moreover, it follows from Lemma 4.2 and (4.3) that

(4.4)
pi(x)

qi(x)
−

ε

N − 1
≤ h̃i(x) ≤

pi(x)

qi(x)
, ∀x ∈ K.

Thus we have

inf
x∈K

p1(x)

q1(x)
+

N
∑

i=2

h̃i(x) ≥ inf
x∈K

N
∑

i=1

pi(x)

qi(x)
− ε = ρ− ε.

Therefore, (ρ− ε, h̃2, . . . , h̃N ) is feasible to (SD). As ε > 0 is arbitrary, we obtain ρs ≥ ρ.

Given r ∈ Z
n
2 with r(K) = K, for a measure µ ∈ M(K)+, we define a new measure µr by

µr(S) = µ(r(S)) for any Borel set S ⊆ K. A measure is said to be invariant with respect to
the sign symmetries R if µr = µ for all r ∈ R.

Lemma 4.4. Let r ∈ Z
n
2 , µ ∈ M(K)+, and f ∈ R[x].

1. For α ∈ N
n,
∫

K
xαdµr = (−1)r

⊺α
∫

K
xαdµ.

2. If r ∈ R(supp(f)), then
∫

K
fdµr =

∫

K
fdµ.

3. If r ∈ R(supp(f)), then for α ∈ N
n,
∫

K
xαfdµr = (−1)r

⊺α
∫

K
xαfdµ.

Proof. It is straightforward to verify from the definitions.

LetM(K)Ri
+ denote the set of finite positive Borel measures that are invariant with respect

to the sign symmetries Ri. Then the dual of (SD) reads as

(SP)







































inf
µi∈M(K)

Ri
+

N
∑

i=1

∫

K

pidµi

s.t.

∫

K

q1dµ1 = 1,

∫

K

xαqidµi =

∫

K

xαq1dµ1, ∀α ∈ Ai, i ∈ [N ] \ {1}.

We now point out that (SP) cannot be viewed as a consequence of (P) equipped with
invariant measures. Indeed, the latter would involve additional constraints

∫

K

xαq1dµ1 = 0, ∀α ∈ A1 \
N
⋂

i=2

Ai,

since for any α ∈ A1 \
⋂N

i=2 Ai, there exists j ∈ [N ] \ {1} such that α /∈ Aj which implies
∫

K
xαq1dµ1 =

∫

K
xαqjdµj = 0 by Lemma 4.4. This (somewhat surprising) fact particu-

larly highlights the significance of considering the SOS problem (D) when one exploits sign
symmetries for (SRFO).
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The sign symmetry adapted reformulation (SD) allows us to consider block-diagonal SDP
relaxations for (SRFO). For A ⊆ N

n and k ∈ N, let us define a binary matrix BA
k indexed by

N
n
k through

[BA
k ]α,β =

{

1, if α+ β ∈ A,
0, otherwise.

It could be easily seen that BA
k is block-diagonal up to appropriate row/column permutations

[29]. We define the sparse quadratic module Qk(g,A) associated with A by

Qk(g,A) :=







σ0 +

m
∑

j=1

σjgj

∣

∣

∣

∣

∣

∣

σj = [x]⊺k−dj
Gj [x]k−dj , Gj ∈ S

+(BA
k−dj), j ∈ {0} ∪ [m]







,

where d0 := 0, for s ∈ N, [x]s := [1, x1, x2, . . . , x
s
n] denotes the canonical vector of monomials

up to degree s, and S
+(BA

s ) denotes the set of positive semidefinite matrices with sparsity
pattern being specified by BA

s . The sign symmetry adapted version of (Dk) is given by

(SDk) ρsk :=







































sup
c,hi

c

s.t. p1(x) +

(

N
∑

i=2

hi(x)− c

)

q1(x) ∈ Qk(g,A1),

pi(x)− hi(x)qi(x) ∈ Qk(g,Ai), i ∈ [N ] \ {1},

c ∈ R, hi(x) ∈ R[Ai] ∩R[x]2k−max{deg(q1),deg(qi)}, i ∈ [N ] \ {1}.

The following theorem is a sign symmetry adapted version of Theorem 2.2.

Theorem 4.5. [29, Theorem 6.11] Let f ∈ R[x] and A = supp(f)∪
⋃m

j=1 supp(gj). Assume
that the quadratic module Q(g) is Archimedean and f is positive on K. Then f ∈ Qk(g,A)
for some k ∈ N.

Remark 4.6. By a similar argument as for Theorem 4.5 (see [29]), one can actually show
that if f ∈ Qk(g), then f ∈ Qk(g,A) with A = supp(f) ∪

⋃m
j=1 supp(gj).

