
Optimizing Sensor Network Design for Multiple

Coverage

Lukas Taus1 and Yen-Hsi R. Tsai2

Oden Institute for Computational Engineering and Sciences,
University of Texas at Austin

1l.taus@utexas.edu
2ytsai@math.utexas.edu

Abstract

Sensor placement optimization methods have been studied extensively.
They can be applied to a wide range of applications, including surveillance
of known environments, optimal locations for 5G towers, and placement
of missile defense systems. However, few works explore the robustness
and efficiency of the resulting sensor network concerning sensor failure or
adversarial attacks. This paper addresses this issue by optimizing for the
least number of sensors to achieve multiple coverage of non-simply con-
nected domains by a prescribed number of sensors. We introduce a new
objective function for the greedy (next-best-view) algorithm to design ef-
ficient and robust sensor networks and derive theoretical bounds on the
network’s optimality. We further introduce a Deep Learning model to ac-
celerate the algorithm for near real-time computations. The Deep Learn-
ing model requires the generation of training examples. Correspondingly,
we show that understanding the geometric properties of the training data
set provides important insights into the performance and training process
of deep learning techniques. Finally, we demonstrate that a simple paral-
lel version of the greedy approach using a simpler objective can be highly
competitive.

1 Introduction

Sensor placement optimization methods are a well-studied field with far-reaching
implications for many application areas, including surveillance of known envi-
ronments using minimal sensors, one of the most actively studied problems
in autonomous robotics. Another application that got significant traction re-
cently was the optimal placement of 5G-wireless towers. 5G communication
uses 30GHz-300GHz signals, corresponding to wavelengths ranging from 1mm
to 10mm. Compared to the size of the obstacles in a larger domain, this is a high-
frequency wave propagation regime; thus, the waves can be well approximated

1

ar
X

iv
:2

40
5.

09
09

6v
2

 [
cs

.L
G

]
 2

0
M

ay
 2

02
4

by straight lines. In [31], it was also stated that one of the major difficulties in
5G communication is the signal sensitivity due to blockage.

However, algorithms for this type of sensor coverage problem typically only
consider single coverage. A part of the environment is visible if at least a single
sensor observes it. This formulation makes the network of sensors volatile to
technical failure and adversarial attacks.

In this paper, we consider the problem of designing a network with the least
number of sensors achieving multiple coverage for a bounded, non-simply con-
nected environment. The multiple coverage condition specifies that a region is
not considered fully visible until at least k sensors observe it. This also provides
measurements from different angles, which improves the accuracy for object
reconstruction tasks discussed in [12]. In some sense, one has two competing
objectives: on the one handle, one wishes that each point in the free space be
covered by a prescribed minimal number of sensors; on the other hand, one
wishes to use as few sensors as possible.

However, the computational complexity of this problem makes computa-
tions of optimal solutions challenging. Greedy algorithms may efficiently find
near-optimal solutions to many optimization problems. However, designing a
suitable gain/reward function is essential. Among the main contributions of
this paper are (i) the formulation of a novel gain function with a corresponding
estimate of the optimality when it’s used in the greedy algorithm, (ii) a Deep
Learning strategy to accelerate the computation, and (iii) an empirically highly
efficient parallel greedy algorithm for the multiple coverage problem. Some rep-
resentative numerical examples and comparison of the algorithms’ performance
statistics are presented.

1.1 Related work

The problem of optimally placing sensors to achieve visibility in a given environ-
ment is closely related to the gallery problem in computational geometry. An
upper bound for sensors needed to achieve complete visibility in simple polyg-
onal environments with holes has been derived in [3, 11]. For general environ-
ments, however, the problem is NP-complete in [30, 25, 20]. Multiple methods
for solving this problem have been proposed, including alternating minimization
[9] and transformation of the problem into a system of differential equations
[15]. These approaches, however, assume that an a priori fixed amount of sen-
sors are placed. In most applications, however, this is not known. For general
two-dimensional environments, it was proposed to place sensors along frontiers
[19, 18, 17]. However, in [6], it was shown that this approach is not necessarily
optimal. For general three-dimensional environments, the use of level set rep-
resentations for the computation of visibility was proposed in [5, 29]. Another
approach to handling three-dimensional environments described by a function
graph was discussed in [14]. Using these representations, “next-best-view” al-
gorithms, which maximize visibility information gain, are deployed to generate
optimal sequences of sensor locations [22]. Commonly used measures for vis-
ibility information gain include the volume of unexplored regions [7, 1, 2, 10]

2

and surface area of frontiers weighted by viewing angle [32, 33]. The use of
deep learning techniques to evaluate these measures more efficiently has been
discussed in [23]. In addition to achieving optimal visibility, the uncertainty
quantification of inaccurate depth measurements of LIDAR sensors was dis-
cussed in [26]. To improve the accuracy of these sensors, it was proposed to
optimize sensor locations such that multiple sensors observe the same regions in
the environment [28]. In the described approach, however, no theoretical bound
for the efficiency of the algorithm has been proven. In this paper, we propose
using a novel utility function, which we call “gain”, to achieve multiple coverage
for which we prove theoretical guarantees.

2 The problem definition

A given environment consists of areas occupied by an obstacle and free space.
We denote this as

Ω = Ωobs ∪ Ωfree.

