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Abstract—Modern software engineering trends towards Cloud-
native software development by international teams of developers.
Cloud-based version management services, such as GitHub, are
used for the source code and other artifacts created during
the development process. However, using such a service usually
means that every developer has access to all data stored on
the platform. Particularly, if the developers belong to different
companies or organizations, it would be desirable for sensitive
files to be encrypted in such a way that these can only be
decrypted again by a group of previously defined people. In
this paper, we examine currently available tools that address
this problem, but which have certain shortcomings. We then
present our own solution, Encrypted Container Files (ECF), for
this problem, eliminating the deficiencies found in the other tools.

Keywords—Cloud-based software development; hybrid encryp-
tion; agile software engineering.

I. INTRODUCTION

Software development undergoes a permanent change and,

occasionally, long-lasting trends emerge, which influence the

choices made in terms of software architectures, technologies,

programming languages and frameworks used. Current trends

involve the development of Cloud-native distributed software

components which are deployed automatically via Continuous

Delivery and Continuous Deployment [1].

This implies that these components, often running in sep-

arate containers, must communicate with each other. Further-

more, there is an interest in securing such communication links

because very often confidential data is transmitted. This in turn

places demands on the software development process: in order

to secure (digital) communications these must be encrypted.

This is also true for storing confidential data. In common

cases, e.g., running a web server or storing confidential data

in a database, means of authentication must be kept secret.

Such means of authentication include, but are not limited to,

passwords, private certificate keys, and symmetric encryption

keys.

Modern software development takes place in teams whose

members are in constant exchange with each other. Often,

version control systems, e.g., git [2] are used to manage the

source code and other artifacts. Also with regard to the practice

of Continuous Integration (see [3]), which is a preliminary step

to the aforementioned Continuous Delivery and Continuous

Deployment, it is necessary to check-in all artifacts into the

version control system. This would be grossly negligent for

confidential data provided that no protective measures against

unauthorized access are taken.

In this paper, we address the issue of access to an encrypted

file structure in the cloud by different people in a software

development team. With the Encrypted Container File (ECF),

we present our own solution for a cloud-based, encrypted

data storage for software development teams, in which the

functionality of currently available tools is extended and their

shortcomings are eliminated.

This paper is structured as follows: in Section II, there

is a brief introduction to two existing solutions before the

requirements are presented in Section III. In Section IV, we

present an example of use and describe the structure and

operations of the ECF. Following that, Section V describes

implementation details. Finally, Section VI concludes the

paper and gives an outlook on future work.

II. RELATED WORK

There are different solutions to address the issue we de-

scribed in Section I. In this section, we give an overview of

two of these tools, jak and git-crypt, and discuss their features

and shortcomings.

The tool jak [4] is written in Python and allows symmet-

ric encryption of files using Advanced Encryption Standard

(AES). Using the tool, one can generate keys and store them

in a keyfile, which is not encrypted. To enable automatic

encryption and decryption with a single command jak uses a

special text file that contains a list of file names. This special

text file can be added to the repository [4].

The practical use is limited because of sole symmetric

encryption as the key distribution problem remains unsolved.

Especially with growing team sizes distributing confidential

data results in disproportionate effort.

Another issue with jak is that the confidential files’ content

stays unencrypted on the developers’ computers. This is be-

cause jak decrypts these files during checkout and re-encrypts

them before committing. This implies that only externals with

reading access to the repository at maximum and no access

to any of the developers’ computers are unable to access the

confidential data. A common application scenario are projects

that are developed on a public repository platform.

The tool git-crypt [5] allows symmetric encryption of files

within a git repository using AES, too. It shares the same

limitations as jak in terms of access restrictions to externals.
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However, git-crypt offers a solution to the key distribution

problem by using GNU Privacy Guard (GPG) [6]. Public GPG-

keys, the recipients’ keys, can be added to the repository.

When encrypting the confidential files within the repository

git-crypt generates an asymmetrically encrypted keyfile for

each recipient. Every recipient therefore gets access to the

symmetric key and because of that is capable of decrypting

the confidential files in that repository.

