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Abstract—Integrated sensing and communication (ISAC) is
an enabling technology for the sixth-generation mobile com-
munications, which equips the wireless communication net-
works with sensing capabilities. In this paper, we investigate
transmit beamforming design for multiple-input and multiple-
output (MIMO)-ISAC systems in scenarios with multiple radar
targets and communication users. A general form of multi-
target sensing mutual information (MI) is derived, along with its
upper bound, which can be interpreted as the sum of individual
single-target sensing MI. Additionally, this upper bound can be
achieved by suppressing the cross-correlation among reflected
signals from different targets, which aligns with the principles
of adaptive MIMO radar. Then, we propose a multi-objective
optimization framework based on the signal-to-interference-
plus-noise ratio of each user and the tight upper bound of
sensing MI, introducing the Pareto boundary to characterize
the achievable communication-sensing performance boundary of
the proposed ISAC system. To achieve the Pareto boundary,
the max-min system utility function method is employed, while
considering the fairness between communication users and radar
targets. Subsequently, the bisection search method is employed
to find a specific Pareto optimal solution by solving a series
of convex feasible problems. Finally, simulation results validate
that the proposed method achieves a better tradeoff between
multi-user communication and multi-target sensing performance.
Additionally, utilizing the tight upper bound of sensing MI as
a performance metric can enhance the multi-target resolution
capability and angle estimation accuracy.

Index Terms—Integrated sensing and communication, mutual
information, transmit beamforming, muti-objective optimization,
multiple-input and multiple-output.

I. INTRODUCTION

THE next-generation wireless networks (6G and 5G-
beyond) have been envisioned as a vital enabler for

numerous emerging applications, such as autonomous vehi-
cles, smart cities, and the Internet of Things [1], [2]. The
challenging problem is to satisfy the requirements of these
applications for efficient communication and high-accuracy
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sensing, which motivates the development of frameworks
for communication-sensing integration. As such, integrated
sensing and communications (ISAC) has been proposed as an
appealing technology and has attracted great research interests
recently [2]–[6]. In particular, ISAC can significantly enhance
the spectral efficiency and reduce the hardware software com-
plexity by sharing the hardware platform and the resources
in spatial, temporal as well as frequency domains for both
communication and sensing [3], [7], [8].

The multiple-input and multiple-output (MIMO) technique
plays a significant role in ISAC systems, which enables
spatial multiplexing, diversity, and beamforming, leading to
higher data rates, improved link reliability, enhanced spatial
resolution, and accurate target parameter estimation [9], [10].
However, the inherent difference between communication and
sensing leads to compromised performance, posing challenges
for MIMO-ISAC systems. Therefore, the key issue is to design
effective transmit beamforming strategies that can flexibly
balance the performance of both functionalities while catering
to the diverse requirements in practical scenarios. Numerous
studies have investigated the joint optimization of transmit
beamforming by considering both communication and sensing
performance metrics [11]–[21]. The work of [14] optimized
the transmit beamforming by maximizing the peak sidelobe
level of radar while ensuring given signal-to-interference-plus-
noise ratio (SINR) threshold levels for the users. Furthermore,
the studies conducted in [12], [13] decomposed the trans-
mit waveform into radar and communication waveform, and
optimize the beamformers for each waveform to satisfy the
respective performance requirements for sensing and commu-
nication. Addtionally, in the context of specific sensing tasks
such as target estimation and tracking, some literature employs
the Cramér-Rao bound (CRB) as a performance metric to
evaluate the estimation performance of target parameters [18]–
[20]. In [18], the authors minimized the CRB on parameter
estimates for a single target while ensuring the pre-defined
communication SINR threshold for each downlink user. Then,
the authors in [20] minimized the multi-target estimation
CRB, subject to the minimum communication requirement.
However, the lower bound for estimation accuracy provided
by CRB may be not tight at low signal-to-noise ratio (SNR),
and its complex and non-convex mathematical nature always
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results in a more challenging optimization problem.
As a comparison, mutual information (MI) is also a com-

monly used sensing performance metric, which provides ac-
curate estimation and classification capabilities in a more
concise form [8], [22]. In [23], the authors demonstrated
that the optimal waveform designed by maximizing sensing
MI enables efficient coexistence of MIMO radar and com-
munication systems occupying the same spectrum. In [24],
the authors showed that under the assumption of Gaussian
distributed target response, maximizing MI and maximizing
minimum mean square error (MMSE) lead to the same optimal
waveform solution. In [15], the emphasis on the accuracy
of entire sensing channel vectors with sensing MI enhances
overall sensing performance beyond the focus on specific
parameter-associated partial channels with the CRB. The au-
thors in [25] showed that maximizing sensing MI through the
waveform design improved the target detection and feature
extraction performance. Besides, the similarity between the
communication and sensing MI expressions also facilitates
the efficient tradeoff between the two functionalities through
weighted sum optimization [16], [26]. The authors in [16]
optimized a weighted sum of communication and sensing MI
to improve the balanced performance of both functionalities.
In [27], the authors established a relationship between sensing
MI and the rate-distortion theory, imparting operational esti-
mation theoretic meaning to MI-based methods. Furthermore,
[28] demonstrated that MI-based beamforming design can
effectively suppress echo interference from scatters in the
surrounding environment.

Simultaneously supporting multi-user communication and
multi-target sensing in practical scenarios poses a critical
challenge for MIMO-ISAC systems [14], [20]. Such scenar-
ios are inherently complex due to the diverse performance
requirements for both communication and sensing. More-
over, they involve multiple intrinsic tradeoffs, such as the
performance tradeoffs among multiple communication users,
multiple sensing targets, and between communication and
sensing. Therefore, it is essential to develop a beamforming
method that can flexibly balance multi-user communication
and multi-target sensing performance based on their respective
priorities. Given its advantages in enhancing target detec-
tion, estimation, and classification performance in a concise
manner, sensing MI serves as a more suitable performance
metric for multi-target sensing, as mentioned before [15]–
[17], [25]–[28]. However, existing research based on sensing
MI still has some limitations. Firstly, sensing MI in current
studies offers a general overview of the sensing channel
containing the multi-target information, but lacks a clear and
detailed characterization of multi-target sensing performance
and the relationships between targets. Secondly, the lack of
precise depiction of achievable performance boundaries for
communication and sensing hinders the attainment of optimal
performance tradeoffs. Furthermore, the absence of fairness
consideration between users and targets poses limitations on
meeting diverse and specific requirements, thereby impeding
the flexibility of beamforming designs.

To address these limitations, we propose a novel transmit
beamforming approach for multi-user multi-target MIMO-

ISAC systems based on the sensing MI and communication
SINRs. We consider a scenario where the base station (BS)
communicates with multiple downlink users while sensing
multiple targets simultaneously. To fully exploit the degrees of
freedom (DoF)s provided by MIMO to meet the performance
requirements of both multi-user communication and multi-
target sensing, we synthesize communication and radar signals,
and then jointly design their respective transmit beamforming
[12], [13], [18]. Then, we derive a general expression for
sensing MI and its tight upper bound to explore the structural
features of maximum sensing MI. We find that maximizing
the MI upper bound under zero-forced cross-correlation con-
straints aligns with the principles of adaptive MIMO radar
technique [29]. Therefore, we utilize the constrained upper
bound of sensing MI as the performance metric for multi-
target sensing, each user’s SINR as the communication per-
formance metric, and construct a multi-objective optimization
problem (MOOP) to comprehensively investigate the tradeoff
in communication-sensing performance. To efficiently solve
the MOOP, we define the achievable performance region and
its Pareto boundary. Then, we formulate a max-min utility
optimization problem to obtain a specific Pareto solution
for the MOOP, and utilize the properties of the achievable
performance region to prove that the optimal solution of
this max-min problem lies on the Pareto boundary. Finally,
a bisection search method is employed to find the Pareto
optimal solution for a specific set of communication-sensing
weights. The main contributions of this paper are summarized
as follows:

• We derive a novel general form of multi-target sensing
MI and alongside a tight upper bound that satisfies
zero-forced cross-correlation constraints. Furthermore, by
suppressing the cross-correlation among signals reflected
from different targets, not only can sensing MI reach
its maximum, but the signals can also be considered
independent of each other, which benefits target detection
and tracking. Remarkably, we find that the upper bound
of sensing MI can be viewed as the sum of single-
target sensing MI, resembling a concise form similar
to communication sum-rate and simplifying subsequent
optimization processes.

