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Abstract

Recent years have experienced increasing utiliza-
tion of complex machine learning models across
multiple sources of data to inform more gener-
alizable decision-making. However, distribution
shifts across data sources and privacy concerns
related to sharing individual-level data, coupled
with a lack of uncertainty quantification from ma-
chine learning predictions, make it challenging
to achieve valid inferences in multi-source envi-
ronments. In this paper, we consider the problem
of obtaining distribution-free prediction intervals
for a target population, leveraging multiple po-
tentially biased data sources. We derive the effi-
cient influence functions for the quantiles of unob-
served outcomes in the target and source popula-
tions, and show that one can incorporate machine
learning prediction algorithms in the estimation of
nuisance functions while still achieving paramet-
ric rates of convergence to nominal coverage prob-
abilities. Moreover, when conditional outcome
invariance is violated, we propose a data-adaptive
strategy to upweight informative data sources for
efficiency gain and downweight non-informative
data sources for bias reduction. We highlight the
robustness and efficiency of our proposals for a
variety of conformal scores and data-generating
mechanisms via extensive synthetic experiments.
Hospital length of stay prediction intervals for
pediatric patients undergoing a high-risk cardiac
surgical procedure between 2016-2022 in the U.S.
illustrate the utility of our methodology.
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1. Introduction
Conformal inference is a set of methods used to construct
distribution-free, nonparametric prediction intervals, for an
outcome Y on the basis of covariates X , with finite-sample
marginal coverage guarantees. The framework was first in-
troduced by Vovk et al. (2005; 2009) and has since been ex-
tended to regression settings under covariate shift (Lei et al.,
2018; Tibshirani et al., 2019; Lei & Candès, 2021). Recently,
Yang et al. (2024) proposed robust prediction intervals under
covariate shift by revealing a connection with the missing
data literature, and appealing to modern semiparametric ef-
ficiency theory. However, Yang et al. (2024) assume only a
single data source such that the conditional outcome distri-
bution Y | X—and therefore the conditional distribution of
conformal scores—is homogeneous. In general, conformal
prediction methods have focused on covariate shift while as-
suming that conditional outcome distributions are invariant
across environments (Peters et al., 2016). We note, how-
ever, that some work has studied label shift settings (e.g.,
Podkopaev & Ramdas (2021)), but this involves the analo-
gously strong assumption that the distribution of X | Y is
homogeneous. We refer the reader to Barber et al. (2023)
and the extensive literature review therein for other works.

In reality, conditional outcome invariance is unlikely to
hold in the real world. In recent years, there has been a
huge increase in popularity in using large clinical research
networks that facilitate multi-center collaboration. One
goal with these networks is to leverage the multiple di-
verse data sources to mitigate issues related to small or
non-representative data, thereby increasing statistical power
for probing various scientific hypotheses. However, differ-
ent clinical sites may be heterogeneous in terms of patient
populations, treatment practices, and patient outcomes. Fur-
thermore, since individual-level data is protected by privacy
regulations such as HIPAA and GDPR, direct pooling of
data across sites is typically not feasible. Federated transfer
learning methods have been proposed as powerful tools for
integrating heterogeneous data (Duan et al., 2020a; Li et al.,
2023), and have been applied to yield robust point estima-
tion of the effect of a treatment on a combined population
across sites (Xiong et al., 2023; Vo et al., 2022b), and for the
treatment effect on a specific target population (Han et al.,
2021; 2024; 2023; Vo et al., 2022a), while accounting for
data-sharing constraints and heterogeneity (i.e., covariate
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Multi-Source Conformal Inference Under Distribution Shift

shift and different conditional outcome distributions). It has
also been applied in problems related to interval estimation,
e.g., constructing robust confidence intervals by selecting
eligible sites (Guo et al., 2023) with uniform coverage guar-
antees.

In conformal prediction, Lu et al. (2023) proposed a notion
of partial exchangeability, but the focus of their work is to
construct prediction intervals on the combined population
across sites, and not any particular target site. Relatedly,
Plassier et al. (2023) considered federated conformal predic-
tion under label shift via quantile regression, and Humbert
et al. (2023) proposed a quantile-of-quantiles estimator for
conformal prediction by aggregating multiple quantiles re-
turned by each site. To date, there are no federated learning
methods developed for conformal inference on a missing
outcome in a setting with distribution shift across multi-site
data, and where data cannot be directly combined due to pri-
vacy concerns. When conditional outcome distributions are
not the same across sites, there is likely to be poor conformal
set performance with existing methods when transferring
prediction models (e.g., learned conditional quantiles) from
one set to another, e.g., deployment to target distributions
that are different from the source distribution (Jin et al.,
2023a; Cai et al., 2023).

Our work differs from recent work by Lee et al. (2023) and
Dunn et al. (2023) in important ways. Lee et al. (2023) fo-
cus on predicting an outcome on a new subject from a new
(unobserved) site. Dunn et al. (2023) focus on this same
task, and also consider a simplified version of the problem
of predicting an outcome on a new subject from an existing
(observed) site—they propose an unsupervised method that
does not allow for the inclusion of covariates, and leave
the supervised version as an open problem. Neither work
allows for outcome missingness. In this paper, we fill these
methodological and applied gaps by leveraging conformal
prediction tools to provide patients with personalized predic-
tions using multi-source data, accounting for missing data
and distribution shifts, i.e., covariate shift and heterogeneous
conditional outcome distributions. We propose a method
to obtain valid prediction intervals, exploiting information
from multiple potentially heterogeneous sites, and respect-
ing the privacy of individual-level data when it cannot be
shared. Our proposal shares the marginal coverage proper-
ties of conformal prediction methods and builds on modern
semiparametric efficiency theory and federated learning for
more robust and efficient uncertainty quantification.

2. Prediction interval construction
2.1. Notation and background

Consider the following multi-site paradigm with missing
data. We have data from K sites, and for each sub-

ject in each site, we observe a covariate vector X . Let
T ∈ {0, 1, ...,K − 1} denote the study sites, where T = 0
indicates the target site and the remainder are source sites.
Let R be an indicator for observing the outcome Y , i.e.,
R = 1 if Y is observed and R = 0 if Y is missing.
The data are assumed to be a random sample of n i.i.d.
copies of O = (X, T,R,RY ) ∼ P. Throughout, let
Pn(f) ≡ 1

n

∑n
i=1 f(Oi) be shorthand for the empirical

average. To proceed, we make the following standard as-
sumptions.
Assumption 2.1 (Missing at random [MAR]).

R ⊥⊥ Y | T,X.

Assumption 2.2 (Positivity). For ϵ > 0,

P[P[R = 1 | T,X] ≥ ϵ] = 1.

Note that MAR (i.e., Assumption 2.1), which asserts that
missingness status is not informative about outcomes, given
T and X , and positivity (i.e., Assumption 2.2), which re-
quires that no subjects have outcomes that could never be
observed, are both required for point identification of the
distribution of missing outcomes and are standard in this
literature (Lei & Candès, 2021; Yang et al., 2024)

We construct prediction intervals of the form Ĉα(X), for
α ∈ (0, 1), such that

P(Y ∈ Ĉα(X) | T = 0, R = 0) ≥ 1− α.

That is, our predictions should be tailored for missing out-
comes in the target site, with marginal coverage guaran-
tees. In the spirit of conformal inference, we introduce a
conformal score, S(X, Y ), which for now we assume is
fixed. Our predictions will be based on this score, namely
Ĉα(X) = {y ∈ R : S(X, y) ≤ r̂}, where r̂ is an estimate
of r0 = r0(α)(P), the (1 − α)-quantile of the conformal
score S(X, Y ) in the target site.

Under MAR, the functional r0 = r0(α)(P) is identified as
the solution to an estimating equation:

P(S(X, Y ) ≤ r0 | T = 0, R = 0)

= EP(P(S(X, Y ) ≤ r0 | T = 0,X, R = 1) | T = 0, R = 0)

= 1− α.

Without imposing any further structure, the nonparametric
influence function of this functional can be derived (Yang
et al., 2024).
Theorem 2.3 (Yang et al. (2024)). Under Assumptions 2.1
and 2.2, the nonparametric influence function of the func-
tional r0 = r0(α)(P) is given by

ṙ0(O;P)
∝ I(T = 0)

[
(1−R){m0(r0,X)− (1− α)}

+Rη0(X){I(S(X, Y ) ≤ r0)−m0(r0,X)}
]

=: φ0(O; r0,m0, η0), (1)
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where

m0(r,X) = P(S(X, Y ) ≤ r | X, T = 0, R = 1)

is the cumulative distribution function (CDF) of the confor-
mal score, and

η0(X) =
P(R = 0 | T = 0,X)

P(R = 1 | T = 0,X)

is the missingness risk ratio.

Yang et al. (2024) propose a robust estimator r̂0 that solves
0 = Pn [φ0(O; r, m̂0, η̂0)] for r, where m̂0, η̂0 are esti-
mated nuisance functions.

Applying the method of Yang et al. (2024) in our multi-
source data setting would only use data from the target
site T = 0 itself. To leverage data from the other K − 1
sites, we make two contributions: (i) we propose a fully
efficient estimator of r0 under further structural assumptions
regarding outcome distribution homogeneity (Section 2.2),
and (ii) develop (Section 2.3) and implement (Section 3) a
data-adaptive approach when these structural assumptions
may be violated.

2.2. Efficient estimation under homogeneity

When subjects from different data sources are deemed to
be similar, it may be reasonable to assert that the outcome
distribution is common across them. This idea is formalized
with the following structural assumption.
Assumption 2.4 (Common conditional outcome distribution
[CCOD]). T ⊥⊥ Y | X .

Notably, Assumption 2.4 entails no restriction on the covari-
ate distribution across sites. That is, any level of covariate
shift is permitted. Under CCOD (i.e., Assumption 2.4), data
from non-target source sites may be leveraged to improve
the estimation of the target site quantile r0. Our first result
generalizes Theorem 2.3 to the multi-source setting under
CCOD.
Theorem 2.5. Under Assumptions 2.1, 2.2, and 2.4, the
semiparametric efficient influence function (EIF) of r0 =
r0(α)(P) is given by

ṙCCOD
0 (O;P)
∝ I(T = 0)(1−R) {m(r0,X)− (1− α)}
+Rη(X)q0(X) {I(S(X, Y ) ≤ r0)−m(r0,X)}

=: φCCOD(O; r0,m, η, q0), (2)

where

m(r,X) = P(S(X, Y ) ≤ r | X, R = 1)

is the global CDF of the conformal score,

η(X) =
P(R = 0 | X)

P(R = 1 | X)

is the global missingness risk ratio, and

q0(X) = P[T = 0 | X, R = 0]

is the target-site propensity.

Compared to the nonparametric influence function of the
(1 − α)-quantile of the conformal score (1), which uses
data from the target site only, the semiparametric EIF (2)
leverages data from all sites with observed outcomes Y .
Under CCOD, we propose the estimator r̂CCOD which
solves 0 = Pn

[
φCCOD(O; r, m̂, η̂, q̂0)

]
for r. We perform

cross-fitting such that the nuisance estimators (m̂, η̂, q̂0)
are estimated on an independent data split from the given
estimating equation. The following result demonstrates
the marginal coverage properties of the conformal interval
ĈCCOD

α (X) = {y ∈ R : S(X, y) ≤ r̂CCOD}.

Theorem 2.6. Let Dn denote the training data with which
r̂CCOD is fit, and let (X, T,R) denote a new indepen-
dent test point with associated outcome Y . Assume that
(m̂, η̂, q̂0) are each uniformly bounded, and that m̂( · ,x)
is a non-decreasing function, for each x. Under Assump-
tions 2.1, 2.2, and 2.4,

P[Y ∈ ĈCCOD
α (X) | T = 0, R = 0, Dn]

= (1− α) +OP(n
−1/2 +Rn),

where

Rn =
{
∥η̂ − η∥+ ∥q̂0 − q0∥

}
sup
r
∥m̂(r, ·)−m(r, ·)∥.

Here ∥f∥2 = EP(f(O)2) is the squared L2(P) norm.

Theorem 2.6 says that conditional on training data, the pro-
posed prediction interval attains nominal coverage at es-
sentially parametric rates (some authors reserve the term
parametric rate for a oP(n

−1/2) remainder), so long as the
second order asymptotic bias term Rn converges fast enough
to zero. The robustness of our estimator is made clear from
inspecting this bias, and Theorem 2.6 supports flexible (i.e.,
non- or semi-parametric) estimators for component nuisance
functions: Rn = OP(n

−1/2) will hold whenever m0, η0, q0
are estimated at OP(n

−1/4) rates, which may be achievable
under smoothness, sparsity, or other structural conditions.
Since the bias of our coverage error rate is of the order of
the product of two errors, it can be substantially smaller
relative to that of related work by Lei & Candès (2021)
(which would include data from the target site only in this
setting), which has a bias of the order of the minimum of
two errors (Yang et al., 2024). We note that the boundedness
assumptions in Theorem 2.6 are standard, and that m̂( · ,x)
should well be monotone, as it estimates the CDF m( · ,x).
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Remark 2.7. Whereas the coverage guarantees for prediction
intervals in Lei & Candès (2021) appear to hold only under
a particular choice of conformal score (conditional quan-
tile regression [CQR]), our methodology is not restricted
by the choice of conformal score. To highlight the robust-
ness of our procedure to the choice of conformal score, in
the numerical experiments of Section 3, we evaluate three
different conformal scores:

• CQR score (see Lei & Candès (2021)).

• Absolute residual (ASR): SASR(xi, yi) = |yi − µ̂(xi)|,
where µ̂(·) is a regression model to estimate µ(x) =
E{Y | X = x}.

• Locally weighted ASR (Lei et al., 2018), defined by

Slocal ASR(xi, yi) =
|yi − µ̂(xi)|

ρ̂(xi)
,

where ρ̂(xi) is an estimate of the conditional mean
absolute deviation (MAD), E{|Yi−µ(Xi)|

∣∣Xi = xi},
a function of xi fitted on D11.

2.3. Heterogeneous outcome distribution across sites

In practical settings, it will often be unreasonable to assume
that the conditional outcome distribution is the same across
all sites. In such cases, some source sites may provide
relevant information for constructing target-site specific pre-
diction intervals, whereas other sites may not. Concretely,
the distribution of Y given (T = k,X) may be close to that
in the target site T = 0 for some k, but not others. In this
section, we present an approach that combines information
from target and source sites in a data-adaptive manner. Our
approach is also privacy-preserving, in that it involves only
minimal data sharing of summary statistics across sites.

Our proposal is to construct a (1−α)-quantile for the target
site by taking a weighted average of estimated quantiles
(r̂0, r̂1, . . . , r̂K−1), where r̂k uses data from site k for each
k. We call the weights in the weighted average federated
weights. In the following subsections, we describe how the
site-specific quantiles are estimated, and how the federated
weights are obtained.

2.3.1. TARGET SITE

For the target site, we estimate r̂0 nonparametrically as in
Section 2.1. That is, we use the approach motivated by The-
orem 2.3, and take r̂0 that solves Pn [φ0 (O; r̂0, m̂0, η̂0)] =
0, where φ0 is the nonparametric influence function (1).