The tool git-crypt is implemented in a way that all confiden-

tial files are encrypted with the same symmetric key and this

very key must therefore be shared with all recipients added to

the repository. This results in coarse grained access control as

there is no way to restrict access to some confidential files to

a subset of the recipients. Consider the case that, e.g., secret

information about the production environment should only be

accessible to the production team.

Furthermore, git-crypt does not secure the confidential files’

content on the developers’ computers. This is analogous to

jak because both tools decrypt the confidential files during

checkout. The integration of git-crypt into the mechanisms of

git is optional but recommended [5].

Another shortcoming of git-crypt is the lacking feature to

remove recipients. Ayer justifies this by stating that by using

a version control system a removed recipient can still access

old versions of the repository and, therefore, the confidential

data stored within [5]. This argument is correct as far as

it goes – nevertheless, it seems sensible to implement such

a mechanism into the to-be-designed ECF format since the

confidential data should be updated regularly regardless. For

example, certificates and passwords expire and symmetric keys

should be changed regularly with regards to staff turnover.

III. REQUIREMENTS ENGINEERING

From the features and shortcomings of the jak and git-crypt

tools presented in Section II, some requirements for the ECF

format can be derived:

1) Mandatory encryption of confidential data,

2) possibility to modify confidential data (content is

writable),

3) key distribution is no prerequisite,

4) decryption not during checkout but on demand,

5) support for multiple recipients,

6) addition and removal of recipients,

7) minimal information gain for external parties, and

8) customizable set of recipients per file.

Based on these requirements, we have decided to use the

following design goals for our solution:

• Use of hybrid encryption (Items 1, 3 and 5),

• inclusion of recipient information to allow re-encryption

on changes (Items 2, 5, 6 and 8),

• obfuscation of recipient information for respective exter-

nal parties (Items 7 and 8), and

• delivery of the associated software as a library for em-

bedding into existing applications (Item 4).

IV. STRUCTURE AND OPERATIONS OF THE ENCRYPTED

CONTAINER FILE

This section gives an overview over the use of the ECF

format in Subsection IV-A. The following subsections describe

the structure of the ECF format in detail. Figure 1 shows

an overview of the components of an ECF, how they are

connected and related to each other. Subsection IV-B describes

the general structure, components, and storage formats of an

ECF. The publicly accessible fields are described in Sub-

section IV-C and the private fields in Subsection IV-D. The

following Subsections IV-E and IV-F describe the decryption

and encryption process, respectively. Finally, Subsection IV-G

concludes this section with further operations that can be

performed on an ECF.

A. Usage in Practice

In this subsection, we walk through the following scenario:

Alice wants to encrypt a file using the ECF format and

operations in such way that her friend Bob will be able to

read the content, while Charlie should not be able to.

First, Alice needs access to Bob’s public information, which

comprises among others his public key. Bob must have created

his public information beforehand. Next, Alice creates an ECF

using, e.g., the CLI tool described in this paper and provided

via GitHub, and adds the confidential data. After that, she

can add Bob as a recipient using his public information. To

retain access to the content, Alice should add herself as a

recipient to the ECF. Alice can now save the ECF within a

public repository and only Bob and herself are able to decrypt

the file’s content. Charlie, on the other hand, cannot retrieve

the encryption key as he is not a recipient of that ECF and

has therefore no access to the confidential data stored inside.

B. General Structure and Data Type Storage Format

Each ECF consists of three parts: A public part and two

non-public/private parts. In Figure 1, the whole ECF is framed

yellow, whereas the public part is colored purple. Both private

parts are treated as a single datum by the symmetric encryption

and are colored in blue. The following list describes the data

types used in the following subsections and their storage

format within an ECF:

• Unsigned Integer: 4 Bytes, Little Endian

• Byte Array [x]: x Bytes, sequential

• String: 4 Bytes, little endian (Length),

then UTF-8 bytes without

byte order mark (BOM)

The ECF format is designed to be flexible with regards

to the used cipher suite. In order to allow future extensions,

it allows more algorithms and cipher suites. For this paper

and also for our Proof of Concept (PoC) implementation, a

selection for the cipher suite was made, which is the basis for

the rest of this paper:

• Key Agreement/Exchange: X25519 [7]

• Symmetric Encryption: AES-256-GCM [8]

• Signature: Ed25519 [9]

• Hash Function: SHA-512 [10]



C. Public Fields

Each ECF must provide enough information for all autho-

rized recipients to decrypt the file. Information for encrypting,

however, is not required to be public because only recipients

should be able to modify the confidential data within the ECF.

