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Abstract

Seasonal variations of atmospheric muons are traditionally interpreted in terms of an effective temperature that relates the atmo-
spheric temperature profile at a given time to the dependence of muon production on atmospheric depth. This paper aims to review
and generalize the treatment of muon production and effective temperature that has been used to interpret seasonal variations of
atmospheric muons by many experiments. The formalism is developed both in integral form – for application to compact detectors
at a fixed depth that record all muons with Eµ > Emin

µ – and in differential form – for application to extended detectors like IceCube,
KM3NeT, and Baikal-GVD, where the rates are proportional to energy-dependent effective areas.

This paper combines and builds upon the work on sea-
sonal variations of atmospheric muons performed by
Thomas K. Gaisser together with various collaborators
over the last decade. It is partly based on and expanded from
two paper drafts which were in preparation but which remain
unfinished due to his passing.

1. Introduction

Atmospheric muons come primarily from the decay of
charged pions and kaons produced by cosmic-ray interactions
in the upper atmosphere. In the energy range where the interac-
tion lengths of the parent mesons are comparable to their decay
lengths, higher temperatures lead to lower density and, there-
fore, to higher muon production rates. The degree of correlation
evolves over an energy range defined by the critical energies for
pions ϵπ ≈ 115 GeV and kaons ϵK ≈ 857 GeV, where the nu-
merical values correspond to a temperature of 220 K. The corre-
lation with temperature is small at low energies, Eµ < ϵπ, where
most mesons decay, and becomes fully correlated for muons en-
ergies above several TeV. Because of the difference in their crit-
ical energies, the π±/K± production ratio is an important factor
in this study. Prompt muons from the decay of charmed hadrons
and neutral vector mesons remain uncorrelated with tempera-
ture below their critical energies ∼ 107 GeV [1], but make a
negligible contribution to the overall rates and are therefore not
considered.

Seasonal variation of atmospheric muons has been a bench-
mark measurement of every underground detector since the
classic paper [2] on muons in a salt mine near Ithaca, New
York. At a depth of 1574 m.w.e., muons in that detector re-
quired Eµ > 440 GeV at production to reach the detector. Mea-
surements with experiments at the Laboratori Nazionali del
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Gran Sasso (LNGS), starting with MACRO [3] and LVD [4],
have a variable overburden corresponding approximately to
Eµ > 1.5 ± 0.2 TeV at production depending on the exact loca-
tion of the detector. More recent observations at LNGS include
BOREXINO [5], GERDA [6], and OPERA [7]. The MINOS
far detector at a depth of 2100 m.w.e. in the Soudan mine [8]
detects muons with Eµ > 730 GeV at production. There are also
measurements with shallower experiments such as the MINOS
near detector [9, 10] and NOvA [11] at Fermilab that corre-
spond to Eµ ≳ 50 GeV.

The relation between measured muon rate R and atmospheric
temperature is conventionally quantified by a correlation coef-
ficient, αT ,

∆R
⟨R⟩
= αT

∆Teff

⟨Teff⟩
, (1)

where Teff is the effective temperature characterizing the atmo-
spheric temperature profile. The ∆ in Eq. (1) indicates the vari-
ation with respect to the yearly average muon rate ⟨R⟩ and effec-
tive temperature ⟨Teff⟩. Several experimental measurements of
the temperature correlation coefficient show that it varies from
0.2 to 0.95 in the energy range from 20 GeV to ∼ O(TeV) [7].

This paper is organized with an initial section relating the
muon rate at the detector to the production spectrum of muons
as a function of the atmospheric depth, both for compact detec-
tors like MINOS and those at LNGS, and for the deep neutrino
telescopes that span a large range of depths. The focus is on an
analytic approximation for the muon production spectrum, but
two alternative approaches are considered. The next section re-
lates the muon production spectrum to weights for calculating
the effective temperature by weighting the temperature profile
at each depth. It also includes a comparison of the weights of
this work with those defined by Grashorn et al. in Ref. [12]
and used by many measurements. This is followed by a discus-
sion on the correlation coefficient and its dependence on energy
and zenith angle. The following section demonstrates how the
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correlation coefficient is a probe of the atmospheric K/π-ratio.
Finally, we comment on the impact of multiple muon events
and nuclear primaries on the rate calculation. An Appendix
provides details of the hadronic cascade equations and their ap-
proximate solutions with details of how the lepton spectra are
calculated.

2. Muon rate calculations

The evolution of a cascade of particles in the atmosphere can
be described by the coupled cascade equations [13]

dϕi(E, X)
dX

= −
ϕi(E, X)
λint,i(E)

−
ϕi(E, X)
λdec,i(E, X)

+
∑

j

∫ ∞

E
dE j

dn j(E j)→i(E)

dE
ϕ j(E j, X)
λint, j(E j)

+
∑

j

∫ ∞

E
dE j

dndec
j(E j)→i(E)

dE
ϕ j(E j, X)
λdec, j(E j, X)

.

(2)

Here, ϕi(E, X) dE is the flux of particles of type i at atmospheric
slant depth X with energies in the interval E to E+dE. The first
two terms on the right-hand side of Eq. (2) are loss terms as a
result of interaction and decay of particles i, governed by the
interaction and decay lengths λint and λdec. The last two terms
are source terms for the production of particle type i due to the
interaction and decay of particles of type j, where dn/dE are the
inclusive particle production spectra. For an observation height
h0 in the atmosphere, the slant depth X in Eq. (2) is given along
the trajectory l of the central core of the cascade by

X(h0, θ) =
∫ ∞

h0

dl ρair(h(l, θ)), (3)

where the mass density of air, ρair, is typically a function of the
atmospheric height h(l, θ), and θ is the zenith angle of the tra-
jectory. Because the density is directly related to temperature,
the fluxes of particles in air showers are sensitive to temperature
fluctuations in the atmosphere.

The inclusive production spectrum of muons, differential in
muon energy Eµ and atmospheric slant depth X, is then given
by

P(Eµ, θ, X) =
dϕµ(Eµ, θ, X)

dX
, (4)

when solving the cascade equations starting from the total pri-
mary nucleon flux ϕN at the top of the atmosphere. The flux of
muons differential in energy at the surface is obtained from the
integral over the production spectrum,

ϕµ(Eµ, θ) =
∫ XO

0
dXP(Eµ, θ, X). (5)

Due to the relation to the atmospheric density profile, the muon
production spectrum implicitly depends on the temperature
T (X) at slant depth X.

