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ABSTRACT

Deep models produce a number of features in each internal
layer. A key problem in applications such as feature com-
pression for remote inference is determining how important
each feature is for the task(s) performed by the model. The
problem is especially challenging in the case of multi-task
inference, where the same feature may carry different impor-
tance for different tasks. In this paper, we examine how ef-
fective is mutual information (MI) between a feature and a
model’s task output as a measure of the feature’s importance
for that task. Experiments involving hard selection and soft
selection (unequal compression) based on MI are carried out
to compare the MI-based method with alternative approaches.
Multi-objective analysis is provided to offer further insight.

Index Terms— Feature selection, feature compression,
multi-task inference

1. INTRODUCTION

The emergence of high-end mobile/edge devices with Artifi-
cial Intelligence (AI) hardware opened new doors for Al ap-
plications at the edge [[1]]. However, constraints on the battery
and processing power limit the complexity of Deep Neural
Networks (DNNs) that such devices can run. One promising
solution to this challenge is to divide the DNN workload be-
tween the edge device and a more powerful server (e.g., in the
cloud), by having the edge device compute features and send
them to the cloud for further analysis. This approach is known
in the literature under various names, such as collaborative
intelligence [2], collaborative inference [3l], computation of-
floading [4], split computing [3]], and semantic communica-
tions [S]. Since edge-side DNN features have to be sent to the
cloud through a capacity-limited channel, the key challenge
becomes how to compress these features without affecting
DNN accuracy [6} [7]]. Increasing interest in these topics has
motivated standardization efforts such as MPEG Video Cod-
ing for Machines (MPEG VCM) [8]], MPEG Feature Coding
for Machines (MPEG FCM) [9] and JPEG AI [10].

An important challenge in coding for machines is related
to multi-task inference. Multi-task DNNSs [[11, 12} [13] usu-
ally consist of a shared backbone (foundation model) that pro-
duces rich features capable of supporting multiple tasks, and
multiple heads, each of which performs a certain task. If all
tasks are required simultaneously, the solution is to compress
all the features. But if only one or a few tasks are required,
compressing all features is an overkill; it would be better to
find which features are relevant for the particular task(s), and

only compress those. This requires the ability to quantify the
importance of features for the particular task(s). In this paper,
we examine the effectiveness of mutual information (MI) [[14]
between a feature and a task output as a measure of feature
importance, and then describe how it can be used for feature
selection. One approach, called hard selection, simply retains
a set of the most important features and discards others. The
other approach, called soft selection, compresses some fea-
tures more and others less, according to their importance.

The paper is organized as follows. In Section[2] we review
related work on feature selection in machine learning. In Sec-
tion 3] we first present our MI estimator for visual multi-task
models. We then present our approach to hard and soft feature
selection. Experiments are presented in Section [4] followed
by conclusions in Section[5]

2. RELATED WORK

The topic of feature selection has a long history in machine
learning [15]. In fact, feature selection based on MI is well-
established in machine learning [16} [17, [18]. However, there
is little prior work on feature selection in DNNs based on MI,
with notable exceptions being [19} 20]], both targeted at fil-
ter pruning. Note that feature selection is complementary to
feature pruning: selecting a group of features is equivalent to
pruning other (non-selected) features. However, filter prun-
ing and feature pruning are not equivalent. For example, con-
sider removing a feature from the output of an add block
in a ResNet [21]] structure. This is not equivalent to the re-
moval of the corresponding filter in the immediately preced-
ing convolutional layer, because the corresponding channel
in the feature tensor is also influenced by the feature carried
over through the skip connection. Nonetheless, popular crite-
ria for filter pruning, such as norm-based and proximity-based
methods, can also be used for feature pruning (and hence fea-
ture selection), by applying the corresponding methodology
to features rather than filter kernels.

Existing approaches to filter pruning can roughly be di-
vided into norm-based and proximity-based methods. Norm-
based methods [22} 23| 24] 25] assume that a large norm
is an indicator of the importance of a particular filter in
a given network. On the other hand, proximity-based ap-
proaches [26 27, [28]] are based on the notion that similar fil-
ters may be redundant and can be removed. Feature prun-
ing has followed similar logic. Existing criteria for fea-
ture pruning include small variance [29]], similarity to other
features [30], influence on reconstructing subsequent fea-
tures [31]], low rank [32], or attention [33]].



A fundamental problem with the existing feature/filter
pruning approaches is that they do not account for the task be-
ing performed by the DNN. For example, norm-based meth-
ods only consider the characteristics of the feature itself, not
what it is used for. Proximity-based methods consider the re-
lationships among features, but again do not account for what
they are used for. In a single-task DNN, where all features are
used for one task only, this shortcoming may not be obvious,
but it is clearly revealed in multi-task DNNs where various
features are responsible for different tasks to a varying de-
gree. This is what makes MI an attractive tool for feature
selection in multi-task DNNs, because it allows us to connect
a feature with a specific task.