• To comprehensively investigate the tradeoff in communi-
cation and sensing performance, we formulate a MOOP
to simultaneously optimize communication SINRs and
sensing MI. Then, we introduce the Pareto boundary of
the MOOP to characterize the achievable performance
boundary of the proposed ISAC system. To obtain a
specific set of Pareto solutions, a max-min utility func-
tion method is employed, which can be solved through
a bisection search algorithm. This method provides a
flexible tradeoff between multi-target sensing and multi-
user communication performance, while meeting specific
sensing and communication requirements and their re-
spective priorities.

• Finally, numerical simulations demonstrate the following:
i) The necessity of transmitting additional radar signals to
provide sufficient DoFs for effectively resolving multiple
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Fig. 1. Illustration of the ISAC scenario where the BS serves C downlink
communication users while detecting K targets.

targets, particularly when the number of targets surpasses
the number of users. ii) The adoption of the constrained
sensing MI upper bound as the performance metric for
multi-target sensing offers an enhanced tradeoff between
sensing and communication performance. Moreover, it
also significantly improves resolution for closely located
multiple targets and enhances accuracy in angle estima-
tion.

The rest of this paper is organized as follows. Section II
introduces the system model along with the performance
metric for multi-user communications. Section III derives the
sensing MI and its tight upper bound for multi-target sensing.
Section IV investigates the multi-objective optimization for
ISAC beamforming, where we employ a max-min utility
function method to solve the MOOP. Simulation results are
presented in Section V. Finally, we provide concluding re-
marks in Section VI.

Notations: Boldface lowercase and uppercase letters denote
vectors and matrices, respectively. The set of complex number
is C. The transpose, conjugate transpose, conjugate, inverse
and pseudo-inverse operation is denoted by (·)T , (·)H , (·)∗ ,
(·)−1 and (·)†, respectively. The expected value of a random
argument is denoted by E(·). We let ⊗ denote the Kronecker
product, and let IM denote the M -dimensional identity matrix.
The curled inequality symbol ⪰ is utilized to denote the
generalized matrix inequality, i.e., A ⪰ 0 means that A is
positive semi-definite matrix. The symbols det(·) and tr(·)
denote the determinant and trace of a matrix, respectively.

II. SYSTEM MODEL

We consider a colocated ISAC system as shown in Fig. 1,
where the BS is equipped with Nt transmit antennas and Nr

receive antennas as uniform linear arrays (ULAs). The BS
aims to serve C downlink single-antenna users while detecting
K targets. The set of communication users is indexed by
C = {1, 2, . . . , C}. To achieve the satisfactory performance of
communication and radar sensing, we exploit the maximum
DoFs provided by MIMO and transmit M additional probing

streams. The transmit signal is a sum of precoded communi-
cation signals and radar probing signals [12], [13], [18], i.e.,

X = WcSc +WrSr, (1)

where X ∈ CNt×L is the transmit signal matrix with
L > Nt being the length of the signals. The ith data
stream of the communication is denoted by si, ∀i ∈ C,
and Sc =

[
sT1 , . . . , s

T
C

]T ∈ CC×L contains C data streams
intended for the C users. Similarly, the m-th probing stream
of radar sensing is denoted by sC+m, m ∈ {1, 2, · · · ,M}, and
Sr =

[
sTC+1, . . . , s

T
C+M

]T ∈ CM×L contains M individual
probing streams with M < Nt −C [18]. The matrices Wc =
[w1, . . . ,wC ] ∈ CNt×C and Wr = [wC+1, . . . ,wC+M ] ∈
CNt×M contain the transmit beamforming vectors for the data
streams and the probing streams, respectively.

We assume that both the communication signals and radar
probing signals are wide-sense stationary stochastic processes
with zero mean and unit power [13]. The communication data
signals for different users are uncorrelated, so 1

LE
[
ScS

H
c

]
=

IC . The radar probing signals are pseudorandom sequences
with zero mean and unit variance, and are uncorrelated with
each other [30], i.e., 1

LE
[
SrS

H
r

]
= IM . The communication

signals and radar probing signals are assumed to be uncor-
related, namely E

[
ScS

H
r

]
= 0. Then, we can derive the

covariance matrix of the transmit signal, given by

RX =
1

L
E
[
XXH

]
=

C+M∑
n=1

wnw
H
n , (2)

In the following, we describe the received signal model
and the performance metric for multi-user communications in
Subsection II-A. Subsequently, we present the receive signal
model for radar sensing at the BS in Subsection II-B.

A. Multi-User Communication Model

For downlink communications, the signal received at the
i-th user is expressed as

yi = hH
i X+ zi, (3)

where hi ∈ CNt×1 is the channel matrix between the BS and
the i-th user, and zi ∼ CN (0, σ2

i IL) is a complex additive
white Gaussian noise (AWGN) vector with zero mean and
covariance σ2

i IL.
Since the communication users have no prior information

about the probing streams, the users suffer from the inter-
ference caused by the probing streams and the multi-user
interference [13], [18]. Specifically, the received signal (3) can
be rewritten as

yi = hH
i wisi +

C∑
j=1,j ̸=i

hH
i wjsj +

C+M∑
j=C+1

hH
i wjsj + zi,∀i ∈ C,

(4)
where the initial term is the useful signal, while the second
term denotes the interference caused by the other communica-
tion users. The third term indicates the interference originating
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from the radar probing signals. Thus, the SINR of the i-th user
is

γi =

∣∣hH
i wi

∣∣2∑C
j=1,j ̸=i

∣∣hH
i wj

∣∣2 +∑C+M
j=C+1

∣∣hH
i wj

∣∣2 + σ2
i

. (5)

The overall performance of the multi-user multiple-input
and multiple-output (MU-MIMO) communication is evaluated
by the average rate, which is given by [31]

rc =
1

C

(
C∑
i=1

log (1 + γi)

)
. (6)

B. Radar Sensing Model

The BS uses the reflected echoes to recover the parameters
of the targets. In this paper, we focus on beamforming in the
spatial domain. For brevity, the sensing targets are modeled
to be stationary, and are located at the same range resolution
as assumed in [11], [18], [32]. With these assumptions, the
target response matrix is expressed as the superposition of the
response of the individual target [33], i.e.,

G =

K∑
k=1

βk b (θk) a
H (θk) , (7)

where a (θk) = [1, ej
2π
λ d sin(θk), . . . , ej

2π
λ (Nt−1)d sin(θk)]

T
∈

CNt×1 and b (θk) = [1, ej
2π
λ d sin(θk), . . . ,

ej
2π
λ (Nr−1)d sin(θk)]

T
∈ CNr×1 are the corresponding

transmit and receive steering vectors of the echo with the
direction at θk, respectively. In general, the target can be
modeled as being composed of an infinite number of random,
isotropic and independent scatterers over the area of interest,
and the complex gain of each scatterer can be modeled as a
zero-mean and white complex random variable [34]. Together
with the fact that the incident angles between different targets
are independently distributed [35], the complex coefficients
of different targets can be assumed to be independently
Gaussian distributed, i.e., βk ∼ CN

(
0, σ2

k

)
,∀k [36].