2.3.2. SOURCE SITES

To construct a target-site specific quantile estimate using
data from site k ∈ {1, . . . ,K − 1}, we make a working
partial CCOD assumption that outcomes have the same

conditional distribution in site k as in the target site. Note
that we use this working partial CCOD assumption only
to derive the form of the influence function; to aggregate
information from source sites, we derive federated weights
to account for possible violations of CCOD (Section 2.3.3).
An influence function under this assumption is derived in
the following result.
Theorem 2.8. Under Assumptions 2.1, 2.2, and the partial
CCOD assumption p(y | X, T = k) ≡ p(y | X, T = 0),
an influence function (IF) of r0 is given by

ṙk(O;P)

∝ I(T = 0, R = 0)

P(T = 0, R = 0)
[m0(r0,X)− (1− α)]

+
I(T = k,R = 1)

P(T = k,R = 1)
ωk,0(X)[I(S(X, Y ) ≤ r0)−mk(r0,X)]

=: φk (O; r0,m0,mk, ωk,0) ,

where mk(r,X) = P(S(X, Y ) ≤ r | X, T = k,R = 1)
is the CDF of the conformal score in site k, and

ωk,0(x) =
p(x | T = 0, R = 0)

p(x | T = k,R = 1)

is a density ratio function of covariates X under target site
to source site k.

Given some nuisance estimators m̂0, m̂k and ω̂k,0, we take
r̂k that solves

Pn [φk (O; r̂k, m̂0, m̂k, ω̂k,0)] = 0.

By construction, the quantile estimate r̂k uses data from
both site k and the target site, but note that the principal
need for data sharing comes from the estimation of the
density ratio ωk,0. This can be done with the passing of only
coarse summary statistics under flexible models (Han et al.,
2021).

2.3.3. AGGREGATION ACROSS SITES

To aggregate information from the target and source sites,
we first compute the discrepancy measures χ̂k = |r̂0 − r̂k|,
then solve for federated weights ŵ = (ŵ0, ŵ1, . . . , ŵK−1)
that minimize the following loss:

Q(w) = Pn

[{
φ0(O; r̂0, m̂0, η̂0)

−
K−1∑
k=1

wkφk(Oi; r̂0, m̂0, m̂k, ω̂k,0)

}2
]

+
1

n
λ

K−1∑
k=1

|wk| χ̂2
k, (3)

subject to 0 ≤ wk ≤ 1, for all k ∈ {0, 1, . . . ,K − 1},
and

∑K−1
k=0 wk = 1, and λ is a tuning parameter chosen
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by cross-validation. Heuristically, our approach anchors at
the nonparametric estimate r̂0 and weights site k when it is
deemed similar enough to the target site (Han et al., 2021).

Finally, we compute r̂0,fed as the weighted average of the
site-specific quantiles: r̂0,fed =

∑K−1
k=0 ŵkr̂k. The federated

prediction interval is then defined as Ĉfed
α (X) = {y ∈ R :

S(X, y) ≤ r̂0,fed}. In the following, we provide a coverage
guarantee for the prediction interval based on an estimated
quantile that is an arbitrary weighted combination of the
relevant (i.e., oracle) source sites.

Theorem 2.9 (Oracle coverage result). Let

S∗ = {k ≥ 1 : p(y | X, T = k) ≡ p(y | X, T = 0)},

which may be empty, denote the source sites for which
the partial CCOD assumption holds. Let Dn denote the
training data with which r̂0,fed is fit, and let (X, T,R)
denote a new independent test point with associated out-
come Y . Assume that (η̂0, m̂0) and (ω̂k,0, m̂k), for k ∈ S∗,
are each uniformly bounded, and that m̂k( · ,x) is a non-
decreasing function for k ∈ {0} ∪ S∗, for each x. For any
w∗ = (w0, . . . , wK−1) with wk ≥ 0,

∑K−1
k=0 wk = 1, and

satisfying wk = 0 for k ̸∈ {0} ∪ S∗, define

Ĉw∗

α (X) =

{
y ∈ R : S(X, y) ≤

K−1∑
k=0

wkr̂k

}
.

Then under Assumptions 2.1 and 2.2, and conditions (i)–(iii)
of Lemma A.1,

P[Y ∈ Ĉw∗

α (X) | T = 0, R = 0, Dn]

= (1− α) +OP(n
−1/2 +R∗

n),

where

R∗
n = w0

{
∥η̂0 − η0∥ · sup

r
∥m̂0(r, ·)−m0(r, ·)∥

}
+

K−1∑
k=1

wk

{
∥ω̂k,0 − ωk,0∥ · sup

r
∥m̂k(r, ·)−mk(r, ·)∥

+ sup
r
∥m̂k(r, ·)− m̂0(r, ·)∥

}
.

Note that our penalization procedure in (3) is designed such
that wk → 0 whenever k /∈ S∗, akin to adaptive Lasso (Zou,
2006) and trans-Lasso (Fan et al., 2024).

2.4. Estimation with data splitting

To construct target-site-specific prediction intervals for miss-
ing outcomes leveraging information from all sites, we fol-
low the steps described in Algorithm 1. In brief, we ran-
domly split the training data D into two equal-sized folds
D1 ∪ D2. We train the models for the putative CDFs of the

conformal score mk, k = 0, 1, . . . ,K − 1 on D11. Like-
wise, we train the density ratio model ωk,0 on D1. We fit
all nuisance functions using SuperLearner with the base
learners being random forest, elastic net, and generalized
linear model (GLM). SuperLearner is a meta-learning al-
gorithm that creates an optimal weighted average of the
base learners and is shown to be as accurate as the best
possible prediction algorithm (van der Laan et al., 2007).
Density ratio models accommodate flexible basis functions
and higher order terms to capture higher-order differences
such as variance and skewness. One example we consider is
the exponential tilt model, which recovers the entire class of
natural exponential family distributions, including the nor-
mal distribution with mean shift, Bernoulli distribution for
binary covariates, and more (Qin, 1998; Duan et al., 2020b).
We predict the values from the trained models on D2 and
plug these values into the IFs given in Algorithm 1. Figure
1 provides a visualization of the procedure. Full detail on
influence function estimation is given in Algorithm 3.

3. Numerical Experiments
In this section, we evaluate our proposed method by conduct-
ing extensive Monte Carlo simulations, examining aspects
such as marginal coverage, conditional coverage, and the
width of the prediction interval. In each experiment, we
compare our proposed federated method to construct predic-
tion intervals Ĉα(x) against (i) the nonparametric efficient
method described in Yang et al. (2024), which uses data
from the target site only and ignores external source data
(target only) and (ii) the method that assumes CCOD holds
across sites (pooled sample). In Appendix B, we describe
three other methods for learning the federated weights ŵ and
provide complete simulation results (see details in Appendix
B.2).

In total, we consider 3 sample sizes (300, 1000, 3000) ×
3 levels of covariate shift (homogeneous, weakly hetero-
geneous, strongly heterogeneous) × 2 types of outcome
errors (homoskedastic, heteroskedastic) × 3 levels of con-
cept shift (CCOD holds, weak violation, strong violation) ×
3 different conformal scores (ASR, locally weighted ASR,
CQR) = 162 scenarios for our proposed method and the
five competitor methods.

3.1. Data generating process

We generate data from K = 5 sites, where site 0 is the
target site and sites 1 through 4 are source sites, and Ti ∈
{0, · · · , 4} denotes the site of subject i. Our goal is to
construct valid prediction intervals for a testing point from
the target site. We consider the sample size in each site
to be nk ∈ {300, 1000, 3000}, k = 0, ..., 4 and generate
data over M = 500 independent Monte Carlo replications.
We consider three site-specific covariate data generation
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Target Site Source	Site 1 Source	Site 2 Source	Site 𝐾

…	

0 = 𝐏! 𝜑" 𝑶; '𝜃, *𝑚", �̂�" 0 = 𝐏! 𝜑# 𝑶; '𝜃, *𝑚", *𝑚#, *𝜔#," 0 = 𝐏! 𝜑% 𝑶; '𝜃, *𝑚", *𝑚% , *𝜔%,"

1𝜃 = �̂�! 1𝜃 = �̂�"1𝜃 = �̂�# 1𝜃 = �̂�$…	

6𝒘 = argmin𝒘𝑄(𝒘;𝜑!, 𝜑#, … , 𝜑$ )

�̂�&'(,! = 6𝒘* @𝒓

@𝒓 = �̂�!, �̂�#, �̂�", … , �̂�$ *

Prediction	Set	 1𝐶+ 𝑥 = {𝑦: 𝑆 𝑥, 𝑦 ≤ �̂�&'(,!}

0 = 𝐏! 𝜑& 𝑶; '𝜃, *𝑚", *𝑚&, *𝜔%,"

Figure 1: Illustration of the proposed robust algorithm for multi-source conformal prediction. Each θ̂ represented by a
different color is the estimated (1− α)-quantile of the conformal score using data from the site with the same color. m̂0 (in
red) is the estimated CDF of the conformal score using only the target site data. The other m̂k (k ≥ 1) are the estimated
CDFs of the conformal scores from source sites, and ω̂k,0 (k ≥ 1) is the density ratio of site k versus the target site. The
federated r̂fed,0 is a weighted average of the site-specific quantiles, with weights given by ŵ. The prediction interval Ĉα(x)
is the set of outcomes y such that the corresponding conformal scores S(x, y) in the target are below the threshold r̂fed,0.

Algorithm 1 Robust multi-source conformal prediction

1: Input: Training data D = {Oi = (Xi, Ti, Ri, RiYi), i = 1, . . . , n} with number of sites K > 0, and the target site
is indexed by T = 0; desired coverage probability 1 − α; estimators of nuisance functions mk(θ,X), η0(X), and
ωk,0(X) for k = 1, . . . ,K − 1; a tuning parameter λ (in the optimization step); a testing point X = x from the target
site.

2: Output: A valid prediction set Ĉα(x).
3: Split the training data D randomly into D1 and D2, where Dj = {Oi ∈ D, i ∈ Ij} for j = 1, 2 and I1 ∪ I2 =

{1, 2, . . . , n}.
4: Fit nuisance functions m̂k and ω̂k,0 using SuperLearner on D1 and predict them on D2.

5: For the target site k = 0, find θ̂ = r̂0 that solves 0 =
1

|I2|
∑
i∈I2

φ0(Oi; θ̂, m̂0, η̂0).

6: For source sites k ≥ 1, find θ̂ = r̂k that solves 0 =
1

|I2|
∑
i∈I2

φk(Oi; θ̂, m̂0, m̂k, ω̂k,0). Compute χ̂k = |r̂0 − r̂k|.

7: Solve for aggregation weights ŵ = (ŵ0, ŵ1, . . . ŵK−1) that minimize Q(w) subject to 0 ≤ wk ≤ 1 and
K−1∑
k=0

wk = 1.

8: Compute θ̂ = r̂0,fed =

K−1∑
k=0

ŵkr̂k.

9: Return: The prediction set Ĉα(x) = {y : S(x, y) ≤ r̂0,fed}.
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scenarios:

• Homogeneous covariate distributions: Xi = Φ(X∗
i )

where X∗
i ∼ N (0, 1), and Φ(·) is the CDF of the

standard normal distribution, for all sites.

• Weakly heterogeneous covariate distributions: X∗
i |

Ti ∈ {0, 1} ∼ N (0, 1), X∗
i | Ti = 2 ∼ N (2, 1),

X∗
i | Ti = 3 ∼ N (2, 4), X∗

i | Ti = 4 ∼ N (3, 1), and
Xi = Φ(X∗

i ).

• Strongly heterogeneous covariate distributions: X∗
i |

Ti = 0 ∼ N (0, 1), X∗
i | Ti = 1 ∼ N (1, 1), X∗

i |
Ti = 2 ∼ N (2, 4), X∗

i | Ti = 3 ∼ N (3, 1), X∗
i |

Ti = 4 ∼ N (4, 4), and Xi = Φ(X∗
i ).

For each scenario, we generate the propensity score of ob-
serving the outcome, i.e., e(Xi) = P (Ri = 1 | Xi), by a
logistic regression model, where

e(Xi) = {1 + exp(−0.1 + 0.5Xi − 0.1X2
i )}−1,

ensuring that the true propensity score is in (0.4, 0.6) to
avoid positivity violations. We include additional simulation
results where the true propensity score is in the wider range
(0.1, 0.9). We generate Ri by Bern(e(Xi)) ∈ {0, 1} so that
outcomes are MAR.

The outcomes Yi are generated by

Yi = 5Xi +X2
i + δ(Ti, Xi) + ε(Xi), (4)

where ε(x) ∼ N(0, σ(x)2). We consider two types of er-
rors: (i) σ(x) = 1 for homoscedastic errors and (ii) σ(x) =
− log(x) for heteroscedastic errors. Under both cases, the
oracle width of a 90% prediction interval for the outcome is
2×z0.95E{σ(Xi)} ≈ 3.29, where z0.95 = 1.645 is the 95th
percentile of the standard normal distribution. In addition,
note that E{σ(Xi)} =

∫ 1

0
σ(x)dx = 1 for both σ(x) = 1

and σ(x) = − log(x).

We also consider varying levels of concept shift correspond-
ing to three cases for δ(Ti, Xi):

• CCOD holds: δ(Ti, Xi) = 0, a constant;

• Weak violation of CCOD: δ(Ti, Xi) = 7I(Ti ̸= 0);

• Strong violation of CCOD: δ(Ti, Xi) = 20I(Ti ̸= 0).

3.2. Results

We report the simulation results for nk = 3000, k = 0, ..., 4
under strongly heterogeneous covariate distributions and
strong violation of CCOD in Figure 2. Complete numerical
results for all sample sizes, covariate shifts, outcome errors,
and concept shifts can be found in Appendix B.2.

Figure 2 summarizes results for (A) marginal coverage, (B)
prediction interval width, (C) conditional coverage (C), and
(D) weights as a function of discrepancy χ2

k = (r̂0 − r̂k)
2

values over 500 replications. Compared to the target only
method, our federated method achieves nominal marginal
coverage with tighter dispersion and less variability, shorter
prediction interval widths that are close to the oracle in-
terval width (red dashed line), relatively good conditional
coverage, and informative weight metrics that indicate how
source site quantiles r̂k are being weighted as a function
of discrepancy compared to the target site quantile r̂0. The
pooled sample method has poor performance for ASR, with
overly conservative marginal coverage, interval widths that
are on average five times longer than our federated method,
and conservative conditional coverage. The performance
for local ASR is also poor, with below nominal marginal
and conditional coverage. The conditional coverage plots
indicate that (1) ASR is not robust, which is consistent with
the findings in Lei et al. (2018)); (2) both CQR and local
ASR have better performance in terms of local coverage,
and the results for the target only and our federated method
perform similarly with 0.9 nominal coverage level for many
values of X . Full conditional coverage plots for all cases
are provided in the Appendix (see Figure 11).