Theorem 4.7. The following statements hold true:
(i) For k ≥ dmin, ρ

s
k ≤ ρk. Moreover, if R1 = R2 = · · · = RN , then ρsk = ρk.

(ii) Under Assumption 1.1 and the Archimedean condition, ρsk ր ρ as k → ∞.

Proof. (i). It follows from the fact that any feasible solution (c, h2, . . . , hN ) to (SDk) is
also feasible to (Dk). Now assume R1 = R2 = · · · = RN . To show ρsk ≥ ρk, let (c, h2, . . . , hN )
be any feasible solution to (Dk). For each i ∈ [N ] \ {1}, let h̃i := 1

|R1|

∑

r∈R1
θr(hi) ∈

R[A1] ∩ R[x]2k−max{deg(q1),deg(qi)}. From pi(x) − hi(x)qi(x) ∈ Qk(g) and Remark 4.6, we
deduce that

(4.5) pi(x)− h̃i(x)qi(x) ∈ Qk(g,A1).

Moreover, from p1(x) +
(

∑N
i=2 hi(x)− c

)

q1(x) ∈ Qk(g) and Remark 4.6 it follows that

p1(x) +

(

N
∑

i=2

h̃i(x)− c

)

q1(x) ∈ Qk(g,A1).
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Therefore, (c, h̃2, . . . , h̃N ) is feasible to (SDk), which implies ρsk ≥ ρk.
(ii). It is clear that ρsk ≤ ρsk+1 for any k ≥ dmin. To show the convergence, fix an arbitrary

ε > 0. For ε̄ := ε/3, let (ρ − ε̄, h̄2, . . . , h̄N ) be the feasible solution to (SD) provided in the
proof of Theorem 4.3. For each i ∈ [N ] \ {1}, let

hi := h̄i −
ε̄

N − 1
∈ R[Ai].

Then, for x ∈ K, it holds that

(4.6) pi(x)− hi(x)qi(x) = pi(x)− h̄i(x)qi(x) +
ε̄

N − 1
qi(x) ≥

ε̄

N − 1
qi(x) > 0.

By Theorem 4.5, there exists ki ∈ N such that hi ∈ R[Ai] ∩ R[x]2ki−deg(qi) and pi − hiqi ∈
Qki(g,Ai). Moreover, for x ∈ K, we have

p1(x) +

(

N
∑

i=2

hi(x)− (ρ− ε)

)

q1(x)

= p1(x) + q1(x)

N
∑

i=2

h̄i(x)− ε̄q1(x)− ρq1(x) + 3ε̄q1(x)

≥ (ρ− ε̄)q1(x)− ρq1(x) + 2ε̄q1(x) ≥ ε̄q1(x) > 0.

By Theorem 4.5 again, there exists k1 ∈ N such that

p1(x) +

(

N
∑

i=2

hi(x)− (ρ− ε)

)

q1(x) ∈ Qk1(g,A1).

Let kε := max1≤i≤N ki. Then (ρ − ε, h2, . . . , hN ) is feasible to (SDk) with k = kε, which
implies ρskε ≥ ρ− ε. As ε is arbitrary, we prove the convergence of {ρsk} to ρ.

Note that the optimum ρsk of (SDk) may depend on which ratio being chosen as p1/q1.
We give an example to illustrate this phenomenon.

Example 4.8. Let

f :=
x2 + y2 − yz

1 + 2x2 + y2 + z2
+

y2 + x2z

1 + x2 + 2y2 + z2
+

z2 − x+ y

1 + x2 + y2 + 2z2
.

Consider the minimization of f over the unit ball {(x, y, z) ∈ R
3 | 1− x2 − y2 − z2 ≥ 0}. We

consider three cases: (1) p1 = x2 + y2 − yz, q1 = 1 + 2x2 + y2 + z2; (2) p1 = y2 + x2z, q1 =
1 + x2 + 2y2 + z2; (3) p1 = z2 − x+ y, q1 = 1 + x2 + y2 + 2z2. We present the computational
results in Table 1. For this problem, −0.3465 can be certified to be globally optimal.

Remark 4.9. To guarantee ρsk = ρk, one may simply letting A1 = · · · = AN by Theorem
4.7.
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Table 1

Computational results for Example 4.8.

k sup(Dk)
sup(SDk)

case (1) case (2) case (3)

2 -0.3563 -0.4275 -0.4513 -0.4738
3 -0.3465 -0.3469 -0.3546 -0.3550
4 -0.3465 -0.3465 -0.3465

Finally, the dual of (SDk) reads as

(SPk)















































inf
yi

N
∑

i=1

Lyi
(pi)

s.t. BAi

k ◦Mk(yi) � 0, i ∈ [N ],

BAi

k−dj
◦Mk−dj (gjyi) � 0, i ∈ [N ], j ∈ [m],

Ly1(q1) = 1,

Lyi
(xαqi) = Ly1(x

αq1), ∀α ∈ N
n
2k−max{deg(q1),deg(qi)}

∩Ai, i ∈ [N ] \ {1}.