The distance of adjacent antenna elements is denoted by d,
and λ denotes the wavelength. Thus, the signal received at the
BS is given by

Yr = GX+ Zr, (8)

where Zr ∈ CNr×L is a complex AWGN matrix with zero
mean and covariance σ2

rIL.
Upon vectorizing (8), the received signal is recast as

ỹr = X̃g̃ + z̃r, (9)

where ỹr ≜ vec(Yr), X̃ ≜ (XT ⊗ INr
), g̃ ≜ vec(G), and

z̃r ≜ vec(Zr). Let RG = E[g̃g̃H ] be the spatial correlation
matrix of G, and RZ = E[z̃rz̃Hr ] be the covariance matrix of
z̃r. To facilitate the derivation, we assume g̃ ∼ CN (0,RG),
which is consistent with the classic literature on radar MI
[22], [23], [37]. Then, we have z̃r ∼ CN (0,RZ) and
ỹr ∼ CN (0, X̃RGX̃

H + RZ). The covariance matrix RG

is given by

RG=E
[
g̃g̃H

] (a)
=

K∑
k=1

σ2
k (a

∗(θk)⊗b (θk)) (a
∗(θk)⊗b (θk))

H
,

(10)
where (a) follows vec(baH) = (a∗ ⊗ b).

To demonstrate the necessity of transmitting additional radar
signals, we consider a scenario where only C communication
signals are transmitted, i.e., X = WcSc. In this case, the
number of DoFs for transmit bemaforming design is limited
by the number of communication users due to the fact that
rank(RX) = C. However, when there exists K targets with
K > C, the number of available DoFs is insufficient to
for accurate estimation of the targets using angle estimation
techniques such as multiple signal classification (MUSIC) and
Capon [29]. Consequently, this leads to an inevitable degra-
dation in the performance of multi-target sensing due to the
lack of radar DoFs [18]. Therefore, it is imperative to transmit
additional radar signals in scenarios with a large number of
targets. The detailed analysis is provided in Section V.

III. MUTUAL INFORMATION FOR RADAR SENSING

In order to characterize the performance of multi-target
sensing, we introduce the sensing MI which can be employed
to measure how much environmental information can be
observed in the BS [22]. The sensing MI is generally defined
as the conditional MI between the sensing channel g̃ and
the received signal ỹr with the given transmit signal [16].
Following [38], we obtain the general expression of sensing
MI as

I
(
ỹr; g̃

∣∣∣X̃) = log
[
det
(
X̃RGX̃

H +RZ

)]
−log [det (RZ)]

= log
[
det
(
I+ X̃RGX̃

HR−1
Z

)]
(a)
= log

[
det

(
I+

1

σ2
r

RGX̃
HX̃

)]
,

(11)
where Rz is the covariance matrix of z̃r, and (a) fol-
lows Sylvester’s determinant theorem, i.e., det (I+AB) =
det (I+BA). Due to the fact that the columns of the noise
Zr are independent of each other, we have RZ = σ2

rILNr
.

Substituting the specific expression of X̃ into (11), the
sensing MI can be rewritten as

I
(
ỹr; g̃

∣∣∣X̃) =log

[
det

(
I+

1

σ2
r

RG

(
XT ⊗ INr

)H(
XT ⊗ INr

))]
(a)
= log

[
det

(
I+

1

σ2
r

(
X∗XT ⊗ INr

)
RG

)]
,

(12)

where (a) is based on the property of the Kronecker product
(AB) ⊗ (CD) = (A ⊗ C)(B ⊗ D) and det (I+AB) =
det (I+BA). However, the expression of sensing MI in
(12) is intractable due to the Kronecker product structure.
Therefore, we recast the sensing MI into a more concise and
intuitive form in Lemma 1.

4



Lemma 1: By performing mathematical transformations,
we obtain a novel form of sensing MI, namely,

I
(
ỹr; g̃

∣∣∣X̃) = log

[
det (Φ+Λ)

K∏
k=1

σ2
k

]
, (13)

where the positive semi-definite matrix Φ ∈ CK×K and
diagonal matrix Λ ∈ CK×K are respectively defined by

[Φ]i,j ≜
L

σ2
r

tr
(
AH (θi)A (θj)RX

)
=

αijL

σ2
r

aH (θi)

(∑C+M

n=1
wnw

H
n

)
a (θj) ,

(14)

and
Λ ≜ diag

{
1

σ2
1

,
1

σ2
2

, . . . ,
1

σ2
K

}
, (15)

where [Φ]i,j is the (i, j)-th element of Φ, A (θk) ≜
b (θk)a

H (θk), and αij ≜ bH (θi)b (θj).
Proof: Please refer to Appendix A.

It is noted that the elements of Φ in (14) are the cross-
correlation between the signals reflected back from the tar-
gets of interest, defined as the cross-correlation pattern [39].
Therefore, (13) indicates that the multi-target sensing MI relies
on the statistical characteristics of the reflection coefficients
βk,∀k and cross-correlation pattern among signals. However,
(13) is still complex and intractable due to the coupling of each
element in Φ via the beamforming vectors. To simplify the
expression and obtain the structural features of the maximum
sensing MI, we derive an upper bound of sensing MI as shown
below.

Theorem 1: The upper bound of sensing MI is denoted by
Iup, and we have

Iup =

K∑
k=1

log

(
1 +

Nrσ
2
kL

σ2
r

aH(θk)

(
C+M∑
n=1

wnw
H
n

)
a (θk)

)
.

(16)
The bound is tight when

aH (θj)

(∑C+M

n=1
wnw

H
n

)
a (θi) = 0,∀i, j (i ̸= j) , (17)

where αji = bH (θj)b (θi).
Proof: Based on Lemma 1, applying the Hadamard’s

inequality [40, Sec. 6.1] for the determinant of an N ×N
positive semi-definite matrix to (13), we obtain that

log

[
det (Φ+Λ)

K∏
k=1

σ2
k

]
≤

log

[
K∏
i=1

(
1 +

αiiσ
2
iL

σ2
r

aH (θi)

(∑C+M

n=1
wnw

H
n

)
a (θi)

)]
,

(18)
with equality holding if and only if Φ+Λ is diagonal, i.e.,

aH (θj)

(∑C+M

n=1
wnw

H
n

)
a (θi) = 0 (i ̸= j) . (19)

Substituting αi,i = Nr into the right-hand side of (18), we
can obtain the upper bound of sensing MI in (16).

The equation (17) represents the zero-forced cross-

correlation constraints, indicating that the signals reflected
from different targets are independent of each other. When
these constraints are satisfied, the upper bound of sensing
MI can be achieved. However, fully eliminating the cross-
correlation pattern is highly challenging. In practical appli-
cations, it is often approximated by imposing constraints to
ensure that the absolute value of cross-correlation pattern is
smaller than a sufficiently low threshold value [36], namely,∣∣∣∣aH (θj)

(∑C+M

n=1
wnw

H
n

)
a (θi)

∣∣∣∣ ≤ κ, (i ̸= j) , (20)

where κ → 0.
Additionally, we see that the second term in (16) is the SINR

of the reflected echo from the k-th target, which is denoted by

SINRk =
Nrσ

2
kL

σ2
r

aH(θk)

(
C+M∑
n=1

wnw
H
n

)
a (θk) . (21)

By substituting (21) into (16), we have the following insight
given in Corollary 1.

Corollary 1: The upper bound of sensing MI can be
expressed in a form similar to the communication sum-rate,
i.e.,

Iup =
∑K

k=1
log (1 + SINRk), (22)

where the component log (1 + SINRk) in Iup represents the
sensing MI solely focused on the k-th target. Therefore, the
upper bound of multi-target sensing MI can be regarded as
the sum of individual single-target sensing MI.

As mentioned in [29], [39], the statistical performance of
adaptive MIMO radar heavily relies on the cross-correlation
pattern. It also indicates that the transmit beamforming design
should aim to minimize the cross-correlation among signals
form specified target directions while optimizing the trans-
mission power in those directions.

Following this principle, in the next section, we use the
upper bound of sensing MI as the sensing performance metric
to optimize the beamforming vectors, which can potentially
enhance transmit power at given target directions1. Concur-
rently, we use the cross-correlation constraints (20) to ensure
the attainability of the upper bound and minimize the cross-
correlation pattern.

