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Abstract. This paper diverges from previous literature by considering
the utility maximization problem in the context of investors having the
freedom to actively acquire additional information to mitigate estimation
risk. We derive closed-form value functions using CARA and CRRA utility
functions and establish a criterion for valuing extra information through
certainty equivalence, while also formulating its associated acquisition cost.
By strategically employing variational methods, we explore the optimal ac-
quisition of information, taking into account the trade-off between its value
and cost. Our findings indicate that acquiring earlier information holds
greater worth in eliminating estimation risk and achieving higher utility.
Furthermore, we observe that investors with lower risk aversion are more
inclined to pursue information acquisition.
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1. Introduction

In the financial market, investors are often assumed to possess complete

information, allowing them to develop strategies that maximize their utility.

However, in reality, obtaining complete information, especially regarding asset

returns, is often uncertain, leading to estimation risk (Kumar et al. (2008)).

Gennotte (1986) and Karatzas and Xue (1991) considers optimal consump-

tion in an incomplete market setting, in Lakner (1995), Lakner (1998) and

Zohar (2001) the optimal terminal wealth is derived and the optimal strategy

determined for linear Gaussian dynamics of the returns. Karatzas and Zhao

(2001) solves the problem if the return is a fixed random variable with known

distribution. Runggaldier and Zaccaria (2000) consider the optimization of
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the asymptotic growth rate for an infinite time horizon. Sass and Haussmann

(2004) considers the return follows continuous time Markov chain. To adapt

to changing circumstances, investors continuously update their beliefs about

asset returns over time as new asset prices arrive, employing Bayesian learning

(Liptser and Shiriaev (1977)).

However, the estimation of asset returns is not solely updated based on as-

set prices. Investors have access to various additional sources of information,

such as corporate earnings reports, macroeconomic indicators, political news

or expert opinion (Frey et al. (2012)). With the introduction of this extra in-

formation, it becomes intriguing to explore its impact on investment decisions

and objective utility. While, most papers assume the information is given and

usually it is of the same correlation of unknown part (Xiong and Yan (2010)).

Here, inspired by Banerjee and Breon-Drish (2020), we assume the investors

can actively and dynamically to acquire the information in the market. While,

this paper is originated by the classical paper Kyle (1985) where the informa-

tion is used to determine the ultimate payoffs’s expectation and their object is

to maximize the expected payoffs rather than the utility. But we still absorb

the setting that we can acquire any information over time which can help to

erase the estimation risk where the parameter is uncertain.

In this paper, we adopt the framework in Karatzas and Zhao (2001) and

equipped with extra information. We demonstrate that the correlated part of

the extra information with the unobserved Brownian motion W (the diffusion

term of the risky asset’s log price) can be considered as a small component of

W . Importantly, this part is observed and can be utilized in return estimation.

Consequently, the presence of extra information reduces estimation risk at a

faster pace, leading to improved objective utility. Thus, this paper not only

addresses the maximization of expected utility with any given extra informa-

tion but also investigates the nature of the extra information itself, ultimately

determining optimal information acquisition strategies.

We reveal that the extra information with higher correlation at any time can

actually achieve higher utility. However, comparing utilities equipped with any

extra information still requires solving the value function. To facilitate this

analysis, we introduce the concept of an “informative clock”, which represents

the ratio of the conditional variance of estimation to the risky asset’s volatility.
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The informative clock quantifies the total volume of information and provides

an intuitive index to assess the quality of the extra information. This perspec-

tive enhances the precision of estimation and allows for a concise presentation

of the value function. It provides a more intuitive understanding of how extra

information influences investment decisions and yields fruitful insights from

various perspectives, such as attention, inattention, and information quality

(Huang and Liu (2007) and Veronesi (2000)).

We propose a criterion to quantify the value of extra information. Inspired

by Cabrales et al. (2013) and Kadan and Manela (2019), we adopt the concept

of equivalence of certainty. It means that taking endowment along with ex-

tra information can achieve the same utility as the case of taking endowment

adding the value of information along with no extra information. Our calcula-

tions demonstrate that the value of extra information is relatively independent

of market conditions, including interest rates, volatility rates, and return es-

timates. Instead, it primarily depends on risk aversion and the informative

clock. We show that the value of extra information remains constant across

different initial wealth levels in the case of Constant Absolute Risk Aversion

(CARA), providing a fixed value regardless of the endowment. Conversely,

in the case of Constant Relative Risk Aversion (CRRA), investors focus on

the multiple of wealth, where the value of information contributes a fixed pro-

portional increase to the endowment. However, information acquisition and

processing can incur significant costs in terms of time, effort, or expenses. To

address this, we propose a penalty function for information acquisition based

on the informative clock.

At last, we assume that any information characterized by an informative

clock can be obtained in the market. Investors can strategically determine

the optimal effort required to acquire such information for their investment

decisions. We employ the variation method to solve the functional associated

with the informative clock and derive its necessary condition. Our findings

indicate that investors pay greater attention to information acquisition in the

early stages rather than later stages and investors with less risk aversion tend

to pay greater attention.

In summary, this paper makes three primary contributions. First, we es-

tablish a framework based on the concept of the ”informative clock,” enabling
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the concise solution of the value function. Second, we employ the concept of

equivalence of certainty to determine the value of information. Lastly, we solve

the optimal information acquisition strategy.

The remainder of this paper is structured as follows: Section 2 describes

the market model and formulates the admissible space for investment strate-

gies. Section 3 derives the value function and corresponding strategy under

the assumption of given extra information, utilizing the concept of the infor-

mative clock, presents the core analysis of the impact of extra information on

investment decisions, evaluating its value and cost. Section 4 complements the

content of information’s source and informative clock’s explosion. Lastly, the

conclusion is drawn in the final section, with technical proofs and calculations

provided in the appendix.

2. Market Model and Problem Formulation

Suppose that (Ω,F,P) is a probability space equipped with the filtration

F = {Ft : t ≥ 0} satisfying the usual conditions. We consider a financial

market with one risk-free asset and one risky asset. The price of the risk-free

asset S0 = {S0(t), t ≥ 0} is given by

dS0(t) = rS0(t)dt, S0(0) = 1,

and the price of the risky asset S = {S(t), t ≥ 0} follows the stochastic

differential equation (abbr. SDE):

dS(t) = S(t) [µdt+ σdWt] , S(0) = 1,

where W = {Wt : t ≥ 0} is a Brownian motion on (Ω,F,P), r and σ are

nonnegative constants. The drift term µ is an F0-measurable Gaussian random

variable satisfying µ ∼ N (µ0, σ
2
0), and µ and W are independent.

The investor allocates the amounts πt of her wealth into the risky asset at

time t. Then the investor’s total wealth as the self-financing process X =

{Xt, t ≥ 0} follows the following SDE:

dXt = rXt + πt(µ− r)dt+ πtσdWt, t ≥ 0, X0 = x0. (2.1)

Traditionally, the investor formulates her investment strategy by observing

the price of risky asset, i.e., the strategy π = {πt : t ≥ 0} must be only



OPTIMAL INFORMATION ACQUISITION FOR ELIMINATING ESTIMATION RISK 5

adapted to the filtration FS = {FS
t : t ≥ 0}, where FS

t = σ{Su : 0 ≤ u ≤ t},
which is strictly smaller than Ft, t ≥ 0.