The rate of muons with energy Eµ from a direction corre-
sponding to a zenith angle θ in a detector with effective area
Aeff(Eµ, θ) is given by

R(θ) =
∫

dX
∫ ∞

Emin
µ

dEµ Aeff(Eµ, θ) P(Eµ, θ, X). (6)

For a compact detector at a depth large compared to its vertical
dimension, the effective area is simply its projected physical
area at the zenith angle θ averaged over the azimuth angle. In
this case,

R(θ) = Aeff(θ)
∫

dX
∫

Emin
µ

dEµ P(Eµ, θ, X)

= Aeff(θ)
∫

dX Pint(Emin
µ , θ, X)

= Aeff(θ) I(Emin
µ , θ),

(7)

where I(Emin
µ , θ) is the integral muon flux for θ, Pint(Emin

µ , θ, X)
is the integral version of the production profile1, and Emin

µ is the
energy threshold for a muon to reach the detector at this angle.
In both cases, the total rate, R, is given by integrating over the
solid angle Ω,

R =
∫

R(θ) dΩ. (8)

The differential version (Eq. 6) is appropriate for a geometri-
cally extended experiment like IceCube where the effective area
depends on muon energy, for example, because higher energy
is required for a muon at a large angle to reach the lower part
of the detector. Furthermore, such experiments are sparsely in-
strumented which may cause a fraction of muons to fail to pass
the trigger or subsequent analysis steps, an effect which usually
diminishes with increasing energy. For a compact detector at
a given depth, e.g. MACRO, MINOS, and NOvA, any muon
with sufficient energy to reach the depth of the detector can be
recorded if it passes through the detector. In this case, the inte-
gral version of the production profile as in Eq. 7 is appropriate
(and has been used traditionally).

In the following sections, three approaches to obtaining the
muon production spectrum are described. The first approach
consists of an approximate analytical solution to the cascade
equations including the pion and kaon channels. A second
approach utilizes a numerical solver of the cascade equations
which includes all relevant channels. A third and conceptually
different approach is based on a parameterization of muon pro-
duction profiles in extensive air showers, which are integrated
over the flux of primary particles. For the purpose of illustra-
tion, a hypothetical cylindrical detector with a radius of 5 m and
a height of 20 m at a depth of 2000 m.w.e. is used. For a com-
pact detector at such a large depth, the effective area is given

1In previous works, the integral muon production spectrum has sometimes
been written as P(> Eµ, θ, X), which represents the differential production spec-
trum P integrated over all energies above some minimum energy Eµ. For
clarity, we choose in this work to use instead the notation Pint(Emin

µ , θ, X) ≡∫ +∞
Emin
µ

P(Eµ, θ, X)dEµ.
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cos(θ) 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25
Emin
µ (GeV) 660 781 952 1211 1641 2458 4416 11766

Aeff (m2) 137 172 191 203 210 214 215 213

Table 1: Effective area and threshold energy for muons at the Earth’s surface to
reach a hypothetical cylindrical detector of radius 5 m, height 20 m, and depth
2000 m.w.e..

by the projected physical area. The average minimum energy
that a muon requires to reach the detector is estimated from
the approximation given in Ref. [13]. We consider these values
as a sharp cutoff above which muons are detected and below
which they are not2. The numerical values of the effective ar-
eas and threshold energies used in the calculations are given
in Table 1. The muon rates are calculated using daily temper-
ature data of the South Pole atmosphere for the year 2012 ob-
tained from the Atmospheric Infrared Sounder (AIRS) on board
of NASA’s Aqua satellite [14]. AIRS is capable of measuring
the geopotential height and temperature in the atmosphere with
an accuracy of 1 K over 24 pressure layers between 1 hPa and
1000 hPa, even under cloudy conditions. Assuming an ideal gas
law, the corresponding atmospheric density profile, ρair, can be
obtained using the AIRS pressure and temperature data. All
calculations are performed using the primary nucleon spectrum
from Tom Gaisser’s H3a flux [15].

2.1. Approximate analytical solution of the cascade equations

The differential production profiles obtained from the cas-
cade equations in the limits of low and high energy are repeated
here from Ref. [13] and presented in detail in Appendix A of
this paper. The low- and high-energy regime is defined relative
to the critical energies of the parent mesons of the muons, given
by

ϵπ =
mπc2

cτπ

RT
Mg
≈ 115 GeV

T
220 K

(9)

for pions, and equivalent for ϵK . Here, mπ and τπ are the mass
and lifetime of the pion, g is the acceleration of free fall, R the
molar gas constant, M the mean molar mass for air, and T the
atmospheric temperature. For muons with Eµ ≪ ϵπ,

P(Eµ, θ, X) ≈ ϕN(Eµ)
e−X/ΛN

λN

×

 ZNπ(1 − rγ+1
π )

(γ + 1)(1 − rπ)
+ 0.636

ZNK(1 − rγ+1
K )

(γ + 1)(1 − rK)

 , (10)

2Note that because of the steeply falling spectrum of primary nucleons and
consequently of atmospheric muons, an accurate description of the threshold
region is crucial for accurate rate calculations for real detectors.

and for muons with Eµ ≫ ϵK

P(Eµ, θ, X) ≈ ϕN(Eµ) ×
[

ϵπ
X cos(θ)Eµ

(1 − rγ+2
π )

(1 − rπ)(γ + 2)
ZNπ

1 − ZNN

Λπ

Λπ − ΛN

×
(
e−X/Λπ − e−X/ΛN

)
+0.636

ϵK
X cos(θ)Eµ

(1 − rγ+2
K )

(1 − rK)(γ + 2)
ZNK

1 − ZNN

ΛK

ΛK − ΛN

×
(
e−X/ΛK − e−X/ΛN

) ]
, (11)

where rπ = m2
µ/m

2
π, and λ and Λ are atmospheric interaction

and attenuation lengths respectively. These equations are ob-
tained by integrating solutions of the hadronic cascade equa-
tions (Eq. (2)) for charged pions and kaons to get the spectrum
of leptons from π±/K± → µ± + νµ(ν̄µ), given a primary nucleon
flux ϕN(E) ∝ E−(γ+1), with γ the integral spectral index. The in-
tegral over the primary flux is related to the primary flux evalu-
ated at the energy of the muon by spectrum-weighted moments
ZNh. The Z-factors are given by

ZNh =

∫ 1

0
xγ

dnN→h

dx
dx, (12)

where x = Eh/EN . This definition assumes Feynman scaling
for the particle production and a constant spectral index γ, so
that the spectrum-weighted moments are constants. Such an
approximation is realistic because of the steepness of the pri-
mary spectrum and the threshold of the deep detector, which
combine to limit the range of relevant primary energies.