4. Data Application
Congenital heart defects (CHD) are the most prevalent birth
defects in the United States, and over 40,000 surgeries for
CHD are performed each year (Pasquali et al., 2016). Pro-
longed hospital length of stay (LOS) post-surgery places a
significant financial burden on families and health care sys-
tems and is associated with postoperative morbidity. More-
over, LOS varies geographically, likely due to practice and
patient heterogeneity. We utilize data from the Society
of Thoracic Surgeons’ Congenital Heart Surgery Database
(STS-CHSD) which includes audited preoperative, intraop-
erative, and early postoperative information (Overman et al.,
2019) from U.S. congenital heart surgery centers. We iden-
tified all Norwood surgeries, which are palliative surgeries
for patients with CHD, occurring between January 2016 and
June 2022. We used the index operative encounter during
a given admission as the unit of observation. There were
a total of 3,457 observations, with a median LOS of 40
days (min: 2,max: 183) and 752 (21.2%) missing values
for LOS.

Our goal is to provide prediction intervals for LOS for pa-
tients in target sites with missing values of LOS. The target
site is defined to be one of four mutually exclusive geo-
graphic regions according to the U.S. Census Bureau: (i)
South, (ii) Midwest, (iii) West, and (iv) Northeast (United
States Census Bureau, 2020). We included as confounders
demographic factors (e.g. age, race/ethnicity, sex, birth-
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Conditional coverage vs. Covariate value

Federated (ours)

Pooled sample Target only

Federated (ours) weights plots, by conformal score

A B

C D

Figure 2: A: Marginal coverage, B: Prediction interval width, C: Conditional coverage, and D: Weights for our proposed
federated method compared to the pooled sample and target only methods, where sample size nk = 3000, k = 0, ..., 4 under
strongly heterogeneous covariate distributions and strong violation of CCOD.

weight, birth height, etc.), genetic syndromes, chromosomal
abnormalities, non-cardiac anomalies, pre-operative factors,
and a variety of Norwood procedure-specific factors found
in the STS-CHSD (Tabbutt et al., 2012). While the MAR
assumption is not testable, it is more likely to be valid in set-
tings such as ours where a rich set of potential confounders
are measured prospectively.

Figure 3 displays the prediction intervals for hospi-
tal LOS following a Norwood procedure for four ran-
domly selected individuals, one in each region, across
α = {0.1, 0.2, 0.3, 0.4, 0.5} and conformal scores ∈
{ASR, local ASR, CQR}. For example, using our proposed
method and CQR as the conformal score for patient B in
the Midwest region, with at least 50% probability, the ex-
pected LOS is between 24.3 to 39.9 days (α = 0.5). Our
method generally produces tighter prediction intervals than
the target only method of (Yang et al., 2024), and the ad-
vantage can be practically informative. For example, using
local ASR for patient C in the South region, the 80% pre-
diction interval is over 30 days shorter using our method
versus the target only method. The pooled sample method
performs similarly to our federated method, suggesting that
data-adaptive inference may be nearly as efficient as under
full CCOD in this data application.

5. Discussion
We proposed a data-driven and distribution-free prediction
method to obtain valid prediction intervals for missing out-
come data in a target site while exploiting information from
multiple potentially heterogeneous sites due to distribution
shifts. Our proposal shares the marginal coverage proper-
ties of conformal prediction methods and builds on modern
semiparametric efficiency theory and federated learning for
more robust and efficient uncertainty quantification. When
subjects from different data sources are similar, such that
one may be willing to assert that the outcome distributions
are shared, we derive the efficient influence function lever-
aging all data sources. In some practical settings, it would
be unreasonable to assume that the conditional outcome dis-
tribution is the same across sites, i.e., some source sites may
provide relevant information for constructing prediction in-
tervals for the target site, whereas other sites may not. In
such scenarios, we present a novel approach that combines
information from target and source sites in a data-adaptive
manner.

Among the three types of conformal scores that we studied,
we provide the following recommendations for practition-
ers. When the sample size is small, e.g., 300 or fewer, we
suggest using local ASR, which is more robust against het-
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Figure 3: Each panel represents the prediction intervals for hospital LOS for a randomly selected individual following a
Norwood procedure across α = {0.1, 0.2, 0.3, 0.4, 0.5} and conformal score ∈ {ASR, local ASR, CQR} for A: a patient in
South, B: a patient in Midwest, C: a patient in West, D: a patient in Northeast.

eroscedasticity compared to ASR and more efficient than
CQR, which on average requires larger sample sizes to at-
tain nominal coverage. When sample sizes are larger, CQR
provides coverage probabilities close to the nominal level.

An interesting line of future research concerns the develop-
ment of covariate-adaptive ensemble weights for aggregat-
ing information from multiple sources of data. We conjec-
ture that covariate-adaptive methods could produce predic-
tion intervals that are as efficient as an oracle with knowl-
edge of the optimal prediction interval, although we leave
this for future work. Another direction for development is
to formalize the framework through a sensitivity analysis
approach when the CCOD assumption is violated. There
are multiple options for sensitivity analysis, e.g. those work-
ing off of the Rosenbaum selection model such as Jin et al.
(2023b) and Yin et al. (2024), or through a sensitivity pa-
rameter encoding a hypothetical departure from the CCOD
assumption via a semiparametric approach (Robins et al.,
2000). Challenges to overcome would be in the estimation
of nuisance functions in this case.

6. Impact Statement
This paper presents work whose goal is to advance the field
of conformal prediction and its applications to precision
medicine. There are many potential societal consequences

of our work, none of which we feel must be specifically
highlighted here.

Software and Data
We provide a user-friendly R function MuSCI() imple-
menting the proposed method with an illustrative example,
available at: https://github.com/yiliu1998/
Multi-Source-Conformal.
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A. Technical Details
A.1. Proof of Theorem 2.5

Recall from Bickel et al. (1993) and van der Vaart (2002) that an influence function χ̇(O;P) of a functional χ(P) is a
mean-zero finite variance function satisfying the following criterion:

d

dϵ
χ(Pϵ)

∣∣∣∣
ϵ=0

= EP (χ̇(O;P)u(O)) ,

for any regular parametric submodel {Pϵ : ϵ ∈ [0, 1)} such that P0 ≡ P with score function u(O) = d
dϵ log dPϵ

∣∣
ϵ=0

. The
semiparametric efficient influence function is the unique such function belonging to the tangent space, ΛP, which is the
closure of the linear span of all scores of regular parametric submodels through P. To find an influence function, we take
such a generic submodel, and differentiate an identifying estimating equation with respect to ϵ. Recall that

1− α = EP(P(S(X, Y ) ≤ r0(α)(P) | T = 0,X, R = 1) | T = 0, R = 0),

which holds under Assumptions 2.1 and 2.2. Under Assumption 2.4, we may instead write

1− α = EP(P(S(X, Y ) ≤ r0(α)(P) | X, R = 1) | T = 0, R = 0),

since CCOD and MAR together imply (R, T ) ⊥⊥ Y | X . Thus, we have

0 =
d

dϵ
EPϵ

(Pϵ(S(X, Y ) ≤ r0(α)(Pϵ) | X, R = 1) | T = 0, R = 0)

∣∣∣∣
ϵ=0

=
d

dϵ
EPϵ(P(S(X, Y ) ≤ r0(α)(P) | X, R = 1) | T = 0, R = 0)

∣∣∣∣
ϵ=0

+
d

dϵ
EP(Pϵ(S(X, Y ) ≤ r0(α)(P) | X, R = 1) | T = 0, R = 0)

∣∣∣∣
ϵ=0

+
d

dϵ
EP(P(S(X, Y ) ≤ r0(α)(Pϵ) | X, R = 1) | T = 0, R = 0)

∣∣∣∣
ϵ=0

Before proceeding, let uB|C be the conditional score function for B given C, for arbitrary B and C, and note the key
properties that (i) EP(uB|C | C) = 0, and (ii) uB,C = uB|C + uC . Now, for the first of the above three terms, we have

d

dϵ
EPϵ

(m(r0,X) | T = 0, R = 0)

∣∣∣∣
ϵ=0

= EP({m(r0,X)− (1− α)}uX|T=0,R=0 | T = 0, R = 0)

= EP

(
I(T = 0, R = 0)

P[T = 0, R = 0]
{m(r0,X)− (1− α)}uX|T,R

)
= EP

(
I(T = 0, R = 0)

P[T = 0, R = 0]
{m(r0,X)− (1− α)}u(O)

)
,

where in the last equality we are able to add in uT,R since I(T = 0, R = 0){m(r0,X)− (1− α)} has mean zero given
(T,R) by construction, and we can add in uRY |X,T,R since this has mean zero given (X, T,R). Similarly, for the second
term above, we have

d

dϵ
EP(mϵ(r0,X) | T = 0, R = 0)

∣∣∣∣
ϵ=0

= EP
(
EP({I(S(X, Y ) ≤ r0)−m(r0,X)}uY |X,R=1 | X, R = 1) | T = 0, R = 0

)
= EP

(
I(T = 0, R = 0)

P[T = 0, R = 0]
EP

(
R

P[R = 1 | X]
{I(S(X, Y ) ≤ r0)−m(r0,X)}uRY |X,R | X

))
= EP

(
P[T = 0 | X, R = 0]

P[T = 0, R = 0]

P[R = 0 | X]

P[R = 1 | X]
R{I(S(X, Y ) ≤ r0)−m(r0,X)}u(O)

)
.
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Finally, for the third term above, we have

d

dϵ
EP(m(r0(α)(Pϵ),X) | T = 0, R = 0)

∣∣∣∣
ϵ=0

= EP
(
pS|X,R=1(r0,X) | T = 0, R = 0

) d

dϵ
r0(α)(Pϵ)

∣∣∣∣
ϵ=0

,

where pS|X,R=1(r0,X) is the conditional density of S(X, Y ) given X, R = 1, evaluated at r0. Rearranging the original
differentiated estimating equation, we have

d

dϵ
r0(α)(Pϵ)

∣∣∣∣
ϵ=0

= EP(ṙ
CCOD
0 (O;P)u(O)),

where ṙCCOD
0 (O;P) = −{P[T = 0, R = 0]EP

(
pS|X,R=1(r0,X) | T = 0, R = 0

)
}−1φCCOD(O; r0,m, η, q0), and

φCCOD is as defined in Section 2.2. By Lemma 24 of Rotnitzky & Smucler (2020), the tangent space of the semi-
parametric model at P is ΛP = ΛX ⊕ ΛT |X ⊕ ΛR|X,T ⊕ ΛRY |X,R, where ΛB|C = {g(B,C) ∈ L2(P) : E(g | C) = 0}.
It is straightforward to verify that ṙCCOD

0 (O;P) ∈ ΛP, so it is the semiparametric efficient influence function under
Assumption 2.4.

A.2. Proof of Theorem 2.6

Write P(f) = EP(f(O) | Dn), for any f . Observe that for any r, possibly a function of training data Dn, and for O ⊥⊥ Dn,

P
(
φCCOD(O; r, m̂, η̂, q̂0)

)
= P

(
P[T = 0, R = 0 | X]

{
m̂(r,X)− (1− α)

}
+ P[R = 1 | X]η̂(X)q̂0(X)

{
m(r,X)− m̂(r,X)

})
= P

(
P[R = 1 | X]

[{
q0(X)η(X)− q̂0(X)η̂(X)

}{
m̂(r,X)−m(r,X)

}
+ q0(X)η(X) {m(r,X)− (1− α)}

])
.

Thus, omitting inputs, we have

P
(
φCCOD(O; r, m̂, η̂, q̂0)− φCCOD(O; r,m, η, q0)

)
= P

(
P[R = 1 | X]

{
q0η − q̂0η̂

}{
m̂(r, ·)−m(r, ·)

})
(5)

On the other hand, by definition,

P[Y ∈ ĈCCOD
α (X) | T = 0, R = 0, Dn]− (1− α)

= P[S(X, Y ) ≤ r̂CCOD | T = 0, R = 0, Dn]− (1− α)

= EP
(
m(r̂CCOD,X)− (1− α) | T = 0, R = 0, Dn

)
=

EP
(
P[R = 1 | X]q0(X)η(X)

{
m(r̂CCOD,X)− (1− α)

}
| Dn

)
P[T = 0, R = 0]

=
P
(
φCCOD(O; r̂CCOD,m, η, q0)

)
P[T = 0, R = 0]

Finally, we decompose

P
(
φCCOD(O; r̂CCOD,m, η, q0)

)
= Pn

(
φCCOD(O; r̂CCOD, m̂, η̂, q̂0)

)
− (Pn − P)

(
φCCOD(O; r̂CCOD, m̂, η̂, q̂0)

)
− P

(
φCCOD(O; r̂CCOD, m̂, η̂, q̂0)− φCCOD(O; r̂CCOD,m, η, q0)

)
,

By construction of r̂CCOD, the first term above is 0, while the third term is OP(Rn) by the product bias in (5) and
boundedness of q0, η, q̂0, η̂. By our assumptions about m̂ (monotonicity and boundedness) and (η̂, q̂0) (boundedness), we
can note that {φCCOD( · ; r, m̂, η̂, q̂0) : r ∈ R} is a Donsker class (using similar arguments to Theorem 2 in Yang et al.
(2024)), so that the second term is OP(n

−1/2). Combining these yields the result.
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A.3. Proof of Theorem 2.8

Here, we derive the influence function for a non-target source site k, used in Section 2.3, making the working assumption of
a common conditional outcome distribution between the target site and site k, p(Y | X, T = 0) = p(Y | X, T = k). Note
that our data-adaptive method weights source sites that can violate CCOD; we use this working partial CCOD assumption
only to derive the form of the efficient influence function to facilitate downstream analysis. Our derivation is very similar to
that in the proof of Theorem 2.5. To begin, observe that

1− α = EP {P[S(X, Y ) ≤ r0(α)(P) | X, T = 0, R = 1] | T = 0, R = 0}
= EP {P[S(X, Y ) ≤ r0(α)(P) | X, T = k,R = 1] | T = 0, R = 0} .

In addition,

0 =
∂

∂ϵ
(1− α)

∣∣∣
ϵ=0

=
∂

∂ϵ
EPϵ

{mk,ϵ(r0(α)(Pϵ),X) | T = 0, R = 0}
∣∣∣
ϵ=0

= EP
{
[mk(r0(α)(P),X)− (1− α)]uX|T=0,R=0 | T = 0, R = 0

}
(6)

+ EP
{
EP{[I(S(X, Y ) ≤ r0(α)(P))−mk(r0(α)(P),X)]uY |X,T=k,R=1 | X, T = k,R = 1} | T = 0, R = 0

}
(7)

+ EP{fS|X,T=k,R=1(r0(α)(P) | X, T = k,R = 1) | T = 0, R = 0}︸ ︷︷ ︸
Ck,0(P)

· ∂
∂ϵ

r0(α)(Pϵ)
∣∣∣
ϵ=0

,

where fS|X,T=k,R=1 is the conditional density function of S(x, y), i.e., the derivative of mk.