4.2. Sparse SDP relaxations by exploiting both correlative sparsity and sign symme-

tries. In this subsection, we present sparse SDP relaxations for (SRFO) by exploiting both
correlative sparsity and sign symmetries. Let us begin by recalling a correlative sparsity
adapted GMP reformulation and a corresponding hierarchy of sparse SDP relaxations for
(SRFO) proposed in [3]. We first describe the correlative sparsity pattern in (SRFO). For
I ⊆ [n], x(I) denotes the set of variables xi with i ∈ I.

Assumption 4.10. The index sets [n] and [m] can be decomposed as [n] = ∪N
i=1Ii and

[m] = ∪N
i=1Ji such that

(i) For every i ∈ [N ], pi, qi ∈ R[x(Ii)];
(ii) For every j ∈ Ji, gj ∈ R[x(Ii)];
(iii) For every i ∈ [N ], there exists k ∈ Ji such that gk = Mi −

∑

ℓ∈Ii
x2ℓ for some Mi > 0;

(iv) The subsets {Ii}
N
i=1 satisfy the running intersection property (RIP), that is, for every

i ∈ [N ] \ {1}, Ii ∩ (∪i−1
j=1Ij) ⊆ Ik for some k ∈ [i− 1].

Remark 4.11. If K is compact and one knows some M > 0 such that M−x21−· · ·−x2n ≥ 0
for all x ∈ K, then we can always add redundant constraints M −

∑

j∈Ii
x2j ≥ 0, i ∈ [N ] to

the description of K so that Assumption 4.10 (iii) is satisfied.

For every i ∈ [N ], let

Ki :=
{

x(Ii) ∈ R
|Ii| | gj(x(Ii)) ≥ 0, j ∈ Ji

}

,

and πi : M(K)+ → M(Ki)+ be the projection on Ki, that is, for any µ ∈ M(K)+,

πi(µ(B)) := µ({x : x ∈ K,x(Ii) ∈ B}), ∀B ∈ B(Ki),
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where B(Ki) is the usual Borel σ-algebra associated with Ki. For every pair (i, j) ∈ [N ]× [N ]
with i 6= j and Ii ∩ Ij 6= ∅, let

Kij = Kji := {x(Ii ∩ Ij) : x(Ii) ∈ Ki, x(Ij) ∈ Kj} ,

and the projection πij : M(Ki)+ → M(Kij)+ is defined in an obvious similar manner. More-
over, let us define the sets

Ui := {j ∈ {i+ 1, . . . , N} | Ii ∩ Ij 6= ∅}, i ∈ [N − 1], UN := ∅,

and
V1 := ∅, Vi := {j ∈ {1, . . . , i− 1} | Ii ∩ Ij 6= ∅}, i ∈ [N ] \ {1}.

Then the correlative sparsity adapted GMP reformulation for (SRFO) is given by

(CP) ρc :=































inf
µi∈M(Ki)+

N
∑

i=1

∫

Ki

pidµi

s.t.

∫

Ki

qidµi = 1, i ∈ [N ],

πij(qidµi) = πji(qjdµj), j ∈ Ui, i ∈ [N − 1].

For I ⊆ [n] and f ∈ R[x(I)], let Mk(y, I) (resp. Mk(fy, I)) be the moment (resp.
localizing) submatrix obtained by retaining only those rows and columns of Mk(y) (resp.
Mk(fy)) indexed by α ∈ N

n with αi = 0 whenever i /∈ I. For 1 ≤ i < j ≤ N with Ii ∩ Ij 6= ∅,
let N

(ij) := {α ∈ N
n | αk = 0, ∀k 6∈ Ii ∩ Ij}. Then, the hierarchy of correlative sparsity

adapted SDP relaxations for (SRFO) is given by

(CPk) ρck :=



























































inf
yi

N
∑

i=1

Lyi
(pi)

s.t. Mk(yi, Ii) � 0, i ∈ [N ],

Mk−dj (gjyi, Ii) � 0, j ∈ Ji, i ∈ [N ],

Lyi
(qi) = 1, i ∈ [N ],

Lyi
(xαqi) = Lyj

(xαqj),

∀α ∈ N
(ij)
2k−max{deg(qi),deg(qj)}

, j ∈ Ui, i ∈ [N − 1].