Hence, the public part of an ECF contains just the information

required for decryption. It comprises a general part and then

m identically constructed recipient-specific parts.

The general part contains the following data (in this order):

• Container Version (Unsigned Integer)

ECF format version; intended for future extensions

• Cipher Suite (Unsigned Integer)

Information about used algorithms

• Public Header Length (Unsigned Integer)

Length of the public part in Bytes

• Private Length (Unsigned Integer)

Length of the private part in Bytes

• Recipient Count (Unsigned Integer)

Number of recipients in the public part (m)

• Salt (Byte Array [16])

Salt value (usage described below)

• Symmetric Nonce (Byte Array [12])

Symmetric nonce value (usage described below)

The first two fields, Container Version and Cipher

Suite, are used to make the ECF format flexible and future-

proof. However, we discuss only the cipher suite selected in

Subsection IV-B.

The recipient-specific decryption information is yet to be

defined. In total, m such blocks – one for each recipient –

are stored after the general part. To obfuscate the number

of recipients towards externals, m ≥ n can be chosen freely

with n the true number of recipients. Random blocks, which

belong to no recipient, may be inserted, which is not evident to

externals. Each recipient-specific block consists of two fields:

an Identification Tag (Byte Array [16]), which is

used to assign a block to a recipient, and Key Agreement

Information that contains recipient-specific decryption in-

formation.

The field Identification Tag is colored orange in Fig-

ure 1. It is the hash value truncated after 16 Bytes from

the concatenation of the bit strings of the public key of the

respective recipient and the Salt value introduced above.

Shortening the hash value saves storage space and allows

with (28)16 = 2128 possible values for practically unlimited

unique recipients. An authorized recipient can calculate their

Identification Tag based on the knowledge of their own

public key and the public Salt.

The second field, Key Agreement Information, con-

tains recipient-specific information for the decryption pro-

cess and is highly dependent on the used cipher suite. For

the selected cipher suite, an Ephemeral X25519 Public

Key (Byte Array [32]) and an AES Pre Key (Byte

Array [32]) is stored. The first is used in the key agreement

phase to obtain a second AES pre key, the latter is the

first AES pre key. Subsection IV-E describes the combination
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Figure 1. Diagram of the most important components of an Encrypted Container File and visualization of the interrelationships.



of the available recipient-specific information to obtain the

symmetric key in more detail. The process is depicted in

Figure 1 as well.

D. Private Fields

The private part of an ECF consists of two segments:

First, there is information about the ECF and its recipients,

and second, there is the encrypted confidential data itself.

The private part is completely encrypted symmetrically and,

therefore, not accessible for external parties. The following

fields are stored in the private part:

• Content Type (Unsigned Integer)

Describes the type of the confidential data

• Public Header Hash (Byte Array [64])

Hash value of the public part

• Recipient Count (Unsigned Integer)

Number of true recipients (n)

• Recipient Information (Array [n])

Information about the recipients (n blocks)

• Content Length (Unsigned Integer)

Length of the confidential data in Bytes (len)

• Content (Byte Array [len])

Confidential data

• Private Hash (Byte Array [64])

Hash value of the private part so far

The first field, Content Type, is intended for future use

and should characterize the type of confidential data stored in

Content. It seems reasonable that future applications using

the ECF library will define and handle their own content types.

The field Public Header Hash contains the hash value

over the whole public part of an ECF. The value for the

public field Public Header Length (c.f. Subsection IV-C)

is unknown at the time of encryption because the length of

the symmetric encryption algorithm’s output is not necessarily

known in advance. Therefore, this field is set to the con-

stant value of 0xECFFC0DE (Encrypted Container File Format

Code) during the calculation of the hash value. The Public

Header Hash is used to detect unauthorized or unintended

modifications of the public part, e.g., non-destructive changes

of recipient-specific information of other recipients.