We will consider the environment in R2 and R3.

Figure 1: Representations of environments in R2 and R3.

Figure 1 shows representations of different types of environments. The left
figure shows an environment in R2 where the green area is the part of the envi-
ronment occluded by an obstacle. Similarly, the right figure shows the surface
of the obstacles of an environment in 3 dimensions.

We define the visibility relation using the line-of-sight principle which means
that a point x ∈ Ωfree is visible to another point y ∈ Ωfree if

x
vis∼ y ⇐⇒ ∀t ∈ [0, 1]: tx+ (1− t)y ∈ Ωfree.

This equivalence relation is then used to define the visibility function

ϕx(y) =

{
1, if x

vis∼ y,

0, else.
(1)

3

Figure 2: Illustration of ϕx(y) in a 2 dimensional environment.

Figure 3: Example of Ovis.

ϕx is used to describe the observed area when placing a sensor x ∈ Ωfree.
We illustrate this concept in Figure 2, in which a sensor x is placed at the

location of the black dot. This results in the blue area becoming visible and
therefore ϕx ≡ 1 in this region. The red area, however, is not visible to sensor x
and therefore ϕx ≡ 0. Note also that Ωobs can never be observed by any sensor
and therefore also ϕx ≡ 0 in Ωobs.

To describe the multiple coverage constraint, however, we must also track
areas observed by multiple sensors. We use the order-of-visibility function,
which is defined as

Ovis(y;P) =
∑
x∈P

ϕx(y), (2)

where P is a set of sensor locations. This function returns the number of sensors
in the set P which observe point y ∈ Ωfree up to a fixed amount k.

Figure 3 shows the order of visibility in an environment where three sensors
have been placed. The sensors are again marked using black dots. The regions
of visibility overlap now, producing different orders of visibility. The lighter the
color blue in Figure 3 the higher order of visibility we observe. However, there
are still areas that are not observed by any sensor. We denote this area and Ωobs

4

as visibility of order 0. With this, we can then precisely describe the multiple
coverage problem.

Multiple coverage optimization:
Find the minimal set of sensors P = {x1, ..., xn} such that

Vol ({y ∈ Ω| Ovis(y;P) ≥ k}) ≤ (1− δ)Vol(Ωfree), (3)

for some given threshold δ ∈ (0, 1).

While not explicitly stated, we prefer solutions where the sensors are spread
out and do not occupy the same locations. This makes the sensor network more
robust against adversarial attacks in practice.

3 Methods

The optimization problems, such as the one defined in (3) has a daunting com-
plexity. It was shown to be NP-complete [30, 25, 20]. Assuming we want to
place K sensors on an M3 grid over the environment Ω ⊆ R3 by a brute-force
search, we would have to check M3K sets of sensors. It is therefore necessary
to relax the problem into a more tractable one.

In the following exposition, we shall describe the proposed mathematical
formulations on the continuum, since the notation is cleaner. In practice, we
work with Cartesian grids. This means that sensors will be placed on the grid
nodes, and the visibility information computed on the grid, using algorithms
introduced in [29, 14], and integrals are approximated by simple Riemann sums.

3.1 The greedy algorithm

A popular approach is the greedy algorithm. Instead of looking for the optimal
set of sensors, we intend to generate a sequence of sensor locations. A new
location in the sequence is chosen via maximization of a predetermined gain
function Gk, depending on the existing (given) list of sensors:

xm+1 ∈ argmax
x∈Ωfree

Gk(x;P), P = {x1, . . . ,xm}.

In the next greedy step, xm+1 is added to the list P . This approach leads to
the following algorithm.

Algorithm 1 The greedy algorithm

P = list()
while

∫
Ωfree

Ovis(y;P)dy < δkλ(Ωfree) do

calculate Gk(x, P) for every x ∈ Ωfree

choose x∗ ∈ {y ∈ Ωfree | Gk(y, P) ≥ (1− ϵ)maxz∈Ωfree
Gk(z, P)} randomly

P.append(x∗)
end while

5

In each greedy step, we optimize a weighted sum of the volume having dif-
ferent minimal orders of visibility:

fk(P) =

k∑
i=1

wi

∫
Ωfree

1{Ovis(z,P)≥i}dz. (4)

Each integral evaluates the volume of the sub-level sets of Ovis(z, P). We shall
refer to fk(P) as the coverage of the set of sensors listed in P .

Under this optimization objective, the gain function Gk(x, P) describes in
the increase in the coverage:

fk(P ∪ {x}) = fk(P) + Gk(x, P). (5)

In the next Subsection, we present a theory relating the efficiency of the greedy
algorithm using (5).

3.2 A submodularity theory

In this Section, we will analyze our choice of gain function and provide proof of
its efficiency.

Proposition 3.1. (Monotonicity of fk) If wi ≥ 0 for all 1 ≤ i ≤ k in (4), then

fk(A) ≤ fk(B),

for all countable sets A ⊆ B ⊆ Ωfree.

Proposition 3.2. (Submodularity of fk) If wi+1 ≤ wi for all 1 ≤ i ≤ k − 1,
then

Gk(z, A) ≥ Gk(z, B),

for any countable sets A ⊆ B ⊆ Ωfree and any z ∈ Ωfree.