IV. JOINT BEAMFORMING BASED ON MULTI-OBJECTIVE
OPTIMIZATION

In this section, we investigate a general transmit beamform-
ing method that provides a flexible tradeoff between multi-
target sensing and multi-user communication performance. We
begin by formulating a MOOP to concurrently optimize the
sensing MI and the SINR of each user in Subsection IV-A.
Then, we employ the semidefinite relaxation (SDR) to tackle
the rank-one constraint in Subsection IV-B. To efficiently

1While Iup depends on the target directions θk, ∀k as can be seen in (17),
maximizing Iup can be interpreted as optimizing the beamforming vectors w
with respect to the directions towards the potential targets. This is typical for
MIMO radar systems operating in tracking mode, where the BS has knowledge
of the target directions and can obtain them from previous observations [13].
In the case of static or slowly moving targets, it is reasonable to utilize the
estimated or predicted directions for beamforming design [18].
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solve the complex MOOP, we propose a max-min utility
optimization method to attain the Pareto boundary of the
MOOP in Subsection IV-C, which also considers fairness
among multiple users and targets.

A. Problem Formulation

The expressions in (5) and (16) reveal that the performance
of multi-target sensing and multi-user communication are
coupled together through transmit beamforming vectors, which
can lead to inherent conflicts and tradeoff. To comprehensively
investigate the tradeoff and optimize the performance of com-
munication and sensing simultaneously, we introduce a MOOP
framework.

Since the maximum sensing MI is achieved by maximizing
Iup subject to the constraint (17), we formulate the MOOP as
follows:

max
{wn}

{Iup, γ1, . . . , γC} (23a)

s.t. tr
(∑C+M

n=1
wnw

H
n

)
≤ PT , (23b)

aH (θj)

(∑C+M

n=1
wnw

H
n

)
a (θi) = 0 (i ̸= j) , (23c)

Iup ≥ Λ, (23d)
γi ≥ Γi,∀i ∈ C, (23e)

where PT is the total transmit power of the BS, Λ ≥ 0
and Γi ≥ 0 indicate the lowest acceptable level of the
sensing MI and SINR of the i-th user, respectively. Constraint
(23b) ensures that the total transmit power remains within a
predetermined limit, while constraint (23c) guarantees that the
sensing MI enables to achieve its upper bound. The MOOP
(23) is non-convex due to its quadratic terms in both objective
functions and constraints, making it difficult to solve directly.
Nevertheless, we show in Subsection IV-B that it can be
reformulated into a more tractable relaxed problem using SDR.
In Subsection IV-C, we propose a max-min utility optimization
method to obtain a specific Pareto optimal solution for the
relaxed MOOP. Furthermore, we prove that this Pareto optimal
solution for the relaxed MOOP also serves as the Pareto
optimizer for the original MOOP (23), i.e., the relaxation is
tight.

B. Problem Transformation via Semidefinite Relaxation

In this subsection, we employ the SDR strategy to tackle
the non-convex problem (23). To this end, we first introduce
variables Rn = wnw

H
n ⪰ 0 with rank(Rn) = 1, where

n = 1, . . . , C +M . Subsequently, by substituting {Rn} into
(5), (16), (23b), and (23c), we can linearize the quadratic terms
in the problem (23). Thus, the expressions in (5) and (16) are
rewritten as

γi =
hH
i Rihi∑C

n=1,n̸=i h
H
i Rnhi+

∑C+M
n=C+1 h

H
i Rnhi+σ2

c

,∀i ∈ C,

(24)

Iup =
∑K

k=1
log

(
1 +

Nrσ
2
kL

σ2
r

aH(θk)

(
C+M∑
n=1

Rn

)
a (θk)

)
.

(25)

The constraints (23b) and (23c) are rewritten as

tr
(∑C+M

n=1
Rn

)
≤ PT , (26a)

tr
(
a (θi)a

H(θj)

(∑C+M

n=1
Rn

))
= 0 (i ̸= j) . (26b)

With the newly derived objective functions and constraints,
the MOOP (23) is reformulated as

max
{Rn}

{Iup, γ1, . . . , γC} (27a)

s.t. tr
(∑C+M

n=1
Rn

)
≤ PT , (27b)

tr
(
a (θi)a

H(θj)

(∑C+M

n=1
Rn

))
= 0 (i ̸= j) , (27c)

Rn ⪰ 0, ∀n, (27d)
rank(Rn) = 1, ∀n, (27e)
(23d) and (23e). (27f)

Since the rank-one constraints (27e) are non-convex in
problem (27), we use the SDR strategy to tackle it. Omitting
the rank-one constraints leads to the following relaxation:

max
{Rn}

{Iup, γ1, . . . , γC} (28a)

s.t. (23d) , (23e) , (27b) , (27c) and (27d). (28b)

The MOOP (28) aims to find a transmit strategy {Rn} that
satisfies transmit power and cross-correlation constraints while
maximizing sensing performance Iup and communication per-
formance γ1, · · · , γC for all users. Nevertheless, the conflict
arises between maximizing γ1, · · · , γC and Iup, as they are
coupled through the transmit strategy {Rn}. Typically, there
does not exist a singular transmit strategy that can simultane-
ously optimize all these objectives. Therefore, it is instructive
to consider the set of feasible performance outcomes for all
feasible transmit strategies, i.e., the achievable performance
region of the multi-target and multi-user ISAC system. The
achievable performance region M ⊂ RC+1

+ is defined as a set
of achievable performance pairs with all the feasible transmit
strategies:

M = {(Iup, γ1, · · · , γC) : ∀ {R1, . . . ,RC+M} ∈ R} , (29)

where R is the feasible transmit strategy set with transmit
power and zero-forced cross-correlation constraints:

R =

{
(R1, . . . ,RC+M ) :Rn ⪰ 0, ∀n, tr

(∑C+M

n=1
Rn

)
≤PT ,

tr
(
a (θi)a

H (θj)

(∑C+M

n=1
Rn

))
= 0 (i ̸= j)

}
.

(30)
The region describes the achievable sensing MI and com-
munication SINRs that can be simultaneously attained under
transmit power and the zero-forced cross-correlation con-
straints. Typically, we seek to obtain a set of optimal solutions
for MOOP, known as Pareto optimal solutions, which are
incomparable to each other and no superior solution exists in
the objective space. These solutions are found on a subset of
the outer boundary of M referred to as the Pareto boundary,
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where an improvement in a single performance implies a
degradation in the other performances:

Definition 1: The Pareto boundary ∂M ⊆ M consists of
all x ∈ M for which there is no x′ ∈ M\{x} with x′ ≥ x
[41, Definition 4].

C. Max-Min Utility Optimization

We next provide the algorithm to obtain the Pareto optimal
solutions for the MOOP (28). A common approach to address
the MOOP is to combine multiple objective functions into a
system utility function, denoted by H(·). In order to meet the
minimum communication and sensing performance thresholds
and account for fairness between the multi-target sensing
performance and multi-user communication performance, we
employ the minimum weighted compromise function as the
system utility function [41], [42]. For a given feasible oper-
ating point x = (Iup, γ1, · · · , γC) ∈ M, the system utility
function is given by

H (x) = min
i

{
Iup − Λ

α
,
γi − Γi

ωi

}
, (31)

where the communication and sensing performance should be
in excess of the lowest acceptable levels, i.e., Iup ≥ Λ and
γi ≥ Γi,∀i ∈ C. The parameters α ∈ R+ and ωi ∈ R+ are the
weights of sensing and i-th communication user, respectively,
which satisfy

∑C
i=1 ωi + α = 1. Next, we demonstrate that a

set of Pareto solutions for the MOOP (28) can be obtained by
solving the following system function optimization problem:

max
{Rn}

min
i

{
Iup − Λ

α
,
γi − Γi

ωi

}
(32a)

s.t. (23d) , (23e) , (27b) , (27c) and (27d). (32b)

It is worth noting that the objective function in (32) can
provide a flexible tradeoff between sensing and communica-
tion by assigning appropriate weights. For instance, in two
extreme weight configuration cases, problem (32) can be trans-
formed into the sensing MI optimization problem with SINR
constraints (denoted by Case 1) and the SINR optimization
problem with the sensing MI constraint (denoted by Case 2),
as follows:

Case 1: In this case, we set Λ = 0, α = 1, and ωi → 0,
which gives higher priority to sensing over communication.
The problem (32) is transformed into an optimization problem
that maximizes the sensing MI while satisfying each user’s
SINR constraint.

max
{Rn}

{Iup} (33a)

s.t. (23e) , (27b) , (27c) and (27d). (33b)

Case 2: In this case, we set Γi = 0, ωi = 1/C, and α → 0,
which gives higher priority to communication. Additionally,
every user is considered to have the same importance. As a
result, problem (32) reduces to a maximization of the minimum
SINR subject to the sensing MI constraint.

max
{Rn}

min
i

{γi} (34a)

s.t. (23d) , (27b) , (27c) and (27d). (34b)

However, the achievable performance region M is typically
non-convex, which poses a challenge in obtaining Pareto
solutions for the MOOP (28). For instance, if M is a non-
normal set with internal holes, it can lead to a complex and
challenging resolution of the Pareto boundary [41]. Given
this, we first investigate the properties of M to demonstrate
its compactness and normality, and consequently demonstrate
that the Pareto solutions for problem (28) can be attained by
solving the system function optimization problem (32).