An approximation valid for all energies can be obtained with
the form

P(Eµ, θ, X) =
Low

1 + Low/High
, (13)

where Low refers to Eq. (10) and High refers to Eq. (11). The
approximations are made separately for pions and kaons. From
Eq. (10) we see that

Pπ(X) =
Aπµ(X)

1 + Bπµ(X)Eµ cos(θ)/ϵπ(T )
(14)

with

Aπµ(X) =
ZNπ

λN(γ + 1)
1 − rγ+1

π

1 − rπ
e−X/ΛN , (15)

and from Eq. (11)

Bπµ(X) =
γ + 2
γ + 1

1 − rγ+1
π

1 − rγ+2
π

X
Λ∗

e−X/ΛN

e−X/Λπ − e−X/ΛN
, (16)

where Λ∗π = Λπ × ΛN/(Λπ − ΛN) is a combination of the
attenuation lengths for nucleons and pions. The equations
for the kaon channel have the same form with AKµ(X) multi-
plied by a factor of 0.636, the branching ratio for the decay
K± → µ± + νµ(ν̄µ) [16]. The total differential production spec-
trum is

P(Eµ, θ, X) = ϕN(Eµ) {Pπ(X) + PK(X)} , (17)
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The equations assume a power law primary spectrum,
where ϕN(Eµ) = CN × E−(γ+1)

µ is primary nucleons per
GeV m2s sr. When the low-energy form Eq. (10) is inte-
grated to get the corresponding integral production profile,
ϕN(Eµ)→ E × ϕN(Eµ)/γ. The high-energy form (Eq. (11)) has
an additional factor of muon energy in the denominator, so
ϕN(Eµ)→ E × ϕN(Eµ)/(γ + 1) at high energy. Applying the ap-
proximation of Eq. (13) then leads to

Pint(Emin
µ , θ, X) = Emin

µ ϕN(Emin
µ )

×
Aπµ(X)

γ + (γ + 1)Bπµ(X)Emin
µ cos(θ)/ϵπ

. (18)

This form (plus the corresponding term for kaons) provides the
production profile that can be inserted into Eq. 7 to get the in-
clusive rate of muons (assuming an Aeff that does not depend
on muon energy). The production profile for a specific Eµ and
cos(θ) is shown in Fig. 1.

The above equations are for µ+ + µ−. The corresponding
equations for νµ + νµ have the same form with the meson de-
cay kinematic factors like (1 − rγ+1

π ) and (1 − rγ+2
K ) replaced by

(1 − rπ)γ+1 and (1 − rK)γ+2, respectively [17].
The constants used in the calculations are given in Ta-

ble A.2. More detail can be included in the calculation by
taking into account the non-scaling behavior of hadronic in-
teractions and gradual changes of the primary spectral index.
To first approximation, this is done by introducing energy-
dependent spectrum-weighted moments as in Ref. [18]. For
this work, we compared a calculation using the constant values
from Ref. [13] based on Sibyll 2.3 (Table A.2), and a calculation
using energy-dependent values obtained from Sibyll 2.3c [19]
(see Fig. A.14). While the calculation with energy-dependent
values gives a higher rate, the difference is nearly constant with
the relative variations throughout the year deviating by less than
0.1% (see Appendix A). In Fig. 2, we show the daily rate cal-
culated with the energy dependent parameters, compared to the
rates obtained with the other methods considered. The calcu-
lated angular distribution of the events is shown in Fig. 3.

It is possible to check the accuracy of Eqs. (13) and (14)
by expanding the exact solution of the cascade equations in
Eq. (A.5). A comparison of predictions given by the analyti-
cal approximation described here to a full numerical solution
as described in the following section was presented earlier in
Ref. [20].

2.2. Numerical solution of cascade equations

The approximate analytical solutions of the cascade equa-
tions are based on various simplifications that can introduce
uncertainties on the atmospheric muon fluxes. In order to esti-
mate these uncertainties Monte-Carlo simulations or numerical
solutions of the coupled cascade equations are required. The
software package MCEq (Matrix Cascade Equations) [21] pro-
vides precise numerical solutions of the cascade equations with
a level of detail comparable with current Monte Carlo simula-
tions. To achieve this, the cascade equations are expressed in
matrix form to make use of modern implementations of linear
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Figure 1: Integral muon production profiles obtained for Eµ > 500 GeV and
cos(θ) = 0.95 using three different methods: the analytic approximation (AA,
Section 2.1), the numerical solver (MCEq, Section 2.2), and the parameterized
air-shower production profiles integrated over the primary spectrum (Param.,
Section 2.3).

algebra algorithms. The calculations rely on several input pa-
rameters, such as the initial cosmic-ray flux and the atmospheric
density profile. Further details can be found in Ref. [21]. An
extension of this approach is realized with the Muon Intensity
Code (MUTE) [22] which accounts for muon propagation in
dense media to estimate muon fluxes in deep-underground ex-
periments. However, in this work the simple approach based
on effective areas and energy thresholds, as described in Sec-
tion 2.1 (Table 1), is used to obtain the expected muon flux in
a hypothetical cylindrical detector of radius 5 m, height 20 m,
and depth 2000 m.w.e..

The atmospheric muon flux is determined with MCEq, using
Sibyll 2.3c, at different atmospheric depths, Xi, assuming the
primary nucleon flux from H3a and a daily atmospheric temper-
ature and density profile at the South Pole derived from 2012
AIRS data. Subtracting the muon spectrum at Xi+1 from the
spectrum at Xi for all i then directly yields the muon production
spectrum P(Eµ, θ, X), which is shown in Fig. 1. The expected
muon rate, R(θ), is then calculated according to Eq. (6). Anal-
ogously to the analytical approach, integration over the solid
angle yields the total muon rate in the detector, as described in
Eqs. (7) and (8). The resulting total muon rate is shown in Fig. 2
and the corresponding angular distribution in Fig. 3.