Despite these potential advantages of MI, the scarcity of
prior work on Ml-based feature selection in DNNs is likely
due to the fact that both the intermediate feature space and
the output space of a DNN are often high-dimensional, and
this is known to be a challenging setup for estimating MI [ 16}
34,135 136]. Practical MI estimators often need to be tailored
to the problem at hand. Our work fills this gap and presents
an MI estimator suited to visual multi-task DNNs.

3. PROPOSED METHODS

3.1. Estimating MI in visual multi-task DNNs

We consider visual multi-task DNNs where the features come
in the form of a feature tensor whose channels are feature
maps X, and the output is an image Y, for example, a seg-
mentation map. The high dimensionality of the features and
the output makes estimating joint probabilities, and therefore
MI as well, challenging due to the “curse of dimensional-
ity” [37]. To address this challenge, we use the following
strategy. First, we divide the output image into M x M
patches (denoted Y) and also divide feature maps into spa-
tially corresponding N x N patches (denoted X), as illus-
trated in Fig. We then cluster the output patches into K’
clusters, with cluster index denoted Y. This effectively cre-
ates an output patch classifier with K classes. If K is reason-
ably small, one can use MI estimators for DNN classiﬁer to
estimate I(X;Y). Note that both splitting into patches and
clustering reduce the MI, so our estimate I(X; 37) will be a
lower bound on the true I(X;Y).

To assess the proposed MI estimator, we compare it with
the true MI in a few cases where the true MI is known. For
jointly Gaussian random variables X € R™ and Y € R™,
with the covariance matrix of [X,Y]" defined as:
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where X x and Xy are covariance matrices of X and Y, re-
spectively, and ¥ xy and ¥y x are the corresponding cross-
covariances, MI is given by [39]:
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We examine the MI estimates in cases where component-wise

I'We use the binning estimator from [38]].
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Fig. 1: Mutual information between an N_x N feature patch X and
the corresponding M x M output patch Y

correlation between X and Y is given by corr(X;,Y;) = &;;p.
where p € (—1,1), and 9;; is the Kronecker delta.

First we focus on the scalar case (m = n = 1), where
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and (2) becomes:
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We examine the effect on the MI estimate of clustering Y into
K clusters using K-means clustering [40]. The true MI and
the MI estimates for several values of K obtained from 4 x 10°
samples of the mentioned distributions are shown at the top
of Fig. It can be seen that the MI estimates are always
below the true MI (i.e., they provide lower bounds), but as
the number of clusters increases, the estimate gets closer to
the true MI. We repeated the experiments with random state
for the K-means clustering 5 times and noticed that the MI
estimates are fairly consistent - their variance was ~ 1078,

Patching, as shown in Fig.[l] is equivalent to extracting a
subspace corresponding to a few coordinates of the original
vector. Hence, we examine the effect of both patching and
clustering on 2D Gaussian vectors. Specifically, we consider
standard isotropic 2D Gaussians X = [X;,X5]" and Y =
[Y1,Y2]T (Zx = By = I) correlated as above, such that
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In this case, the true MI (2)) becomes

1
=
To examine the effect of patching, X and Y are split
component-wise, and X;, Y; are considered samples of
patched univariate Gaussian random variables X and Y. Note
that X and Y are jointly Gaussian with covariance given by
(@), so their MI is given by @). Since the expression in (@) is
always less than or equal to (6), we see that patching by itself
reduces the MI. Then Y is clustered into K clusters to obtain
Y, and 1(X;Y) is then computed. Fig.[2| bottom illustrates
true I(X;Y), the true I(X;Y), and the estimates obtained
by clustering 10¢ samples of (X,Y) and (X,Y). As before,

I(X;Y) =log (6)
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Fig. 2: True and estimated MI for 1D Gaussian random variables
(top) and 2D Gaussian random vectors (bottom).

increasing the number of clusters increases the MI estimate,
but because patched univariate variables have a lower true MI
than the original 2D variables, the estimates never go above
this value. Again, estimates provide a lower bound on the true
MI for 2D variables, but the bound is now looser.

In summary, MI estimates obtained by patching and clus-
tering provide lower bounds on the true MI. The bounds are
not tight, but they preserve the order — the higher the true
MI, the higher the estimate. Since our feature selection in
the remainder of the paper is based on sorting MI estimates,
these estimates prove to be useful for our purpose, as will be
demonstrated by the experiments.