The fields Recipient Count and Content Length spec-

ify the number of true recipients and the length of the confiden-

tial data, respectively. The field Recipient Information

consists of n blocks of variable length, which in turn con-

sist of three fields: the Public Key (Byte Array [32])

of the recipient, a Name (String) which contains a

self-chosen name of the recipient (variable length), and

the Name Signature (Byte Array [64]) over the self-

chosen name.

Every block of Recipient Information contains infor-

mation about a recipient, so that re-encrypting the ECF is pos-

sible, e.g., after modifying confidential data. These information

blocks about the recipients are stored within the private part of

the ECF in order to hide them from externals. The block field

Public Key contains the recipient’s public key, which is a

public Ed25519 key as specified in Subsection IV-B. One can

convert an Ed25519 public key into an X25519 public key as

described in [11][12]. The next block field Name holds a text

of variable length that describes the recipient. It may contain

the name of the related person or their email address. This

field is for human legibility and information purposes only,

e.g., when displaying the recipients or when removing existing

recipients. The last block field, Name Signature, contains a

signature over the content of Name. The signature is used first

and foremost to ensure, that the person owing the associated

private key has chosen the name, and that no changes have

been made to the name by other recipients afterwards.

The field Content encloses the confidential data and has

a theoretical limit of 232 − 1 Bytes ≈ 4 GiB. In practice, this

limit should never be reached because an ECF is designed pri-

marily to be used with passwords, certificate keys, credentials

and similar confidential data.

The last field, Private Hash, takes the hash value over the

private part up to this point. This field is inside the private part

of an ECF and, therefore, the hash value is calculated before

encryption. A more detailed description of the encryption

process can be found in Subsection IV-F.

E. Decryption Process

This subsection describes the processes of calculating the

AES key according to Figure 1. To decrypt an ECF a recip-

ient needs both, their private X25519 key and their public

Ed25519 key. Both can be calculated from the recipient’s

private Ed25519 key [11][12].

Nomenclature. The following notation is used: Alice is

the recipient and skEd
A denotes her private Ed25519 key,

pkX
A denotes her public X25519 key, analogously. The used

cryptographic hash function is denoted by H, a‖b denotes the

concatenation of two bit strings a and b, and a⊕b denotes the

bitwise exclusive OR (XOR) operation on two bit strings a and

b of the same length. a[0,...,n] denotes the truncation of the

bit string a to the first n Bytes. The ephemeral public X25519

key contained in the recipient-specific decryption information

is denoted by pkX
e . The function X25519(a,B) describes the

multiplication of scalar a with point B on the elliptic curve

Curve25519 [7].

Alice performs the following steps to obtain the AES key:

(1) Compute identification_tag = H
(

pkEd
A ‖Salt

)

[0,...,16].

(2) Load the decryption information
(

pkX
e , kAES

pre1

)

with match-

ing identification_tag.

(3) Execute the key agreement algorithm with Alice’s private

X25519 key and the public ephemeral X25519 key:

kX
shared = X25519

(

skX
A, pkX

e

)

.

(4) Compute kAES
pre2 = H

(

kX
shared‖pkX

A‖pkX
e

)

[0,...,32].
Shortening the hash value to 32 Bytes is necessary because

of the used symmetric encryption algorithm AES-256

(5) Compute kAES = kAES
pre1 ⊕ kAES

pre2 .

In Step 4 the hash function gets evaluated on the con-

catenation of the shared key and both public keys to obtain



the second AES pre key. The reason for this is a recom-

mendation in [13] to not use the shared key kX
shared directly

but to transform it with a hash function first. The question

arises to why a simple hash function is used and not a Key

Derivation Function (KDF). Primarily, the reason is to speed

up the encryption process, because using a KDF is resource-

intensive and it must be computed n times (separately for

each of the n recipients). This would result in a far slower

encryption process for large n. Furthermore, the input data in

Step 4 is substantially longer than the symmetric pre key to

be computed, which makes key stretching not required and,

therefore, the use of a cryptographic hash function seems

sufficient.