Furthermore, we can write,

(6) = EP

{
I(T = 0, R = 0)

P(T = 0, R = 0)
[mk(r0(α)(P),X)− (1− α)]u(0)

}
,

(7) = EP

{
I(T = 0, R = 0)

P(T = 0, R = 0)
EP

(
I(T = k,R = 1)

P(T = k,R = 1 | X)
[I(S(X, Y ) ≤ r0(α)(P))−mk(r0(α)(P),X)]uY |X,T,R | X

)}
= EP

{
I(T = 0, R = 0)

P(T = 0, R = 0)

P(T = 0, R = 0 | X)

P(T = k,R = 1 | X)
[I(S(X, Y ) ≤ r0(α)(P))−mk(r0(α)(P),X)]u(0)

}
,

by the tower law. Therefore, rearranging the terms, we can obtain

∂

∂ϵ
r0(α)(Pϵ)

∣∣∣
ϵ=0

= −Ck,0(P)−1{(6) + (7)}.

Therefore, an influence function of r0(α)(·) at P is

ṙ0(α)(O;P) = − Ck,0(P)−1

P(T = 0, R = 0)

{
I(T = 0, R = 0)[ mk(r0(α)(P),X)︸ ︷︷ ︸

=m0 under our assumption

−(1− α)]

+ I(T = k,R = 1)
P(T = 0, R = 0 | X)

P(T = k,R = 1 | X)
[I(S(X, Y ) ≤ r0(α)(P)−mk(r0(α)(P),X))]

}
= − Ck,0(P)−1

P(T = 0, R = 0)︸ ︷︷ ︸
a probability constant

φk(O; r0,m0,mk, ωk,0).

Observe that, by Bayes’ rule,

P(T = 0, R = 0 | X)

P(T = k,R = 1 | X)
=

P(X | T = 0, R = 0)

P(X | T = k,R = 1)︸ ︷︷ ︸
ωk,0(X)

·P(T = 0, R = 0)

P(T = k,R = 1)
.

Hence, we can work with

φk(O; θ,m0,mk, ωk,0) =
I(T = 0, R = 0)

P(T = 0, R = 0)
[m0(θ,X)− (1− α)] +

I(T = k,R = 1)

P(T = k,R = 1)
ωk,0(X)[I(S(X, Y ) ≤ θ)−mk(θ,X)].

14
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A.4. Proof of Theorem 2.9

Write rw∗ =
∑K−1

k=0 wkr̂k. By construction of φj , we have

P[Y ∈ Ĉw∗

α (X) | T = 0, R = 0, Dn]− (1− α) = P [S(X, Y ) ≤ rw∗ |T = 0, R = 0, Dn]− (1− α)

=
P (φj(O; rw∗ ,m0,mj , ωj,0))

P[T = 0, R = 0]
,

(8)

where the last equality holds for all j ∈ S∗, and the numerator could also be replaced by P (φ0(O; rw∗ ,m0, η0)). Now, see
that for any j ∈ S∗,

P (φj(O; rw∗ ,m0,mj , ωj,0))

= P (φj(O; rw∗ ,m0,mj , ωj,0)− φj(O; r̂j ,m0,mj , ωj,0)) + P (φj(O; r̂j ,m0,mj , ωj,0))

= P
(
I(T = 0, R = 0)

P(T = 0, R = 0)
{m0(rw∗ ,X)−m0(r̂j ,X)}

)
+ P (φj(O; r̂j ,m0,mj , ωj,0)) .

Further, as in the proof of Theorem 2.6, we can decompose the latter term as

P (φj(O; r̂j ,m0,mj , ωj,0)) = Pn (φj(O; r̂j , m̂0, m̂j , ω̂j,0))

− (Pn − P) (φj(O; r̂j , m̂0, m̂j , ω̂j,0))

− P (φj(O; r̂j , m̂0, m̂j , ω̂j,0)− φj(O; r̂j ,m0,mj , ωj,0)) .

By construction of r̂j , the first term in this sum is 0, the second OP(n
−1/2) because {φj( · ; r, m̂0, m̂j , ω̂j,0) : r ∈ R} is a

Donsker class under our assumptions, and the third term is OP(R
∗
n,j + n−1/2), where

R∗
n,j = sup

r
∥m̂0(r, ·)− m̂j(r, ·)∥+ ∥ω̂j,0 − ωj,0∥ · sup

r
∥m̂j(r, ·)−mj(r, ·)∥,

since, assuming P[T = 0, R = 0] is estimated by sample means in the training data (so that P̂[T = 0, R = 0] − P[T =
0, R = 0] = OP(n

−1/2)), we have for any r possibly dependent on Dn,

P (φj(O; r, m̂0, m̂j , ω̂j,0)− φj(O; r,m0,mj , ωj,0))

= P
(
I(T = 0, R = 0)

P(T = 0, R = 0)
[m̂0(r, ·)−m0(r, ·)] +

I(T = j, R = 1)

P(T = j, R = 1)
ω̂j,0[mj(r, ·)− m̂j(r, ·)]

)
+OP(n

−1/2)

= P
(
P[T = j, R = 1 | X]

P[T = j, R = 1]
{ωj,0[m̂0(r, ·)−m0(r, ·)] + ω̂j,0[mj(r, ·)− m̂j(r, ·)]}

)
+OP(n

−1/2)

= OP

(
R∗

n,j + n−1/2
)
.

For the target site,

P (φ0(O; rw∗ ,m0, η0))

= P (φ0(O; rw∗ ,m0, η0)− φ0(O; r̂0,m0, η0)) + P (φ0(O; r̂0,m0, η0))

= P
(
I(T = 0, R = 0)

P(T = 0, R = 0)
{m0(rw∗ ,X)−m0(r̂0,X)}

)
+ P (φ0(O; r̂0,m0, η0))

and by Theorem 3 in Yang et al. (2024), P (φ0(O; r̂0,m0, η0)) = OP
(
R∗

n,0 + n−1/2
)
, where

R∗
n,0 = ∥η̂0 − η0∥ sup

r
∥m̂0(r, ·)−m0(r, ·)∥.

It remains to characterize P
(

I(T=0,R=0)
P(T=0,R=0) {m0(rw∗ ,X)−m0(r̂j ,X)}

)
, for j ∈ S∗ ∪ {0}: in Lemma A.1, we show that

these terms are each OP(R
∗
n,j +

∑K−1
k=0 wkR

∗
n,k + n−1/2). Combining all these results, in view of (8), we conclude that

P[Y ∈ Ĉw∗

α (X) | T = 0, R = 0, Dn]− (1−α) = OP

(
min

j∈S∗∪{0}
R∗

n,j +

K−1∑
k=0

wkR
∗
n,k + n−1/2

)
= OP

(
R∗

n + n−1/2
)
,

which completes the proof.
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Lemma A.1. Let F0(r) = P[S(X, Y ) ≤ r | T = 0, R = 0] for r ∈ R, i.e., F0 is the (marginal) cdf of the conformal score,
given T = 0, R = 0. Suppose the conditions of Theorem 2.9 hold, as well as the following conditions:

(i) F0 is L-Lipschitz in a neighborhood around r0,

(ii) r̂j
P→ r0, supr∥m̂j(r, ·)−mj(r, ·)∥ = oP(1), for all j ∈ S∗ ∪ {0}, ∥η̂0 − η0∥ = oP(1), and ∥ω̂j,0 − ωj,0∥ = oP(1)

for all j ∈ S∗, where the associated rates of convergence may be arbitrarily slow,

(iii) The maps r 7→ P (φj(O; r,m0,mj , ωj,0)) for j ∈ S∗, r 7→ P (φ0(O;m0, η0)) are differentiable at r0, uniformly
in the nuisance functions, the derivative matrices d

drP (φj(O; r,m0,mj , ωj,0))
∣∣
r=r0

=: Vj(r0;m0,mj , ωj,0) and
d
drP (φ0(O; r,m0, η0))

∣∣
r=r0

=: V0(r0;m0, η0) are invertible, Vj(r0; m̂0, m̂j , ω̂j,0)
P→ Vj(r0;m0,mj , ωj,0) for r ∈

S∗, and V0(r0; m̂0, η̂0)
P→ V0(r0;m0, η0).

Then

P
(
I(T = 0, R = 0)

P(T = 0, R = 0)
{m0(rw∗ ,X)−m0(r̂j ,X)}

)
= OP

(
R∗

n,j +

K−1∑
k=0

wkR
∗
n,k + n−1/2

)
,

for all j ∈ S∗ ∪ {0}.

Proof. Observe that, for j ∈ S∗ ∪ {0},∣∣∣∣P( I(T = 0, R = 0)

P(T = 0, R = 0)
{m0(rw∗ ,X)−m0(r̂j ,X)}

)∣∣∣∣ = |F0(rw∗)− F0(r̂j)| ≲ |rw∗ − r̂j |, (9)

by condition (i). Since

|rw∗ − r̂j | ≤ |rw∗ − r0|+ |r̂j − r0| ≤ |r̂j − r0|+
K−1∑
k=0

wk|r̂k − r0|, (10)

it suffices to analyze |r̂j − r0| for each j ∈ S∗ ∪ {0}.

As the function classes {φj( · ; r, m̂0, m̂j , ω̂j,0) : r ∈ R} and {φ0( · ; r, m̂0, η̂0) : r ∈ R} are Donsker under the assumptions
of Theorem 2.9, conditions (ii) and (iii) permit application of Lemma 3 of Kennedy et al. (2023) to obtain

r̂j − rj = OP(n
−1/2 +R∗

n,j),

for all j ∈ S∗ ∪ {0}. Combining this with (9) and (10) yields the result.
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A.5. Details of Algorithm 1

In this Appendix, we present all details of Algorithm 1 in Section 2 in the following algorithm table (Algorithm 2).

Algorithm 2 Robust multi-source conformal prediction (complete version of Algorithm 1)

1: Input: Training data D = {Oi = (Xi, Ri, RiYi, Ti), i = 1, . . . , n}, where Ti ∈ {0, 1, . . . ,K} with the target
site indexed by T = 0 and source sites by T = k = 1, . . . ,K − 1; desired coverage probability 1 − α for an
α ∈ (0, 0.5); estimators of the conditional putative cumulative distribution function mk(θ,X) for the conformal

score θ, ratio of the propensity score η0(X) =
P(R = 0 | X, T = 0)

P(R = 1 | X, T = 0)
for the target site, and the density ratio

ωk,0(X) =
P(X | T = 0, R = 0)

P(X | T = k,R = 1)
for sites k = 1, . . . ,K − 1, denoted by m̂k(θ̂,X), η̂0(X) and ω̂k,0(X) (where θ̂

is the estimated conformal score), respectively; a tuning parameter λ (in the optimization step); a testing point X = x
from the target site.

2: Output: A valid prediction set Ĉα(x).
3: Split the training data D randomly into D1 and D2, where Dj = {Oi ∈ D, i ∈ Ij} for j = 1, 2 and I1 ∪ I2 =

{1, 2, . . . , n}.
4: Fit nuisance functions m̂k and ω̂k,0 on D1 and predict them on D2.
5: For the target site k = 0, find the smallest θ̂ = r̂0 such that

0 =
1

|I2|
∑
i∈I2

[
I(Ti = 0, Ri = 0)

P̂(Ti = 0, Ri = 0)
{m̂0(θ̂,Xi)− (1− α)}+ I(Ti = 0, Ri = 1)

P̂(Ti = 0, Ri = 1)
η̂0(Xi){I(S(Xi, Yi) ≤ θ̂)− m̂0(θ̂,Xi)}︸ ︷︷ ︸

φ0(Oi;θ̂,m̂0,η̂0)

]
.

6: For source sites k ≥ 1, find the smallest θ̂ = r̂k that solves

0 =
1

|I2|
∑
i∈I2

[
I(Ti = 0, Ri = 0)

P̂(Ti = 0, Ri = 0)
{m̂0(θ̂,Xi)− (1− α)}+ I(Ti = k,Ri = 1)

P̂(Ti = k,Ri = 1)
ω̂k,0(Xi){I(S(Xi, Yi) ≤ θ̂)− m̂k(θ̂,Xi)}︸ ︷︷ ︸

φk(Oi;θ̂,m̂0,m̂k,ω̂k,0)

]
.

Compute χ̂k = |r̂0 − r̂k|.
7: Solve for weights ŵ = (ŵ0, ŵ1, . . . ŵK−1) that minimize

Q(w) =
1

|I2|
∑
i∈I2

[
K−1∑
k=1

wk{φ0(Oi; r̂0, m̂0, η̂0)− φk(Oi; r̂0, m̂0, m̂k, ω̂k,0)} − φ0(Oi; r̂0, m̂0, η̂0)

]2
+

1

|I2|
λ

K−1∑
k=1

wkχ̂
2
k,

subject to 0 ≤ wk ≤ 1 and
K−1∑
k=0

wk = 1.

8: Compute θ̂ = r̂0,fed =

K−1∑
k=0

ŵkr̂k.

9: Return: The prediction set Ĉα(x) = {y : S(x, y) ≤ r̂0,fed}.

Below, we also present all relevant details about estimating influence functions.

B. Additional Simulation Results
B.1. An experiment of sample size vs. interval width

We first conducted an experiment to assess the relationship between the sample size of the target site vs. the coverage and
width of prediction interval. We use only the set-up of target site’s DGP but consider two generations for outcomes: the
homogeneous variance with ε(x) ∼ N (0, 1) and heterogeneous variance with ε(x) ∼ N (0, [log(x)]2) for ε(Xi) defined in
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Algorithm 3 Estimation of influence functions

1: Input: Training data D = {Oi = (Xi, Ri, RiYi, Ti), i = 1, . . . , n}, where Ti ∈ {0, 1, . . . ,K} with the target site
indexed by T = 0 and source sites by T = k = 1, . . . ,K − 1.

2: Desired coverage probability 1− α for an α ∈ (0, 0.5).
3: Output: Estimates of the target site influence function φ0(Oi; θ̂, m̂0, η̂0) and the source site influence functions

φk(Oi; θ̂, m̂0, m̂k, ω̂k,0), k = 1, ...,K − 1.
4: Randomly split the training data D into two equal-sized folds D1 ∪ D2.
5: On the first split D1, fit models to estimate the following nuisance functions via any arbitrary regression model or

density ratio model (nonparametric, semiparametric, or parametric):

• Conditional CDF in the target site m0(θ,X) across a range of values θ for observations with observed Y (R = 1):
estimate is m̂0

• Conditional CDF mk(θ,X) in source site k, k = 1, ...,K − 1, across a range of values θ for observations with
observed Y (R = 1): estimate is m̂k

• Ratio of the missingness propensity score η0(X) =
P(R = 0 | X, T = 0)

P(R = 1 | X, T = 0)
for the target site: estimate is η̂0

• Density ratio ωk,0(X) =
P(X | T = 0, R = 0)

P(X | T = k,R = 1)
for sites k = 1, . . . ,K − 1: estimate is ω̂k,0

We recommend using SuperLearner with the base learners being random forest, elastic net, and generalized linear model
(GLM) for the first three nuisance functions and exponential tilting to estimate the density ratio model.