To capture the cross-sectional feature of unobserved processW , we introduce

an extra processm = {mt : t ≥ 0} in our model. It has to have some properties:

it is observable, it is both Markov process and martingale from the background

information which is independent to random variable µ. The most valuable

thing is that the process has correlation with the Brownian motion W :

d⟨m,W ⟩t√
d⟨m⟩td⟨W ⟩t

= ρ(t), (2.2)

where ρ(t) ∈ (−1, 1) is determined function of time t. it is easy to see that

ρ(t) refers the correlation coefficient of two random variable dWt and dmt in

the slight time from t to t+ dt. For (2.2) is well-defined, we set ρ(t) = 0 when
d⟨m⟩t
dt

= 0.

Now the investor can no longer only settle the strategy based on the obser-

vation of S, the process m will be likely to provide more information for the

more accurate estimation of µ where the ambiguity comes from. Mathemati-

cally speaking, we amplify the space of our investment strategy that π can be

adapted to the filtration FS ∨ Fm rather than only adapted to the filtration

FS. And we denote the space of admissible strategy as Am := {π|
∫ T

0
π2
t dt <

∞, π is adapted to FS ∨ Fm}, where T > 0 refers the objective investment

terminal time.

The previous article’s objective is to maximize the expectation utility of the

terminal wealth at time T over Am:

sup
π∈Am

EU(XT ), (2.3)

with the given extra information.

Our primary objective is to determine the optimal information to acquire

in the market. To achieve this, we first need to establish what we mean by

“optimal”. We must define a criterion to value the extra information, denoted

as V alue(m), and formulate a cost function, denoted as Cost(m), to quantify

the expenses associated with acquiring this extra information. Consequently,

our objective is to solve the optimal information acquisition strategy that

maximizes the net value, defined as Net(m) = V alue(m)− Cost(m).
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However, determining the criterion to value V alue(m) is not a straightfor-

ward task. One possible approach is to use equation (2.3) to represent the

value V alue(m). However, this approach has limitations. For instance, it

may lead to negative values for V alue(m), which is counterintuitive. Addi-

tionally, comparing the value of information for investors with different risk

aversions becomes challenging, as different utility functions cannot be directly

compared. Despite these challenges, we still need to utilize the insights from

equation (2.3) to establish a criterion for valuing V alue(m), as a larger value

in equation (2.3) indicates greater value for the information. The specific cri-

terion will be provided in a later section.

3. Extra information’s value, cost and its optimal acquisition

3.1. The effect of correlation coefficient. The correlation coefficient of

the extra information can be comprehended as a part of the unobserved W .

A natural idea comes about that higher correlation coefficient means more

valuable information of W . Then it can be conjectured that if two different

sources of extra information have the same correlation coefficient with W , two

corresponding optimal investment would achieve the same expected utility of

terminal wealth. Similarly, if one extra information has the bigger correlation

coefficient than the other one, then its corresponding expected utility would

be bigger than the other. We now show the two conjectures in the following

Propositions 3.1 and 3.2.

Proposition 3.1. If there are two sources of extra information m1 and m2

sharing the same correlation coefficient that ρ1(t) = ρ2(t) for all t, where

ρ1(t) := d⟨m1,W ⟩t√
d⟨m1⟩td⟨W ⟩t

and ρ2(t) := d⟨m2,W ⟩t√
d⟨m2⟩td⟨W ⟩t

. Denote Vm1 := sup
π∈Am1

EU(XT )

and Vm2 := sup
π∈Am2

EU(XT ), similarly, the superscript 1, 2 are indicating corre-

sponding content in the case with information m1 and m2 (see (2.3)). Then

Vm1 = Vm2.

Proof. See Appendix A. □

Proposition 3.1 tells us that not the exact form of the extra information but

its correlation with W indeed affect the objective function, thus it provides us

some innate feeling that it is fine to ignore the exact form of extra information.
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Remark 3.1. Here we can assume d⟨m⟩t = dt. It is the reason that the class of

the process
{
(H ·m)t =

∫ t

0
H(s)dms , H is a certain determined function with

respect to time t and H(t) ̸= 0 almost everywhere
}
shares the same information

as m, i.e., Fm = F(H·m). Moreover, this transformation makes sure (2.2) still

valid. Then we can treat m is a Brownian motion and (2.2) is reduced into

a simplified form as d⟨m,W ⟩t = ρ(t)dt. In addition, we can assume ρ(t) ≥ 0

if we replace new process m′ =
{
m′

t :=
∫ t

0

[
1{ρ(t)≥0}−1{ρ(t)<0}

]
dms

}
with the

process m to assure the nonnegative and this setting is applied in the later

content.

Proposition 3.2. If there are two sources of extra information m1 and m2

sharing the correlation coefficient with the relation that ρ1(t) ≥ ρ2(t) for ∀ t,

then Vm1 ≥ Vm2.

Proof. See Appendix B. □

Proposition 3.2 implies that higher correlation coefficient means the extra

information is more valuable. Beyond that, we first put forward the idea

about information dilution as the form m3 being the mixture of the original

information m1 and a noise W noise, indeed, W noise has no use at all. Because

m2 contributes the same estimation of µ as m3, it contributes less than that

m1 contributes. So does it in the investment strategy.

Remark 3.2. The method proving Proposition 3.2 corresponds the setting that

ρ(t) = 0 if d⟨m⟩t
dt

= 0, which is explained as follows: When the equation holds,

it means dmt = 0 at that instant. This implies that no valuable information is

available at that instant. If we define the processm′:m′
t =

∫ t

0
[1{ d⟨m⟩t

dt
̸=0}(s)dms+

1{ d⟨m⟩t
dt

=0}(s)dW
noise
s ], as that both no information is equal to noise itself benefit

nothing to strategy, then m and m′ have the same effect to the process and

investment.

The extra information would bring about huge advantage for our strategy

as what the former content reveal. But we still need to objectively measure

the value of the extra information by a criterion rather than comparing two

different extra information. Therefore, it is necessary to calculate Problem

(2.3) for preparation.
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3.2. Optimal investment Problem (2.3) with given extra information.

The solution of control problem with ambiguity is usually based on bayesian

learning method that we find the posterior probability distribution evolves

over time by the data available up to each instant. Filtering method serves

as an instrumental appliance to transform the estimation of parameter into

the evolution of stochastic differential equation, which assists us in further

analysis (Liptser and Shiriaev (1977)). Among them, the most widespread

filtering is Kalman Bucy filtering, however, it can not be used directly. With

the extra process m, the estimation of µ over time can not be given directly by

two equations of conditional mean and variance as there must be aggregation

of two sources of information. It is necessary to find the sufficiency statistic

generated by S and m to fully estimate µ.

In order to assure the deduction below carried out successfully, we need the

following assumption on the extra observable process m.

Assumption 3.1. ∫ T

0

1

1− ρ2(s)
ds <∞. (3.4)

In the later subsection, we will illustrate the meaning of Assumption 3.1 and

discuss what happens in the absence of the assumption. We now present the

following conditional expectation E[µ|FS
t ∨ Fm

t ].

Theorem 3.3.

E[µ|FS
t ∨ Fm

t ] =
1

2
σ2 +

y0 +
∫ t

0
q(t)2 [dYs − σρ(s)dms]

t0 +
∫ t

0
q(s)2ds

, (3.5)

where t0 :=
σ2

σ2
0
, y0 := (µ0 − 1

2
σ2)t0 and q(s) := 1√

1−ρ(s)2
, Y is defined by (0.25)

in Appendix C.