Finally, the private part of an ECF can be decrypted by using

the computed AES key kAES and the public AES nonce. In this

paper, the Galois/Counter Mode (GCM) [14] was chosen for

the symmetric encryption algorithm AES. Therefore, one is

not required to check the authenticity of the decrypted data

separately. Furthermore, instead of the field Public Header

Hash the public part of the ECF could have been authenticated

with AES-GCM. However, when supporting different modes

of operation this field would have been required anyway.

Hence, the field Public Header Hash was not removed and

no additional data (Associated Data) was added to the AES-

GCM encryption algorithm.

F. Encryption Process

The encryption process consists of an initial key and nonce

generation step and an m-wise computation of the public

X25519 ephemeral keys and AES pre keys. For each of

the n ≤ m true recipients exactly one public recipient-

specific decryption information block must be generated. The

remaining m − n blocks serve as obfuscation and may be

generated using a special process as proposed in Appendix A.

Nomenclature. The same nomenclature applies as in Sub-

section IV-E. It gets extended by the following functions:

GenAES(256) and GenX denote functions to generate AES-

256 keys and X25519 key pairs, respectively. RandomBytes(x)
denotes a function to generate a random bit string of length

x Bytes.

For each recipient Bob, their public Ed25519 key pkEd
B is

known by every recipient of that ECF because of the (private)

block field Public Key (see Subsection IV-D). Based on pkEd
B

one can calculate Bob’s public X25519 key pkX
B [11][12].

First, a symmetric AES key kAES ← GenAES(256), an AES

nonce nonceAES ← RandomBytes(12) and a bit string Salt←
RandomBytes(16) must be generated at random (randomness

indicated by the left arrow “←”).

Then, the following steps are performed n times to generate

the key agreement information for each recipient Bob:

(1) Compute identification_tag = H
(

pkEd
B ‖Salt

)

[0,...,16].

(2) Generate an ephemeral X25519 key pair:
(

skX
e , pkX

e

)

← GenX.

(3) Execute the key agreement algorithm with the private

ephemeral X25519 key and Bob’s public X25519 key:

kX
shared = X25519

(

skX
e , pkX

B

)

.

(4) Compute kAES
pre2 = H

(

kX
shared‖pkX

B‖pkX
e

)

[0,...,32].
Shortening the hash value to 32 Bytes is necessary because

of the used symmetric encryption algorithm AES-256.

(5) Compute kAES
pre1 = kAES ⊕ kAES

pre2 .

Steps 2 and 3 correspond to a “half” Diffie-Hellman key

exchange [15] that gets completed during decryption (see

Subsection IV-E) in Step 3.

For each recipient Bob the recipient-specific information

can be written into the public part of the ECF. This information

per recipient consists of identification_tag, public ephemeral

X25519 key pkX
e and AES pre key kAES

pre1 .

The values Salt and nonceAES are valid for all recipients and

are written into their respective fields (see Subsection IV-C).

G. Further ECF Operations

This subsection introduces more ECF operations which

are based on the elementary operations Decryption (Sub-

section IV-E) and Encryption (Subsection IV-F). The same

nomenclature is used as in the specified subsections. It gets

extended by the function DecECF
(

skEd
A , E

)

which denotes the

decryption of an ECF E with Alice’s private Ed25519 key skEd
A .

This function returns a tuple (R, p) after successful decryption,

with R being the set of all n recipients R = {r1, r2, . . . , rn}
and p being the bit string of the decrypted confidential data.

Analogous to this, the function EncECF(R, p) encrypts the

confidential data p for the recipients R and returns an ECF E .

1) Modification of Confidential Data:

Let p′ = modify(p) be the new bit string created by modifi-

cation of the original confidential data p. The replacement of

the confidential data within an ECF E is done by these steps:

(1) (R, p) = DecECF
(

skEd
A , E

)

(2) p′ = modify(p)

(3) E ′ ← EncECF(R, p′)

2) Addition of a New Recipient:

Recipient Alice wants to add a new recipient Bob to an existing

ECF. Bob’s public Ed25519 key is denoted by pkEd
B , the bit

string of his name by nameB. The signature over Bob’s name

is denoted by s = signatureEd
(

skEd
B , nameB

)

. Alice performs

the following steps to add Bob to the recipient list:

(1) Alice verifies the Signature s:

verifyEd
(

s, pkEd
B

) ?
= Valid .