6: On the second split D2, predict the nuisance functions using the models learned (m̂k, η̂0, ω̂k,0) from the first split D1.
7: For the target site k = 0, estimate the influence function as

φ̂0(Oi; θ̂, m̂0, η̂0) =
I(Ti = 0, Ri = 0)

P̂(Ti = 0, Ri = 0)
{m̂0(θ̂,Xi)−(1−α)}+ I(Ti = 0, Ri = 1)

P̂(Ti = 0, Ri = 1)
η̂0(Xi){I(S(Xi, Yi) ≤ θ̂)−m̂0(θ̂,Xi)}

8: For each of the source sites k = 1, ...,K − 1, estimate the influence functions as

φ̂k(Oi; θ̂, m̂0, m̂k, ω̂k,0) =
I(Ti = 0, Ri = 0)

P̂(Ti = 0, Ri = 0)
{m̂0(θ̂,Xi)− (1− α)}

+
I(Ti = k,Ri = 1)

P̂(Ti = k,Ri = 1)
ω̂k,0(Xi){I(S(Xi, Yi) ≤ θ̂)− m̂k(θ̂,Xi)}

9: Return: Estimate of target site influence function φ̂0 and source site influence functions φ̂k, k = 1, ...,K − 1.
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(4). Under both cases, the oracle width of a 90% prediction interval for the outcome is 2× z0.95E{σ(Xi)} ≈ 3.29, where
z0.95 = 1.645 is the 95th percentile of the standard normal distribution. In addition, note that E{σ(Xi)} =

∫ 1

0
σ(x)dx = 1

for both σ(x) = 1 and σ(x) = − log(x) (see also (Lei & Candès, 2021)). Figure 4 shows the boxplots of interval widths
in 500 Monte Carlo simulations. As we can see, the interval width converges to its oracle faster when the variance is
homogeneous, by all 3 conformal scores. We can also note that using ASR as the conformal score has an essential bias to
oracle width under heterogeneous width, even if the sample size is large enough, while the other two conformal scores are
more robust.
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Figure 4: Boxplots of prediction interval widths

B.2. Complete simulation details and results of coverage probability and interval width, by all sample sizes, variance
assumptions, and covariate and outcome distributions across sites

In this Appendix, we specify more details in our data generating process and competing methods in Section 3. In the
complete simulation study, we consider 6 methods for constructing prediction interval Ĉα(x), where 3 of them (federated
(ours), pooled sample and target only) have been described in Section 3.1. The additional 3 methods are equal weights, i.e.,
equally weighting each source site by 1/(K + 1) (here = 0.2), and two alternative Federated weights, i.e., Federated I and
III shown below.

• Federated I: when solving Step 7 in Algorithm 1, set the limit of weight on each source site by wk ∈ [0, 1], k = 1, . . . ,K,

and then the weight of site 0 is w0 = 1−
K−1∑
k=1

wk.

• Federated II (ours, and the one in main text): when solving Step 7 in Algorithm 1, set the limit of weight on each source
site by wk ∈ [0, 1], k = 1, . . . ,K, and let w∗

k = wk ×K/(K + 1) = 0.8wk (here K = 4), and use w∗
k as the weight

of site k. Then, w0 = 1−
K−1∑
k=1

w∗
k is the weight of site 0. In this case, w0 ≥ 1/(K + 1) = 0.2 in most replications.

• Federated III: setting the limit of weight on each source site by wk ∈ [0, 1/(K + 1)] = [0, 0.2], k = 2, . . . , s, and then

w0 = 1−
K−1∑
k=1

wk for site 0. In this case, w0 ≥ 1/(K + 1) holds, and thus we always weight the target site the most.

In addition, in this Appendix, we present all simulation findings on coverage probabilities and interval widths via both
numerical and visualized results in Tables 1–9, and Figures 5–10. We comment, in the following, on patterns and trends we
found from these results.
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First, only when CCOD holds does the pooled sample method perform well, where the coverage is close to the nominal level
0.9 and it is the most efficient one, having the shortest box width (except for CQR under heteroscedastcity). These results
make sense as the pooled sample has a larger sample size and when CCOD holds for all sites, all data are directly useful for
predicting Y from the target site. However, it can also easily fail when CCOD is violated, either weakly or strongly in our
simulation. Compared to other methods, pooled sample can be substantially more sensitive to such violations, which often
results in very conservative and wide interval estimations (e.g., from Table 2, the interval widths by pooled sample for ASR
under weakly and strongly violations of CCOD are, respectively, 11.19 and 31.95 (for homoscedasticity), and 11.27 and
31.91 (for heteroscedasticity), which exceeds the oracle width 3.29 substantially, while other methods always have widths in
the range [3.20, 4.10]. This illustrates that pooling samples from all source sites is not a good strategy in general, especially
when there are differences among sites.

Moreover, the equal weights method can also result in large biases when the distributions of covariates across sites are either
weakly or strongly heterogeneous. The biases increase with a stronger difference among covariate distributions. In some
cases, it is also less efficient than the federated methods; for instance, in Figure 9, the boxes of the equal weights method
are often wider than those of the three federated methods, as reflected in the corresponding interval width plot, Figure 10.
Therefore, it can be biased and less efficient under heterogeneous covariate distributions.

Furthermore, among all methods, only federated weights I, II, and III performed well across settings and exhibited consistent
patterns in the coverage probabilities and interval width. The boxplots of coverage probabilities by these federated weights
are often situated around the nominal coverage level of 0.9, and the widths of these boxes are often shorter, indicating higher
efficiency in their interval predictions.

Finally, among the three federated weights, there are slight differences with respect to different conformal scores. Federated
I and II are less efficient for CQR under both heteroscedasticity and heterogeneous covariate distributions (weakly and
strongly). In these cases, federated III for CQR is more efficient, although it is also slightly more conservative (though
less biased than the equal weights method). Based on our simulation, we recommend Federated III for CQR, as it offers
the optimal choice regarding the bias-variance trade-off among all competing methods. For other cases considered in our
simulation, all three federated methods perform similarly and result in valid predictions.

To explore settings in which the propensity score for observing the outcome is allowed to vary more, we provide a comparison
by allowing the range of the true propensity score to be in (0.4, 0.6) (panel (a)) and in (0.1, 0.9) (panel (b) of Figure 13. We
see that when the propensity score is allowed to have a wider range, our method is even more promising (efficient) than
when the propensity score is constrained in (0.4, 0.6). Panel (b) shows the Federated (ours) method provides the overall
most efficient interval estimations in ASR and local ASR conformal scores, and the efficiency gains are more obvious than
those in panel (a). For CQR, while pooling has the most efficient result, the Federated (ours) also performs well, and it is
overall the optimal and safest choice among the three methods compared.
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CFS CCOD CP s.d.(CP) wd s.d.(wd) CP s.d.(CP) wd s.d.(wd)

Homoscedasticity where σ(x) = 1

Federated I Pooled sample

holds 0.893 0.038 3.27 0.35 0.900 0.018 3.30 0.16
ASR weakly violated 0.894 0.040 3.29 0.37 1.000 0.000 11.16 0.55

strongly violated 0.894 0.039 3.29 0.37 1.000 0.000 31.99 0.97
holds 0.904 0.033 3.38 0.36 0.901 0.023 3.32 0.22

Local ASR weakly violated 0.906 0.035 3.41 0.37 0.943 0.026 3.90 0.42
strongly violated 0.903 0.035 3.38 0.36 0.952 0.024 4.06 0.44
holds 0.923 0.031 3.61 0.40 0.902 0.025 3.34 0.24

CQR weakly violated 0.925 0.031 3.63 0.39 0.903 0.031 3.36 0.30
strongly violated 0.924 0.032 3.63 0.40 0.905 0.029 3.38 0.29

Federated II (ours) Target site only

holds 0.896 0.032 3.29 0.30 0.901 0.046 3.39 0.46
ASR weakly violated 0.898 0.032 3.31 0.31 0.900 0.045 3.38 0.47

strongly violated 0.896 0.034 3.30 0.32 0.894 0.052 3.32 0.48
holds 0.907 0.032 3.42 0.38 0.909 0.055 3.55 0.72

Local ASR weakly violated 0.909 0.032 3.44 0.38 0.908 0.057 3.56 0.78
strongly violated 0.905 0.032 3.39 0.35 0.900 0.060 3.44 0.63
holds 0.925 0.029 3.63 0.39 0.922 0.054 3.71 0.67

CQR weakly violated 0.926 0.030 3.65 0.39 0.917 0.060 3.66 0.70
strongly violated 0.925 0.031 3.63 0.39 0.917 0.059 3.66 0.67

Federated III Equal weights

holds 0.900 0.032 3.33 0.30 0.900 0.032 3.33 0.30
ASR weakly violated 0.901 0.032 3.34 0.31 0.901 0.032 3.34 0.31

strongly violated 0.900 0.033 3.34 0.32 0.900 0.033 3.34 0.32
holds 0.916 0.029 3.50 0.33 0.916 0.029 3.50 0.33

Local ASR weakly violated 0.915 0.029 3.50 0.33 0.915 0.029 3.50 0.33
strongly violated 0.914 0.030 3.49 0.32 0.914 0.030 3.49 0.32
holds 0.933 0.025 3.72 0.34 0.933 0.025 3.72 0.34

CQR weakly violated 0.933 0.026 3.72 0.34 0.933 0.026 3.72 0.34
strongly violated 0.933 0.026 3.73 0.35 0.933 0.026 3.73 0.35

Heteroscedasticity where σ(x) = − log(x)

Federated I Pooled sample

holds 0.904 0.034 4.22 0.94 0.900 0.015 3.94 0.35
ASR weakly violated 0.903 0.033 4.20 0.98 0.991 0.002 11.23 0.45

strongly violated 0.907 0.033 4.31 1.06 1.000 0.000 31.85 1.00
holds 0.914 0.046 4.08 2.17 0.903 0.031 3.55 0.46

Local ASR weakly violated 0.914 0.048 4.24 2.55 0.915 0.032 3.74 0.49
strongly violated 0.909 0.048 4.14 3.42 0.924 0.027 3.85 0.42
holds 0.926 0.029 3.40 0.31 0.902 0.024 3.21 0.15

CQR weakly violated 0.926 0.029 3.39 0.26 0.904 0.025 3.22 0.16
strongly violated 0.928 0.029 3.42 0.34 0.905 0.026 3.23 0.16

Federated II (ours) Target site only

holds 0.905 0.030 4.21 0.87 0.898 0.042 4.16 1.21
ASR weakly violated 0.905 0.029 4.20 0.86 0.900 0.043 4.21 1.22

strongly violated 0.908 0.030 4.30 0.92 0.902 0.042 4.27 1.26
holds 0.915 0.044 4.14 2.50 0.909 0.061 4.37 4.93

Local ASR weakly violated 0.916 0.047 4.29 2.70 0.910 0.065 4.52 3.97
strongly violated 0.911 0.046 4.16 3.27 0.905 0.065 4.23 3.20
holds 0.928 0.028 3.41 0.31 0.912 0.070 3.45 0.58

CQR weakly violated 0.929 0.027 3.42 0.28 0.916 0.059 3.48 0.71
strongly violated 0.930 0.027 3.43 0.33 0.916 0.064 3.48 0.58

Federated III Equal weights

holds 0.893 0.066 3.39 0.66 0.900 0.028 3.32 0.28
holds 0.910 0.031 4.35 0.90 0.910 0.031 4.35 0.90

ASR weakly violated 0.908 0.030 4.31 0.95 0.908 0.030 4.31 0.95
strongly violated 0.912 0.031 4.43 1.01 0.912 0.031 4.43 1.01
holds 0.923 0.041 4.41 5.69 0.923 0.041 4.41 5.69

Local ASR weakly violated 0.924 0.044 4.38 2.54 0.924 0.044 4.38 2.54
strongly violated 0.919 0.043 4.32 3.50 0.919 0.043 4.32 3.50
holds 0.939 0.026 3.51 0.33 0.939 0.026 3.51 0.33

CQR weakly violated 0.940 0.025 3.52 0.30 0.940 0.025 3.52 0.30
strongly violated 0.941 0.025 3.54 0.34 0.941 0.025 3.54 0.34

CFS: conformal score; CCOD: common conditional outcome distribution
CP: coverage probability; wd: width; s.d.: standard deviation (over 500 replications)

Table 1: nk = 300, homogeneous covariate distribution
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CFS CCOD CP s.d.(CP) wd s.d.(wd) CP s.d.(CP) wd s.d.(wd)

Homoscedasticity where σ(x) = 1

Federated I Pooled sample

holds 0.899 0.021 3.30 0.20 0.900 0.010 3.30 0.09
ASR weakly violated 0.899 0.022 3.29 0.20 1.000 0.000 11.19 0.28

strongly violated 0.898 0.021 3.29 0.20 1.000 0.000 31.95 0.50
holds 0.901 0.019 3.32 0.19 0.900 0.014 3.30 0.13

Local ASR weakly violated 0.901 0.020 3.31 0.19 0.947 0.014 3.89 0.22
strongly violated 0.902 0.020 3.33 0.18 0.952 0.012 3.99 0.22
holds 0.905 0.018 3.37 0.17 0.900 0.015 3.31 0.13

CQR weakly violated 0.906 0.019 3.36 0.18 0.901 0.018 3.31 0.17
strongly violated 0.905 0.018 3.36 0.17 0.900 0.018 3.31 0.16

Federated II (ours) Target site only

holds 0.900 0.017 3.31 0.16 0.901 0.023 3.32 0.22
ASR weakly violated 0.900 0.018 3.30 0.17 0.900 0.023 3.31 0.22

strongly violated 0.899 0.018 3.30 0.16 0.901 0.023 3.32 0.22
holds 0.901 0.018 3.32 0.17 0.901 0.030 3.34 0.30

Local ASR weakly violated 0.902 0.018 3.32 0.17 0.901 0.031 3.34 0.30
strongly violated 0.903 0.019 3.34 0.17 0.904 0.030 3.37 0.31
holds 0.906 0.018 3.37 0.17 0.905 0.033 3.39 0.33

CQR weakly violated 0.906 0.018 3.37 0.17 0.905 0.032 3.40 0.32
strongly violated 0.905 0.018 3.37 0.17 0.905 0.033 3.40 0.33

Federated III Equal weights

holds 0.902 0.018 3.32 0.18 0.902 0.018 3.32 0.18
ASR weakly violated 0.901 0.019 3.31 0.18 0.901 0.019 3.31 0.18

strongly violated 0.900 0.019 3.31 0.18 0.900 0.019 3.31 0.18
holds 0.905 0.017 3.35 0.18 0.905 0.017 3.35 0.18

Local ASR weakly violated 0.905 0.018 3.35 0.18 0.905 0.018 3.35 0.18
strongly violated 0.906 0.018 3.37 0.18 0.906 0.018 3.37 0.18
holds 0.910 0.017 3.41 0.16 0.910 0.017 3.41 0.16

CQR weakly violated 0.910 0.017 3.41 0.17 0.910 0.017 3.41 0.17
strongly violated 0.909 0.017 3.41 0.16 0.909 0.017 3.41 0.16

Heteroscedasticity where σ(x) = − log(x)