Definition 2: M ⊂ Rn
+ is called a compact set if it is

closed and bounded [14, Def. 2].
Definition 3: M ⊂ Rn

+ is called a normal set if for any
point x ∈ M, all x′ ∈ Rn

+ with x′ ≤ x (component-wise
inequalities) also satisfy x′ ∈ M [42, Def. 4].

Lemma 2: The performance region M is a compact and
normal set.

Proof: Please refer to Appendix B.
Additionally, we can observe from (31) that the system

utility function H(·) is strictly increasing. Combining this with
the characterization of M as a compact and normal set, we
can derive the following important conclusion.

Lemma 3: If H(·) is a strictly increasing function and M is
a compact and normal set, the global optimum to max

x∈M
H(x)

is attained on ∂M.
Proof: Please refer to [42, Lem. 2].

Based on Lemma 3, we can attain the Pareto boundary of
MOOP (28) by solving the problem (32).

We next present the algorithm to solve the problem (32).
Specifically, letting

r = min
i

{
Iup − Λ

α
,
γi − Γi

ωi

}
, (35)

the max-min utility problem (32) can be recast as

max
{Rn}

r (36a)

s.t. Iup ≥ Λ + αr, (36b)
γi ≥ Γi + ωir, ∀i ∈ C, (36c)
(27b) , (27c) and (27d). (36d)

We observe that the problem (36) has a geometric in-
terpretation, where we can find the optimal point in the
Pareto boundary ∂M by starting from an initial point x =
(Λ,Γ1, · · · ,ΓC , ) ∈ M determined by the performance
thresholds and following a ray in the direction of c =
[α, ω1, . . . , ωC ]

T determined by the sensing and communi-
cation weights. Since M is a compact and normal set, the
ray intersects the Pareto boundary at a unique point. For
fixed weights α, ω1, . . . , ωC , we first define an upper bound
of r denoted by rmax, where x + crmax is outside M. The
initial upper bound for r can be chosen as a sufficiently large
number, or it can be computed as rmax =

∑C
i=1

PTωi∥hi∥2

σ2
i

+

α
∑K

k=1 log
(
1 +

PTN2
t σ

2
kL

σ2
r

)
. The optimal value of the prob-

lem (36) lies on the line segment [0, rmax].
Therefore, the problem (36) can be solved by performing

bisection search on the range [0, rmax], which decomposes it
into a series of feasible subproblems. That is, for a given
r ≥ 0, we can efficiently check if there exists the feasible
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Algorithm 1 Bisection Search to Attain the Pareto Boundary

1: Initialize Λ, α, {Γi}, {ωi}, rmin, rmax, r(1) =
(rmin + rmax)/2, the tolerance ε, and set j = 1.

2: repeat
3: if the problem (37) is feasible for r(j) then
4: rmin = r(j);
5: else
6: rmax = r(j);
7: end if
8: Update j := j + 1;
9: Update r(j) := [rmin + rmax]/2;

10: until
∣∣r(j) − r(j−1)

∣∣ ≤ ε;
11: Solve the feasible problem (37) for r(j).
12: Output the optimal solution {R1, . . . ,RC+M}.

transmit strategies {R1, . . . ,RC+M} that satisfies the con-
straints in (36). However, due to the non-convex and nonlinear
constraint (36b), the feasibility problem remains computa-
tionally intractable. To tackle this issue, we further consider
fairness between multiple targets. By assigning weights ξk to
each sensing target, where

∑K
k=1 ξk = 1, we can equivalently

transform the non-convex constraint (36b) into a series of
convex constraints. Therefore, we can achieve fairness in the
sensing performance of each target and convert the feasibility
problem into the following convex problem:

find {R1, . . . ,RC+M} (37a)
s.t. log (1 + SINRk) ≥ ξk (Γ + αr) ,∀k, (37b)

(27b) , (27c) , (27d) and (36c). (37c)

We summarize the procedure to solve the problem (36) in
Algorithm 1. In particular, for a given convergence threshold
ε, the algorithm can find an interval [rmin, rmax] for the
optimal value of (36) that satisfies |rmin, rmax| ≤ ε in a
limited number of iterations, which scales only with ε,
i.e., ⌈log2 (rmax/ε)⌉. Specifically, when the convergence
threshold ε is small enough, it is reasonable to approximate
that the solution obtained by Algorithm 1 is the optimal
solution of the problem (36). The bisection search method
in Algorithm 1 requires ⌈log2 (rmax/ε)⌉ iterations to
find an interval of length ε containing the optimal value.
In each iteration, the convex feasibility problem (37) is
solved using interior-point methods, which has a worst-case
complexity of O

(
(C +M)3N6

t + (K2 + C)(C +M)N2
t

)
[43], where C, M , K, and Nt denote the number
of communication users, radar streams, targets, and
transmit antennas, respectively. Therefore, the overall
computational complexity of Algorithm 1 is given by
O
(⌈
log2

(
rmax

ε

)⌉
·
(
(C +M)3N6

t + (K2 + C)(C +M)N2
t

))
,

which is polynomial in the number of iterations, targets,
users, radar streams, and antennas.

Based on the previous analysis, it can be concluded that the
optimal solution to problem (36) lies on the Pareto boundary
of the problem (28). However, the optimal solution of the
problem (36) may be with high ranks, indicating that the
SDR solution is not necessarily tight to (27). We introduce
Theorem 2 to prove the existence of an optimal rank-one

solution for problem (36), which corresponds to the rank-one
Pareto optimal solution for problem (28).

Theorem 2: The problem (36) always has an optimal
solution

{
R̄1, . . . , R̄C+M

}
that satisfies

rank(R̄n) = 1 ,∀n. (38)

Proof: Please refer to Appendix C.
We next introduce the construction process of the rank-

one solution. According to Appendix C, when the optimal
solution for problem (36) is obtained as

{
R∗

1, . . . ,R
∗
C+M

}
,

we can use it to construct a rank-one optimal solution{
R̄1, . . . , R̄C+M

}
and the corresponding optimal beamform-

ing vectors {w̄1, . . . , w̄C+M}. Firstly,
{
R̄1, . . . , R̄C

}
and

{w̄1, . . . , w̄C} can be computed as

w̄i =
R∗

ihi√
hH
i R∗

ihi

, R̄i = w̄iw̄
H
i ,∀i ∈ C. (39)

Then, we can obtain {w̄C+1, . . . , w̄C+M} by taking Cholesky
decomposition:

W̄rW̄
H
r =

∑C+M

n=1
R∗

n −
∑C

i=1
R̄i, (40)

where W̄r = [w̄C+1, . . . , w̄C+M ] is a lower triangular matrix.
Therefore, the rank-one matrices

{
R̄C+1, . . . , R̄C+M

}
can be

constructed as R̄j = w̄jw̄
H
j for j = C + 1, . . . , C + M .

Hence,
{
R̄1, . . . , R̄C+M

}
is a Pareto optimal solution to

(27), which demonstrates that it is tight to transform (27)
into (28) via SDR. Furthermore, the beamforming vectors
{w̄1, . . . , w̄C+M} constitute a Pareto optimal solution for the
original MOOP (23).