Proof. See Appendix C. □

We find from the form of (0.27) in Appendix C that the conditional distri-

bution of µ given FS
t ∨ Fm

t is still a Gaussian, i.e.,

µ|FS
t ∨ Fm

t (3.6)

∼ N

(
1

2
σ2 +

y0 +
∫ t

0
q(s)2[dYs − σρ(s)dms]

t0 +
∫ t

0
q(s)2ds

,
σ2

t0 +
∫ t

0
q(s)2ds

)
.
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To solve Problem (2.3), based on Theorem 3.3, we introduce a new process

Z = {Zt, t ≥ 0} and the innovation process W̄ = {W̄t, t ≥ 0} as follows:

Zt :=
1

2
σ2 +

y0 +
∫ t

0
q(s)2[dYs − σρ(s)dms]

t0 +
∫ t

0
q(s)2ds

,

W̄t :=

∫ t

0

σ−1q(s)

{
dYs − σρ(s)dms − [E[µ|FS

s ∨ Fm
s ]− 1

2
σ2]ds

}
.

Then Z is adapted to the filtration {FS
t ∨Fm

t : t ≥ 0} and a sufficient statistic

for estimating µ in this filtration, and W̄ is a Brownian motion adapted to the

filtration {FS
t ∨ Fm

t : t ≥ 0}. Moreover, it is tested that W̄ is independent to

the Brownian motion m.

Based on the definition of Brownian motion W̄ and the explicit form of

E[µ|FS
t ∨Fm

t ], we obtain that the processes X, Y and Z satisfy the following

SDEs:

dXt = rXtdt+ πt(Zt − r)dt+ πtσρ(t)dmt + πtσq(t)
−1dW̄t (3.7)

dYt = (Zt −
1

2
σ2)dt+ σρ(t)dmt + σq(t)−1dW̄t, (3.8)

dZt =
σq(t)dW̄t

t0 +
∫ t

0
q(s)2ds

. (3.9)

Using the Markov property of the processesX and Z, and the fact that Z is a

sufficient statistic of µ, we establish the following expected utility maximization

problem given extra information:

V (t, x, z) = sup
π∈Am

E[U(XT )|Xt = x, Zt = z]. (3.10)

It is easy to see that Problem (2.3) is equivalent to Problem (3.10) with the

initial state (0, x0, µ0).

Remark 3.3. If we define V (t, x, y,m) := sup
π∈Am

E[U(XT )|Xt = x, Yt = y,mt =

m]. The state value of Yt and mt can not give the estimation of µ as the entire

process of Y and m has capability. Then the dynamic programming no longer

hold for each instant the state’s failure to estimate µ. What’s more that the

value function V (t, x, y,m) is not well-defined. That is why we must construct

the process Z to overcome this obstacle.

To solve Problem (3.10), based on the definition of V (t, x, z) and dynamic

programming principle, we start with analyzing the Hamilton-Jacobi-Bellman
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(HJB) equation satisfied by the value function V (t, x, z) as follows:

sup
π

LπV (t, x, z) = 0, V (T, x, z) = U(x), (3.11)

where

LπV (t, x, z) := Vt + [rx+ π(z − r)]Vx +
1

2
σ2π2Vxx

+ σ2π
1

t0 +
∫ t

0
q(s)2ds

Vxz

+
1

2
q(t)2σ2 1

[t0 +
∫ t

0
q(s)2ds]2

Vzz.

We define a functional

τ(·) := t0 +

∫ ·

0

q(s)2ds. (3.12)

The explanation of the functional (3.12) will be given later. By using τ(·), the
infinitesimal generator can be rewritten as the following concise form:

LπV (t, x, z) := Vt + [rx+ π(z − r)]Vx +
1

2
σ2π2Vxx

+ σ2π
1

τ(t)
Vxz +

1

2
σ2(−1

τ
)′(t)Vzz. (3.13)

Now we derive the closed-form solutions of Problem (3.10) given extra infor-

mation with CARA and CRRA utility functions, which is the foundation of

the further discussion about the extra information and the optimal information

acquisition in Section 4.

Theorem 3.4. (1) If U(x) = − 1
β
e−βx (CARA case), then we have

V (t, x, z) = U
(
er(T−t)x+ ψ(t, z)

)
,

where

ψ(t, z) =
1

2
a(t)(z − r)2 + c(t),

a(t) =
1

βσ2

τ(t)(T − t)

τ(t) + (T − t)
,

c(t) =
1

2β

∫ T

t

τ ′(s)(T − s)

τ(s)[τ(s) + (T − s)]
ds,

and the optimal investment strategy is

π∗ = e−r(T−t) 1

β

τ(t)

τ(t) + T − t

Zt − r

σ2
.
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(2) If U(x) = x1−γ

1−γ
(CRRA case) where γ satisfies the condition: γ > 1 or

0 < γ < 1 with t0
T
> 1−γ

γ
, then we have

V (t, x, z) = U(er(T−t)x) exp{γψ(t, z)},

where

ψ(t, z) =
1

2
a(t)(z − r)2 + c(t),

a(t) =
1

γσ2

τ(t)1−γ
γ
(T − t)

τ(t)− 1−γ
γ
(T − t)

,

c(t) =
1

2γ

∫ T

t

τ ′(s)1−γ
γ
(T − s)

τ(s)[τ(s)− 1−γ
γ
(T − s)]

ds,

and the optimal investment strategy is

π∗ =
τ(t)

γτ(t)− (1− γ)(T − t)

Zt − r

σ2
Xt.

(3) If U(x) = x1−γ

1−γ
(CRRA case) and γ satisfies the condition t0

T
≤ 1−γ

γ
,

then the value function will be infinite, i.e., the problem become meaningless.

The occurrence of meaningless is not bring about by the extra information but

bayesian problem itself.

(4) If U(x) = ln(x), the case with γ approaching 1, then

V (t, x, z) = U(er(T−t)x) + ψ(t, z),

where

ψ(t, z) =
1

2
a(t)(z − r)2 + c(t),

a(t) =
1

σ2
(T − t),

c(t) =
1

2

∫ T

t

τ ′(s)(T − s)

τ 2(s)
ds,

and the optimal investment strategy is

π∗ =
Zt − r

σ2
Xt.

Proof. See Appendix D. □

Especially, if no extra information is involved, Problem (3.10) reduces to

most viewed ambiguity case, which corresponds the situation the value function

with τ(·) = t0 + ·; If no ambiguity is considered here, the value function will

be given in the sense of limitation that t0 = ∞, τ(t) = ∞ and Zt = µ. Then

Problem (3.10) reduces to the classical problem.
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Moreover, noticing the fact τ(t)
τ(t)+T−t

< 1, we can find with ambiguity, the

investment strategy will be conservative than the classical case and less conser-

vative if more information is involved in CARA case. Similarly, in CRRA case,

it depends on the value of relative risk aversion γ. When γ > 1, the investment

strategy will be also conservative and less conservative if more information is

involved. But when T
t0+T

< γ < 1, the investment strategy will be aggressive

and less aggressive if more information is involved. At last, when γ = 1, the

investment strategy remains same as the classical case.

3.3. Advantageous perspective: informative clock. Now we discuss the

conditional variance var(t) := σ2

t0+
∫ t
0 q(s)2ds

at time t, which is strictly decreasing

over time, and introduce the concept of informative clock as τ(t) := σ2

var(t)
=

t0 +
∫ t

0
q(s)2ds, an index measuring the volume of the information, where

q(s) := 1√
1−ρ(s)2

defined in Theorem 3.3.

To comprehend this concept, we take an analogy. If we want to obtain a

normal distribution’s mean where the variance σ2 is known. We get a sample

as X = (X1, · · · , XN). Then the conditional distribution of µ given X is

N (X̄, σ
2

N
), denoting this fact by µ|X ∼ N (X̄, σ

2

N
). It can be seen that N =

σ2

var(µ|X)
, We make a similar comparison as the size of sample in this case and

the informative clock in this article. It can be said that informative clock is

actually an index measuring the volume of the information just like the size of

the sample.