2.3. Parameterization of Monte Carlo cascades

An alternative approach consists of integrating average muon
production profiles in air showers over the primary cosmic-ray
flux. A parameterization of such profiles based on simulations
and its applications are described in Ref. [24]. The differential
muon production spectrum P(Eµ, θ, X) is given by

P(Eµ, θ, X) =
∫

Eµ
g(Eµ, E0, θ, X,T ) ϕN(E0)dE0 (19)

4
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Figure 2: Daily event rate for the detector of Table 1 calculated following the
three different methods from Sections 2.1, 2.2 and 2.3. (The sharp increase in
the expected rate around October is a feature of the South Pole atmosphere, see
for example Ref. [23].)

with

g(Eµ, E0, θ, X,T ) =
d

dEµ

dN(Emin
µ , E0, A, θ, X,T )

dX

 . (20)

Here dN(Emin
µ , E0, A, θ, X,T )/dX is the mean number of

muons with energy > Emin
µ produced per g/cm2 as a function of

slant depth X in a cosmic-ray air shower initiated by a primary
nucleus with mass number A, primary energy E0, and zenith
angle θ, where the atmospheric temperature at X is given by
T . It is a product of the derivative of the Gaisser-Hillas (G-H)
function [25], often used to fit the longitudinal development of
air showers and its derivative here interpreted as the longitudi-
nal production of mesons in the cascade, multiplied by a decay
factor that provides the temperature dependence of the decay
probability of pions and kaons to muons, and a threshold fac-
tor:

dN
dX

(Emin
µ , E0, A, θ, X,T ) =

Nmax exp((Xmax − X)/λ)

×
Xmax − X
λ (X − X0)

(
X − X0

Xmax − X0

)(Xmax−X0)/λ

× F(Emin
µ ,T )

1 − AEmin
µ

E0

5.99

.

(21)

The parameters Nmax, Xmax, λ, X0 are the free parameters ap-
pearing in the original G-H function, which were parameterized
in Ref. [24] in terms of E0, A, and Emin

µ based on fits to muon
production profiles obtained from air-shower simulations. For
the parameterization, a scaling form depending on E0/(A Emin

µ )
is used so that only the primary spectrum of nucleons is required
in Eqs. 20 etc.

The decay factor is

F(Emin
µ ,T ) =

fπ

1 + ( f Emin
µ ) cos(θ)X

rπλπϵπ(T )

+
fK

1 + ( f Emin
µ ) cos(θ)X

rKλKϵK (T )

, (22)

with f ≥ 1, a factor fitted from the simulations that gives
the mean energy of all muons with energy greater than Emin

µ ;
rπ = 0.79 and rK = 0.52 are the fraction of the parent me-
son momentum carried by the muon, and λπ = 110 g/cm2 and
λK = 122 g/cm2 are the meson interaction lengths.

The normalization factors fπ and fK of the pion and kaon
component are defined in terms of the average momen-
tum they carry away in interactions of nucleons in the at-
mosphere, taking into account the branching ratio for the
muon decay channel for charged kaons. This average
momentum fraction is equivalent to the spectrum-weighted
moment of Eq. (12) evaluated for γ = 1. Requiring the
sum of the normalization factors to be equal to one, they
are defined as fπ = Zγ=1

Nπ /(Z
γ=1
Nπ + 0.636 × Zγ=1

NK ) = 0.92 and
fK = 1 − fπ = 0.08, where numerical values from Ref. [13]
were used for Zγ=1.

The inclusive muon production profile calculated according
to Eqs. (19) and (20) is shown in Fig. 1. The calculated rates
and zenith distribution are shown in Figs. 2 and 3. For our
calculations, we use the fit parameters given in Table 1 from
Ref. [24] for the four functions fitted to Monte Carlo for Nmax,
Xmax, λ, and X0.

The integral over slant depth of Eq. 21 is equivalent to the
Elbert formula [26, 27] approximation for the average number
of muons per shower for a given zenith angle [28]:

⟨N(Emin
µ )⟩ ≈ A

K
Emin
µ cos(θ)

 E0

AEmin
µ

α1
1 − AEmin

µ

E0

α2

, (23)

where A is the mass number of a primary nucleus of total en-
ergy E0

3. The dependence on the ratio A Emin
µ /E0 follows from

the superposition approximation, in which incident nuclei are
treated as A independent nucleons each of energy E0/A. The
threshold factor, i.e. the last factor in Eq. (23), is the same as
for Eq. 21. The benefit of integrating Eq. (21) over Eq. (23) is
the dependence on atmospheric temperature of the former.

Comparisons between the approach presented in this section
and the analytic calculation from Section 2.1 were shown ear-
lier in Ref. [29]. Alternatively to the parameterization of pro-
duction profiles obtained from simulation as discussed in this
section, one could use MCEq (Section 2.2) to obtain average
production profiles in air showers by using it to solve the cas-
cade equations with a single primary particle as the initial con-
dition. This will increase the accuracy of the calculation in vari-
ous ways, for example, by taking into account all relevant muon
production channels and including the energy dependence of
the inclusive cross sections, as well as through the implementa-
tion of the curved geometry relevant for more horizontal direc-
tions.

3. Effective temperature

The variation of muon rate with atmospheric conditions is or-
dinarily described in terms of correlation with an effective tem-
perature parameter. The effective temperature characterizes the

3The Elbert formula traditionally uses the notation ⟨Nµ(> Eµ)⟩, written here
instead as ⟨N(Emin

µ )⟩.
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Figure 3: Expected zenith angle distribution of muons calculated for the de-
tector of Table 1 following the three different methods from Sections 2.1,
2.2 and 2.3. (For the AA and Param. calculations, the effect of the curva-
ture of the Earth was approximated by replacing cos(θ) in the formula by an
effective cos(θ∗) from Ref. [30].)

atmospheric temperature profile by averaging it with appropri-
ate weights related to the muon production spectrum. Different
definitions of effective temperature have been used in the liter-
ature.

A definition that has traditionally been used can be obtained
by taking the derivative of the rate in Eq. (8) with respect to
temperature. The change in rate is obtained by integrating the
change in atmospheric temperature over depth, i.e.