Note that the condition wi+1 ≤ wi incentivizes the algorithm to produce
spaced out sensors. Indeed, the weight wi can be interpreted as the gain when
promoting a region of volume 1 from order i − 1 visibility to order i visibility.
Thus, the algorithm prefers lower-order visibility, which produces spaced-out
sensor networks.

Theorem 3.1. Let Pn = {x1, ..., xn} be the set of n sensors placed according
to Algorithm 1 using Gk defined in (4)-(5) and parameter ϵ ∈ [0, 1).

P ∗
l = {x∗

1, ..., x
∗
l } ∈ argmax

P⊆Ωfree,|P |=l

fk(P) =⇒ fk(Pn) ≥
(
1− e−(1−ϵ)n

l

)
fK(P ∗

l).

Because fk is monotone, adding new sensors will always improve the sensor
network. The theorem above gives us a measure of quality depending on the
number of sensors placed by the greedy algorithm compared to a fixed number
of optimally placed sensors. Picking l = n gives us a bound about the quality
of the placed sensor network compared to optimally placed sensors of the same
amount. Below, we have listed this efficiency for commonly used values of ϵ.

6

ϵ 0 0.01 0.05
fk(Pn)/fk(P

∗
l) 0.6321 0.6284 0.6133

This shows that the commonly used values for ϵ have little effect on the theo-
retical guarantee we derived.

3.3 Parallelizing the greedy algorithm

While the greedy algorithm is sequential by construction, we propose using an
ensemble of greedy sequences in parallel. Each greedy sequence involves the
gain function for a lower order of visibility. The algorithm can be summarized
by the following recursion formula:

xℓ
m+1 ∈ argmax

x∈Ωfree

G1(x;x
ℓ
1, . . . ,x

ℓ
m), ℓ = 1, 2, · · · , k.

It is made precise in Algorithm 2 below.

Algorithm 2 The parallel greedy algorithm

P1, ..., Pk = list()
for i = 1 : k do

while
∫
Ωfree

min {Ovis(y;Pi), 1} dy < δ
kλ(Ωfree) do

if len(Pi) = 0 then
Pick x ∈ Ωfree randomly
Pi.append(x)

else
G1(x, Pi) for every x ∈ Ωfree

compute M = maxz∈Ωfree
G1(z, Pi)

choose x∗ ∈ {y ∈ Ωfree | G1(y, Pi) ≥ (1− ϵ)M} randomly
Pi.append(x

∗)
end if

end while
end for
return

⋃k
i=1 Pi

The main advantage of this algorithm is that the separate computations of
the single coverage problems (the use of G1) inside the for loop are independent
and can, therefore, be performed in parallel. Further, in [22], it was shown that
G1 can be efficiently approximated using a neural network with UNet architec-
ture [27]. Performing these calls in parallel may optimize GPU utilization to its
full potential capacity.

The algorithm generates k sequences of sensor locations independently until
the end of the parallel run. To solve the problem given by Equation (3), we
need to ensure that the merged sensor set covers a volume of (1 − δ)λ(Ωfree)
with order k. In the worst case, the regions not entirely observed by the separate
sensor sequences are completely disjoint. Accordingly, we prescribe a stricter
termination criterion of covering a volume of

(
1− δ

k

)
λ(Ωfree).

7

3.4 Learning the gain function

The evaluation of the gain function can be costly, especially for large maps.
Because we use the gain function to choose the next sensor location as close
to the maximum, evaluating the gain function Gk at every possible point of
sensor placement is necessary. Additionally, evaluating Gk is very costly since
the visibility function is the solution of a global partial differential equation.
Assume we want to place K sensors on an M ×M grid in Ωfree ⊂ R2 to achieve
target order of visibility k. The algorithm described in [29] has a complexity of
O(M2) for the computation of the visibility function. For the evaluation of Gk

at one point, we need to compute visibility once, update Ovis and compute vol-
umes. Updating Ovis has complexity O(M2k log k) and computing the volumes
is O(M2k). This yields a total computational complexity of

O(KM2k log k)

To speed up the evaluation of Gk, we propose a deep learning strategy in
which a neural network is trained to predict the gain function at every possi-
ble sensor location for a class of environments. Once trained, this allows for a
quick evaluation of the gain function and, therefore, a considerable speed-up in
applying the greedy algorithm. From an initial sensor location, the greedy algo-
rithm defines a discrete dynamical system, parameterized by the environment
Ωfree, that yields a sequence of “images” Gk, k = 0, 1, 2, It is essential that
the training data set adequately samples the causality defined by the greedy
algorithm.

The neural network. We chose the TiraFL architecture described in [13] to
learn Gk from suitable training examples. In these examples, we assume that
the obstacles are described using the graph of a function hobs:

Ωfree = {(x, y, z) ∈ Ω : hobs(x, y) > z}.

Then for x ∈ Ωfree, ϕx can also be described by a function gx:

ϕx(z) = 1 ⇐⇒ gx(z1, z2) ≤ z3, z = (z1, z2, z3).