The natural case is that ρ(t) ≡ 0 among where m can be treated as noise.

Then the estimate of µ over time is only estimated by the information of

the price of risky asset itself. Correspondingly, q(s) = 1 and τ(t) = t0 + t.

Informative clock keeps pace as the real time with a fixed distance as t0.

In fact, t0 is the informative clock at real time t = 0 which is actually the

information volume hidden in the prior distribution. Imagining that there

exists a duration of history, if the duration is of value t0, the distribution of

µ would be estimated with variance of σ2
0 by information in this duration.

Reversely thinking, that is why t0 defined as t0 := σ2

σ2
0
to match the duration

of history.

Now the extra information intrudes into our system. It is natural to predict

that it would bring about larger volume of information. This is obvious as
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q(t) ≥ 1 and τ(t) = t0 +
∫ t

0
q(s)2ds where bigger correlation coefficient can

bring higher increasing speed of the informative clock. The extra information

serves as an acceleration of informative clock. It accelerates to reduce the

variance of the estimation of µ than the real time, i.e., the extra information

can eliminate estimation risk in fast pace.

The concept of informative clock is a more useful perspective for analyzing

the value of information rather than correlation coefficient. If there are two

sources of information, where the one has the information advantage than

the other, i.e., with respect to the informative clock, the one is bigger than

the other. The investor can make better decision to obtain higher utility.

Moreover, Proposition 3.5 is a more strong conclusion than Proposition 3.2 as

it covers more cases.

Proposition 3.5. If there are two sources of extra information m1 and m2

with informative clock relation that τ 1(t) ≥ τ 2(t) for ∀t ≥ 0, then Vm1 ≥ Vm2.

Proof. See Appendix E. □

From the procedure of the comparison of c, we must broaden our mind.

τ 1(t) ≥ τ 2(t) implies that in any real time the first information has more infor-

mative clock. However, if we take the perspective with (τ 1)−1(u) ≤ (τ 2)−1(u),

it tells that in any same informative clock the first information has more re-

maining time to invest. Then we see that the informative clock contributes

the value function with two ways: the whole larger informative clock just as

the first term in (0.36) shows and the adequate time to prepare in any same

informative clock just as the second term shows.

Another useful effect of informative clock is that HJB equation can be re-

duced into a representation with only informative clock as (3.13). In the in-

finitesimal generator, the term Vt + [rx + π(z − r)]Vx +
1
2
σ2π2Vxx is the most

classical HJB equation in the investment problem where z is the certain rate

of drift of the risky asset. Then σ2π 1
τ(t)

Vxz is comprehended as the adjustment

of investment by the ambiguity of drift. The last term 1
2
σ2(− 1

τ
)′(t)Vzz depicts

the evolution of the drift over time. Then HJB equation is intuitive under this

perspective.
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Due to the close connection between ρ and τ : τ(t) := σ2

var(t)
= t0+

∫ t

0
q(s)2ds

and q(s) := 1√
1−ρ(s)2

. For the convenience and vividness of expression, we use

the functional τ to refer the information which has this volume of information.

With it, all the value can be represented in concise form. And we assume the

continuum of the ρ(t) ∈ [0, 1), i.e., any value in this interval can be obtained

from the market. Thus we can assume any τ as the continuous function with

derivative larger than one is obtained in the market. Finally, Proposition 3.5

has told us that the utility is irrelevant to the actual form of the source of

information but what informative clock it can bring about for estimating µ.

Thus we can ignore the form of the extra information and only focus on the

problem via the perspective of functional τ .

3.4. Value and cost of extra information. Now we solve the Problem

(2.3) and are equipped with the perspective of informative clock. To objec-

tively measure the value of the extra information by a criterion, we introduce

the concept of certainty equivalence of utility. As we have posed, we define

the value function Vτ (t, x, z) as the value function in the case that extra infor-

mation can bring about the informative clock as the functional τ . In the case

without any extra information, the functional has the structure τ(·) = t0 + ·.
Here we define it as the natural case and we denote that 0 as the functional

in this case. It is the value function that we achieve by price itself. Then we

define the value functional V alue(·) by

Vτ (0, x0, µ0) = V0 (0, x0 + V alue(τ), µ0) . (3.14)

It means that taking initial value x0 along with extra information with informa-

tive clock τ , we can achieve the same utility as the case of dealing with initial

value x0+V alue(τ) along with no extra information. Here V0 is comprehended

as our objective criterion.

In the case of CARA utility function, comparing two value functions with

the relationship Vτ (0, x0, µ0) = V0 (0, x0 + V alue(τ), µ0), we obtain

V alue(τ) =

∫ T

0

1

2β

(T − t)τ ′(t)

τ(t) [τ(t) + T − t]
dt− C1, (3.15)

where C1 :=
∫ T

0
1
2β

(T−t)
(t+t0)(T+t0)

dt is a constant. This is actually the difference of

c(0) in two value functions with corresponding informative clock and it is more
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Fig. 1. The corresponding value of the information with respect to informative
clock’s derivative in CARA case.

than zero just as Proposition 3.5 shows(see(0.36)). We see that it has nothing

to do with the endowment x0. This is derived from the property of CARA

utility. People are caring about the absolute wealth in the utility function.

Therefore the extra information will bring about the certain value.

In the case of CRRA utility function, comparing two value function with

the relation Vτ (0, x0, µ0) = V0(0, x0 + V alue(τ), µ0), we obtain

V alue(τ) (3.16)

=

[
exp

{∫ T

0

1

2(1− γ)

τ ′(t)1−γ
γ
(T − t)

τ(t)[τ(t)− 1−γ
γ
(T − t)]

dt

}
/C2 − 1

]
x0.

where C2 := exp

{∫ T

0
1

2(1−γ)

1−γ
γ

(T−t)

(t+t0)[(t+t0)− 1−γ
γ

(T−t)]
dt

}
is a constant (The case γ =

1 still holds in the sense of limit). Distinct from the CARA utility, people are

caring about the multiple of the wealth with CRRA utility. The investors are

surging to doubling their initial value. And we know from Eq.(3.16) and Proof

of Proposition 3.5 that the extra information will bring about the multiple

increase of the endowment and the multiple number is the function of quotient

of c(0) with two informative clocks which coincides our experience.

No matter in CARA utility or CRRA utility, we find that the value of the

extra information is independent with the market condition. It has nothing

to do with the interest rate, risky asset’s volatility and even the estimation of

return. It only concerns about the informative clock which represents precision

of the estimation and investor’s preference for risk.
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Fig. 2. The corresponding value of the information with respect to informative
clock’s derivative in CRRA case.

Here are two pictures of the value of information in CARA and CRRA case

where the parameter is given with t0 = 4, T = 2, β = 0.001, x0 = 1000 and

most importantly, τ(t) = t0+kt where k is a constant represent the derivative of

the informative clock. For convenience, here we only use the linear informative

clock for representation. It is obvious the information will bring huge value if

the investor is less risk aversion both in CARA case and CRRA case where the

value is inversely proportional to the absolute risk aversion in CARA case.

The other thing need to regard is that the marginal of volume of the infor-

mation contributes less value when the information is plenty. Moreover, it has

its bound which will be given in Subsection 4.2.

Conversely, the gleaning of huge volume of information is costly. There must

be a restriction of behavior that collecting information as much as the investor

is not allowed. We define the punishment functional Cost(·) as follows:

Cost(τ) =

∫ T

0

cost (τ ′(t)) dt, (3.17)

where the function cost : [1,∞) → R+ is an increasing and convex function.