∆R(θ) =
∫

dX
∫

dEµAeff(Eµ, θ)
dP(Eµ, θ, X)

dT
∆T (X). (24)

Defining ∆T (X) = T (X)−Teff and setting ∆R = 0 for an isother-
mal atmosphere where T (X) = Teff results in the following def-
inition:

Teff(θ) =

∫
dX

∫
dEµ Aeff(Eµ, θ)T (X) dP(Eµ,θ,X)

dT∫
dX

∫
dEµ Aeff(Eµ, θ)

dP(Eµ,θ,X)
dT

. (25)

The total effective temperature is the weighted average of
Eq. (25) over the zenith distribution. The corresponding inte-
gral form is

Teff(θ) =

∫
dXT (X)

dPint(Emin
µ ,θ,X)

dT∫
dX dPint(Emin

µ ,θ,X)
dT

. (26)

It applies to compact detectors for which the effective area can-
cels in Eq. (25) at each zenith angle. For the analytic inclusive
form of the pion channel spectrum from Section 2.1, for exam-
ple,

T (X)
dP(Eµ, θ, X)

dT
=

Aπµ(X)Bπµ(X)Eµ cos(θ)/ϵπ(T )[
1 + BπµEµ cos(θ)/ϵπ(T )

]2 . (27)

and

T (X)
dPint(Emin

µ , θ, X)

dT
= Emin

µ ϕN(Emin
µ )

×
Aπµ(X)(γ + 1)Bπµ(X)Emin

µ cos(θ)/ϵπ(T )[
γ + (γ + 1)Bπµ(X)Emin

µ cos(θ)/ϵπ(T )
]2 . (28)

An early implementation of this approach, presented in
Ref. [12], is used in the analysis of MINOS, among others. For
comparison with the existing literature, it is necessary to write
the effective temperature in terms of weights:

Teff(θ) =

∫
dXT (X)W(X)∫

dXW(X)
≈

∑
i δ ln(Xi)T (Xi)XiW(Xi)∑

i δ ln(Xi)XiW(Xi)
. (29)

The second form is motivated by the fact that atmospheric tem-
peratures are commonly tabulated in quasi-logarithmic intervals
of depth, so the integrations in this work are done logarithmi-
cally. From Eq. (28)

W(X) = Emin
µ ϕN(Emin

µ )

×
Aπµ(X)(γ + 1)Bπµ(X)Emin

µ cos(θ)/ϵπ(T )

T (X)
[
γ + (γ + 1)Bπµ(X)Emin

µ cos(θ)/ϵπ(T )
]2 . (30)

The form obtained here differs from the one of Ref. [12], with
the weights now depending on the temperature profile through
the critical energies. The normalized weights are compared in
Fig. 4. Despite the difference in the calculations, the weights
are similar, with only a slight shift deeper in the atmosphere for
the present calculation.

For the calculation of Teff according to Eq. (25), with the
parameterization of Section 2.3, the corresponding form for the
decay factor is

T (X)
dF(Emin

µ , θ, X)

dT
=

fπ ( f Emin
µ ) cos(θ)X/rπλπϵπ(T )[

1 + ( f Emin
µ ) cos(θ)X/rπλπϵπ(T )

]2 .

(31)
To calculate the derivative of the muon production spectrum

with respect to temperature with MCEq, first the production
spectrum P(Eµ, θ, X) is determined as described in Sec. 2.2. In
a second step, muon production spectra are derived for a local
temperature change of dT = 1 K. This is done by changing
each atmospheric layer i in the AIRS temperature and density
profiles individually by 1 K to obtain P̂i(Eµ, θ, Xi) and

P̂(Eµ, θ, X) =
(
P̂1(Eµ, θ, X1), . . . , P̂n(Eµ, θ, Xn)

)
, (32)

where n is the total number of layers considered in the AIRS
data. The derivative of the production spectrum is then con-
structed via the difference quotient as

dP(Eµ, θ, X)
dT

=
P(T + dT ) − P(T )

dT

=
P̂(Eµ, θ, X) − P(Eµ, θ, X)

1 K
. (33)
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Figure 4: Weight of different atmospheric depths in the calculation of the ef-
fective temperature according to Eq. (25). The black dotted line show the
(temperature-independent) values from Ref. [12]. They are compared to val-
ues obtained using the methods of Section 2, averaged over a full year, as these
weights depend on the atmospheric temperature profile. The calculations are
done for Emin

µ = 500 GeV and cos(θ) = 0.95.

The resulting derivative of the production spectrum in terms of
weights, W(X), is also shown in Fig. 4.

Alternatively to the definition of Eq. (25), in which the atmo-
spheric temperature profile is multiplied by the derivative of the
muon production spectrum with respect to temperature, the ef-
fective temperature has been defined as a straightforward con-
volution of the temperature profile with the muon production
spectrum, normalized to the muon rate for each angle [31]:

T̃eff(θ) =

∫
dX T (X)

∫
dEµ Aeff(Eµ, θ)P(Eµ, θ, X)∫

dX
∫

dEµ Aeff(Eµ, θ)P(Eµ, θ, X)
. (34)

A benefit of this definition is that the technical implementation
is more simple compared to the derivative definition when using
MCEq. A comparison of the daily effective temperature with
the two definitions is shown in Fig. 5.

The relative variations in the calculated rate throughout the
year are plotted as a function of relative variations of effective
temperature in Fig. 6. The derivative definition of Teff , Eq. (25),
minimizes the difference between calculated rates on days that
have the same value of Teff . Using the alternative definition
of Eq. (34), a separation is visible between the months in which
the atmosphere cools versus when it warms. This so-called hys-
teresis has been reported earlier by IceCube using this definition
of effective temperature [23].

4. Correlation coefficient

The relation between the variation of effective temperature
and the variation of muon rate can be expressed in terms of a
correlation coefficient αT as in Eq. (1).

A theoretical expectation for the correlation coefficient as a
function of zenith angle and threshold energy can be calculated
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Figure 5: Comparison of the values of effective temperature obtained from the
derivative definition Eq. (25) and the alternative definition of Eq. (34) for the
three different methods of calculation muon production discussed in Section 2.

by writing it in the following form:

αth
T (Emin

µ , θ) =
T

I(Emin
µ , θ)

dI(Emin
µ , θ)

dT
. (35)

Using the expression for the integral rate, Eq. (7), together with
the expression in Eq. (18), the theoretical correlation coefficient
for the integral muon spectrum can be estimated. To do so, we
assume relatively small deviations of T (X) from ⟨Teff⟩. The
result is shown for fixed T = 220 K in Fig. 7 as a function
of Emin

µ cos(θ) (see also Eq. 18). We limit the energy range
at the lower end to 50 GeV as at lower energies muon de-
cay is expected to have a non-negligible impact. At energies
above 10 TeV, the muon prompt component is expected to be-
come important, which will lower the value of αT compared
to the calculations including only contributions from pions and
kaons [1]. A calculation of the theoretical αT using the weights
of Ref. [12] is compared with a range of experimental results in
Ref. [7]. Calculation of the correlation coefficient for the dif-
ferential case can be carried out equivalently, but is less univer-
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Figure 6: Correlation between the relative variation in event rate and effective
temperature calculated according to the methods from Sections 2.1, 2.2 and 2.3.
Different colors indicate the two definitions of effective temperature. Correla-
tion coefficients calculated by fitting a line to the points are given in the legend.

sal because it depends on the energy-dependent effective area,
which is different for each detector.