Correspondingly, the sensor n-coverage can be described by

Ψn(z, P) = n-min
x∈P

gx(z),

where n-minx∈P gx = max {λ ∈ {gx: x ∈ P} : | {gx: x ∈ P} ∩ (−∞, λ)| < n}
returns the n-th smallest value in {gx(z1, z2): x ∈ P}. For example, suppose
{gx: x ∈ P} = {42, 4, 1337, 69} then

1-min
x∈P

gx(z) = 4, 2-min
x∈P

gx(z) = 42, 3-min
x∈P

gx(z) = 69.

We use a neural network to approximate Gk in the following fashion:

Gθ
k(hobs,Ψ1(·, P), ...,Ψk(·, P)) ≈ [Gk(·, P), V1(·, P), · · · , Vk(·, P)]T ,

8

where

Vi(x, P) =

∫
Ωfree

(
1{Ovis(z,P∪{x})≥i} − 1{Ovis(z,P)≥i}

)
dz. (6)

For the training, we use the Adam optimization algorithm.

The training data sets The training examples are generated by running
Algorithm 1 on an environment from a data set. We use random crops of
Massachusetts building footprints from [24]. Then, using the flood-fill algorithm,
we distinguish the separate buildings and assign them a random height in (0, 1),
making it a 3D environment.

For these environments, we run the greedy algorithm with target visibility
order k = 3 until 99% of Ωfree has visibility of order 3. In every iteration of the
algorithm, we store the tensor Ψ as described above and the matrix containing
the height map of the environment as the input.

As labels for the data set, we use a matrix containing evaluations of the gain
function using w1 = 1, w2 = 1

2 , w3 = 1
4 at every grid point as well as matrices

containing evaluations of Vi(x1, x2, P) as defined in Equation (6) at every grid
point. Storing these in addition to the gain function allows for different weights
w1, ..., w3 without retraining the neural network.

In the following, we look at three different data sets.

D0 Dϵ D+

Data Points 25,202 11,924 24,697
ϵ 0 0.05 0.0 and 0.05

In the above, D+ consists of Dϵ and 12,773 data points from D0. A link to the
data sets will be shared if the paper is accepted.

We shall use the notation Gθ
k [D] to denote a network trained with the data

set D. In the next Section, we will compare the performance of the greedy
algorithm using Gθ

k [D0], Gθ
k [Dϵ], and Gθ

k [D+].

4 Numerical experiments

In this Section, we present some numerical experiments using the proposed
algorithms and compare their performance. We used environments from the
same distribution described in Section 3.4 in the experiments.

We apply Algorithm 1 and Algorithm 2 to the environment under the as-
sumption that we are only allowed to place sensors in the streets (at height 0) of
the environment. This is closely related to the practical problem of computing
optimal surveillance camera positions in an urban environment.

We will compare the performance of Algorithm 1 using different approxima-
tions to Gk and Algorithm 2 using G1.

In the numerical experiments, we use a 128×128 uniform Cartesian grid over
Ω. On this grid, a brute force computation of Gk by optimized C++ code took
(represenatively) 1.44s on an Intel Xeon Gold 6248R CPU where the evaluation

9

Figure 4: Algorithm 1. Left: 10 sensors places, 45% order 3 coverage. Right:
24 sensors places, 90% order 3 coverage.

of the gain function is performed in parallel on 24 cores. In comparison the
feedforward evaluation of the network took 0.08s on a Nvidia V100 GPU.

4.1 Results from Algorithm 1 using Gk

As an initial example, we use the three-dimensional environment shown in Fig-
ure 1. We then use Algorithm 1 (with brute force computation of Gk to compute
the sequence of optimal sensor locations using ϵ = 0.01 and Gk defined in (4)-
(5) as a gain function. We chose the target order of visibility k = 3, and the
algorithm terminates when 90% of the free space is observed with order 3. Two
snapshots of the simulation are demonstrated in Fig. 4. In this Figure, as well
as the subsequent Figures, the black lines further enhance the visibility of the
black dots, making sure that they are visible even if hidden behind parts of the
environment. The plane to the right of it shows the values of Ovis of the slice
indicated by the green plane.

From figure 4, we observe that with 10 sensors, the majority of the free space
in the slice is already observed. However, only with order 1 visibility. To cover
90% of the free space with order 3 visibility, it was necessary to place 24 sensors,
as shown in the right figure.

4.2 Results from Algorithm 2 using G1 on three parallel
runs

Figure 5 shows two stages of Algorithm 2 using G1 and 3 parallel runs. The
left figure shows the order of the visibility map after 9 sensors, i.e., 3 from each
separate run, have been placed. We see that the map has already been covered
with order 1 visibility, and a large portion is covered with order 3 visibility. The
right figure shows the terminal stage of the algorithm. 18 sensors were needed
to cover 90% of the free space with order 3 visibility.

10

Figure 5: Algorithm 2 Left: 9 sensors placed, 43% order 3 coverage. Right: 18
sensors places, 90% order 3 coverage.

4.3 Results from Algorithm 1 using the learned gain func-
tions

We apply Algorithm 1 using gain functions defined by neural networks described
in Section 3. Two snapshots of a simulation using Gθ

k [D+], a network trained
with the data set D+ and ϵ = 0.01, are presented in Fig. 6.

Our extensive experiments show that the neural network trained on D0 per-
forms poorly compared to the one trained on D+, even though the two data
sets have roughly the same amount of data points (see Section 3.4).