3.2. Feature selection

Let X; be the i-th feature map and Y} be the j-th task out-
put of a multi-task visual DNN. We define the importance
of X; for Y as I; ; = I(Xi;Yj), where X; represents
N x N patches from X; and ffj represents clustered output
patches, as discussed earlier. Note that this definition of fea-
ture importance is a function of both the feature ¢ and the
task j. This is in contrast with established norm-based and
proximity-based methods, which are functions only of the
feature, but not the task. Further, norm- and proximity-based
measures of importance are not scale invariant, because for
any scale factor s & {0, 1}, ||sX;|| = |s| - || Xs|| # || X:]| and
[s X — sXyll = |s| - [|Xi — Xil| # [[Xi — Xi||. Hence,
scaling a feature would seem to change its importance, ac-
cording to norm- and proximity-based measures. Meanwhile,
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Fig. 3: Illustration of soft feature selection.
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Fig. 4: Three-task DNN from [41]] used in our experiments. Heads
1-3 are similar to FC8 networks [42]].

since scaling by a factor s # 0 is an invertible operation and
MI is invariant to invertible transformations [[14], we have
I(sX;;Y) = I(X;;Y), showing that our measure of impor-
tance is scale-invariant.

Hard selection. As noted earlier, by hard selection we
mean retaining only a subset of features. Hence, for a feature
tensor with C' feature maps, selecting C” features essentially
means removing the remaining C' — C’ features. Suppose
we are interested in task j. The list of feature importances
for task j is {11 ;, I2 ;, ..., Ic,; }. Hence, the order of feature
importance for task j is

Oj = (Ol}j,OQ}j, ...,OCJ) = SOI’t{ILJng’j, ...,Ic"j}. 7

Hard selection then simply means retaining the C’ top-ranked
features from O;.

Soft selection. In this work, soft selection refers to the fol-
lowing process. First, a certain number of features is selected
as the most important (or base) features, and the remaining
features are declared less important (or enhancement) fea-
tures. Base features are quantized to 8-bits, but not com-
pressed any further. Meanwhile, stronger compression is ap-
plied to enhancement features, as illustrated in Fig. @ With
the notation defined above, if we are interested in task j, then
the C’ top-ranked features from O; will be declared base fea-
tures and the remaining C' — C” features will be declared en-
hancement features, and compressed more heavily. This way,
enhancement features are not completely removed as in hard
selection, but compressed instead. Moreover, the amount of
compression can be controlled, which allows this approach to
operate in the range between complete feature removal (hard
selection) and full feature preservation. This is a useful prop-
erty to have when the constraint on the system is specified as
the maximum bitrate, rather than the number of features.

In terms of implementing soft selection, any feature com-
pression method can be used for the enhancement features.
In this work, the enhancement features are first tiled and then
compressed using a High Efficiency Video Coding (HEVC)
codec, as in [6]]. In HEVC, quality of the compressed signal
is controlled via the quantization parameter QP, and the exper-
iments will examine the behavior of the model with various
values of QP used for the enhancement features.
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Fig. 5: Task accuracy vs. hard selection % for semantic segmentation (left), disparity map estimation (middle) and input reconstruction (right)

Fig. 6: An example of task outputs with 50% hard selection, left to right: semantic segmentation map, disparity map, and reconstructed input.

Top: ¢2 norm-based selection. Bottom: MI-based selection.

4. EXPERIMENTS

Our experiments are based on the multi-task DNN from [41],
which is illustrated in Fig. d} This model was trained on
Cityscapes to perform three tasks: (1) semantic segmen-
tation, (2) disparity map estimation, and (3) input image re-
construction on Cityscapes. The backbone is similar to the
backbone of YOLOvV3 [44] with 74 layers. The split point
is layer 36 of the backbone, which outputs features of size
32 x 64 x 256, i.e., C = 256. The metrics used to assess the
performance of the model on the three tasks are as follows:
mean Intersection over Union (mloU)for semantic segmenta-
tion, Root Mean Squared error (RMSE) in pixelsfor disparity
maps estimation, and Peak Signal to Noise Ratio (PSNR) in
dB for input reconstruction.