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
multi-objective optimization for the MIMO-ISAC systems
through the Monte-Carlo simulation results. The communi-
cation performance is evaluated in terms of the average rate
of the MU-MIMO communication defined in (6), while the
sensing performance is evaluated in terms of the sensing
MI. We use the following simulation settings unless specified
otherwise. The BS is equipped with Nt = 32 transmit
antennas and Nr = 32 receive antennas. The length of the
transmit signal is set to L = 1024 [13]. Both antenna arrays
are ULAs with the same antenna spacing d = λ/2. The
total transmit power is PT = 40 dBm. We assume that the
noise power for each communication user are the same, i.e.,
σ2
i = 0 dBm,∀i ∈ C [18]. And the communication SNR

of each user is defined as SNR = PT

σ2
i

. We assume that the
noise power in the received radar signal is σ2

r = 0 dBm [18].
For simplicity, the variance of the scattering coefficients are
assumed to be the same, i.e., σ2

k = σ2,∀k. The radar SNR
is defined as SNRradar = |σ|2PT

σ2
r

. Without loss of generality,
we consider Rician fading for the communication channels.
In this case, the communication channel for each user has the
structure [44]

hi =

√
µ

µ+ 1
∆+

√
1

µ+ 1
u,∀i ∈ C, (41)
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where ∆ denotes the complex line-of-sight phase vector with
the n-th element having the property |∆n|2 = 1, u denotes
the scattered component vector with the n-th element un ∼
CN (0, 1), and µ is the Rician factor. Especially when µ = 0,
the Rician fading channel degenerates to the Rayleigh fading
channel [45]. The convergence tolerance is set to ϵ = 0.01.

To validate the effectiveness of our proposed beamforming
design based on multi-objective optimization (labeled ‘Pro-
posed method’), the following schemes are considered as
benchmarks:

i. Radar-only: It denotes the scheme without considering
communication SINR constraints, which helps evaluate
the best sensing performance and serves as the perfor-
mance upper bound of radar sensing.

ii. Communication-only: This scheme only considers the
data transmission by omitting the sensing MI constraints
(36b) when solving the problem (36). This scheme can
yield maximum communication performance.

iii. MI-constrained: This scheme only exploits the downlink
communication signals for sensing, and maximizes the
lower bound of communications SINR under the sensing
MI constraint [15].

iv. Sensing-centric: This scheme corresponds to Case 1,
which maximizes the sensing MI while satisfying the
SINR constraints for each user.

v. Communication-centric: This scheme corresponds to
Case 2, which maximizes the SINR for each user while
satisfying the constraints of sensing MI.

vi. ZF-violated: This scheme maximizes the upper bound of
sensing MI and the SINR for each user while neglecting
the zero-forced cross-correlation constraints in (27c).

A. Convergence Performance

This subsection aims at analyzing the convergence per-
formance of the proposed algorithm considering different
numbers of antennas. We assume that the number of receive
antennas Nr is set equal to Nt. The numbers of communi-
cation users and sensing targets are C = 2 and K = 2,
respectively.

Fig. 2(a) shows the sensing MI versus iteration number.
It can be observed that the sensing MI increases along with
the iteration monotonously for all considered conditions. It
is noted that the average number of iterations that makes
the sensing MI converge is about 5. The average rate of
communication versus iteration number is also depicted in
Fig. 2(b). Besides, it can be observed in Fig. 2(a) and Fig.
2(b) that the number of iterations required in the algorithm
increases with the increase of Nt, because the increase of
antenna numbers enlarges the feasible set {R1, . . . ,RC+M}.

B. Beampattern Performance

In this subsection, we show the optimized beampattern
performance for different K values. We assume C = 2 users
at the location θC1 = −45◦ and θC2 = −15◦, respectively.
The SINR constraint of each communication user is Γi =
5 dB,∀i ∈ C. And the threshold of sensing MI is Λ = 10 bits.
The beampatterns obtained via the mentioned schemes are
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(a) The sensing MI versus the number of iterations for
Nt = 8, 16, 24, 32.
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(b) The average rate of communication versus the number
of iterations for Nt = 8, 16, 24, 32.

Fig. 2. Convergence of the proposed algorithm.

depicted in Fig. 3(a) for K = 3 targets located at 20◦, 40◦,
60◦ and in Fig. 3(b) for K = 2 targets located at 20◦, 40◦.

It can be seen from Fig. 3(a) that the proposed method has
three radar mainlobes, matching the locations of the Radar-
only design. However, there are only two radar mainlobes
located at around 20◦ and 40◦ for the MI-constrained ap-
proach. We note that the DoF for MIMO beamforming is
determined by the rank of the covariance matrix [13]. In the
MI-constrained approach, only C = 2 communication streams
are transmitted, and thus the DoF is no larger than the number
of users C. If C is less than the rank of the optimal Radar-only
design covariance matrix, the MI-constrained approach cannot
provide enough DoF to synthesize the desired radar beams,
explaining the degraded beampattern observed in Fig. 3(a).
The proposed method simultaneously transmits C transmission
streams and M probing streams, which can provide enough
DoF for transmit beamforming, and thus can produce the
beampatterns close to that of the optimal Radar-only method.
In Fig. 3(b), however, it is clearly observed that the proposed
approach has enough DoF to generate a beampattern similar
to that of the Radar-only method for K = 2 targets.

C. Comparisons of Communication and Sensing Performance

In Fig. 4, we show the sensing MI versus the received
SNR of the echo signal for the various beamforming schemes.
The numbers of communication users and sensing targets
are C = 2 and K = 2, respectively. We observe that
the Radar-only approach achieves the highest sensing MI
among the compared schemes since it is not constrained
by communication performance. Subsequently, the Sensing-
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(a) The optimized transmit beampatterns with K = 3.
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(b) The optimized transmit beampatterns with K = 2.

Fig. 3. The transmit beampattern for the proposed method and benchmarks.
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Fig. 4. The sensing MI versus receive SNR.

centric scheme achieves sensing MI second only to Radar-only
case, as it focuses solely on meeting the minimum communi-
cation performance requirements, with the remaining transmit
power allocated towards enhancing sensing capabilities. The
proposed method exhibits superior sensing MI performance
over the MI-constrained and Communication-centric schemes.
It is also noted that the sensing MI of the Communication-
centric scheme increases very slowly with SNR, as this scheme
solely focuses on meeting the minimum sensing MI require-
ment, allocating the remaining transmit power to improve the
communication SINR for each user. Additionally, we observe
that the proposed method closely approaches the ZF-violated
scheme. This indicates that the impact of cross-correlation
constraints (27c) on the achievable maximum sensing MI is
minimal. Nevertheless, in order to fully compare ZF-violated
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Fig. 5. The average rate of the MU-MIMO communication versus SNR.
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Fig. 6. The tradeoff between the sensing MI and the average rate of the
MU-MIMO communication.

scheme with the proposed method to demonstrate the impact
of cross-correlation constraints on overall performance, it is
also necessary to consider communication performance.

Fig. 5 unfolds the average achievable communication rate
versus communication SNR under the same settings as in
Fig. 4. It is observed that the Communication-only scheme
achieves the best average communication rate, while other
schemes experience communication performance loss due to
sensing MI constraints. The propose method demonstrates
superior average communication rate compared to the MI-
constrained scheme. This is due to the fact that the MI-
constrained approach optimizes the lower bound of SINR,
which cannot attain the same communication performance as
the proposed method that directly optimizes SINRs. More-
over, the performance gap between the proposed method
and the Communication-centric approach diminishes as SNR
increases, converging closely at high SNR levels. We observe
that the average communication rate of the proposed method
closely approximates that of the ZF-violated scheme, suggest-
ing that cross-correlation constraints do not compromise the
communication performance either.