Federated I Pooled sample

holds 0.901 0.020 3.99 0.50 0.900 0.010 3.91 0.20
ASR weakly violated 0.903 0.021 4.04 0.54 0.991 0.002 11.27 0.24

strongly violated 0.901 0.020 3.99 0.50 1.000 0.000 31.91 0.57
holds 0.907 0.031 3.67 0.71 0.899 0.020 3.47 0.23

Local ASR weakly violated 0.907 0.032 3.66 0.82 0.921 0.019 3.76 0.28
strongly violated 0.906 0.032 3.67 0.96 0.924 0.017 3.81 0.24
holds 0.907 0.017 3.23 0.12 0.900 0.015 3.19 0.11

CQR weakly violated 0.908 0.018 3.23 0.14 0.901 0.017 3.19 0.13
strongly violated 0.908 0.017 3.24 0.13 0.901 0.016 3.20 0.12

Federated II (ours) Target site only

holds 0.901 0.018 3.98 0.43 0.899 0.020 3.94 0.48
ASR weakly violated 0.903 0.019 4.03 0.48 0.900 0.022 3.98 0.52

strongly violated 0.901 0.018 3.98 0.44 0.900 0.021 3.97 0.51
holds 0.908 0.030 3.67 0.73 0.907 0.038 3.71 0.89

Local ASR weakly violated 0.908 0.031 3.67 0.84 0.907 0.040 3.71 1.06
strongly violated 0.907 0.031 3.68 0.93 0.908 0.039 3.73 0.94
holds 0.907 0.017 3.23 0.12 0.903 0.031 3.23 0.18

CQR weakly violated 0.908 0.018 3.23 0.13 0.907 0.034 3.26 0.19
strongly violated 0.909 0.017 3.24 0.13 0.907 0.032 3.26 0.18

Federated III Equal weights

holds 0.902 0.019 4.01 0.46 0.902 0.019 4.01 0.46
ASR weakly violated 0.904 0.020 4.07 0.51 0.904 0.020 4.07 0.51

strongly violated 0.902 0.019 4.01 0.47 0.902 0.019 4.01 0.47
holds 0.911 0.030 3.71 0.70 0.911 0.030 3.71 0.70

Local ASR weakly violated 0.911 0.031 3.71 0.83 0.911 0.031 3.71 0.83
strongly violated 0.910 0.031 3.71 0.93 0.910 0.031 3.71 0.93
holds 0.911 0.016 3.25 0.13 0.911 0.016 3.25 0.13

CQR weakly violated 0.913 0.017 3.25 0.14 0.913 0.017 3.25 0.14
strongly violated 0.914 0.017 3.26 0.13 0.914 0.017 3.26 0.13

CFS: conformal score; CCOD: common conditional outcome distribution
CP: coverage probability; wd: width; s.d.: standard deviation (over 500 replications)

Table 2: nk = 1000, homogeneous covariate distribution
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CFS CCOD CP s.d.(CP) wd s.d.(wd) CP s.d.(CP) wd s.d.(wd)

Homoscedasticity where σ(x) = 1

Federated I Pooled sample

holds 0.900 0.014 3.29 0.12 0.900 0.008 3.29 0.05
ASR weakly violated 0.899 0.013 3.28 0.11 1.000 0.000 11.19 0.17

strongly violated 0.900 0.014 3.30 0.12 1.000 0.000 31.99 0.29
holds 0.900 0.014 3.30 0.12 0.900 0.010 3.29 0.08

Local ASR weakly violated 0.901 0.013 3.30 0.11 0.947 0.010 3.88 0.14
strongly violated 0.901 0.014 3.31 0.12 0.954 0.009 3.99 0.14
holds 0.901 0.013 3.31 0.11 0.899 0.011 3.29 0.09

CQR weakly violated 0.901 0.013 3.31 0.11 0.899 0.013 3.29 0.11
strongly violated 0.901 0.012 3.32 0.11 0.899 0.012 3.30 0.11

Federated II (ours) Target site only

holds 0.900 0.012 3.29 0.10 0.899 0.015 3.28 0.13
ASR weakly violated 0.899 0.012 3.29 0.10 0.900 0.014 3.30 0.12

strongly violated 0.901 0.012 3.30 0.10 0.901 0.014 3.31 0.13
holds 0.900 0.013 3.29 0.11 0.899 0.019 3.29 0.17

Local ASR weakly violated 0.901 0.013 3.31 0.11 0.902 0.018 3.32 0.17
strongly violated 0.901 0.013 3.31 0.12 0.901 0.018 3.32 0.17
holds 0.901 0.012 3.31 0.11 0.900 0.020 3.31 0.18

CQR weakly violated 0.901 0.013 3.31 0.11 0.902 0.020 3.33 0.19
strongly violated 0.902 0.012 3.32 0.11 0.902 0.019 3.33 0.18

Federated III Equal weights

holds 0.901 0.013 3.30 0.11 0.901 0.013 3.30 0.11
ASR weakly violated 0.900 0.012 3.29 0.10 0.900 0.012 3.29 0.10

strongly violated 0.901 0.013 3.31 0.11 0.901 0.013 3.31 0.11
holds 0.901 0.013 3.31 0.11 0.901 0.013 3.31 0.11

Local ASR weakly violated 0.902 0.013 3.32 0.11 0.902 0.013 3.32 0.11
strongly violated 0.902 0.013 3.32 0.12 0.902 0.013 3.32 0.12
holds 0.903 0.012 3.33 0.11 0.903 0.012 3.33 0.11

CQR weakly violated 0.903 0.012 3.33 0.11 0.903 0.012 3.33 0.11
strongly violated 0.903 0.012 3.33 0.10 0.903 0.012 3.33 0.10

Heteroscedasticity where σ(x) = − log(x)

Federated I Pooled sample

holds 0.901 0.013 3.94 0.29 0.900 0.007 3.91 0.12
ASR weakly violated 0.901 0.013 3.94 0.30 0.991 0.002 11.28 0.14

strongly violated 0.901 0.012 3.95 0.29 1.000 0.000 31.96 0.35
holds 0.902 0.023 3.48 0.31 0.901 0.015 3.45 0.15

Local ASR weakly violated 0.899 0.021 3.48 0.27 0.921 0.015 3.77 0.18
strongly violated 0.901 0.023 3.50 0.30 0.925 0.013 3.80 0.17
holds 0.902 0.013 3.19 0.11 0.900 0.011 3.18 0.11

CQR weakly violated 0.902 0.012 3.20 0.11 0.900 0.012 3.19 0.11
strongly violated 0.902 0.013 3.20 0.11 0.899 0.012 3.18 0.11

Federated II (ours) Target site only

holds 0.901 0.011 3.94 0.25 0.900 0.013 3.91 0.28
ASR weakly violated 0.901 0.012 3.94 0.27 0.901 0.013 3.96 0.30

strongly violated 0.901 0.011 3.95 0.26 0.900 0.013 3.94 0.30
holds 0.901 0.022 3.48 0.30 0.900 0.027 3.47 0.34

Local ASR weakly violated 0.899 0.021 3.48 0.26 0.900 0.025 3.50 0.32
strongly violated 0.901 0.023 3.50 0.30 0.901 0.027 3.51 0.35
holds 0.902 0.013 3.19 0.11 0.900 0.022 3.19 0.13

CQR weakly violated 0.902 0.012 3.20 0.11 0.901 0.020 3.20 0.13
strongly violated 0.902 0.012 3.20 0.11 0.901 0.020 3.20 0.13

Federated III Equal weights

holds 0.901 0.012 3.95 0.27 0.901 0.012 3.95 0.27
ASR weakly violated 0.901 0.013 3.95 0.29 0.901 0.013 3.95 0.29

strongly violated 0.901 0.012 3.96 0.27 0.901 0.012 3.96 0.27
holds 0.903 0.022 3.50 0.30 0.903 0.022 3.50 0.30

Local ASR weakly violated 0.900 0.021 3.49 0.26 0.900 0.021 3.49 0.26
strongly violated 0.902 0.023 3.51 0.30 0.902 0.023 3.51 0.30
holds 0.903 0.013 3.20 0.11 0.903 0.013 3.20 0.11

CQR weakly violated 0.904 0.012 3.20 0.11 0.904 0.012 3.20 0.11
strongly violated 0.904 0.012 3.20 0.11 0.904 0.012 3.20 0.11

CFS: conformal score; CCOD: common conditional outcome distribution
CP: coverage probability; wd: width; s.d.: standard deviation (over 500 replications)

Table 3: nk = 3000, homogeneous covariate distribution
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Figure 5: Boxplots of coverage probability, under homogeneous covariate distributions
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CFS CCOD CP s.d.(CP) wd s.d.(wd) CP s.d.(CP) wd s.d.(wd)

Homoscedasticity where σ(x) = 1

Federated I Pooled sample

holds 0.892 0.043 3.28 0.44 0.899 0.018 3.29 0.16
ASR weakly violated 0.892 0.042 3.27 0.38 1.000 0.000 9.39 0.56

strongly violated 0.890 0.042 3.26 0.40 1.000 0.000 25.09 1.74
holds 0.898 0.038 3.33 0.37 0.899 0.024 3.31 0.23

Local ASR weakly violated 0.897 0.042 3.33 0.40 0.841 0.041 2.85 0.28
strongly violated 0.897 0.044 3.34 0.42 0.756 0.058 2.36 0.31
holds 0.925 0.043 6.42 17.84 0.901 0.025 3.33 0.24

CQR weakly violated 0.925 0.045 4.68 7.49 0.905 0.038 3.41 0.39
strongly violated 0.927 0.042 5.56 26.79 0.905 0.041 3.43 0.47

Federated II (ours) Target site only

holds 0.895 0.037 3.30 0.38 0.901 0.045 3.38 0.43
ASR weakly violated 0.896 0.036 3.29 0.34 0.902 0.046 3.40 0.47

strongly violated 0.894 0.035 3.29 0.35 0.901 0.051 3.41 0.50
holds 0.902 0.035 3.37 0.36 0.907 0.055 3.50 0.61

Local ASR weakly violated 0.902 0.037 3.37 0.39 0.909 0.059 3.56 0.72
strongly violated 0.902 0.040 3.38 0.42 0.908 0.061 3.58 0.73
holds 0.929 0.037 5.88 14.24 0.921 0.053 3.70 0.65

CQR weakly violated 0.929 0.039 4.49 5.97 0.920 0.062 3.72 0.72
strongly violated 0.931 0.036 5.19 21.43 0.920 0.063 3.72 0.70

Federated III Equal weights

holds 0.899 0.034 3.33 0.35 0.907 0.037 3.43 0.41
ASR weakly violated 0.900 0.033 3.33 0.33 0.904 0.035 3.39 0.38

strongly violated 0.898 0.034 3.32 0.34 0.904 0.035 3.39 0.38
holds 0.913 0.036 3.51 0.49 0.924 0.039 3.90 2.17

Local ASR weakly violated 0.915 0.035 3.53 0.50 0.923 0.038 4.05 4.30
strongly violated 0.913 0.036 3.50 0.43 0.923 0.038 3.74 0.93
holds 0.949 0.033 4.98 5.52 0.962 0.035 8.94 33.91

CQR weakly violated 0.947 0.032 4.38 2.66 0.960 0.035 6.23 6.98
strongly violated 0.948 0.032 4.61 7.20 0.961 0.037 6.22 8.50

Heteroscedasticity where σ(x) = − log(x)

Federated I Pooled sample

holds 0.904 0.034 4.21 0.90 0.906 0.017 4.12 0.42
ASR weakly violated 0.903 0.036 4.21 1.06 0.985 0.004 9.69 0.64

strongly violated 0.905 0.034 4.25 0.96 1.000 0.000 25.21 1.76
holds 0.915 0.060 3.87 0.87 0.926 0.033 3.91 0.51

Local ASR weakly violated 0.920 0.049 4.11 3.12 0.861 0.043 3.10 0.41
strongly violated 0.920 0.048 3.97 0.90 0.779 0.056 2.49 0.37
holds 0.923 0.111 8.19 27.88 0.851 0.156 3.31 0.58

CQR weakly violated 0.919 0.120 8.36 57.29 0.858 0.156 3.43 0.70
strongly violated 0.922 0.122 7.36 40.15 0.841 0.175 3.46 0.91

Federated II (ours) Target site only

holds 0.906 0.030 4.22 0.82 0.902 0.043 4.27 1.24
ASR weakly violated 0.905 0.031 4.23 0.93 0.902 0.044 4.31 1.30

strongly violated 0.908 0.029 4.28 0.83 0.905 0.044 4.36 1.24
holds 0.919 0.052 3.93 0.86 0.906 0.083 4.14 1.63

Local ASR weakly violated 0.924 0.045 4.14 2.55 0.909 0.081 4.29 1.93
strongly violated 0.925 0.045 4.03 0.89 0.910 0.094 4.29 1.62
holds 0.931 0.101 7.36 22.26 0.872 0.192 4.05 1.46

CQR weakly violated 0.933 0.099 7.50 45.81 0.863 0.209 4.12 1.57
strongly violated 0.934 0.102 6.71 32.09 0.863 0.210 4.12 1.58

Federated III Equal weights

holds 0.912 0.029 4.39 0.85 0.916 0.028 4.55 0.91
ASR weakly violated 0.911 0.029 4.38 0.91 0.915 0.028 4.51 0.91

strongly violated 0.914 0.029 4.46 0.90 0.917 0.029 4.59 0.97
holds 0.938 0.041 4.28 0.95 0.946 0.038 4.68 1.91

Local ASR weakly violated 0.940 0.042 4.76 6.03 0.948 0.038 5.05 6.76
strongly violated 0.938 0.043 4.34 1.04 0.946 0.039 4.63 1.48
holds 0.970 0.054 6.53 11.45 0.977 0.047 10.45 22.37

CQR weakly violated 0.966 0.064 6.51 20.21 0.974 0.052 10.32 28.37
strongly violated 0.969 0.059 6.02 14.23 0.977 0.050 9.86 19.04

CFS: conformal score; CCOD: common conditional outcome distribution
CP: coverage probability; wd: width; s.d.: standard deviation (over 500 replications)

Table 4: nk = 300, weakly heterogeneous covariate distribution
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CFS CCOD CP s.d.(CP) wd s.d.(wd) CP s.d.(CP) wd s.d.(wd)

Homoscedasticity where σ(x) = 1

Federated I Pooled sample

holds 0.897 0.022 3.28 0.21 0.899 0.011 3.29 0.09
ASR weakly violated 0.896 0.025 3.27 0.22 1.000 0.000 9.23 0.26

strongly violated 0.894 0.027 3.26 0.24 1.000 0.000 24.51 0.96
holds 0.899 0.024 3.30 0.22 0.899 0.015 3.29 0.12

Local ASR weakly violated 0.897 0.027 3.28 0.23 0.832 0.022 2.76 0.14
strongly violated 0.897 0.024 3.29 0.22 0.736 0.030 2.25 0.14
holds 0.909 0.035 3.62 3.28 0.899 0.015 3.30 0.13

CQR weakly violated 0.911 0.037 3.56 0.91 0.903 0.020 3.34 0.20
strongly violated 0.907 0.036 3.53 1.28 0.900 0.023 3.32 0.22