(2) If the signature is invalid, abort the operation, if the

signature is valid, proceed.

(3) rB =
(

pkEd
B , nameB, s

)

(4) (R, p) = DecECF
(

skEd
A , E

)

(5) Alice checks whether Bob is already in the recipient list:

R ∩ {rB}
?
= ∅ (Compare Ed25519 public keys).

(6) If Bob is already a recipient, abort the operation, if Bob

is not a recipient, proceed.

(7) Optionally, Alice can check if nameB already exists in one

ri and abort the operation if necessary.

(8) R′ = R ∪ {rB} = {r1, r2, . . . , rn, rB}

(9) E ′ ← EncECF(R′, p)



3) Removal of a Recipient:

Recipient Alice wants to remove a recipient Bob from an

existing ECF. Bob’s public Ed25519 key pkEd
B and/or the bit

string of his name nameB must be known. If only his name is

known, it must be unique within the ECF E . Alice performs

the following steps to remove Bob from the recipient list:

(1) (R, p) = DecECF
(

skEd
A , E

)

(2) Alice searches for rB in R based on his public key pkEd
B

or his name nameB.

(3) If rB does not exist (Bob is not a recipient of E), abort

the operation, if rB exists proceed.

(4) R′ = R \ {rB}

(5) E ′ ← EncECF(R′, p)

When removing recipients, one does not require any private

keys during the encryption process. This implies that recipients

of an ECF can remove themselves. It is therefore the task of

the implementation to warn the user or abort the operation if

the user attempts to do this. Additionally, the implementation

should also realize additional security functions if, for exam-

ple, only the creator of the confidential data stored in an ECF

is allowed to add or remove recipients. Finally, it must be

noted that the restriction explained in Section II is still true:

Former recipients are still able to access old versions of an

ECF when using a version control system.

V. IMPLEMENTATION DETAILS

A PoC was implemented using C# and the .NET 6.0

runtime. All cryptographic primitives were provided by the

portable library Sodium [16], which is a fork of the NaCl [17]

library. To use Sodium with .NET a wrapper is needed. For

this PoC the wrapper library NSec [18] was used.

A. Implementation of ECF Functionality

The implementation in C# was subdivided into two projects:

ECF.Core and ECF.CLI. The ECF.Core project contains all

functionality of the ECF and helps with managing private

keys (see Subsection V-B). ECF.Core is a library and can

be included into other projects (according to requirements in

Section III). It is used by the ECF.CLI project which provides

a command line interface to the ECF functionality.

The Create(CipherSuite, ContentType) function in

class EncryptedContainer implements the ECF creation

process using the given cipher suite and content type. For this

PoC the aforementioned cipher suite (see Subsection IV-B) is

implemented as well as a single content type: BLOB. Because

of the GCM mode of operation, the execution platform must

support the instruction set extension AES-NI. As a rule, this

can only lead to problems when using very old processors or

virtual machines.

An object of type EncryptedContainer can be encrypted

using the function Write(Stream). The output is written

into the parameter Stream. Analogously, one can obtain

an unencrypted object of this type using the class function

Load(Stream, ECFKey). It is necessary to provide a private

Ed25519 key of a recipient to that function. Per default all

name’s signatures are verified. This can be disabled to achieve

better runtime performance during decryption. The property

ContentStream of an EncryptedContainer object pro-

vides read and write access to the confidential data.

To protect the private key and the confidential data the

implementation uses protected memory spaces, if possible.

The library Sodium provides suitable functions for this [19],

which in turn are used by NSec. Furthermore, heap allo-

cations are replaced by stack allocations wherever possible

using the C# keyword stackalloc [20]. Alternatively, when

using memory that cannot be protected via Sodium or stack

allocation, the implementation pins these memory regions in

memory to prevent the Garbage Collector from arbitrarily

copying them. Furthermore, used memory regions are actively

deleted before they are freed.