Theorem 4.12. [3, Theorems 3.1 and 3.2] Let Assumption 4.10 hold and assume that qi > 0
on Ki for i ∈ [N ]. It hold ρc = ρ and ρck ր ρ as k → ∞.

We can derive the Lagrange dual of (CPk) which reads as

(CDk)







































sup
ci,hi,j

N
∑

i=1

ci

s.t. pi −



ci +
∑

j∈Ui

hi,j −
∑

j∈Vi

hj,i



 qi ∈ Qk({gj}j∈Ji), ci ∈ R, i ∈ [N ],

hi,j ∈ R[x(Ii ∩ Ij)]2k−max{deg(qi),deg(qj)}, j ∈ Ui, i ∈ [N − 1].
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Proposition 4.13. Under Assumption 4.10 (iii), the strong duality holds between (CPk) and
(CDk) for all k ≥ dmin.

Proof. Let {µi} be a feasible solution of (CP) (see the proof of [3, Theorem 3.1] for the

existence). For each i ∈ [N ], let yi = (yiα)
α∈N

|Ii|

2k

be such that yiα =
∫

Ki
xαdµi for α ∈ N

|Ii|
2k .

Then, {yi} is a feasible solution of (CPk). As Assumption 4.10 (iii) holds, according to the
proof of [3, Theorem 2.2], the feasible set of (CPk) is compact, which implies that the optimal
solution set of (CPk) is nonempty and bounded. Therefore, (CDk) is strictly feasible [28] and
the strong duality holds [26, Theorem 4.1.3].

Let

(4.7) A :=

N
⋃

i=1

(supp(pi) ∪ supp(qi)) ∪
m
⋃

j=1

supp(gj),

and R be the set of sign symmetries of A. Now we consider the following sign symmetry
adapted version of (CP):

(CSP) ρcs :=































inf
µi∈M(Ki)R+

N
∑

i=1

∫

Ki

pidµi

s.t.

∫

Ki

qidµi = 1, i ∈ [N ],

πij(qidµi) = πji(qjdµj), j ∈ Ui, i ∈ [N − 1].

Theorem 4.14. Let Assumption 4.10 hold and assume that qi > 0 on Ki for i ∈ [N ]. It
holds ρcs = ρ.

Proof. Since M(Ki)
R
+ is a subset of M(Ki)+ for each i ∈ [N ], we immediately have

ρcs ≥ ρ. For the converse, fix an arbitrary ε > 0 and suppose that {µi} is any feasible
solution of (CP) with

∑N
i=1

∫

K
pidµi < ρ + ε. For each i ∈ [N ], let us define a new measure

µ̃i ∈ M(Ki)
R
+ by µ̃i := 1

|R|

∑

r∈R µr
i . For any j ∈ Ui, i ∈ [N − 1], by Lemma 4.4, one

can check that πij(qidµ̃i) = πji(qjdµ̃j). Moreover, by Lemma 4.4 again,
∑N

i=1

∫

K
pidµ̃i =

∑N
i=1

∫

K
pidµi < ρ+ ε. As ε > 0 is arbitrary, ρcs ≤ ρ.

For each i ∈ [N ] and each k ∈ N, define a binary matrix BA
i,k indexed by N

|Ii|
k (we embed

N
|Ii|
k into N

n
k in the natural way) such that

[BA
i,k]α,β :=

{

1, if α+ β ∈ A,
0, otherwise.
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The sign symmetry adapted version of (CPk) is given by

(CSPk) ρcsk :=



























































inf
yi

N
∑

i=1

Lyi
(pi)

s.t. BA
i,k ◦Mk(yi, Ii) � 0, i ∈ [N ],

BA
i,k−dj ◦Mk−dj (gjyi, Ii) � 0, j ∈ Ji, i ∈ [N ],

Lyi
(qi) = 1, i ∈ [N ],

Lyi
(xαqi) = Lyj

(xαqj),

∀α ∈ N
(ij)
2k−max{deg(qi),deg(qj)}

∩ A, j ∈ Ui, i ∈ [N − 1].

Theorem 4.15. Let Assumption 4.10 hold and assume that qi > 0 on Ki for i ∈ [N ]. It
holds ρcsk = ρck for all k ≥ dmin. Consequently, ρcsk ր ρ as k → ∞.

Proof. Let {yi} be a feasible solution to (CPk). Note that BA
i,k◦Mk(yi, Ii) (resp. B

A
i,k−dj

◦

Mk−dj (gjyi, Ii), j ∈ Ji) consists of diagonal blocks ofMk(yi, Ii) (resp. Mk−dj(gjyi, Ii), j ∈ Ji)
for all i ∈ [N ]. Thus, {yi} is also feasible to (CSPk). So ρcsk ≤ ρck.