Federated II (ours) Target site only

holds 0.899 0.019 3.29 0.18 0.901 0.025 3.33 0.23
ASR weakly violated 0.898 0.021 3.28 0.19 0.900 0.025 3.31 0.23

strongly violated 0.896 0.022 3.27 0.20 0.899 0.025 3.31 0.24
holds 0.900 0.022 3.32 0.21 0.903 0.032 3.37 0.31

Local ASR weakly violated 0.899 0.024 3.29 0.22 0.902 0.031 3.35 0.31
strongly violated 0.899 0.022 3.30 0.20 0.901 0.032 3.35 0.32
holds 0.910 0.030 3.58 2.62 0.905 0.036 3.40 0.35

CQR weakly violated 0.912 0.032 3.53 0.72 0.904 0.034 3.39 0.34
strongly violated 0.908 0.030 3.50 1.01 0.904 0.035 3.39 0.35

Federated III Equal weights

holds 0.902 0.021 3.33 0.20 0.905 0.024 3.37 0.25
ASR weakly violated 0.901 0.021 3.31 0.20 0.903 0.023 3.34 0.23

strongly violated 0.899 0.022 3.30 0.20 0.902 0.024 3.34 0.23
holds 0.906 0.023 3.39 0.30 0.913 0.027 3.53 0.88

Local ASR weakly violated 0.906 0.022 3.37 0.22 0.913 0.027 3.48 0.54
strongly violated 0.905 0.021 3.36 0.21 0.912 0.024 3.45 0.38
holds 0.923 0.027 3.65 1.09 0.936 0.032 3.94 1.28

CQR weakly violated 0.925 0.027 3.64 0.52 0.936 0.032 3.92 0.94
strongly violated 0.922 0.026 3.61 0.47 0.935 0.033 3.94 1.02

Heteroscedasticity where σ(x) = − log(x)

Federated I Pooled sample

holds 0.907 0.022 4.16 0.58 0.908 0.011 4.12 0.24
ASR weakly violated 0.905 0.022 4.12 0.54 0.985 0.003 9.53 0.32

strongly violated 0.901 0.025 4.03 0.57 1.000 0.000 24.61 0.95
holds 0.921 0.040 3.86 0.54 0.929 0.020 3.91 0.31

Local ASR weakly violated 0.922 0.033 3.84 0.50 0.859 0.025 3.04 0.22
strongly violated 0.918 0.038 3.78 0.47 0.767 0.031 2.39 0.17
holds 0.894 0.136 3.84 1.73 0.872 0.107 3.23 0.35

CQR weakly violated 0.885 0.142 3.81 2.35 0.879 0.104 3.26 0.36
strongly violated 0.882 0.143 3.74 1.45 0.867 0.121 3.29 0.46

Federated II (ours) Target site only

holds 0.908 0.018 4.17 0.50 0.907 0.023 4.17 0.62
ASR weakly violated 0.907 0.018 4.13 0.47 0.908 0.022 4.18 0.57

strongly violated 0.903 0.021 4.06 0.50 0.906 0.022 4.16 0.60
holds 0.923 0.034 3.88 0.50 0.922 0.047 3.95 0.74

Local ASR weakly violated 0.925 0.029 3.87 0.45 0.926 0.041 3.97 0.68
strongly violated 0.921 0.032 3.82 0.43 0.925 0.041 3.97 0.71
holds 0.904 0.121 3.77 1.37 0.849 0.179 3.47 0.81

CQR weakly violated 0.899 0.119 3.75 1.86 0.857 0.172 3.51 0.77
strongly violated 0.896 0.123 3.69 1.14 0.857 0.172 3.51 0.80

Federated III Equal weights

holds 0.911 0.019 4.26 0.54 0.914 0.020 4.36 0.60
ASR weakly violated 0.910 0.019 4.23 0.52 0.913 0.021 4.33 0.60

strongly violated 0.908 0.020 4.19 0.54 0.911 0.022 4.31 0.63
holds 0.932 0.030 4.04 0.55 0.940 0.030 4.24 0.87

Local ASR weakly violated 0.934 0.028 4.03 0.54 0.940 0.029 4.28 1.76
strongly violated 0.932 0.028 4.01 0.50 0.939 0.030 4.30 1.88
holds 0.941 0.086 4.03 1.14 0.957 0.074 4.67 1.77

CQR weakly violated 0.944 0.071 3.97 0.97 0.956 0.069 4.67 2.34
strongly violated 0.941 0.088 3.96 0.87 0.958 0.067 4.80 3.17

CFS: conformal score; CCOD: common conditional outcome distribution
CP: coverage probability; wd: width; s.d.: standard deviation (over 500 replications)

Table 5: nk = 1000, weakly heterogeneous covariate distribution
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CFS CCOD CP s.d.(CP) wd s.d.(wd) CP s.d.(CP) wd s.d.(wd)

Homoscedasticity where σ(x) = 1

Federated I Pooled sample

holds 0.898 0.016 3.27 0.14 0.900 0.008 3.29 0.05
ASR weakly violated 0.898 0.015 3.28 0.13 1.000 0.000 9.20 0.16

strongly violated 0.896 0.017 3.27 0.15 1.000 0.000 24.47 0.56
holds 0.898 0.016 3.28 0.14 0.900 0.011 3.29 0.09

Local ASR weakly violated 0.898 0.016 3.28 0.14 0.829 0.016 2.74 0.08
strongly violated 0.897 0.017 3.28 0.14 0.733 0.020 2.23 0.08
holds 0.899 0.019 3.30 0.17 0.899 0.012 3.29 0.10

CQR weakly violated 0.899 0.019 3.30 0.17 0.900 0.015 3.30 0.13
strongly violated 0.899 0.020 3.30 0.19 0.900 0.015 3.31 0.13

Federated II (ours) Target site only

holds 0.898 0.013 3.28 0.12 0.900 0.014 3.30 0.12
ASR weakly violated 0.899 0.013 3.29 0.11 0.901 0.015 3.30 0.13

strongly violated 0.897 0.014 3.27 0.12 0.900 0.014 3.30 0.13
holds 0.899 0.015 3.29 0.13 0.901 0.018 3.31 0.17

Local ASR weakly violated 0.899 0.015 3.28 0.13 0.900 0.020 3.31 0.18
strongly violated 0.898 0.015 3.29 0.13 0.901 0.018 3.32 0.17
holds 0.900 0.017 3.30 0.15 0.901 0.020 3.31 0.19

CQR weakly violated 0.900 0.016 3.31 0.15 0.902 0.021 3.34 0.20
strongly violated 0.900 0.017 3.31 0.16 0.902 0.021 3.34 0.20

Federated III Equal weights

holds 0.901 0.014 3.31 0.12 0.902 0.015 3.32 0.14
ASR weakly violated 0.902 0.014 3.31 0.13 0.903 0.015 3.33 0.14

strongly violated 0.900 0.014 3.30 0.13 0.901 0.016 3.32 0.15
holds 0.903 0.016 3.33 0.14 0.905 0.017 3.35 0.16

Local ASR weakly violated 0.903 0.015 3.33 0.14 0.905 0.016 3.35 0.15
strongly violated 0.903 0.015 3.33 0.14 0.905 0.016 3.35 0.16
holds 0.909 0.018 3.40 0.18 0.914 0.022 3.46 0.24

CQR weakly violated 0.909 0.016 3.40 0.16 0.914 0.019 3.46 0.22
strongly violated 0.909 0.017 3.40 0.17 0.913 0.020 3.46 0.23

Heteroscedasticity where σ(x) = − log(x)

Federated I Pooled sample

holds 0.906 0.014 4.09 0.35 0.907 0.008 4.10 0.14
ASR weakly violated 0.906 0.015 4.08 0.37 0.985 0.003 9.46 0.17

strongly violated 0.903 0.016 4.04 0.37 1.000 0.000 24.53 0.52
holds 0.927 0.022 3.84 0.33 0.932 0.014 3.90 0.20

Local ASR weakly violated 0.925 0.023 3.86 0.33 0.856 0.018 3.02 0.15
strongly violated 0.924 0.023 3.82 0.33 0.763 0.021 2.36 0.12
holds 0.861 0.124 3.23 0.43 0.888 0.058 3.19 0.21

CQR weakly violated 0.860 0.132 3.26 0.47 0.890 0.057 3.21 0.23
strongly violated 0.861 0.125 3.23 0.42 0.880 0.081 3.21 0.28

Federated II (ours) Target site only

holds 0.907 0.012 4.09 0.29 0.907 0.013 4.10 0.33
ASR weakly violated 0.906 0.013 4.09 0.31 0.908 0.013 4.13 0.33

strongly violated 0.904 0.013 4.05 0.30 0.906 0.013 4.11 0.34
holds 0.928 0.020 3.85 0.30 0.928 0.026 3.90 0.42

Local ASR weakly violated 0.926 0.021 3.87 0.30 0.927 0.026 3.92 0.42
strongly violated 0.926 0.020 3.84 0.29 0.929 0.026 3.93 0.43
holds 0.872 0.108 3.23 0.36 0.853 0.138 3.24 0.46

CQR weakly violated 0.873 0.110 3.26 0.40 0.861 0.134 3.30 0.48
strongly violated 0.874 0.105 3.25 0.36 0.861 0.140 3.30 0.49

Federated III Equal weights

holds 0.910 0.013 4.18 0.34 0.911 0.014 4.22 0.38
ASR weakly violated 0.909 0.014 4.18 0.35 0.910 0.014 4.21 0.39

strongly violated 0.907 0.014 4.14 0.35 0.908 0.015 4.17 0.38
holds 0.935 0.020 3.98 0.33 0.937 0.021 4.04 0.38

Local ASR weakly violated 0.932 0.020 3.98 0.32 0.934 0.022 4.03 0.37
strongly violated 0.932 0.021 3.97 0.33 0.934 0.022 4.02 0.39
holds 0.919 0.080 3.49 0.42 0.927 0.082 3.63 0.56

CQR weakly violated 0.921 0.080 3.51 0.44 0.929 0.080 3.64 0.54
strongly violated 0.918 0.083 3.48 0.39 0.926 0.086 3.60 0.48

CFS: conformal score; CCOD: common conditional outcome distribution
CP: coverage probability; wd: width; s.d.: standard deviation (over 500 replications)

Table 6: nk = 3000, weakly heterogeneous covariate distribution
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Figure 7: Boxplots of coverage probability, under weakly heterogeneous covariate distributions
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CFS CCOD CP s.d.(CP) wd s.d.(wd) CP s.d.(CP) wd s.d.(wd)

Homoscedasticity where σ(x) = 1

Federated I Pooled sample

holds 0.891 0.043 3.26 0.37 0.901 0.018 3.31 0.16
ASR weakly violated 0.893 0.039 3.28 0.40 1.000 0.000 8.85 0.50

strongly violated 0.893 0.041 3.29 0.39 1.000 0.000 24.23 1.49
holds 0.899 0.043 3.36 0.44 0.901 0.023 3.33 0.22

Local ASR weakly violated 0.897 0.044 3.34 0.48 0.843 0.037 2.86 0.27
strongly violated 0.895 0.049 3.34 0.47 0.754 0.056 2.35 0.30
holds 0.923 0.064 4.55 6.23 0.903 0.025 3.35 0.24

CQR weakly violated 0.922 0.055 4.49 5.18 0.904 0.043 3.41 0.42
strongly violated 0.924 0.067 4.72 7.05 0.904 0.042 3.41 0.44

Federated II (ours) Target site only

holds 0.893 0.038 3.28 0.34 0.898 0.048 3.35 0.47
ASR weakly violated 0.895 0.034 3.29 0.34 0.898 0.043 3.34 0.41

strongly violated 0.896 0.036 3.30 0.35 0.896 0.049 3.35 0.47
holds 0.903 0.040 3.39 0.43 0.904 0.058 3.50 0.66

Local ASR weakly violated 0.900 0.041 3.37 0.46 0.904 0.056 3.48 0.64
strongly violated 0.900 0.043 3.37 0.44 0.905 0.058 3.50 0.63
holds 0.927 0.051 4.38 4.96 0.918 0.058 3.68 0.66

CQR weakly violated 0.926 0.045 4.33 4.12 0.920 0.062 3.71 0.71
strongly violated 0.928 0.055 4.52 5.62 0.920 0.060 3.71 0.69

Federated III Equal weights

holds 0.897 0.036 3.31 0.34 0.907 0.037 3.44 0.46
ASR weakly violated 0.899 0.032 3.32 0.32 0.907 0.036 3.44 0.44

strongly violated 0.900 0.034 3.34 0.35 0.908 0.039 3.46 0.47
holds 0.914 0.038 3.59 1.08 0.929 0.042 4.27 3.11

Local ASR weakly violated 0.912 0.037 3.55 0.89 0.930 0.042 4.70 7.53
strongly violated 0.913 0.039 3.53 0.57 0.930 0.042 4.30 4.39
holds 0.949 0.033 4.59 3.44 0.965 0.034 9.82 52.91

CQR weakly violated 0.946 0.035 4.55 3.13 0.960 0.056 6.84 8.83
strongly violated 0.950 0.031 4.65 4.31 0.966 0.032 6.82 7.94

Heteroscedasticity where σ(x) = − log(x)

Federated I Pooled sample

holds 0.903 0.038 4.23 1.05 0.906 0.017 4.10 0.42
ASR weakly violated 0.902 0.035 4.16 0.90 0.983 0.004 9.22 0.52

strongly violated 0.904 0.034 4.21 0.95 1.000 0.000 24.37 1.53
holds 0.918 0.053 3.92 0.89 0.925 0.032 3.89 0.49

Local ASR weakly violated 0.919 0.053 3.97 0.92 0.870 0.044 3.19 0.45
strongly violated 0.919 0.052 3.96 0.91 0.789 0.058 2.55 0.40
holds 0.915 0.134 9.13 47.58 0.850 0.155 3.29 0.56

CQR weakly violated 0.916 0.127 4.57 8.47 0.854 0.169 3.43 0.72
strongly violated 0.915 0.126 5.86 16.05 0.839 0.183 3.48 0.91

Federated II (ours) Target site only

holds 0.905 0.034 4.23 0.97 0.899 0.046 4.24 1.29
ASR weakly violated 0.905 0.031 4.20 0.84 0.905 0.044 4.39 1.33

strongly violated 0.906 0.030 4.22 0.87 0.902 0.042 4.28 1.27
holds 0.920 0.049 3.96 0.91 0.901 0.091 4.12 1.67

Local ASR weakly violated 0.923 0.050 4.04 0.94 0.913 0.085 4.31 1.70
strongly violated 0.923 0.049 4.03 0.93 0.913 0.081 4.32 1.71
holds 0.925 0.120 8.10 38.03 0.855 0.213 3.97 1.46

CQR weakly violated 0.926 0.116 4.49 6.77 0.877 0.197 4.18 1.51
strongly violated 0.929 0.107 5.53 12.80 0.877 0.192 4.18 1.49