To explain the possible cause, we analyze the geometric properties of the
data sets using the coordinate frame constructed by the principal value analysis
of D+. In Figure 7, we compare the variances of the projections of X points
uniformly sampled from each of D0, Dϵ, and D+ onto this coordinate frame.
Notice that the distribution of D+ is significantly fuller than D0. We think this
may cause the performance issue if one trained a network with only D0 – when
the network makes inferences for inputs far from the center of the distribution.

4.4 Performance statistics and comparisons

To evaluate the algorithms’ performance, we conducted a statistical analysis of
the results by randomly sampling 50 environments from the same distribution
described in Section 3.4. As depicted in Figures 4-6, the volume of fully ob-
served regions increases quickly in the initial stages of the algorithms and then
stagnates. To investigate this further, we analyzed the number of sensors re-
quired for the percentage of fully observed free space to reach a fixed threshold
with a maximum of 200 sensors placed. In Figures 9 and 10, the results are
presented in box-plots indicating the 25%, 50%, and 75% quantiles, illustrating
the distribution of the needed number of sensors across the different sample
environments.

11

Figure 6: Algorithm 1 using Gθ
k [D+]. Left: 20 sensors placed, 57% order 3

coverage. Right: 47 sensors placed, 90% order 3 coverage.

Figure 7: Ordered values of the singular values starting from the 11,000-th
singular value.

Figure 8: Urban environment. The red area is impossible to observe from the
ground.

12

In our analysis, we examined the behavior of various algorithms at different
stages of iterations in their simulations. We used a threshold of 70% in Figure 10
to investigate the algorithms’ performance in the earlier stages of simulations.
We observed no significant performance gap, even with the random sensor place-
ment.

In Figure 9, we increased the threshold to 90%, corresponding to the al-
gorithm’s late stages. The random point placement became significantly less
effective. Not surprisingly, Algorithm 1 and its neural network approximation
had more consistent performance and reached the threshold with less than 100
sensors most of the time. Furthermore, Algorithm 2 seemed as competitive as
Algorithm 1!

We are also interested in understanding how quickly the observed volume
increases as one adds more sensors at locations prescribed by the algorithms.
We show in Figure 11 scatter plots of the number of sensors versus the achieved
percentage of full (multiple) coverage within the 50 sample maps. Figure 11
shows that Algorithm 1, its neural network approximation as well as Algorithm 2
achieve the threshold more consistently and with fewer sensors.

End-stage performance and premature saturation of sensors’ cover-
age. In our implementation, the algorithms do not terminate when the cov-
erage increment becomes small. Therefore, the algorithm may continually add
new sensors when the sensors’ coverage saturates before reaching the preset
termination coverage. See, in Figure 11, the horizontal blue lines around the
threshold coverage. This premature saturation is possible because, in our simu-
lations, we restrict the sensors to the ground level (even though the visibility and
gain computations are performed in three dimensions). See Figure 8. For this
reason, we suspect that our greedy algorithms’ actual statistical performance is
better. We leave this for a future investigation.

5 Conclusion

This paper presented a greedy (next-best-view) formulation for optimal multiple-
view surveillance of complex environments. The optimization refers to the ob-
jective of using the fewest sensors for such tasks. We showed that the proposed
relaxed form of the optimization problem can be solved efficiently and derived
theoretical lower bounds for efficiency. We introduced a Deep Learning strategy
to accelerate the computation of the greedy algorithm. We discovered that mi-
nor differences in the training data set’s distribution could result in significant
differences in the network’s inference performance.

The proposed parallel greedy algorithm, presented as Algorithm 2, showed
very promising performance. It may provide a new way of designing “next-
best-view” algorithms for a group of agents in robotic applications. We plan to
investigate the analytical properties of this approach in the future.

13

Figure 9: Box-plot of the number of sensors needed to achieve 90% order 3
coverage.

Figure 10: Box-plot of the number of sensors needed to achieve 70% order 3
coverage.

Figure 11: The number of sensors needed for order 3 visibility in the simulations
run over 50 different sample maps. For all of the methods shown, we chose
ϵ = 0.01.

14

6 Acknowledgements

Taus is supported by Army Research Office, under Cooperative Agreement
Number W911NF- 19-2-0333. Tsai is partially supported by Army Research
Office, under Cooperative Agreement Number W911NF-19-2-0333 and National
Science Foundation Grant DMS-2110895.

A Proofs

In this section we provide mathematical proofs for the statements made in the
main paper. We also provide additional statements that help clarify the reason-
ing in the paper.

Proposition A.1. (Monotonicity of fk) If wi ≥ 0 for all 1 ≤ i ≤ k, then

fk(A) ≤ fk(B),

for all countable sets A ⊆ B ⊆ Ωfree.

Proof. Suppose A ⊆ Ωfree and x, z ∈ Ωfree. Then

Ovis(z,A ∪ {x}) =
∑

y∈A∪{x}

ϕy(z) ≥
∑
y∈A

ϕy(z) = Ovis(z,A).

Since ϕy ≥ 0 as it is an indicator function. Thus for any i ∈ {1, ..., k} Ovis(z,A) ≥
i implies Ok

vis(z,A ∪ {x}) ≥ i and therefore

1{Ovis(z,A∪{x})≥i} ≥ 1{Ovis(z,A)≥i}.