On the other hand, let {yi} be any feasible solution to (CSPk). For every i ∈ [N ], we
define a pseudo-moment sequence y′

i = (y′iα)α∈N
|Ii|
k

as follows:

y′iα =

{

yiα, if α ∈ A,

0, otherwise.

By the definition of A, one can easily check that {y′
i} is a feasible solution to (CPk) and

∑N
i=1 Ly′

i
(pi) =

∑N
i=1 Lyi

(pi). So ρcsk ≥ ρck and it follows ρcsk = ρck as desired.

The dual of (CSPk) reads as

(CSDk)







































sup
ci,hi,j

N
∑

i=1

ci

s.t. pi −



ci +
∑

j∈Ui

hi,j −
∑

j∈Vi

hj,i



 qi ∈ Qk({gj}j∈Ji ,A), ci ∈ R, i ∈ [N ],

hi,j ∈ R[x(Ii ∩ Ij)]2k−max{deg(qi),deg(qj)} ∩ R[A], j ∈ Ui, i ∈ [N − 1].

Proposition 4.16. Under Assumption 4.10 (iii), the strong duality holds between (CSPk)
and (CSDk) for all k ≥ dmin.

Proof. Note that for any feasible solution {yi} of (CSPk), only the entries yiα,α ∈ A,
are involved in (CSPk). By the proof of Theorem 4.15, the corresponding point {y′

i} is
feasible to (CPk). Then, the proof of Proposition 4.13 indicates that the feasible set of
(CSPk) is compact. Hence, the strong duality holds between (CSPk) and (CSDk) as proved
in Proposition 4.13.
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5. Numerical experiments. In this section, we conduct numerical experiments to test the
performance of the sign symmetry adapted approaches against the approaches in [3]. We use
the Julia package TSSOS

1 [14] to build the SDP relaxations and rely on MOSEK [2] to solve
them. Throughout this section, k stands for the relaxation order. All numerical experiments
were performed on a desktop computer with Intel(R) Core(TM) i9-10900 CPU@2.80GHz and
64G RAM.

5.1. Comparison of (SDk) with (Dk). We begin by presenting three examples without
correlative sparsity.

Example 5.1. Consider the problem

(5.1) min
x∈R3

1−1/M
∑

a=1/M

pa(x)

qa(x)
s.t. x21 + x22 + x23 = 3,

where

pa(x) =a4(x6d1 + x6d2 + x6d3 ) + (x4d1 x2d2 + x4d2 x2d3 + x4d3 x2d1 )+

a8(x2d1 x4d2 + x2d2 x4d3 + x2d3 x4d1 ),

qa(x) =2a6(x4d1 x2d2 + x4d2 x2d3 + x4d3 x2d1 ) + 2a2(x2d1 x4d2 + x2d2 x4d3 + x2d3 x4d1 )+

3(1 − 2a2 + a4 − 2a6 + a8)x2d1 x2d2 x2d3 ,

andM,d are positive integers. Replacing xdi ’s by yi’s in pa(x), qa(x) and denoting the resulting
polynomials by p̃a(y), q̃a(y) with y = (y1, y2, y3), one can show that for all 0 < a < 1,
p̃a(y) − q̃a(y) ≥ 0 on R

3 with ten zeros: {(1,±1,±1), (±a, 1, 0), (0,±a, 1), (1, 0,±a)} [23].
Then, it is obvious that the optimum of (5.1) is M − 1. Moreover, we can rewrite qa(x) as

qa(x) = 2a6(x4d1 x2d2 + x4d2 x2d3 + x4d3 x2d1 − 3x2d1 x2d2 x2d3 )+

2a2(x2d1 x4d2 + x2d2 x4d3 + x2d3 x4d1 − 3x2d1 x2d2 x2d3 )+

3(1 + a4 + a8)x2d1 x2d2 x2d3 .

Then, by the arithmetic-geometric inequality, we see that qa(x) > 0 for all feasible points x.
Hence, (5.1) satisfies Assumption 1.1 for all positive integers M and d. For M ∈ {6, 8, 10}
and d ∈ {2, 3, 4}, we solve (5.1) using the minimum relaxation order k = 3d and present the
computational results in Table 2. From the table, we see that by exploiting sign symmetries,
we gain speedup by 1 ∼ 2 magnitudes.

Example 5.2. Consider the following problem adapted from [3]:

(5.2) min
x∈Rn

−
N
∑

i=1

1
∑n

j=1(x
2
j − aij)2 + ci

s.t. 60−
n
∑

i=1

(x2i − 5)2 ≥ 0.