Experimental values of αT are obtained by applying a linear
fit to ∆R/⟨R⟩ as a function of ∆Teff/⟨Teff⟩, where R and Teff are
the measured event rate and the corresponding calculated effec-
tive temperature (e.g. per day) and the denominators are the
average over the observation period (e.g. a year). In Fig. 6, we
show correlation plots with calculated rates for the hypothetical
detector introduced in Section 2. Values obtained for the cor-
relation coefficients differ little between effective temperature
definitions. A larger difference is present between the methods
based on cascade equations and the muon profile parameteriza-
tion method. The good agreement between the analytic approx-
imation and the MCEq calculation has been shown before, in-
cluding for the case of seasonal variations of neutrinos [20, 32].
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th T

Figure 7: Theoretical prediction of the temperature correlation coefficient as
a function of muon threshold energy and zenith angle, calculated using the
analytic approximation of Section 2.1 assuming an isothermal atmosphere with
T = 220 K.
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Figure 8: Variation of the muon rate originating from the pion and kaon chan-
nels plotted separately as a function of the effective temperature, calculated
with the analytic approximation of Section 2.1.

In Ref. [29], a comparison between the analytic approach and
the parameterization suggests that the level of agreement be-
tween different calculations and experimental results depends
on the energy range relevant to the detector.

5. Relative contributions from pions and kaons

The higher critical energy of kaons compared to pions re-
sults in a lower correlation with temperature for muons from
kaon decay. This is illustrated in Fig. 8, where αT is determined
separately for the kaon and pion component in the calculation,
R = Rπ + RK , using the analytic approximation Eq. (17). As a
result, the measured correlation coefficient depends on the rela-
tive contribution of pions and kaons to the production of muons.
A measurement of the seasonal variations of the atmospheric
muon rate is therefore a probe of the atmospheric kaon-to-pion
production ratio rK/π.
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pion ratio rK/π calculated with the analytical approximation of the production
spectrum given by Eq. (18). Spectrum weighted moments were assumed to be
independent of energy.

In Ref. [12], rK/π was defined in terms of the spectrum
weighted moments ZNK and ZNπ as

rK/π =
ZNK

ZNπ
. (36)

The dependence of the correlation coefficient on the K/π ra-
tio can be estimated straightforwardly from the analytic ap-
proximation of Section 2.1, as the dependence on the spectrum
weighted moments ZNπ and ZNK is explicit in the parameters
Aπµ and AKµ of Eq. (15). In this case, the correlation depends
only on the ratio of ZNK and ZNπ. Fig. 9 shows the theoreti-
cal expectation for αth

T for different Emin
µ cos(θ) from Eq. (35),

calculated as a function of rK/π assuming ZNK and ZNπ to be in-
dependent of energy, as in Eq. (12). The nominal value of K/π
ratio is in this case taken to be rK/π = 0.0109/0.066 = 0.165.

In Ref. [33], a modified K/π ratio was defined in terms of two
weights wπ and wK which scale the inclusive particle production
spectrum,

r⋆K/π =
Z⋆NK

Z⋆Nπ
=

wKZNK

WπZNπ
=

wK

wπ
rK/π. (37)

When using energy-dependent Z-factors or comparing differ-
ent methods of calculating αT , it is easier to express αT as
a function of wπ and wK rather than the value of rK/π itself.
For calculations including only muons from the decay of π±

and K±, αT will depend only on the ratio of the weights. In
a full calculation including contributions from other channels,
such as performed with MCEq, this simple relation breaks
down. In Fig. 10, a full calculation of of the expected αT

for the detector of Table 1 is shown as a function of wπ/wK

for the analytic approximation, MCEq, and the parameteriza-
tion. For the latter, the weights entered in the calculation of
fπ = (wπZ

γ=1
Nπ )/(wπZ

γ=1
Nπ + 0.635wKZγ=1

NK ), with Zγ=1
Nπ the energy-

independent spectrum weighted moment for γ = 1, as described

0.5 1.0 1.5 2.0
wK/w
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T
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MCEq
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Figure 10: Relation between αT and the ratio of wK and wπ, modifying the pro-
duction of charged pions and kaons. The values are calculated for the detector
of Table 1, using the analytic approximation of Section 2.1, the parameteriza-
tion of Section 2.3, and the MCEq calculation of Section 2.2. Both definitions
of effective temperature given in Section 3 are included.

in Section 2.3. For MCEq, the dependence was approximately
estimated by scaling the production spectra of muons produced
by pions and kaons with wπ and wK , respectively. The calcu-
lation of the effective temperatures and αT is then repeated, as
described in Section 3, with the scaled distributions.

Determining the experimental value of αT is relatively insen-
sitive to the assumed value of rK/π, as the dependence in the
calculation of the effective temperature mostly cancels out. By
comparing the experimental result to the calculated correlation
coefficient, it is possible to measure rK/π for nucleon-nucleon
interactions at median primary energies which are typically be-
tween 10-100 times the muon threshold energy at production,
as illustrated in Fig. 11.

Preliminary results from IceCube were shown in Ref. [31].
An alternative calculation of the relation between αT and rK/π

was shown earlier in Ref. [12] and used by other experiments
such as Borexino [34].

6. Multiple muon events and nuclear primaries

The traditional rate calculation as presented in Section 2 is
based on the inclusive atmospheric muon flux. A shortcoming
is that it does not take into account that muons produced in the
same shower arrive at the detector simultaneously. While the
muons arriving in bundles contribute individually to the calcu-
lated muon intensity, in realistic detectors they will often be
indistinguishable, making the event rate lower than what is pre-
dicted from the calculation of Eq. (6).