By monotonicity of integrals and the fact that all wi ≥ 0 this shows that

fk(A ∪ {x}) ≥ fk(A)

and by induction therefore also

fk(A) ≤ fk(B)

for any countable set B ⊇ A.

Proposition A.2. (Submodularity of fk) If wi+1 ≤ wi for all 1 ≤ i ≤ k − 1,
then

Gk(z, A) ≥ Gk(z, B),

for any countable sets A ⊆ B ⊆ Ωfree and any z ∈ Ωfree.

Proof. Let P be an arbitrary countable subset of Ωfree. Then∫
Ωfree

1{Ovis(z,P∪{x})≥i}dz =

∫
Ωfree

(1− ϕx(z) + ϕx(z))1{Ovis(z,P∪{x})≥i}dz.

15

Splitting up the integral and treating the terms separately we see that∫
Ωfree

(1− ϕx(z))1{Ovis(z,P∪{x})≥i}dz =

∫
{z∈Ωfree: ϕx(z)=0}

1{Ovis(z,P∪{x})≥i}dz

and∫
Ωfree

ϕx(z)1{Ovis(z,P∪{x})≥i}dz =

∫
{z∈Ωfree: ϕx(z)=1}

1{Ovis(z,P∪{x})≥i}dz

On the sub-domain where ϕx ≡ 0

Ovis(z, P ∪ {x}) = Ovis(z, P).

On the other hand on the sub-domain where ϕx ≡ 1

Ovis(z, P ∪ {x}) = 1 +
∑
y∈P

ϕy(z)

and thus for j ∈ {1, ..., k}

Ovis(z, P ∪ {x}) ≥ j ⇐⇒ Ovis(z, P) ≥ j − 1.

Putting the terms back together then yields∫
Ωfree

1{Ovis(z,P∪{x})≥i}dz =

∫
Ωfree

(1−ϕx(z))1{Ovis(z,P)≥i}+ϕx(z)1{Ovis(z,P)≥i−1}dz

which is equal to∫
Ωfree

1{Ovis(z,P)≥i} +

∫
Ωfree

ϕx(z)
[
1{Ovis(z,P)≥i−1} − 1{Ovis(z,P)≥i}

]
dz.

This shows that

∆f(x, P) =
k∑

i=1

wi

∫
Ωfree

ϕx(z)
[
1{Ovis(z,P)≥i−1} − 1{Ovis(z,P)≥i−1}

]
dz.

Note that 1{Ovis(z,P)≥0} ≡ 1. Pulling the sum inside the integral and transform-
ing the summation parameter then yields

∆f(x, P) =

∫
Ωfree

ϕx(z)

[
w1 − wk1{Ovis(z,P)≥k} +

k−1∑
i=1

(wi+1 − wi)1{Ovis(z,P)≥i}

]
dz.

Note that this statement is true for any countable subset P and is therefore also
true for A and B respectively. Using this fact we can show that ∆fk(x,A) −
∆fk(x,B) can be written as the sum of∫

Ωfree

ϕx(z)wk

(
1{Ovis(z,B)≥i} − 1{Ovis(z,A)≥i}

)
dz

16

and ∫
Ωfree

ϕx(z)

[
k−1∑
i=1

(wi+1 − wi)
(
1{Ovis(z,A)≥i} − 1{Ovis(z,B)≥i}

)]
dz.

In the proof of monotonicity it was already shown that

1{Ovis(z,B)≥i} ≥ 1{Ovis(z,A)≥i}.

Further note that ϕx(z) ≥ 0 for all z ∈ Ωfree. Therefore wk ≥ 0 and wi+1−wi ≤
0 are sufficient conditions for both of the above terms to be positive. This shows
that if for all i ∈ {1, ..., k} 0 ≤ wi+1 ≤ wi then

∆fk(x,A) ≥ ∆fk(x,B)

Theorem A.1. Let Pn = {x1, ..., xn} be the set of n sensors placed according
to algorithm 1 using ∆fk as the gain function and parameter ϵ ∈ [0, 1). Further
assume P ∗

l = {x∗
1, ..., x

∗
l } is the solution of

argmax
P⊆Ωfree,|P |=l

fk(P).

Then
fk(Pn) ≥

(
1− e−(1−ϵ)n

l

)
fK(P ∗

l)

Proof. Let m ∈ N be arbitrary. First since fk is monotone we observe that

fk(P
∗
l) ≤ fk(P

∗
l ∪ Pm).

By definition of the discrete derivative

∆fk(x, P) = fk(P ∪ {x})− fk(P)

which yields

fk(P
∗
l ∪ Pm) = fk(Pm) +

l∑
i=1

∆fk(x
∗
i , Pm ∪ {x∗

1, ..., x
∗
i−1}).

Since fk is submodular

∆fk(x
∗
i , Pm ∪ {x∗

1, ..., x
∗
i−1}) ≤ ∆fk(x

∗
i , Pm) ≤ max

x∈Ωfree

∆fk(x, Pm)

for any i ∈ {1, ..., l}. Using the greedy algorithm we know that the sensor xm+1

will be chosen such that the gain function satisfies

Gk(xm+1, Pm) ≥ (1− ϵ) max
x∈Ωfree

Gk(x, Pm).