The data {aij}, {ci} are given in [1, Table 16] with N = 30, n ∈ {5, 10}. For n = 5, the
optimum of (5.2) is −10.4056, and for n = 10, the optimum is −10.2088. We present the

1
TSSOS is publically available at https://github.com/wangjie212/TSSOS.
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Table 2

Computational results for (5.1).

M
sup(Dk)/Time sup(SDk)/Time

d = 2 d = 3 d = 4 d = 2 d = 3 d = 4

6 5.00/0.31s 5.00/3.85s 5.00/36.1s 5.00/0.06s 5.00/0.38s 5.00/1.17s
8 7.00/0.43s 7.00/4.25s 7.00/52.4s 7.00/0.09s 7.00/0.54s 7.00/1.84s
10 9.00/0.54s 9.00/5.34s 9.00/126s 9.00/0.12s 9.00/0.71s 9.00/2.43s

computational results in Table 3. From the table, we see that 1) the global optimum is
achieved at k = 5 for n = 5 and is achieved at k = 4 for n = 10; 2) by exploiting sign
symmetries, we gain speedup by 1 ∼ 3 magnitudes.

Table 3

Computational results for (5.2). The symbol ‘-’ indicates that MOSEK runs out of memory.

n sup(Dk)/Time sup(SDk)/Time

5
k = 3 k = 4 k = 5 k = 3 k = 4 k = 5

-49.4493/3.53s -12.4737/27.8s -10.4056/306s -49.4493/0.19s -12.4736/1.52s -10.4056/5.66s

10
k = 2 k = 3 k = 4 k = 2 k = 3 k = 4

-25.2408/4.68 -19.2391/1158s - -25.2408/0.11 -19.2391/3.12s -10.2088/46.8s

Example 5.3. Now we carry out randomly generated problems of the form

(5.3) min
x∈Rn

−
N
∑

i=1

1

f2
i + 1

s.t. x21 + · · ·+ x2n ≤ 1,

which are constructed as follows: 1) randomly choose a subset of nonconstant monomials
M from [x]d with prescribed probability ξ; 2) randomly assign 3 elements in M to each fi
coupled with random coefficients in [0, 1]. It is clear that the optimal value of (5.3) is −N .
We denote the set of (5.3) generated in such a way by RandSRFO(N,n, d, ξ) and construct
the following 12 instances2:

P1, P2, P3 ∈ RandSRFO(10, 6, 4, 0.05),

P4, P5, P6 ∈ RandSRFO(8, 5, 5, 0.10),

P7, P8, P9 ∈ RandSRFO(6, 8, 4, 0.03),

P10, P11, P12 ∈ RandSRFO(12, 7, 5, 0.05).

We solve those instances using the minimum relaxation order k = d and present the computa-
tional results in Table 4. From the table, we see that by exploiting sign symmetries, we gain
speedup by 1 ∼ 2 magnitudes.

2They are available at https://wangjie212.github.io/jiewang/code.html.
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Table 4

Computational results for (5.3). The symbol ‘-’ indicates that MOSEK runs out of memory.

P1 P2 P3 P4 P5 P6

sup(Dk)/Time -10.00/24.9s -10.00/22.7s -10.00/20.5s -8.000/19.7s -8.000/19.3s -8.000/19.3s
sup(SDk)/Time -10.00/1.97s -10.00/0.92s -10.00/0.89s -8.000/1.57s -8.000/1.41s -8.000/1.61s

P7 P8 P9 P10 P11 P12

sup(Dk)/Time -6.000/311s -6.000/331s -6.000/370s - - -
sup(SDk)/Time -6.000/3.04s -6.000/2.18s -6.000/2.79s -12.00/19.7s -12.00/19.9s -12.00/19.8s

5.2. Comparison of (CDk) with (CSDk). We will proceed with two examples for which
both correlative sparsity and sign symmetries are present.

Example 5.4. Consider

(5.4)
min

x∈R2N+2

N
∑

i=1

(x22i−1 + x22i + x22i+1)x
2
2i−1x

2
2ix

2
2i+1 + x82i+2

x22i−1x
2
2ix

2
2i+1x

2
2i+2

s.t. x22i−1 + x22i + x22i+1 + x22i+2 = 4, i ∈ [N ].