As we know, τ ′(t) = 1√
1−ρ(t)2

≥ 1 and when τ ′(t) = 1, it means ρ(t) = 0 and

no useful extra information is involved. Thus, we set the boundary condition:

cost(1) = 0. The monotone property and convexity originate from the fact that

the effort to glean the marginal information (τ ′(t)) is positive and increases

w.r.t.the volume of information.
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3.5. The most worthwhile information to acquire. The value and cost of

information are well defined, see (3.14) and (3.17). In this subsection the most

important thing we consider is to balance the value and cost to determine the

most worthwhile information to acquire, i.e., solving the following functional

maximization problem:

sup
τ
Net(τ), (3.18)

Net(τ) := V alue(τ)− Cost(τ),

where the informative clock τ is differentiable and its derivative is larger than

one everywhere.

Now we assume cost(x) = λ(x − 1)2 for an instance, where λ > 0 is the

relative ability of acquiring information, and solve Problem (3.18) as follows.

Theorem 3.6. In the case of CARA utility function, the optimal informative

clock satisfies the condition

τ ′′(t) +
1

4βλ

1

[τ(t) + T − t]2
= 0. (3.19)

In the case of CRRA utility function, the optimal informative clock satisfies

the condition

τ ′′(t) +
y

4γλ

1

[τ(t)− 1−γ
γ
(T − t)]2

= 0, (3.20)

where y is a positive number.

Proof. See Appendix F. □

Remark 3.4. In fact, using the same method as in Theorem 3.6 we can solve

Problem (3.18) for other punishment function. Theorem 3.6 just provides a

template to find extreme point of Problem (3.18). And this template is the

most widespread for describing the punishment function.

The last work to find the optimal informative clock is to search all the

functional satisfying the necessary condition with the different initial condition

τ ′(0) and y. This part is trivial and we omit it here.

Based on Eq.(3.19) and Eq.(3.20), we have

τ ′′(t) + g(t) = 0,
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Fig. 4. The optimal informative clock in CRRA case.

where g(t) > 0 (it holds for any punishment functional). It follows that

τ ′′(t) < 0.

That is to say the investor will devote less effort to glean the information

as the time goes. In fact, this conclusion can also be derived from Proposition

3.5. If there is a information with τ ′(t1) < τ ′(t2) where t1 < t2 having the

most net value, we reshuffle the order of τ ′ as τ̂ ′ and define a new τ̂(t) =∫ t

0
τ̂ ′(s)ds to achieve τ̂(t) ≥ τ(t) for all t. Then V τ̂ > V τ and V alue(τ̂) >

V alue(τ). However, their cost is the same. Then we find a new informative

clock with more net value and there is a contradiction. Thus we must glean

the information as soon as possible.
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Here are two pictures of the optimal informative clock in CARA and CRRA

case where the parameter is given the same as t0 = 4, T = 2, x0 = 1000,

λ = 1. As we can see, the optimal informative is really increasing and concave.

Furthermore, if we compare the optimal informative clock for the investor with

different risk aversion in CARA case or CRRA case, we will see investor with

lower risk aversion are more inclined to glean more information. In other words,

gleaning information benefits more to the investor with lower risk aversion.

4. Complements of information itself

4.1. Sources of information. We provide a discussion around the extra in-

formation itself. In the financial market, a wide range of information can be

gathered and utilized. One commonly considered type of information is sys-

temic risk, which we assume is generated by the processW systemic. For instance,

we can consider m to be equal to W systemic. However, it is important to note

that any observed risk can be represented by the process m. Whenever a risky

asset exists in the market, various risk factors contribute to the price fluctua-

tions and can be observed. Furthermore, the phenomenon of co-movement in

asset prices offers us a perspective to identify the process m.

One potential concern might arise regarding the calculation of ρ(t) as W

itself is not directly observable. However, since we have the observation Y

(defined in (0.25)), and ρ(t) = d⟨m,Y ⟩t√
d⟨m⟩td⟨Y ⟩t

, we can effectively calculate their

correlation coefficient without direct observation ofW . This equation provides

a feasible way to compute the correlation coefficient, which empowers us to

test different sources of information. Therefore, we have the ability to assess

the correlation between Y and different sources of information, allowing us

to identify the ones with the highest correlation. Furthermore, we can even

combine multiple sources of information through signal engineering techniques

to achieve a higher correlation with Y .

4.2. the explosion of informative clock. Assumption 3.1 (see (3.1)) can be

rewritten as τ(T ) <∞. It is the case that the informative clock is finite from

0 to T . It arouses our curiosity that what would happen when the informative

clock become infinite. In fact, at that time, the ambiguity hidden in µ is totally

erased. As the conditional variance of µ becomes zero and the distribution of

µ has collapsed into a single point’s distribution. While this phenomenon
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has been supposed as there is a ‘insider’ investor, who can observe both the

drift and driving Brownian motion W (Zhao (1999)) . The informative clock

becomes infinite means that the investor becomes ‘insider’ investor knowing

everything.

It is natural to put forward some problems around that the informative clock

evolve from finite time to the infinite. The main one is that how it happens.

In fact, if we extend the range of ρ with ρ(t) ∈ [0, 1]. It will happen when the

fact ρ(t) approaches or equals to one (for example, m = W ) with enough time

which contributes infinite value for the informative clock. Another one may be

around the function of informative clock becomes singular as it tends infinite

in finite time. There is no worry as in the HJB equation, we can observe

that τ only exists with the form 1
τ
which can be continuous from 1

τ(0)
to 0

where two ends are both finite. Thus, it really bothers nothing when there

is a surge of infinite information if we assure the continuity of 1
τ
. Moreover,

all the deduction in Section 3 still hold if we use limitation as there is always

informative clock exist in the dominator to assure anything well-posedness.

Above all, everything remains alright if we just take ( 1
τ
)(t) = 0 when τ(t) = 0.

Ultimately, we take τ(0+) = ∞ for consideration (can be comprehended as

the limit τ(t) = t0 + nt where n → ∞), that is, the investor is assumed as

‘insider’ investor at the beginning (time is 0+). This corresponds the value

of V (0+, x0, Z0+) which is the classical case with µ = Z0+ . And µ has the

prior distribution N (µ0, σ
2
0). Then we have that

∫
R
V (0+, x0, µ0 + u)Nσ2

0
(u)du

is actually the objective value what we want. In fact, this value can be gotten

directly in the value function if we allow the generalized function calculation

in c(0) in the HJB equation. Taking CARA for example,

c(0) =
1

2β

∫ T

0

τ ′(s)(T − s)

τ(s)[τ(s) + (T − s)]
ds

=
1

2β

∫ 0+

0

[
τ ′(s)

τ(s)
− [τ(s) + T ]′

τ(s) + T

]
ds

=
1

2β
[ln(τ(s))− ln(τ(s) + T )] |0+0

=
1

2β
ln(

t0 + T

t0
).
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Similarly, we obtain the value

c(0) =
1

2γ
ln(

t0

t0 − 1−γ
γ
T
)

in CRRA case if γ ̸= 1. And

c(0) =
1

2

T

t0

in CRRA case when γ = 1.

As regards to Proposition 3.5 and content of information’s value, it is obvi-

ous that the value of any extra information has its bound. And the bound is

finite and can be approached if we pay enough cost.

5. Conclusions

In this paper, we show that, with the extra information, the estimation of

the risky asset’s is preciser and the utility can be improved in addition. We first

put forward the new concept of “informative clock” to describe the precision

of the estimation and use it to represent everything in the concise form. The

value and cost are well defined for any extra information. From the process of

trading off, it tells us to glean the extra information earlier will be great and

we find investors with less risk aversion are more inclined to glean information.