17

Since Gk = ∆fk this shows

∆fk(x
∗
i , Pm) ≤ 1

1− ϵ
∆fk(xm+1, Pm) =

1

1− ϵ
(fk(Pm+1)− fk(Pm))) .

Collectively we have shown that

fk(P
∗
l)− fk(Pm) ≤ l

1− ϵ
(fk(Pm+1)− fk(Pm))) .

Defining
δm = fk(P

∗
l)− fk(Pm), δ0 = fk(P

∗
l)

we see that

δm ≤ l

1− ϵ
(δm − δm+1)

or equivalently

δm+1 ≤
(
1− 1− ϵ

l

)
δm.

Solving this recursion yields

δn ≤
(
1− 1− ϵ

l

)n

δ0.

Plugging in the definition of δn we see[
1−

(
1− 1− ϵ

l

)n]
fk(P

∗
l) ≤ fk(Pn).

Finally using the inequality 1− x ≤ e−x shows[
1− e−(1−ϵ)n

l

]
fk(P

∗
l) ≤ fk(Pn).

B Choice of hyper parameters for neural net-
work

As the network architecture we chose the TiraFL architecture as described in
[13]. Following the naming convention the table below shows the hyper param-
eters chosen for our application.

in channels 4
down blocks (4,5,7,7,12,12)
up blocks (12,12,7,7,5,4)
bottleneck layers 15
growth rate 16
out chans first conv 48
n classes 4

18

References

[1] Bircher, A., Kamel, M.S., Alexis, K., Oleynikova, H., Siegwart, R.: Re-
ceding horizon ”next-best-view” planner for 3d exploration. In: IEEE
ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2. pp. 1462–
1468 (05 2016). https://doi.org/10.1109/ICRA.2016.7487281

[2] Bircher, A., Kamel, M.S., Alexis, K., Oleynikova, H., Siegwart, R.: Reced-
ing horizon path planning for 3d exploration and surface inspection. Au-
tonomous Robots 42 (02 2018). https://doi.org/10.1007/s10514-016-9610-0

[3] Bjorling-Sachs, I., Souvaine, D.L.: An efficient algorithm for guard place-
ment in polygons with holes. Discrete & Computational Geometry 13, 77–
109 (1995), https://api.semanticscholar.org/CorpusID:37188717

[4] Chen, M., Herbert, S.L., Hu, H., Pu, Y., Fisac, J.F., Bansal, S., Han, S.,
Tomlin, C.J.: FaSTrack:a modular framework for real-time motion planning
and guaranteed safe tracking. IEEE Transactions on Automatic Control
66(12), 5861–5876 (12 2021). https://doi.org/10.1109/tac.2021.3059838,
https://doi.org/10.1109%2Ftac.2021.3059838

[5] Cheng, L.T., Tsai, Y.H.: Visibility Optimization Using Variational Ap-
proaches. Communications in Mathematical Sciences 3(3), 425 – 451 (2005)

[6] Ghosh, S.K., Burdick, J.W., Bhattacharya, A., Sarkar, S.: Online al-
gorithms with discrete visibility - exploring unknown polygonal environ-
ments. IEEE Robotics & Automation Magazine 15(2), 67–76 (2008).
https://doi.org/10.1109/MRA.2008.921542

[7] González-Baños, H., Latombe, J.C.: Navigation strategies for explor-
ing indoor environments. I. J. Robotic Res. 21, 829–848 (10 2002).
https://doi.org/10.1177/027836402128964099

[8] Goodrich, B., Kuefler, A., Richards, W.D.: Depth by poking: Learning to
estimate depth from self-supervised grasping. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). pp. 10466–10472 (2020).
https://doi.org/10.1109/ICRA40945.2020.9196797

[9] Goroshin, R., Huynh, Q., Zhou, H.: Approximate solutions to several visi-
bility optimization problems. Communications in Mathematical Sciences 9
(06 2011). https://doi.org/10.4310/CMS.2011.v9.n2.a9

[10] Heng, L., Gotovos, A., Krause, A., Pollefeys, M.: Efficient visual explo-
ration and coverage with a micro aerial vehicle in unknown environments.
Proceedings - IEEE International Conference on Robotics and Automation
2015, 1071–1078 (06 2015). https://doi.org/10.1109/ICRA.2015.7139309

[11] Hoffmann, F., Kaufmann, M., Kriegel, K.: The art gallery theo-
rem for polygons with holes. In: [1991] Proceedings 32nd Annual

19

https://api.semanticscholar.org/CorpusID:37188717
https://doi.org/10.1109%2Ftac.2021.3059838

Symposium of Foundations of Computer Science. pp. 39–48 (1991).
https://doi.org/10.1109/SFCS.1991.185346

[12] Jin, H., Yezzi, A.J., Tsai, Y.H., Cheng, L.T., Soatto, S.: Estimation of 3d
surface shape and smooth radiance from 2d images: A level set approach.
Journal of Scientific Computing 19, 267–292 (2003)

[13] Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one
hundred layers tiramisu: Fully convolutional densenets for semantic seg-
mentation (2017)