Federated III Equal weights

holds 0.910 0.031 4.38 1.00 0.918 0.031 4.69 1.25
ASR weakly violated 0.909 0.030 4.34 0.86 0.915 0.030 4.52 0.96

strongly violated 0.910 0.030 4.35 0.86 0.917 0.029 4.61 0.99
holds 0.936 0.044 4.27 1.02 0.951 0.038 4.99 2.81

Local ASR weakly violated 0.936 0.046 4.41 1.81 0.948 0.041 5.64 9.58
strongly violated 0.938 0.047 4.42 1.66 0.950 0.040 5.40 7.17
holds 0.958 0.097 7.31 18.71 0.975 0.066 16.39 86.25

CQR weakly violated 0.958 0.092 5.51 7.78 0.969 0.084 13.30 53.84
strongly violated 0.969 0.057 6.29 9.57 0.979 0.043 10.97 24.62

CFS: conformal score; CCOD: common conditional outcome distribution
CP: coverage probability; wd: width; s.d.: standard deviation (over 500 replications)

Table 7: nk = 300, strongly heterogeneous covariate distribution
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CFS CCOD CP s.d.(CP) wd s.d.(wd) CP s.d.(CP) wd s.d.(wd)

Homoscedasticity where σ(x) = 1

Federated I Pooled sample

holds 0.895 0.027 3.27 0.23 0.900 0.011 3.30 0.09
ASR weakly violated 0.896 0.026 3.27 0.23 1.000 0.000 8.77 0.26

strongly violated 0.895 0.026 3.27 0.22 1.000 0.000 23.95 0.85
holds 0.897 0.030 3.30 0.26 0.901 0.015 3.31 0.14

Local ASR weakly violated 0.899 0.027 3.30 0.25 0.839 0.021 2.80 0.14
strongly violated 0.896 0.028 3.29 0.25 0.739 0.036 2.26 0.17
holds 0.907 0.044 3.60 1.54 0.901 0.015 3.32 0.14

CQR weakly violated 0.909 0.045 3.60 1.44 0.902 0.022 3.33 0.21
strongly violated 0.906 0.042 3.57 1.66 0.900 0.025 3.33 0.25

Federated II (ours) Target site only

holds 0.897 0.022 3.28 0.20 0.902 0.024 3.34 0.24
ASR weakly violated 0.898 0.022 3.28 0.20 0.901 0.025 3.32 0.24

strongly violated 0.896 0.022 3.28 0.20 0.899 0.025 3.31 0.24
holds 0.900 0.026 3.32 0.23 0.906 0.029 3.40 0.31

Local ASR weakly violated 0.900 0.025 3.31 0.23 0.903 0.031 3.35 0.32
strongly violated 0.898 0.025 3.30 0.23 0.902 0.031 3.36 0.31
holds 0.910 0.036 3.57 1.22 0.909 0.031 3.43 0.33

CQR weakly violated 0.911 0.037 3.56 1.14 0.905 0.033 3.40 0.33
strongly violated 0.908 0.035 3.53 1.32 0.905 0.035 3.40 0.35

Federated III Equal weights

holds 0.898 0.022 3.29 0.20 0.904 0.028 3.36 0.28
ASR weakly violated 0.900 0.021 3.30 0.20 0.907 0.027 3.39 0.28

strongly violated 0.899 0.021 3.30 0.20 0.906 0.025 3.38 0.26
holds 0.904 0.023 3.36 0.23 0.916 0.029 3.52 0.41

Local ASR weakly violated 0.907 0.023 3.38 0.26 0.919 0.029 3.59 0.62
strongly violated 0.904 0.023 3.36 0.25 0.917 0.031 3.71 3.48
holds 0.922 0.028 3.63 0.61 0.942 0.034 4.03 1.02

CQR weakly violated 0.925 0.026 3.65 0.68 0.944 0.031 4.03 0.90
strongly violated 0.921 0.028 3.61 0.75 0.943 0.033 4.11 1.30

Heteroscedasticity where σ(x) = − log(x)

Federated I Pooled sample

holds 0.904 0.025 4.10 0.60 0.907 0.010 4.10 0.23
ASR weakly violated 0.903 0.022 4.07 0.56 0.983 0.003 9.11 0.28

strongly violated 0.903 0.025 4.07 0.58 1.000 0.000 24.14 0.85
holds 0.918 0.040 3.80 0.54 0.929 0.020 3.90 0.31

Local ASR weakly violated 0.921 0.041 3.85 0.61 0.868 0.025 3.12 0.23
strongly violated 0.920 0.037 3.84 0.56 0.781 0.036 2.48 0.22
holds 0.862 0.168 3.83 2.02 0.866 0.111 3.22 0.35

CQR weakly violated 0.868 0.165 3.86 2.11 0.856 0.121 3.20 0.39
strongly violated 0.874 0.166 4.17 4.44 0.854 0.143 3.28 0.50

Federated II (ours) Target site only

holds 0.906 0.021 4.12 0.52 0.907 0.023 4.18 0.60
ASR weakly violated 0.904 0.019 4.08 0.49 0.906 0.022 4.12 0.58

strongly violated 0.904 0.021 4.09 0.50 0.905 0.023 4.14 0.60
holds 0.921 0.033 3.84 0.49 0.924 0.043 3.98 0.73

Local ASR weakly violated 0.924 0.035 3.87 0.56 0.924 0.043 3.96 0.72
strongly violated 0.923 0.032 3.87 0.52 0.923 0.047 3.97 0.76
holds 0.879 0.143 3.76 1.59 0.854 0.177 3.48 0.81

CQR weakly violated 0.884 0.141 3.77 1.67 0.849 0.183 3.46 0.81
strongly violated 0.889 0.143 4.03 3.53 0.849 0.177 3.46 0.82

Federated III Equal weights

holds 0.908 0.021 4.18 0.55 0.915 0.025 4.43 0.77
ASR weakly violated 0.908 0.019 4.17 0.51 0.915 0.023 4.44 0.73

strongly violated 0.907 0.020 4.16 0.53 0.914 0.024 4.43 0.73
holds 0.929 0.031 3.98 0.52 0.942 0.035 4.38 0.96

Local ASR weakly violated 0.932 0.031 4.03 0.67 0.947 0.032 4.58 2.28
strongly violated 0.930 0.032 3.99 0.56 0.947 0.033 4.49 1.24
holds 0.942 0.079 4.02 1.08 0.964 0.064 5.00 3.18

CQR weakly violated 0.937 0.088 4.01 1.54 0.960 0.074 4.81 2.30
strongly violated 0.940 0.080 4.07 1.72 0.964 0.065 5.11 2.77

CFS: conformal score; CCOD: common conditional outcome distribution
CP: coverage probability; wd: width; s.d.: standard deviation (over 500 replications)

Table 8: nk = 1000, strongly heterogeneous covariate distribution
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CFS CCOD CP s.d.(CP) wd s.d.(wd) CP s.d.(CP) wd s.d.(wd)

Homoscedasticity where σ(x) = 1

Federated I Pooled sample

holds 0.898 0.017 3.28 0.15 0.899 0.008 3.28 0.06
ASR weakly violated 0.897 0.016 3.27 0.14 1.000 0.000 8.74 0.15

strongly violated 0.897 0.017 3.27 0.15 1.000 0.000 23.78 0.49
holds 0.898 0.018 3.28 0.15 0.899 0.011 3.29 0.09

Local ASR weakly violated 0.898 0.019 3.28 0.17 0.835 0.015 2.78 0.08
strongly violated 0.898 0.018 3.28 0.15 0.732 0.022 2.22 0.09
holds 0.900 0.024 3.31 0.22 0.899 0.011 3.29 0.10

CQR weakly violated 0.899 0.026 3.31 0.24 0.899 0.015 3.29 0.13
strongly violated 0.899 0.024 3.31 0.21 0.899 0.016 3.30 0.15

Federated II (ours) Target site only

holds 0.899 0.015 3.28 0.13 0.900 0.014 3.30 0.13
ASR weakly violated 0.898 0.014 3.28 0.12 0.900 0.014 3.30 0.13

strongly violated 0.898 0.014 3.28 0.12 0.900 0.014 3.30 0.12
holds 0.898 0.016 3.28 0.14 0.900 0.018 3.30 0.17

Local ASR weakly violated 0.899 0.017 3.29 0.15 0.901 0.019 3.31 0.18
strongly violated 0.899 0.016 3.29 0.13 0.900 0.018 3.31 0.17
holds 0.901 0.020 3.32 0.19 0.901 0.020 3.32 0.18

CQR weakly violated 0.900 0.022 3.31 0.20 0.903 0.021 3.34 0.19
strongly violated 0.900 0.020 3.31 0.18 0.903 0.020 3.34 0.18

Federated III Equal weights

holds 0.901 0.015 3.30 0.13 0.903 0.017 3.33 0.16
ASR weakly violated 0.900 0.015 3.30 0.13 0.903 0.018 3.33 0.17

strongly violated 0.901 0.013 3.30 0.12 0.902 0.017 3.33 0.16
holds 0.902 0.016 3.32 0.15 0.907 0.019 3.37 0.19

Local ASR weakly violated 0.903 0.017 3.33 0.15 0.907 0.019 3.37 0.19
strongly violated 0.903 0.014 3.33 0.13 0.906 0.018 3.37 0.17
holds 0.910 0.018 3.41 0.21 0.918 0.022 3.51 0.28

CQR weakly violated 0.908 0.020 3.39 0.20 0.915 0.025 3.48 0.28
strongly violated 0.909 0.017 3.41 0.17 0.915 0.022 3.48 0.25

Heteroscedasticity where σ(x) = − log(x)

Federated I Pooled sample

holds 0.906 0.017 4.09 0.40 0.908 0.007 4.11 0.13
ASR weakly violated 0.905 0.015 4.06 0.37 0.983 0.003 9.04 0.18

strongly violated 0.904 0.016 4.07 0.38 1.000 0.000 23.98 0.51
holds 0.925 0.024 3.83 0.37 0.932 0.014 3.91 0.20

Local ASR weakly violated 0.924 0.024 3.85 0.35 0.866 0.019 3.11 0.15
strongly violated 0.924 0.028 3.85 0.37 0.773 0.023 2.42 0.14
holds 0.855 0.141 3.28 0.53 0.886 0.060 3.19 0.22

CQR weakly violated 0.861 0.142 3.30 0.53 0.877 0.078 3.19 0.25
strongly violated 0.863 0.134 3.29 0.49 0.868 0.098 3.19 0.32

Federated II (ours) Target site only

holds 0.907 0.014 4.10 0.33 0.908 0.014 4.14 0.34
ASR weakly violated 0.905 0.013 4.07 0.31 0.907 0.014 4.11 0.33

strongly violated 0.905 0.014 4.08 0.32 0.907 0.013 4.13 0.34
holds 0.927 0.021 3.85 0.32 0.930 0.027 3.93 0.44

Local ASR weakly violated 0.925 0.021 3.86 0.32 0.927 0.026 3.92 0.41
strongly violated 0.926 0.023 3.87 0.33 0.930 0.025 3.95 0.44
holds 0.866 0.123 3.27 0.44 0.850 0.144 3.26 0.50

CQR weakly violated 0.870 0.124 3.29 0.45 0.863 0.127 3.30 0.46
strongly violated 0.876 0.113 3.29 0.42 0.863 0.132 3.30 0.50

Federated III Equal weights

holds 0.909 0.014 4.17 0.34 0.912 0.017 4.27 0.45
ASR weakly violated 0.908 0.014 4.15 0.35 0.911 0.017 4.24 0.47

strongly violated 0.908 0.013 4.16 0.32 0.910 0.015 4.22 0.41
holds 0.933 0.021 3.96 0.36 0.939 0.024 4.11 0.49

Local ASR weakly violated 0.931 0.022 3.97 0.37 0.936 0.026 4.10 0.52
strongly violated 0.933 0.020 3.98 0.33 0.937 0.023 4.07 0.43
holds 0.914 0.090 3.49 0.43 0.933 0.083 3.75 0.60

CQR weakly violated 0.916 0.085 3.50 0.43 0.929 0.090 3.74 0.60
strongly violated 0.921 0.082 3.51 0.41 0.934 0.082 3.73 0.53

CFS: conformal score; CCOD: common conditional outcome distribution
CP: coverage probability; wd: width; s.d.: standard deviation (over 500 replications)

Table 9: nk = 3000, strongly heterogeneous covariate distribution
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Figure 9: Boxplots of coverage probability, under strongly heterogeneous covariate distributions
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Figure 10: Boxplots of prediction interval width, under strongly heterogeneous covariate distributions
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B.3. Local coverage over covariate values and scatterplots of federated weights

In this section, we provide the conditional coverage and federated weights plots.

Figure 11 shows the plots of local coverage of the constructed prediction intervals over a grid of X ∈ [0, 1], where the
sample size is set to be nk = 3000 for all sites. We used the smoothing method and published R code by Lei et al. (2018)
for these plots. We can see that under homoscedasticity, the local coverage is constant (a horizontal line) over the covariate
values by a given conformal score. Most of these horizontal lines are close to 0.9, except for the pooled sample. The three
federated weights consistently performed well under homoscedasticity. Furthermore, under heteroscedasticity, we can see
the local coverage when the value of X is too small always deviates from the nominal level by all methods and conformal
scores, which makes sense as − log x → ∞ when x → 0. When X is sufficiently larger than 0, the local coverage increases.
Among the three conformal scores, ASR is the most sensitive one to the change in variance, and does not have coverage
close to 0.9 almost everywhere. This confirms findings in Lei et al. (2018). The other two conformal scores are more robust
against the heteroscedastic variance. When X ∈ [0.1, 0.6], their local coverages are close to 0.9, except for the pooled
sample method.

In addition, Figure 12 shows three federated weights vs. χ2
k values using data of nk = 3000 and under heteroscedasticity,

where we only plotted weights corresponding to χ2
k ∈ [0, 0.5] for illustration purposes, i.e., some weights corresponding

to χ2
k > 0.5 are not shown. As can be seen from the upper 9 panels when CCOD holds, in every case, all weights are

clustered more or less around 0.2. When covariate distributions are heterogeneous, the weights distributions become more
complex, but generally when χ2

k is smaller, there are larger weights in each panel. Also, there are obviously some larger
weights (> 0.2, i.e., above the red dashed lines) in site 1; about half of the weights are below 0.2 for both sites 2 and 3, and
most weights for site 4 are close to 0. Although site 3 has some surprisingly large weights, it also shows a more unstable
pattern of weights, which might be a reflection of its heterogeneity to the target site. Overall, the trend of weights fits the
expectation of our method: the bigger the difference to the target site, the smaller (or the less stable) the weights.
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Figure 11: Local coverages, under CCOD is strongly violated and strongly heterogeneous covariate distributions and
nk = 3000
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Figure 12: Weights vs. χ2
k values, using nk = 3000 data under heteroscedasticity. The green points are by Federated I, the

orange points are by Federated II (ours), the blue points are by Federated III, and the red dashed lines are for a reference line
weights = 0.2.
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Figure 13: Comparison of coverage probabilities and average interval width when modifying the propensity score of
observing the outcome between (0.4, 0.6) (panel (a)) and (0.1, 0.9) (panel (b)).
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