B. Private Key Management

Using ECFs requires private keys that should never be stored

unencrypted. Therefore, the ECF.Core project uses AES-256

(GCM) to encrypt the private keys. The encryption key is de-

rived from a user-provided password using Argon2id [21][22].

Argon2id aims to enforce costly calculations that cannot be

parallelized or otherwise shortened (in time) by an attacker.

The algorithm can be configured arbitrarily in order to keep the

required computing time variable. For the PoC implementation

the following settings were chosen:

• Degree of parallelism: 1 (Limit by Sodium)

• Memory requirements: 2GiB
• Number of iterations: 5

This results in an approximate run time of 5 s on an Intel

Core i5-6600K with newer processors being presumably faster.

The private key is needed when decrypting an ECF and

when creating an ECF. For the latter it is necessary to add

oneself as a recipient to that ECF, which includes signing

the name. Therefore, ECF.CLI always prompts the user’s

password to load the encrypted private key.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced Encrypted Container File, a

hybrid-encrypted multi-recipient file structure aimed to store

confidential data and share it with a customizable set of

recipients. Full examples of basic and advanced operations

recipients can perform on an ECF were presented in this

paper. Although we were using a single cipher suite as

described in Subsection IV-B, the file format supports multiple

cipher suites which can be implemented analogously. The PoC

implementation demonstrates this by implementing both SHA-

512 and SHA-256 as cryptographic hash functions resulting in

two different cipher suites.

The full code of the PoC implementation and unit tests for

that code are available at:

https://github.com/Hirnmoder/ECF

For the future, we plan to add additional cipher suites to ECF.

Additional functionalities are also possible depending on the

feedback we get from the community.

https://github.com/Hirnmoder/ECF
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APPENDIX

A. Generating m− n Obfuscation Blocks

In Subsection IV-F the generation process for the n public

recipient-specific blocks was described. The remaining m−n

blocks serve as obfuscation blocks to hide the true number of

recipients to externals. These obfuscation blocks should not

be random bit strings because there is a possibility that the

outputs of the used algorithms are subject to statistical effects.

This would allow an external party to distinguish between real

blocks and obfuscation blocks and therefore determine n.

To avoid this, we suggest that the m − n obfuscation

blocks are constructed using randomly generated Ed25519 and

X25519 key pairs. The function GenEd denotes the creation

of an Ed25519 key pair and the function ConvertX
(

skEd
)

converts an Ed25519 private key into an X25519 key pair. The

following steps are performed for each obfuscation block:

(1) Generate a random key pair:
(

skEd
r , pkEd

r

)

← GenEd,
(

skX
r , pkX

r

)

= ConvertX
(

skEd
r

)

.

(2) Compute identification_tag = H
(

pkEd
r ‖Salt

)

[0,...,16].

(3) Generate an ephemeral X25519 key pair:
(

skX
e , pkX

e

)

← GenX.

(4) Generate a random AES-256 key:

kAES
r ← GenAES(256) or kAES

r ← RandomBytes(32).

(5) Execute the key agreement algorithm with the private

ephemeral and the random public X25519 keys:

kX
shared = X25519

(

skX
e , pkX

r

)

.

(6) Compute kAES
pre2 = H

(

kX
shared‖pkX

r ‖pkX
e

)

[0,...,32].
Shortening the hash value to 32 Bytes is necessary because

of the used symmetric encryption algorithm AES-256.

(7) Compute kAES
pre1 = kAES

r ⊕ kAES
pre2 .

Provided that the used cryptographic hash function gen-

erates truly random looking bit strings, on can simplify the

generation process to increase runtime performance. The as-

sumption of true random looking bit strings is justified with

the input lengths used in Subsections IV-E and IV-F, see [23].

(1) Generate an ephemeral X25519 key pair:
(

skX
e , pkX

e

)

← GenX.

(2) Generate identification_tag← RandomBytes(16).

(3) Generate kAES
pre1 ← RandomBytes(32).

The shortened generation process is used in the PoC imple-

mentation. The number m is randomly chosen in dependence

on n, such that max{8, 2n} ≥ m ≥ n.
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