Finally, it bothers us nothing to permit the informative clock infinite and find

the bound of the extra information’s value.

Appendix A. Proof of Proposition 3.1

Proof. Without loss of generality, m1 andm2 are regarded as Brownian motion

(see in the Remark). As two processes m1 and m2 sharing the same correlation

coefficient with Y , by using Ito formula, the characteristic functions of the two

pairs (Y,m1) and (Y,m2) are equal, as such, they have the same probability

law. In the case containing m1, as the optimal π1 is adapted to the filtration

FS
t ∨ Fm1

t , there must exist the functional f s.t. π1
t = f(Yu,m

1
u, 0 ≤ u ≤ t).

We choose π2
t = f(Yu,m

2
u, 0 ≤ u ≤ t) adapted to the filtration FS

t ∨ Fm2

t .

Then the process classes (Y,m1, π1, X1) and (Y,m2, π2, X2) have the same

probability law. As such, X1
T and X2

T have also the same probability law, and
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their expected utilities are equal. As π1 is the optimal one and π2 is an selected

one, Vm1 ≥ Vm2 . Similarly, we have Vm2 ≤ Vm1 . Thus, Vm1 = Vm2 . □

Appendix B. Proof of Proposition 3.2

Before proving the second conjecture, we prepare a lemma as follows:

Lemma .1. Let (Ω,F ,P) be the probability space with G1 and G2 being the

sub-σ-algebras of F . For any random variable X ∈ L1(Ω,F ,P), if X and G1

are independent of G2, then we have

E[X|G1 ∨ G2] = E[X|G1]. (0.21)

Proof. As both sides of (0.21)are G1∨G2-measurable, and the nonempty collec-

tion F0 ≜ {A1 ∩A2|A1 ∈ G1, A2 ∈ G2} of subsets of Ω is a π-system generating

G1 ∨ G2, Eq.(0.21) is equivalent to∫
A1∩A2

E[X|G1 ∨ G2]dP =

∫
A1∩A2

E[X|G1]dP

for ∀ A1 ∩ A2 ∈ F0 . As E[X1A1|G1] and 1A2 are independent, and X1A1 and

1A2 are independent, we have

RHS

=

∫
Ω

1{A1∩A2}E[X|G1]dP =

∫
Ω

1A11A2E[X|G1]dP

=

∫
Ω

E[X1A1|G1]1A2dP = E[E[X1A1 |G1]]E[1A2 ]

= E[X1A1 ]E[1A2 ] =

∫
Ω

X1A11A2dP

=

∫
Ω

1A1∩A2E[X|G1 ∨ G2]dP =

∫
A1∩A2

E[X|G1 ∨ G2]dP.

□

Proof. We can construct artificially a pure noise Brownian motionW noise which

is assumed to be on the probability space (Ω,F,P) and adapted to the filtration

F. If not, there is an extension (Ω̃, F̃, P̃) of (Ω,F,P) which can be defined by

the cartesian product of the original one and the probability space of W noise.

Additionally, the extension of space makes no difference of investing and ob-

jective function as the restriction of π. Thus the probability space can be

arbitrarily fertile for our need. Similarly, m1 and m2 are still regarded as

Brownian motions.
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Next we claim that the observed noise contributes nothing to our strategy

for any given extra information, that is,

sup
π∈Am

EU(XT ) = sup
π∈Am,Wnoise

EU(XT ), (0.22)

where Am,Wnoise := {π|
∫ T

0
π2
t dt <∞, π adapted to FS ∨ Fm ∨ FWnoise}.

Let us review the estimation of µ. In fact, if we let X = µ, G1 = FS
t ∨ Fm

t

and G2 = Fnoise
t in Eq.(0.21), we have

E[µ|FS
t ∨ Fm

t ∨ FWnoise

t ] = E[µ|FS
t ∨ Fm

t ]. (0.23)

Eq.(0.23) tells us that the noise give totally no information of µ. Using the

same method, we can construct innovation process W̄ and sufficient process

Z, in which no differences exist with or without W noise. Thus, (0.22) holds.

Taking m = m1, we obtain

sup
π∈Am1

EU(XT ) = sup
π∈Am1,Wnoise

EU(XT ).

Define the process m3 := {m3
t , t ≥ 0}:

m3
t =

∫ t

0

ρ2(s)ρ1(s)
dm1

s +

√
1−

[
ρ2(s)

ρ1(s)

]2
dW noise

s

 . (0.24)

where ρ2(s)
ρ1(s)

:= 0 if ρ1(s) = 0, ρ2(s) = 0. Then m3 is a Brownian motion with

the property that ρ3(t) := d⟨m,W ⟩t = ρ2(t). Using Proposition ??, we have

sup
π∈Am2

EU(XT ) = sup
π∈Am3

EU(XT ).

As Am3 ⊂ Am1,Wnoise , based on the definition of supreme, we obtain

sup
π∈Am3

EU(XT ) ≤ sup
π∈Am1,Wnoise

EU(XT ).

Thus

sup
π∈Am1

EU(XT ) ≥ sup
π∈Am2

EU(XT ),

that is, Vm1 ≥ Vm2 . □

Appendix C. Proof of Theorem 3.3

Proof.

dYt = (µ− 1

2
σ2)dt+ σdWt, t ≥ 0, Y0 = 0. (0.25)
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Define n = {nt :=
∫ t

0
q(s)[dWs − ρ(s)dms], 0 ≤ t ≤ T}. Assumption 3.1

guarantees that the process n is well-defined. Furthermore, n is a Brownian

motion and orthogonal to the processm. And we have the following orthogonal

decomposition of W :

dWt = ρ(t)dmt + q(t)−1dnt.

Using SDE(0.25), we obtain[
dYt − σρ(t)dmt +

1

2
σ2dt

]
= µdt+ σq(t)−1dnt.

Define the posterior distribution:

p(u, t)du := P (µ ∈ du|FS
t ∨ Fm

t ), ∀u ∈ R.

Using the same detailed calculation as in Wonham (1964) , we have

p(u, t)du (0.26)

= p(u, 0)du exp

{
−1

2
u2
∫ t

0

σ−2q(s)2ds

+u

∫ t

0

σ−2q(t)2
[
dYs − σρ(s)dms +

1

2
σ2ds

]}
/∫

R

p(u, 0)du exp

{
−1

2
u2
∫ t

0

σ−2q(s)2ds

+u

∫ t

0

σ−2q(t)2
[
dYs − σρ(s)dms +

1

2
σ2ds

]}
.

The prior distribution of µ yields

p(u, 0)du =
1√
2πσ2

0

e
− (u−µ0)

2

2σ2
0 .

Putting it in (0.26), we obtain

p(u, t)du (0.27)

=
1√

2π σ2

t0+
∫ t
0 q(s)2ds

×

exp

−

[
u−

(
1
2
σ2 +

y0+
∫ t
0 q(t)2(dYs−σρ(s)dms)

t0+
∫ t
0 q(s)2ds

)]2
2 σ2

t0+
∫ t
0 q(s)2ds

 .
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Therefore

E[µ|FS
t ∨ Fm

t ] =

∫
R

up(u, t)du (0.28)

=
1

2
σ2 +

y0 +
∫ t

0
q(t)2 [dYs − σρ(s)dms]

t0 +
∫ t

0
q(s)2ds

.

□

Appendix D. Proof of Theorem 3.4

Proof. (1) CARA case: utility function U(x) = − 1
β
e−βx. We use the ansatz:

V (t, x, z) = U(er(T−t)x+ ψ(t, z)).