In Fig. 6, we evaluate the tradeoff between the average
communication rate and the sensing MI for C = 2 and
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Fig. 7. Capon spatial spectrum, for K = 2. (a) Capon spatial spectrum for
the Radar-only approach without radar signals. (b) Capon spatial spectrum
for the proposed method. (c) Capon spatial spectrum for the proposed method
without radar signals. (d) Capon spatial spectrum for the ZF-violated scheme.
(e) Capon spatial spectrum for the ZF-violated scheme without radar signals.
(f) Capon spatial spectrum for the MI-contrained scheme.

C = 3. For the proposed method, the weight of sensing MI α
varies from 0.1 to 0.9. The weights of different communication
users are set with the same value, calculated by ωi = (1 −
α)/C,∀i ∈ C. The weights of different sensing targets are
equivalently established as ξk = α/K,∀k. The threshold ρ
utilized in the MI-constrained approach varies from 0.2 to
0.9. In the case where the number of users and targets are
the same, the proposed method achieves higher sensing MI
than the MI-constrained scheme with the same communication
average rate. Similarly, when to achieve the same sensing MI,
the proposed method obtains a better average communica-
tion rate. This indicates that the proposed method provides
a better trade-off between multi-target sensing performance
and multi-user communication performance compared to the
MI-constrained scheme. It is also noted that the proposed
method and the ZF-violated scheme exhibit a similar trade-
off, demonstrating that the cross-correlation constraints does
not compromise the overall performance of the ISAC system.
Furthermore, we observe that the more users the ISAC system
has to communicate with reliably, the lower the sensing MI is
achieved in the proposed method. This is because ensuring an
additional communication user performance requires utilizing
transmit power resources originally allocated for sensing.

Since the sensing MI is not the only performance measure
for sensing, we also examine the angle estimation performance
obtained by using the Capon method. We simulate two radar
targets located at directions 20◦ and 40◦, respectively. The
complex amplitude of the targets are both 1 [13]. Fig. 7
exhibits the Capon spatial spectrum with and without transmit-
ting radar signals for several benchmarks in one test. Without
transmitting radar signals, it can be observed from Fig 7 (a),
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Fig. 8. Capon spatial spectrum, for K = 3. (a) Capon spatial spectrum
for the Radar-only approach. (b) Capon spatial spectrum for the proposed
method. (c) Capon spatial spectrum for the proposed method without radar
signals. (d) Capon spatial spectrum for the ZF-violated scheme. (e) Capon
spatial spectrum for the ZF-violated scheme without radar signals. (f) Capon
spatial spectrum for the MI-contrained scheme.

(c), (e), and (f) that the proposed method exhibits an angular
resolution close to that of the Radar-only approach and yields
significantly higher peak values at the desired target directions
compared to other ZF-violated and MI-constrained schemes.
We also observe that when the number of targets does not
exceed the number of users, all schemes can effectively detect
and estimate the targets regardless of whether additional radar
signals are transmitted.

Then, we consider the scenario where there are three targets,
with two of them placed closely. The directions of the targets
are 0◦, 5◦ and 40◦, and the complex amplitude for each target
is 1 [13]. When transmitting radar signals, it can be observed
that the peak at the location of 0◦ in Fig 8 (d) is not prominent
compared with Fig 8 (b), resulting in an inadequate resolution
of two closely spaced targets. This observation highlights
that the proposed method enhances the ability to resolve
multiple targets by suppressing the cross-correlation among
signals reflected from different targets through constraints
(27c). Additionally, it can be observed from Fig 8 (c), (e) and
(f) that when the BS transmits only communication signals,
all three targets cannot be effectively distinguished, with only
two of them exhibiting significant peaks. This is due to the
fact that when only communication signals are transmitted,
the rank of the transmitted signal covariance matrix is limited
by C, which cannot provide sufficient DoFs to form three
beams to cover all three targets.

Fig 9 shows the root-mean-square-error (RMSE) of target
angle estimation versus radar SNR. The angles of targets
are estimated by finding the peaks in the Capon spatial
spectrum. When radar signals are not transmitted, the RMSE
for the proposed scheme, the ZF-violated scheme, and the
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Fig. 9. RMSE for angle estimation versus receive SNR, for K = 3.

MI-constrained scheme is significantly higher compared to
other schemes that utilize radar signals. This is due to the
insufficient DoFs, often resulting in the inability to detect
targets close to the true target direction, which aligns with
the conclusion in Fig 8. Additionally, we observe that when
radar signals are transmitted, the proposed scheme exhibits
a lower RMSE compared to the ZF-violated scheme and is
close to the Radar-only scheme. This indicates that even with
similar capabilities in maximizing sensing MI, the proposed
scheme outperforms ZF-violated in terms of angular estima-
tion performance. Therefore, the sensing MI upper bound with
cross-correlation constraints is more appropriate performance
metric for multi-target sensing.

VI. CONCLUSION

In this paper, we investigated a multi-objective optimization
framework for ISAC beamforming that provides a flexible
tradeoff between multiple targets sensing and multi-user com-
munication. We formulate a MOOP based on the tight upper
bound of sensing MI and each user’s SINR. Then, we employ
a max-min utility function method to obtain specific Pareto
optimal solutions while considering fairness between users
and sensing targets. Numerical results were presented for
validating the proposed beamforming method and provided
the useful insights. Firstly, the proposed method can achieve
superior performance boundaries of communication and sens-
ing performance, while also facilitating a flexible tradeoff
between them. Secondly, the proposed method can enhance
target resolution and angle estimation accuracy for multiple
targets, thereby validating the suitability of constrained sensing
MI upper bound as a performance metric for multi-target
sensing.

Extending the proposed framework to practical scenarios
with imperfect channel state information (CSI) may degrade
the communication and sensing performance, necessitating the
development of robust beamforming techniques that account
for channel uncertainties. Additionally, dynamic target track-
ing in non-ideal conditions can be computationally demand-
ing, requiring the development of low-complexity tracking
algorithms and efficient beamforming update schemes. Fu-
ture research should focus on investigating the robustness of

the MI-based beamforming method under imperfect CSI and
developing advanced techniques to mitigate its impact while
enabling real-time adaptation for practical implementation.

APPENDIX A
PROOF OF THEOREM 1

Substituting (10) into (12), the sensing MI can be simplified
to (42), presented at the top of the next page. The derivation
of (42b) follows the fact that vec(ABC) = (CT ⊗A)vec(B).

Then, by introducing auxiliary block matrices

T =
1

σ2
r

[
vec
(
A (θ1)

(
XXH

))
, . . . , vec

(
A (θK)

(
XXH

))]
,

M =
[
σ2
1vec (A (θ1)) , . . . , σ

2
Kvec (A (θK))

]H
,

(43)
the sensing MI in (42b) can be rewritten as

I
(
ỹr; g̃

∣∣∣X̃) = log [det (I+TM)] = log [det (I+MT)] ,

(44)
where the last equality follows from Sylvester’s determinant
identity det(I +AB) = det(I +BA). The (i, j)-th entry of
MT is given by

[MT]i,j =
σ2
i

σ2
r

vecH (A (θi)) vec
(
A (θj)

(
XXH

))
=

Lσ2
i

σ2
r

tr
(
AH (θi)A (θj)RX

)
= σ2

i [Φ]i,j ,

(45)

where the derivation of (45) utilizes the identity
vecH (A) vec (B) = tr

(
AHB

)
, and [Φ]i,j denotes the

(i, j)-th element of the matrix Φ ∈ CK×K . Next, we define
a diagonal matrix Λ ∈ CK×K as

Λ ≜ diag
{

1

σ2
1

,
1

σ2
2

, . . . ,
1

σ2
K

}
. (46)

By extracting the constant coefficient terms {σ2
1 , . . . , σ

2
K}

from determinant by row, the sensing MI is recast as

I
(
ỹr; g̃

∣∣∣X̃) = log

[
det (Φ+Λ)

K∏
k=1

σ2
k

]
, (47)

which completes the proof of Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

We first prove that M is a compact set. Following [42],
we know that the feasible transmit strategy set R is compact.
According to [46], the continuous mapping of a compact set
is also a compact set. Since the upper bound of sensing MI
Iup and each user’s SINR γi are all continuous functions of
{R1, . . . ,RC+M} ∈ R, M is a compact set.