For each i, the polynomial

(x22i−1 + x22i + x22i+1 − 4x22i+2)x
2
2i−1x

2
2ix

2
2i+1 + x82i+2

is nonnegative with zeros (±1,±1,±1,±1) [15]. Therefore, the optimum of (5.4) equals 4N .
It is clear that Assumption 4.10 holds with Ii = {2i−1, 2i, 2i+1, 2i+2} and Ji = {i}, i ∈ [N ].
For N ∈ {20, 40, 60}, we solve (5.4) and present the computational results in Table 5. It can
be seen from the table that by exploiting sign symmetries, we gain extra speedup by several
times.

Table 5

Computational results for (5.4). The symbol ‘*’ indicates that MOSEK encounters numerical issues.

N
sup(CDk)/Time sup(CSDk)/Time

k = 4 k = 5 k = 4 k = 5

20 16.65*/1.38s 80.00/10.6s 19.06*/0.49s 80.00/0.73s
40 37.71*/3.25s 160.0/15.8s 37.71*/0.62s 160.0/1.79s
60 52.17*/6.97s 240.0/28.9s 57.75*/1.51s 240.0/3.43s

Example 5.5. Consider

(5.5) min
x∈R2N+1

N
∑

i=1

pi(x)

qi(x)
s.t. x22i−1 + x22i + x22i+1 = 3, i ∈ [N ],
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where

pi(x) =x6d2i−1 + x6d2i + x6d2i+1 + 3x2d2i−1x
2d
2i x

2d
2i+1,

qi(x) =x4d2i−1x
2d
2i + x2d2i−1x

4d
2i + x4d2i−1x

2d
2i+1 + x2d2i−1x

4d
2i+1 + x4d2i x

2d
2i+1 + x2d2i x

4d
2i+1,

for some d ≥ 1. From Example 5.1, it is easy to see that the optimum of (5.5) equals N .
Moreover, Assumption 4.10 holds with Ii = {2i − 1, 2i, 2i + 1} and Ji = {i}, i ∈ [N ]. For
N ∈ {5, 10, 20} and d ∈ {2, 3, 4}, we solve (5.5) using the minimum relaxation order k = 3d
and present the computational results in Table 6. Again, it can be seen from the table that
by exploiting sign symmetries, we gain extra significant speedup.

Table 6

Computational results for (5.5).

N
sup(CDk)/Time sup(CSDk)/Time

d = 2 d = 3 d = 4 d = 2 d = 3 d = 4

5 5.000/0.28s 5.000/2.58s 5.000/23.1s 5.000/0.06s 5.000/0.34s 5.000/1.06s
10 10.00/0.56s 10.00/4.35s 10.00/44.1s 10.00/0.12s 10.00/0.80s 10.00/2.05s
20 20.00/1.17s 20.00/9.50s 20.00/95.8s 20.00/0.25s 15.00/1.62s 20.00/4.40s

5.3. Comparison of (CDk) with (CSDk) and the epigraph approach. In this subsec-
tion, we further compare (CDk) with the epigraph approach which translates (SRFO) into a
polynomial optimization problem:

(SEA)























inf
ci,x

N
∑

i=1

ci

s.t. pi(x)− ciqi(x) = 0, i ∈ [N ],

gj(x) ≥ 0, j ∈ [m].

Note that (SEA) inherits the correlative sparsity and sign symmetries of (SRFO) which can
be exploited to obtain sparse SDP relaxations for (SEA) [30].

Example 5.6. Consider

(5.6) max
x∈RN+1

N
∑

i=1

1

100(x2i+1 − x2i )
2 + (x2i − 1)2 + 1

s.t. 16 − x2i ≥ 0, i ∈ [N + 1],

which is modified from the well-known Rosenbrock problem. Clearly, the optimum of (5.6)
equals N and Assumption 4.10 holds with Ii = Ji = {i, i + 1}, i ∈ [N ]. We solve (5.6) for
N ∈ {100, 200, 400}. It turns out that the SDP relaxations (CDk) and (CSDk) attain global
optimality at k = 2 while the epigraph approach attains global optimality at k = 4. We
present the computational results in Table 7, from which we can see that the sparse SDP
relaxation (CSDk) is the most efficient approach.
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Table 7

Computational results for (5.6). ‘EPI’ indicates the lower bounds obtained by the epigraph approach.

N
EPI/Time sup(CDk)/Time sup(CSDk)/Time

k = 4 k = 2 k = 2

100 100.0/2.30s 100.0/0.15s 100.0/0.06s
200 200.0/6.94s 200.0/0.58s 200.0/0.21s
400 400.0/20.8s 400.0/1.72s 400.0/0.97s

Example 5.7. Consider

(5.7) min
x∈RN+s

N
∑

i=1

∑s
j=1 xi+j−1xi+j

1 +
∑s+1

j=1 jx
2
i+j−1

s.t. 1− x2i ≥ 0, i ∈ [N + s],

for some s ≥ 1. It is clear that Assumption 4.10 holds with Ii = Ji = {i, i + 1, . . . , i + s},
i ∈ [N ]. We solve (5.7) for N ∈ {20, 40, 60} using the minimum relaxation order k = 3
and present the computational results in Table 8. From the table, we see that the epigraph
approach yields slightly tighter bounds and moreover, the sparse SDP relaxation (CSDk) is
the most efficient approach.