Then the HJB equation corresponding to V (t, x, z) becomes the following PDE

of ψ:

0 =− βV

[
ψt + π∗(z − r)er(T−t) − β

1

2
σ2π∗2e2r(T−t) (0.29)

−βσ2π∗ 1

τ(t)
er(T−t)ψz − β

1

2
σ2(−1

τ
)′(t)ψ2

z +
1

2
σ2(−1

τ
)′(t)ψzz

]
,

where

π∗ = e−r(T−t)
(z − r)− βσ2 1

τ(t)
ψz

βσ2
.

Putting π∗ into (0.29) yields

ψt +
β
[
1
β
(z − r)− σ2 1

τ(t)
ψz

]2
2σ2

+
1

2
σ2(−1

τ
)′(t)[−βψ2

z + ψzz] = 0. (0.30)

We guess that ψ has the following form:

ψ(t, z) =
1

2
a(t)(z − r)2 + b(t)(z − r) + c(t).

Substituting the form of ψ into Eq.(0.30), we have

1

2
a′(t) +

β
[
1
β
− σ2 1

τ(t)
a(t)

]2
2σ2

(0.31)

+
1

2
σ2(−1

τ
)′(t)(−β)a(t)2 = 0, a(T ) = 0,

b′(t) + (· · · )b(t) = 0, b(T ) = 0, (0.32)

c′(t) + (· · · )b(t) + 1

2
σ2(−1

τ
)′(t)(a(t)) = 0, c(T ) = 0. (0.33)
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It follows that ψ(T, z) = 0 and b(t) = 0 for t ∈ [0, T ]. To get a, we define

m(t) =
1

β
− σ2 1

τ(t)
a(t).

Using the ODE of a(t),

τ(t)m′(t) + β [τ ′(t)− 1]m(t)2 − τ ′(t)m(t) = 0,

which is a Riccati equation. Let d(t) = 1
m(t)

, the Riccati equation is trans-

formed into the following ODE:

d′(t) = −τ
′(t)

τ(t)
d(t) +

β[τ ′(t)− 1]

τ(t)
.

Thus

d(t) = β + β(T − t)
1

τ(t)
,

m(t) =
1

β + β(T − t) 1
τ(t)

,

a(t) =
τ(t)

σ2

[
1

β
− 1

β + β(T − t) 1
τ(t)

]

=
1

βσ2

τ(t)(T − t)

τ(t) + (T − t)
,

c(t) =

∫ T

t

1

2
σ2(−1

τ
)′(s)(a(s))ds

=
1

2β

∫ T

t

τ ′(s)(T − s)

τ(s)[τ(s) + (T − s)]
ds.

(2) As CRRA case is intricacy, we show the proof in three different cate-

gories: The first one is U(x) = x1−γ

1−γ
with the necessary condition that t0

T
> 1−γ

γ
,

the second one with t0
T
≤ 1−γ

γ
and the last one is U(x) = ln(x).

(i) If U(x) = x1−γ

1−γ
with t0

T
> 1−γ

γ
, we use the ansatz:

V (t, x, z) = U(er(T−t)x) exp{γψ(t, z)}.

The HJB equation corresponding to V (t, x, z) is equivalent to the following:

0 = γV

[
ψt +

1− γ

γ

π∗

x
(z − r)− 1

2
σ2(

π∗

x
)2(1− γ)

+σ2π
∗

x

1− γ

τ(t)
ψz +

1

2
σ2(−1

τ
)′(t)

[
γψ2

z + ψzz

]]
,

where

π∗ = x
σ2 1

τ(t)
ψz +

1
γ
(z − r)

σ2
.



OPTIMAL INFORMATION ACQUISITION FOR ELIMINATING ESTIMATION RISK 27

Then

ψt +
(1− γ)

[
σ2 1

τ(t)
ψz +

1
γ
(z − r)

]2
2σ2

+
1

2
σ2(−1

τ
)′(t)

[
γψ2

z + ψzz

]
= 0.

We guess

ψ(t, z) =
1

2
a(t)(z − r)2 + b(t)(z − r) + c(t).

Similar to that of CARA case,

1

2
a′(t) +

(1− γ)
[
σ2 1

τ(t)
a(t) + 1

γ

]2
2σ2

+
1

2
σ2(−1

τ
)′(t)γa(t)2 = 0, a(T ) = 0,

b(t) ≡ 0, b(T ) = 0,

c′(t) +
1

2
σ2(−1

τ
)′(t)(a(t)) = 0, c(T ) = 0.

As for the equation of a, first making a substitution:

m(t) = σ2 1

τ(t)
a(t) +

1

γ
,

we get a Riccati equation of m as follows:

τ(t)m′(t) + [(1− γ) + γτ ′(t)]m(t)2 − τ ′(t)m(t) = 0. (0.34)

Using a substitution: d(t) = 1
m(t)

, the Riccati equation is the following solvable

form:

d′(t) = −τ
′(t)

τ(t)
d(t) +

(1− γ) + γτ ′(t)

τ(t)
.

Solving the last ODE,

d(t) = γ − (1− γ)(T − t)
1

τ(t)
,

m(t) =
1

γ − (1− γ)(T − t) 1
τ(t)

.
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Then

a(t) =
τ(t)

σ2

[
1

γ − (1− γ)(T − t) 1
τ(t)

− 1

γ

]

=
1

γσ2

τ(t)1−γ
γ
(T − t)

τ(t)− 1−γ
γ
(T − t)

,

c(t) =

∫ T

t

1

2
σ2(−1

τ
)′(s)(a(s))ds

=
1

2γ

∫ T

t

τ ′(s)1−γ
γ
(T − s)

τ(s)[τ(s)− 1−γ
γ
(T − s)]

ds.

Thus we obtain that closed-form of the value function is solved in the first

situation. Moreover, if γ > 1, the value function will always be bounded. But

if 0 < γ < 1, the necessary condition that t0
T
> 1−γ

γ
assures the boundedness

of the value function.

(ii) If U(x) = x1−γ

1−γ
with t0

T
≤ 1−γ

γ
, the value function will be infinite, the

above method of “ansatz” does not work. Here we take the strategy that

πt = kXt. We will show that if k → ∞, the utility expectation will tend to

infinite.

Indeed, if πt = kXt, the terminal state is

XT = erTx0 exp

{[
k(µ− r)− 1

2
σ2k2

]
T + σkWT

}
.

As µ and WT are independent, we have

E
{
U(Xk

T )/U(e
rTx0)

}
=E

{
exp

[
(1− γ)(k(µ− r)− 1

2
σ2k2)T + (1− γ)σkWT

]}
=exp

{
(1− γ)k(µ0 − r)T − 1

2
(1− γ)σ2k2T

+
1

2
(1− γ)2σ2k2T +

1

2
(1− γ)2k2σ2T 2 1

t0

}
=exp

{
(1− γ)k(µ0 − r)T +

1

2
(1− γ)2σ2k2T

[
T

t0
− γ

1− γ

]}
.

It follows that EU(Xk
T ) → ∞ as k → ∞. Thus, the original problem is mean-

ingless no matter the extra information is included or not. The phenomenon

happens when the investor has less relative risk aversion and the ambiguity

hidden in drift term is really too much that the extreme situation where the
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drift term is far beyond the normal life weighted a lot in probability which

cause the expectation utility infinite. Moreover, if T
t0
− γ

1−γ
< 0, then

sup
k
E{U(Xk

T )}

= U(erTx0) exp

{
1

2

T
γ

1−γ
− T

t0

(µ0 − r)2

σ2

}

= U(erTx0) exp

{
γ · 1

2
a(0)(µ0 − r)2

}
.