An estimate of the effect can be obtained for compact de-
tectors by modifying the calculations presented in Section 2.3.
Combining Eqs. (7), (19) and (20), the traditional rate calcula-
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Figure 11: Response curve showing the contribution to the muon rate as a func-
tion of primary nucleon energy for the detector of Table 1. Calculated using the
parameterization of Section 2.3.

tion can be written as

R = Aeff I(Emin
µ )

= Aeff

∫
Emin
µ

dE0 ϕN(E0) ⟨N(Emin
µ , E0)⟩, (38)

where ⟨N⟩ is the mean number of muons with energy above
Emin
µ produced by a nucleon with energy E0, and we omit

the θ-dependence for conciseness. Writing the average as
⟨N⟩ =

∑∞
0 np(n), with p(n) the probability for a nucleon to pro-

duce a bundle of n muons, shows explicitly that multiple muons
get accounted for separately in the calculation rather than as a
single event. Replacing this by the probability to have at least
one muon above threshold per primary nucleon gives the ex-
pected intensity of bundles of muons with one or more muons
above Emin

µ ,

Ibundle(Emin
µ ) =

∫
Emin
µ

dE0 ϕN(E0)
∞∑

n=1

p(n|⟨N⟩). (39)

Assuming the multiplicity to follow a Poisson distribution4, the
sum is given by 1 − e−⟨N⟩.

Another effect which will decrease the event rate compared
to Eq. (6) is the fact that a fraction of the primary nucleons
arrive at the Earth bound in nuclei, which are more likely to
produce higher multiplicity bundles of muons arriving simul-
taneously. To take this into account, we can integrate over a
realistic flux model, such as the H3a model,

Ibundle(Emin
µ ) =∑

A

∫
AEmin
µ

dEA ϕA(EA)
∞∑

n=1

p
(
n|⟨N(Emin

µ , EA, A)⟩
)
, (40)

4Ref. [35] finds that the multiplicity is described better by a negative bino-
mial distribution.
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Figure 12: Daily event rate for the detector of Table 1 taking into account the ef-
fect of multiple muons from a single air shower arriving together. The standard
calculation from the parameterization, already shown in Fig. 2, is compared to
the calculation of Eq. (39) using the total H3a nucleon flux, and of Eq. (40)
using the mass composition given by H3a. The multiplicity was assumed to
follow a Poisson distribution of mean ⟨N⟩ given by Eq. (41).

where ϕA is the differential flux of element A and the sum runs
over the different primary nuclei in the flux model. Note that we
still assume that the energy in the nucleus is divided evenly over
the A nucleons. The expectation ⟨N⟩, which depends on the at-
mospheric temperature profile, can be estimated by integrating
the parameterized production profile Eq. (21),

⟨N⟩(Emin
µ , EA, A, θ, X,T ) =∫

dX
dN
dX

(Emin
µ , EA, A, θ, X,T ). (41)

The effect of taking muon multiplicity and a realistic nucleus
flux into account is shown in Fig. 12. Performing the calcula-
tion using the total nucleon flux but taking into account multiple
muon events decreases the expected rate by close to 10%. Tak-
ing into account also the mass composition of primary nuclei
decreases the expectations by another 10%.

It is of interest to examine how this modified rate calculation
affects the expected correlation coefficient. The correlation plot
including different rate calculations is shown in Fig. 13. Here,
the effective temperature is taken to be the same in all cases, i.e.
it is given by Eq. (25). This shows how the standard approach
of comparing measured rates to the calculated Teff may cause
an underestimation of αT . This may in turn lead to inaccuracies
in the determination of rK/π.

We note that this is a simplified estimate of this effect. A
more accurate calculation can be obtained replacing the param-
eterized muon production profiles by production profiles ob-
tained by using MCEq to solve the cascade equations for in-
dividual primary nuclei, or by performing a full simulation of
the problem. This is especially important for geometrically ex-
tended detectors, where the energy threshold region needs to be
treated in more detail.
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Figure 13: Relative variations in the calculated event rate from Fig. 12 as a func-
tion of variations in the effective temperature. Three rate calculations are shown
– Standard: each muon is individually counted in the rate; Bundle (ϕN ): muons
produced by the same nucleon are counted as a single event; Bundle (ϕA):
muons produced by the same nucleus are counted as a single event. The ef-
fective temperature uses the standard calculation in each case.

7. Summary

The flux of atmospheric leptons varies with the seasons as the
atmosphere contracts and expands, which influences the decay
probability of parent mesons. The observation of this variation
in the muon rate of underground detectors has a long history,
and is usually analyzed in terms of its correlation with an ef-
fective temperature which is a weighted average of the atmo-
spheric temperature profile. The magnitude of the correlation is
expressed in terms of a correlation coefficient, which is sensi-
tive to properties of the hadronic interactions in the atmosphere,
specifically the kaon-to-pion production ratio.

The expected rate of muons can be calculated by integrating
over the muon production spectrum multiplied by the effective
area of the detector. An important difference exists between
large-volume detectors where the effective area is energy de-
pendent, and compact detectors at large depth, which can be ap-
proximated as energy independent (except for the dependence
of the muon energy threshold on the zenith angle). Various ap-
proximations for calculating the muon production have been
presented in the literature, each with their own advantages and
disadvantages. We have considered here an approximate an-
alytical solution to the atmospheric cascade equations, a code
which numerically solves the cascade equations, and an ap-
proach where one integrates the muon production spectrum in
individual air showers over the primary flux. Furthermore, dif-
ferent definitions of effective temperature have been used in the
literature. A so-called derivative definition of the effective tem-
perature, Eq. (25), follows naturally from the formalism, but is
less straightforward to calculate than the simple average of the
atmospheric temperature profile weighted by the muon produc-
tion spectrum which has alternatively been used. In this work,
we have compared several of these different methods and def-
initions, and showed how they lead to different predictions of
the correlation coefficient αT . We have also demonstrated the

relation between the αT and the kaon-to-pion production ratio.
Finally, the relevance of multiple muon events and nuclear pri-
maries was discussed, which are both not taken into account in
the standard approach of an inclusive flux calculation from the
total primary nucleon flux.

The treatment of seasonal variations of the atmospheric neu-
trino flux was not treated explicitly in this paper but can be car-
ried out equivalently. With neutrinos originating dominantly
from kaon decay above several hundred GeV, the temperature
correlation is expected to be smaller compared to muons up to
energies of several TeV [1, 23]. The different kinematics of
neutrino production in the atmosphere thus make it possible to
probe the K/pi ratio in an independent way using the same ob-
servatory. The feasibility has been demonstrated by the recent
observation of seasonal variations of atmospheric neutrinos by
IceCube [32].

Acknowledgments: We thank our colleagues A. Fedynitch,
S. Tilav, and D. Seckel for helpful discussions related to this
work. SV acknowledges funding from the National Science
Foundation (NSF) grant #2209483.