Table 8

Computational results for (5.7). ‘EPI’ indicates the lower bounds obtained by the epigraph approach.

N
EPI/Time sup(CDk)/Time sup(CSDk)/Time

k = 3 k = 3 k = 3

20 -4.5892/23.9s -4.6173/61.6s -4.6173/23.3s
40 -8.7429/62.0s -8.8778/105s -8.8778/52.8s
60 -12.901/100s -13.138/148s -13.138/70.8s

Finally, we would like to mention that the epigraph approach behaves very badly on the
examples presented in the previous subsections.

6. An application to maximizing sums of generalized Rayleigh quotients. In this sec-
tion, we apply the sparse SDP relaxations to the problem of maximizing a sum of generalized
Rayleigh quotients which arises from signal processing.

In the downlink of a multi-user MIMO system, the base station can multiplex signals
intended to different users on the same spectral resource. A challenging problem arising in such
a scenario is the joint optimization of channel assignment (scheduling) and beamforming aimed
at maximizing the sum-rate in each time-slot. Assuming zero-forcing linear beamforming at
the base station, Primolevo et al. [21] addressed this task by investigating a greedy method
to approximately maximize the sum-rate. At each iteration of their method a spatial channel
needs to be determined to allocate a specific user, which reduces to maximizing a sum of



EXPLOITING SIGN SYMMETRIES IN MINIMIZING SORF 23

generalized Rayleigh quotients of the form

(6.1) max
z∈Cn

N
∑

i=1

zHAiz

zHBiz
s.t. ‖z‖2 = 1,

where Ai, Bi ∈ C
n×n are positive semidefinite Hermitian matrices, zH denotes the conjugate

transpose of z, n is the number of assigned spatial channels at the current iteration, and N is
the number of available users in the time-slot.

When N = 2, the real counterpart of the problem (6.1) also appears in the sparse Fisher
discriminant analysis in pattern recognition (see [4, 5, 32]). The single generalized Rayleigh
quotient optimization problem corresponds to the classical eigenvalue problem and can be
solved in polynomial time [20]. However, when N ≥ 2, solving (6.1) is much more challenging
and requires sophisticated techniques (see [16, 31, 34] for the real case of N = 2). In particular,
Primolevo et al. [21] restricted z in (6.1) to be columns of an identity matrix to give a
suboptimal solution.

Here, we convert (6.1) into a real problem by specifying the real and imaginary parts of
the complex variables and coefficients appearing in (6.1). Let z = x + iy, Ai = Ai,1 + iAi,2,
and Bi = Bi,1 + iBi,2 with x,y ∈ R

n and Ai,1, Ai,2, Bi,1, Bi,2 ∈ R
n×n. Then (6.1) becomes

(6.2) max
x,y∈Rn

N
∑

i=1

x⊺Ai,1x− 2x⊺Ai,2y + y⊺Ai,1y

x⊺Bi,1x− 2x⊺Bi,2y + y⊺Bi,1y
s.t. ‖x‖2 + ‖y‖2 = 1.

In our numerical experiments, we assume that Ai’s are Hermitian and Bi’s are positive definite.
To satisfy this condition, we generate random matrices Ci,1, Ci,2,Di,1,Di,2 ∈ R

n×n with each
entry being drawn from the uniform distribution on [0, 1], and let

Ai = (Ci,1 + iCi,2) + (Ci,1 + iCi,2)
H, Bi = (Di,1 + iDi,2)

H(Di,1 + iDi,2).

We solve one instance of (6.2) with (Dk) and (SDk) for (n,N) ∈ {(3, 20), (4, 10), (5, 5)}, and
present the computational results in Table 9. From the table, we see that by exploiting sign
symmetries, we gain around twice speedup.

Table 9

Computational results for (6.2).

(n,N)
sup(Dk)/Time sup(SDk)/Time

k = 2 k = 3 k = 2 k = 3

(3, 20) 406.7/0.61s 406.7/12.7s 406.7/0.38s 406.7/5.91s
(4, 10) 26.54/1.03s 20.10/107s 26.54/0.67s 20.10/50.5s
(5, 5) 20.12/2.43s 19.11/531s 20.12/1.57s 19.11/339s
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