To prove that M is a normal set, we use a similar method as
described in [14, Appx.A]. Take x = (Iup, γ1, · · · , γC) ∈ M
and assume that (R1, . . . ,RC+M ) is a feasible strategy that
attains point x. Our goal is to prove that any given x′ =
(I ′up, γ

′
1, · · · , γ′

C) satisfying x′ ≤ x also belongs to M.
To this end, we represent the transmit beamforming

strategy in a new form (p1R1, . . . , pC+MRC+M ), where
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I
(
ỹr; g̃

∣∣∣X̃) = log

[
det

(
I+

1

σ2
r

(
K∑
t=1

σ2
k

(
X∗XT ⊗ INr

)
vec (A (θk))vec(A (θk))

H

))]
(42a)

= log

[
det

(
I+

1

σ2
r

(
K∑
t=1

σ2
kvec

(
A (θk)

(
XXH

))
vec(A (θk))

H

))]
, (42b)

(p1, . . . , pC+M ) ∈ P is a set of power allocation coefficients
that should belong to

P = { (p1, . . . , pC+M ) : pn > 0, tr
(∑C+M

n=1
pnRn

)
≤ PT ,

tr
(
a (θi)a

H (θj)

(∑C+M

n=1
pnRn

))
= 0 (i ̸= j)}.

(48)
First, we need to find that (p1, . . . , pC+M ) ∈ P satisfies the
given SINRs and Iup, i.e.,

γi =
pih

H
i Rihi∑C+M

j=1,j ̸=i pjh
H
i Rjhi + σ2

c

,∀i ∈ C, (49a)

Iup =

K∑
k=1

log

(
1 +

Nrσ
2
kL

σ2
r

aH(θk)

(
C+M∑
n=1

pnRn

)
a (θk)

)
.

(49b)

For (49a), given arbitrary (pC+1, . . . , pC+M ) satisfying
each element pi ∈ (0, 1], we can derive the following equation,
i.e.,

Γ (A1p1 +A2p2 + b) = p1, (50)

where Γ = diag (γi, . . . , γC), p1 = [p1, . . . , pC ]
T , p2 =

[pC+1, . . . , pC+M ]
T ,

A1 =


0 a1,2 · · · a1,C

a2,1 0 · · · a2,C
...

...
. . .

...
aC,1 aC,2 · · · 0

 , (51)

A2 =


a1,C+1 · · · a1,C+M

a2,C+1 · · · a2,C+M

...
. . .

...
aC,C+1 · · · aC,C+M

 , (52)

with

ai,j =
hH
i Rjhi

hH
i Rihi

, (53)

and b = [b1, . . . , bC ]
T ∈ RC×1 with

bi =
σ2
c

hH
i Rihi

. (54)

Based on (50), we can obtain that

p1 = (I− ΓA1)
−1

(ΓA2p2 + Γb)

(a)
=

(
I+

∞∑
n=1

(ΓA1)
n

)
(ΓA2p2 + Γb),

(55)

where (a) is based on the Neumann series approximation
[47] of (I− ΓA1)

−1. Since all elements in A1, A2, p2

and b are non-negative, it indicates that each element in p1

is obtained from a polynomial with positive coefficients in
γi, . . . , γC . Therefore, a decrease in γi will necessarily lead
to a decrease in at least one of the power allocation coefficients
(p1, . . . , pC). For (49b), Iup can be further rewritten as

Iup = log

(∏K

k=1

(
1 +

∑C+M

n=1
pndnk

))
, (56)

where dnk is a positive constant given as

dnk =
Nrσ

2
kL

σ2
r

aH (θk)Rna (θk) ,∀n, k. (57)

From (56), it is evident that Iup can be expressed as the
logarithm of a polynomial in p1, . . . , pC+M with positive coef-
ficients. As the logarithm function is monotonically increasing,
a reduction in Iup will inevitably result in a decrease in at least
one of the power allocation coefficients (p1, . . . , pC+M ).

In summary, based on the above analysis, we can con-
clude that for any γ′

i ≤ γi,∀i or I ′up ≤ Iup, we can
always properly find p′ ∈ P satisfying that p′ ≤ p, and
making

(
p′1R1, . . . , p

′
C+MRC+M

)
a feasible solution that

attains point x′. This implies that if x′ ∈ Rn
+ and satisfies

x′ ≤ x, then x′ belongs to M. In other words, the achievable
performance region M is a normal set, which completes the
proof.

APPENDIX C
PROOF OF THEOREM 2

The optimal values of (36) is denoted as
(
I∗up, γ

∗
1 , · · · , γ∗

C

)
,

and the corresponding optimal solution with arbitrary ranks as{
R∗

1, . . . ,R
∗
C+M

}
. (58)

We need to prove that the rank-one optimal solution{
R̄1, . . . , R̄C+M

}
can be constructed from (58). First, we

construct
{
R̄1, . . . , R̄C

}
as

R̄i = w̄iw̄
H
i ,∀i ∈ C, (59)

where
w̄i =

R∗
ihi√

hH
i R∗

ihi

,∀i ∈ C, (60)

It can be readily verified that

hH
i R̄ihi = hH

i w̄iw̄
H
i h = hH

i R∗
ihi,∀i ∈ C, (61)

By noting the above fact, we next construct{
R̄C+1, . . . , R̄C+M

}
. Let Rr ≜

∑C+M
n=1 R∗

n −
∑C

n=1 R̄n =∑C+M
n=C+1 R̄n. Therefore, we need to prove that Rr is

semidefinite. Since
∑C+M

n=C+1 R
∗
n is semidefinite due to (27d),

we only need to prove that R∗
i − R̄i ⪰ 0 for all i ⩽ C.

13



For any x ∈ CNt , it holds that

xH
(
R∗

i − R̄i

)
x = xHR∗

ix−
∣∣xHR∗

ihi

∣∣2(
hH
i R∗

ihi

) . (62)

According to Cauchy-Schwarz inequality, we have(
hH
i R∗

ihi

) (
xHR∗

ix
)
≥
∣∣xHR∗

ihi

∣∣2, (63)

which means that

xH
(
R∗

i − R̄i

)
x ≥ 0, ∀x ∈ CN , (64)

i.e., Rr ⪰ 0.
By taking the Cholesky decomposition of Rr, we have

W̄rW̄
H
r =

∑C+M

n=1
R∗

n −
∑C

n=1
R̄n, (65)

where W̄r = [w̄C+1, . . . , w̄C+M ] is a lower triangular matrix.
So we obtain that R̄j = w̄jw̄

H
j for j = C + 1, . . . , C +M .

It follows that ∑C+M

n=1
R∗

n =
∑C+M

n=1
R̄n. (66)

Now we need to validate that
{
R̄1, . . . , R̄C+M

}
is a

feasible solution to (36). And we have

tr
(∑C+M

n=1
R̄n

)
= tr

(∑C+M

n=1
R∗

n

)
≤ PT ,

tr
(
a (θi)a

H (θj)

(∑C+M

n=1
R̄n

))
=

tr
(
a (θi)a

H (θj)

(∑C+M

n=1
R∗

n

))
=0 (i ̸= j) ,

(67)

which means that the constraints of (36) hold for
{R̄1, . . . , R̄C+M}.

Based on (61), we have

I∗up =
∑K

k=1
log

(
1 +

Nrσ
2
kL

σ2
r

aH(θk)

(
C+M∑
n=1

R∗
n

)
a (θk)

)

=
∑K

k=1
log

(
1 +

Nrσ
2
kL

σ2
r

aH(θk)

(
C+M∑
n=1

R̄n

)
a (θk)

)
,

(68)

γ∗
i =

hH
i R∗

ihi

hH
i

(∑C+M
n=1 R∗

n

)
hi − hH

i R∗
ihi + σ2

c

=
hH
i R̄ihi

hH
i

(∑C+M
n=1 R̄n

)
hi − hH

i R̄ihi + σ2
c

,

(69)

which means that the optimal values do not change.
Above all, {R̄1, . . . , R̄C+M} is also the optimal solution

to (36), which completes the proof.
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