From which we see that a(t) is a important function to weight the informative

clock and remaining time to the maturity. That is why with any extra informa-

tive a(0) is the same which will benefit the discussion of value of information

later. In this perspective, the calculation of a(t) in fact is not only by trick.

(iii) If U(x) = ln(x), we use the ansatz:

V (t, x, z) = U(er(T−t)x) + ψ(t, z).

Similar to that of (i), we have

ψt + (z − r)(
π∗

x
)− 1

2
σ2(

π∗

x
)2 +

1

2
(−1

τ
)′ψzz = 0,

π∗ = x
z − r

σ2
.

And

ψ(t, z) =
1

2
a(t)(z − r)2 + c(t),

a(t) =
1

σ2
(T − t),

c(t) =

∫ T

t

1

2
σ2(−1

τ
)′(s)(a(s))ds =

1

2

∫ T

t

τ ′(s)(T − s)

τ 2(s)
ds. (0.35)

□

Appendix E. Proof of Proposition 3.5

Proof. If we want to compare the value of Vm1 and Vm2 , we only need to

compare the value of V 1(0, x0, µ0) and V
2(0, x0, µ0).

In fact, a(0) is the value determined by τ(0) and T , which is irrelevant

to any extra information in both CARA case and CRRA case (see Proof of

Theorem 3.4(3)).The only comparison of value function will focus on the value

of c(0). We make the comparison of c(0) with different informative clock by

some transformations.
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In the case of CARA for example, based on Theorem 3.4, we have

c(0) =
1

2β

∫ T

0

τ ′(s)(T − s)

τ(s) [τ(s) + (T − s)]
ds

=
1

2β

∫ T

0

[
1

τ(s)
− 1

τ(s) + T − s

]
τ ′(s)ds

=
1

2β

∫ τ(T )

0

[
1

u
− 1

u+ T − τ−1(u)

]
du,

where the last equation is by the variable transformation u = τ(s). Then

c1(0)− c2(0) (0.36)

=
1

2β

∫ τ1(T )

τ2(T )

[
1

u
− 1

u+ T − (τ 1)−1(u)

]
du (0.37)

+
1

2β

∫ τ2(T )

0

[
1

u+ T − (τ 2)−1(u)
− 1

u+ T − (τ 1)−1(u)

]
du

≥ 0 + 0 = 0,

where c1(0) and c2(0) are in the value function V 1 and V 2 respectively. The

second term is deduced from the fact (τ 1)−1(u) ≤ (τ 2)−1(u), where τ−1 is the

reverse function of τ . Then

V 1 (0, x0, µ0)

= U

(
erTx0 +

1

2
a(0)(µ0 − r)2 + c1(0)

)
≥ U

(
erTx0 +

1

2
a(0)(µ0 − r)2 + c2(0)

)
= V 2 (0, x0, µ0) .

This is what we desire.

Similarly, the conclusion can still be proven by the same way as in CRRA

case. When γ ̸= 1.

c(0) =
1

2γ

∫ T

0

τ ′(s)1−γ
γ
(T − s)

τ(s)
[
τ(s)− 1−γ

γ
(T − s)

]ds
=

1

2γ

∫ T

0

[
1

τ(s)− 1−γ
γ
(T − s)

− 1

τ(s)

]
τ ′(s)ds

=
1

2γ

∫ τ(T )

0

[
1

u− 1−γ
γ
[T − τ−1(u)]

− 1

u

]
du.
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Similarly, If γ < 1, we have c1(0) ≥ c2(0). But if γ > 1, we have c1(0) ≤
c2(0). But it doesn’t matter for the comparison of value function if we notice

that the utility functions U(x) are positive or negative with γ < 1 or γ > 1 .

Hence, we obtain

V 1 (0, x0, µ0)

= U(erTx0) exp

{
γ ·
[
1

2
a(0)(µ0 − r)2 + c1(0)

]}
≥ U(erTx0) exp

{
γ ·
[
1

2
a(0)(µ0 − r)2 + c2(0)

]}
= V 2 (0, x0, µ0) .

At last, when γ = 1,

c(0) =
1

2

∫ T

0

τ ′(s)(T − s)

τ 2(s)
ds

=
1

2

∫ τ(T )

0

T − τ−1(u)

u2
du

It is easy to see the relation with c1(0) ≥ c2(0), we also have

V 1 (0, x0, µ0)

= rT + ln(x0) +
1

2
a(0)(µ0 − r)2 + c1(0)

≥ rT + ln(x0) +
1

2
a(0)(µ0 − r)2 + c2(0)

= V 2 (0, x0, µ0) .

Thus, we end the proof. □

Appendix F. Proof of Theorem 3.6

Proof. In the case of CARA utility function, if we define

L(t, τ, τ ′) :=
1

2β

(T − t)τ ′(t)

τ(t)[τ(t) + T − t]
− λ[τ ′(t)− 1]2,

then Problem (3.18) is equivalent to solving sup
τ

∫ T

0
L(t, τ(t), τ ′(t))dt. In fact,

based on the method of variations, we obtain that the optimal functional has

to satisfy the necessary condition as the Euler-Lagrange equation:

d

dt

∂

∂τ ′
L(t, τ(t), τ ′(t)) =

∂

∂τ
L(t, τ(t), τ ′(t)).

It is simplified as

τ ′′(t) +
1

4βλ

1

[τ(t) + T − t]2
= 0. (0.38)
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In the case of CRRA utility function with γ ̸= 1, it will become a little

complex because the Euler-Lagrange method will become invalid due to the

nonlinear part of the integration. We use the method of duality to make the

integration linear.

Noticing that x0

C2
exp(x) has the duality function y − y ln(C2y

x0
), we have

x0
C2

exp(x) = sup
y>0

{
y − y ln(

C2y

x0
) + xy

}
. (0.39)

By using Eq.(3.16) and Eq.(0.39), the objective function Net(τ) is

Net(τ) = sup
y>0

{
y − y ln(

C2y

x0
)− x0

+y

[∫ T

0

1

2(1− γ)

τ ′(t)1−γ
γ
(T − t)

τ(t)[τ(t)− 1−γ
γ
(T − t)]

dt

]

−
∫ T

0

λ[τ ′(t)− 1]2dt

}
.

If we define the

Ly(t, τ, τ ′)

:=
y

2(1− γ)

τ ′(t)1−γ
γ
(T − t)

τ(t)[τ(t)− 1−γ
γ
(T − t)]

− λ[τ ′(t)− 1]2,

then

Net(τ) = sup
y>0

{
y − y ln(

C2y

x0
)− x0 +

∫ T

0

Ly(t, τ, τ ′)dt

}
.

As such,

sup
τ
Net(τ)

= sup
τ

sup
y>0

{
y − y ln(

C2y

x0
)− x0 +

∫ T

0

Ly(t, τ, τ ′)dt

}
= sup

y>0
sup
τ

{
y − y ln(

C2y

x0
)− x0 +

∫ T

0

Ly(t, τ, τ ′)dt

}
.

Then we fix y > 0 and solve

sup
τ

{
y − y ln(

C2y

x0
)− x0 +

∫ T

0

Ly(t, τ, τ ′)dt

}
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by Euler-Lagrange equation with

d

dt

∂

∂τ ′
Ly(t, τ(t), τ ′(t)) =

∂

∂τ
Ly(t, τ(t), τ ′(t)).

It follows that

τ ′′(t) +
y

4γλ

1

[τ(t)− 1−γ
γ
(T − t)]2

= 0. (0.40)

Moreover, for U(x) = ln(x), as the calculation is similar and the outcome

coincide (3.20) if we treat γ = 1, we do not need to carefully distinguish the

case whether γ equals to one. □
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