Hard selection. We compare our MI-based feature selec-
tion with selection based on ¢; norm [23]], /5 norm [22], and
geometric median [26]. We used N = 8 and M = 64 (Fig.[I)
for feature and output patches, respectively, and further clus-
tered output patches into K = 8 clusters using K-means clus-
tering. Fig. [5] shows the task accuracies at five selection per-
centages {100, 93.75,87.5, 75, 50}% for the benchmarks and
the proposed method. As seen in Fig. |§| (a)-(b), norm-based
selection and the proposed MI-based selection provide similar
performance up to 75% in semantic segmentation and dispar-
ity map estimation (with RMSE, the lower the better), while
the GM-based method is slightly worse. At 50% selection on
these two tasks, norm-based selection achieves better perfor-
mance than the other two approaches, but the differences are
relatively small in relative terms. However, on the input re-
construction task (Fig. [5] right), MI-based selection achieves

significantly better performance compared to the other ap-
proaches across all selection percentages. This highlights the
fact that the norm- and similarity-based importance cannot
capture the feature importance for all tasks in a multi-task
model; they may work well for some tasks, but not others.
Fig. [6] shows the task outputs with /-based and MI-based
feature selection. The outputs for semantic segmentation and
disparity estimation are similar, but input reconstruction with
MI-based selection is much better. In the remainder of the
experiments, we use ¢2-based selection as a benchmark.

Soft selection. Here, features are sorted according to
importance (¢ or MI-based) and 8-bit quantized. Then a
certain percentage of the most important features is selected
as base features. The remaining (enhancement) features are
tiled into an image and compressed using KvazaarEl an open-
source HEVC encoder, using four QP values: {10, 20, 30,
40}. Lower QP values result in more accurate feature recon-
struction at the cost of higher bitrate. Fig.[7]shows the results
in terms of task accuracy vs. average file size in Kbytes, for
two cases — 75% selected as base (first row) and 50% selected
as base (second row). The two single dots in each plot show
the accuracy with the corresponding hard selection, where the
given percentage of features is selected and 8-bit quantized,
while others are discarded. We see that soft selection can
close the gap between hard selection and default model per-
formance at the cost of slightly increased file size. Also, with
50% base selection, the same task accuracies are achieved
with fewer bits compared to 75% base, due to the ability to
exercise compression over more enhancement features.

Zhttps://github.com/ultravideo/kvazaar
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Fig. 7: Task accuracy vs. file size in soft selection for semantic segmentation (left), disparity map estimation (middle) and input reconstruction

(right). Top: 75% base selection. Bottom: 50% base selection.

Multi-objective analysis. So far, we looked at the cases
where features are selected for one of several tasks. But what
if all tasks are needed? This leads to a multi-objective prob-
lem. One way to take task preference into account when se-
lecting features in such a scenario is to define task distortion
D;(C") of task j as a fraction of accuracy reduction due to
selecting C” features:

4,(C) = A;(C")]

D;(C") = A (0) 7

®)

where A;(C) is the task accuracy with all C' features and
A;(C") is the task accuracy with C' most important features
for that task. The total distortion D(C") with C’ retained fea-
tures for a model with K tasks can be defined as:

K
D(C') =Y w;D;(C"), )
j=1

where the weights w; are non-negative, sum up to 1, and re-
flect task preferences. For a given K -tuple of task preference
weights (wq, ws, ..., wk ), one can examine the total distor-
tions (9) produced by various task-specific importance order-
ings O; that leads to the lowest total distortion (E) In the
3-task model studied here, wq + wy + w3 = 1 with 0 <
wy, wa, w3 < 1, which defines a triangle in the (wy, wa, ws)
space. In the next set of experiments, we examine the regions
of this triangle where MI-based feature selection achieves
lower total distortion (9) compared to £>-based selection.

Fig. [§] (top) shows which feature selection method — ¢ or
Mi-based — leads lower total distortion at 75% and 50% hard
selection. For each point in the triangle, the total distortion (9))
is computed for the two selection methods and the point is
colored depending on which approach leads to lower total dis-
tortion. As seen in the figure, MI-based selection is the better
choice across the entire weight space at 75% selection. At
50% selection, ¢o-based approach is preferred near the cor-
ners that correspond to semantic segmentation and depth esti-
mation, but so long as input reconstruction holds some impor-
tance, the MI-based approach is better. Overall, the MI-based

Fig. 8: The set of task weights (w1, w2, ws3) over which a particular
feature selection criterion leads to lower total distortion in equation
{@). Top: hard selection. Bottom: soft selection. Left: 75% selec-
tion. Right: 50% selection.

approach wins across 74% of the weight space at 50% selec-
tion. Fig.[8|(bottom) shows the results for 75% and 50% soft
selection across all tested QP values. MI-based selection is
better across virtually all choices of weights in both cases;
the only exception is a small set of weights at the bottom of
the triangle for 50% soft selection.

S. CONCLUSIONS

We presented hard and soft (compressive) feature selection
for multi-task DNNs based on mutual information (MI).
Compared to norm- and proximity-based approaches, the MI-
based approach allows one to take task-specific feature impor-
tance into account. It was demonstrated that such approach is
preferred over a large fraction of the task preference weight
space. In addition, we showed that soft selection is able to
close the gap between hard selection and default model per-
formance by using different amounts of feature compression.
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