[14] Kao, C.Y., Tsai, R.: Properties of a level set algorithm for
the visibility problems. J. Sci. Comput. 35, 170–191 (06 2008).
https://doi.org/10.1007/s10915-008-9197-5

[15] Kim, S.J., Kang, S.H., Zhou, H.: Optimal sensor positioning (osp); a prob-
ability perspective study (2016)

[16] Krause, A., Golovin, D.: Submodular function maximization. Tractability
3, 71–104 (01 2011). https://doi.org/10.1017/CBO9781139177801.004

[17] Landa, Y., Galkowski, D., Huang, Y.R., Joshi, A., Lee, C., Leung, K.K.,
Malla, G., Treanor, J., Voroninski, V., Bertozzi, A.L., et al.: Robotic path
planning and visibility with limited sensor data. In: American Control
Conference, 2007. ACC’07. pp. 5425–5430. IEEE (2007)

[18] Landa, Y., Tsai, R.: Visibility of point clouds and exploratory path plan-
ning in unknown environments. Communications in Mathematical Sciences
6(4), 881–913 (2008)

[19] Landa, Y., Tsai, R., Cheng, L.T.: Visibility of point clouds and mapping
of unknown environments. In: Advanced Concepts for Intelligent Vision
Systems: 8th International Conference, ACIVS 2006, Antwerp, Belgium,
September 18-21, 2006. Proceedings 8. pp. 1014–1025. Springer Berlin Hei-
delberg (2006)

[20] Lee, D., Lin, A.: Computational complexity of art gallery prob-
lems. IEEE Transactions on Information Theory 32(2), 276–282 (1986).
https://doi.org/10.1109/TIT.1986.1057165

[21] Ly, L., Tsai, Y.R.: Autonomous exploration, reconstruction, and surveil-
lance of 3d environments aided by deep learning. CoRR abs/1809.06025
(2018), http://arxiv.org/abs/1809.06025

[22] Ly, L., Tsai, Y.H.R.: Greedy algorithms for sparse sensor placement via
deep learning. arXiv preprint arXiv:1809.06025 (2018)

[23] Ly, L., Tsai, Y.H.R.: Autonomous exploration, reconstruction, and surveil-
lance of 3d environments aided by deep learning. In: 2019 International
Conference on Robotics and Automation (ICRA). pp. 5467–5473 (2019).
https://doi.org/10.1109/ICRA.2019.8794426

20

http://arxiv.org/abs/1809.06025

[24] Mnih, V.: Machine Learning for Aerial Image Labeling. Ph.D. thesis, Uni-
versity of Toronto (2013)

[25] O’Rourke, J., Supowit, K.: Some np-hard polygon decomposition prob-
lems. IEEE Transactions on Information Theory 29(2), 181–190 (1983).
https://doi.org/10.1109/TIT.1983.1056648

[26] Popović, M., Thomas, F., Papatheodorou, S., Funk, N., Vidal-Calleja, T.,
Leutenegger, S.: Volumetric occupancy mapping with probabilistic depth
completion for robotic navigation. IEEE Robotics and Automation Letters
6(3), 5072–5079 (2021). https://doi.org/10.1109/LRA.2021.3070308

[27] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for
biomedical image segmentation (2015)

[28] Taus, L., Tsai, Y.H.R.: Efficient and robust sensor placement in complex
environments (2023)

[29] Tsai, Y.H., Cheng, L.T., Osher, S., Burchard, P., Sapiro, G.: Visibility and
its dynamics in a pde based implicit framework. Journal of Computational
Physics 199(1), 260–290 (2004)

[30] Urrutia, J.: Chapter 22 - art gallery and illumination prob-
lems. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Compu-
tational Geometry, pp. 973–1027. North-Holland, Amsterdam
(2000). https://doi.org/https://doi.org/10.1016/B978-044482537-
7/50023-1, https://www.sciencedirect.com/science/article/pii/

B9780444825377500231

[31] Uwaechia, A.N., Mahyuddin, N.M.: A comprehensive survey on mil-
limeter wave communications for fifth-generation wireless networks:
Feasibility and challenges. IEEE Access 8, 62367–62414 (2020).
https://doi.org/10.1109/ACCESS.2020.2984204

[32] Valente, L., Tsai, Y.H.R., Soatto, S.: Information gathering control via ex-
ploratory path planning. In: 2012 46th Annual Conference on Information
Sciences and Systems (CISS). pp. 1–6. IEEE (2012)

[33] Valente, L., Tsai, Y.H.R., Soatto, S.: Information-seeking control under
visibility-based uncertainty. Journal of Mathematical Imaging and Vision
48(2), 339–358 (2014)

21

https://www.sciencedirect.com/science/article/pii/B9780444825377500231
https://www.sciencedirect.com/science/article/pii/B9780444825377500231

	Introduction
	Related work

	The problem definition
	Methods
	The greedy algorithm
	A submodularity theory
	Parallelizing the greedy algorithm
	Learning the gain function

	Numerical experiments
	Results from Algorithm 1 using Gk
	Results from Algorithm 2 using G1 on three parallel runs
	Results from Algorithm 1 using the learned gain functions
	Performance statistics and comparisons

	Conclusion
	Acknowledgements
	Proofs
	Choice of hyper parameters for neural network