Appendix A. Cascade equations and their approximate so-
lutions

A simplified form of the cascade equation for the inclusive
spectrum of charged pions in the atmosphere Π(E, X) is [13]

dΠ
dX
= − Π(E, X)

(
1
Λπ
+

ϵπ
E X cos(θ)

)
(A.1)

+
ZNπ

λN
ϕN(E) e−X/ΛN , (A.2)

with a similar equation for the charged kaon channel. The equa-
tion has two loss terms. The first is from pion interactions in the
atmosphere where Λπ > λπ,int is an attenuation length for pions
that accounts for their regeneration. The second is the pion de-
cay term, which depends on temperature, as in Eq. (9). X is
the atmospheric slant depth along a direction with zenith angle
θ, and the solution applies to a boundary condition at the top
of the atmosphere where Π(E, X = 0) = 0 and ϕN(E) is the
spectrum of nucleons evaluated at the energy of the pion. This
form holds for a power-law spectrum of primary nucleons and
for production cross sections that depend only on the ratio xL of
the lab energy of the secondary particle to that of the parent. In
this case, the energy-dependence of the production of the sec-
ondary is represented by the spectrum weighted moment, which
for charged pions is

ZNπ =

∫ 1

0
(xL)γ−1FNπ(xL)dxL, (A.3)

with FNπ(xL = Eπ/EN) the dimensionless inclusive particle
production spectrum

FNπ =
Eπ
σN,air

dσN,air→π

dEπ
= Eπ

dnπ(Eπ, EN)
dEπ

, . (A.4)
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which follows from the inclusive cross section σN,air→π, where
σN,air is the inelastic nucleon-air cross section.

In application of this approximation, it is important to in-
clude all intermediate channels in the calculation of the spec-
trum weighted moments. Especially important, for example, is
p + air → Λ + K+ + xxx, which has an important influence
on the muon charge ratio and on the energy dependence of the
kaon channel in general [36]. Comparison [20] of the approach
given here with MCEq [21] that includes all intermediate chan-
nels shows only small differences, see also Sections 2 and 4.
Generalizations to include non-scaling behavior of the produc-
tion cross sections and energy-dependence of the primary spec-
tral index are possible [18, 17]. However, the main justification
for this simple approach, some version of which has been used
by many experiments, is that the seasonal variation is itself a
ratio in which many uncertainties cancel.

The solution of Eq. A.2 for charged pions is

Π(E, X) = e−(X/Λπ) ZNπ

λN
ϕN(E)

∫ X

0
exp

[
−

X′

Λ∗π

] (
X′

X

) ϵπ
E cos(θ)

dX′,

(A.5)
with Λ∗π = ΛπΛN/(Λπ − ΛN). In the high-energy limit, the
scaling limit solution of Eq. (A.5), subject to the boundary con-
dition Π(E, 0) = 0, is

Π(E, X)
E≫ϵπ
−→ ϕN(E, 0)

ZNπ

1 − ZNN

Λπ

Λπ − ΛN

(
e−X/Λπ − e−X/ΛN

)
.

(A.6)
In the low energy limit,

Π(E, X)
E≪ϵπ
−→

ZNπ

λN
ϕN(E, 0) e−X/ΛN

X E cos(θ)
ϵπ

. (A.7)

Accounting for the two-body decay kinematics of π± → µ νµ
leads to the muon production spectrum as an integral over the
meson fluxes:

Pµ(Eµ, X) =
ϵπ

X cos(θ)(1 − rπ)

∫ Eµ
rπ

Eµ

Π(E, X)
E

dE
E

+
0.635 ϵK

X cos(θ)(1 − rK)

∫ Eµ
rK

Eµ

K(E, X)
E

dE
E
.

(A.8)

Inserting the low- and high-energy limiting approximations for
Π(E, X) and K(E, X) into Eq. A.8 leads to the corresponding ex-
pressions for the low- and high-energy muon production spectra
in Eq. (10) and Eq. (11).

Symbol Value
γ 1.7
ZNN 0.262
ZNπ 0.066
ZNK 0.0109
λN 85 g/cm2

ΛN 115 g/cm2

Λπ 148 g/cm2

ΛK 147 g/cm2

rπ 0.5731
rK 0.0458

Table A.2: Constants used in the calculations, from Ref. [13] (based on Sibyll
2.3 [37]).

10 2

10 1

Z N
h

ZNN ZN ZNK

50

100

150

h a
nd

 
h (

g/
cm

2 )

N N K

102 103 104 105 106

E (GeV)

1.6
1.8N

Figure A.14: Energy dependent Z-factors, interaction lengths λ, and attenuation
lengths Λ as obtained from MCEq using H3a and Sibyll 2.3c.

To check the accuracy of the approximation of Eq. (13), one
can expand the exponentials in Eq. (A.5) and integrate to obtain

Π(E, X) = e−(X/Λπ) ZNπ

λN
ϕN(E)X

×

 1
απ + 1

−

(
X
Λ∗π

)
1

απ + 2
+

1
2!

(
X
Λ∗π

)2 1
απ + 3

· · ·

 , (A.9)

where απ = ϵπ/(E cos(θ)). Inserting this expression into Eq. A.8
and defining z = E/Eµ and ξπ = ϵπ/(Eµ cos θ) then leads to a
rapidly converging expression for the muon production spec-
trum that can be evaluated numerically to compare with the ap-
proximation of Eq. 13. The series is

Pµ,π(Eµ, X) =
e−X/Λπ

1 − rπ

ZNπ

λN
ϕN(Eµ) ξπ

×

∫ 1
rπ

1

dz
zγ+2

 1
z + ξπ

−
X
Λ∗π

1
2z + ξπ

+
1
2!

(
X
Λ∗π

)2 1
3z + ξπ

...

 .
(A.10)

The constants used in this work are those relevant for
Eµ ∼ 1 TeV from Ref. [13], repeated in Table A.2. The non-
scaling cross sections and energy-dependent spectral index can
be taken into account to first approximation by using energy
dependent values for the parameters in the equations. Numer-
ical values, shown in Fig. A.14, were obtained using MCEq
and Sibyll 2.3c [19]. A comparison between the calculations
using constants and energy-dependent parameters is shown in
Fig. A.15. The difference in rate is nearly constant throughout
the year, indicating that the energy-independent calculation is a
valid approximation to determine the magnitude of the seasonal
effect.
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Figure A.15: Rate calculated using the analytic approximation of the cascade
equations. A comparison is made between the calculation using the constants
given in Table A.2, and the energy-dependent values shown in Fig. A.14. The
ratio of the two calculations has only a weak seasonal dependence.
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