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We show that the full Horndeski theory with both curvature and torsion can support nonsingular,
stable and subluminal cosmological solutions at all times. Thus, with torsion, the usual No-Go
theorem that holds in a curved spacetime is avoided. In particular, it is essential to include the
nonminimal derivative couplings of the L5 part of the Horndeski action (Gµν ∇µ∇νϕ, and (∇2ϕ)3).
Without the latter a No-Go already impedes the eternal subluminality of nonsingular, stable cos-
mologies.

I. INTRODUCTION

Modifications of General Relativity (GR) with scalar fields have been widely investigated mainly motivated by the
need to address the singularity issues of GR, the Dark Energy and Dark Matter problems, and the recent phenomeno-
logical advances which promise guidelines and constraints to the vast theoretical possibilities [1].

In this work we consider the most general modification of GR with second derivatives of a scalar in the action, but
with second order equations of motion, which is known as Horndeski theory [2–6]. It reunites under one class a wide
variety of models, ranging from the cosmological constant, to k-essence and more generally, minimally coupled and
non-minimally coupled scalars, such as Brans-Dicke (See for instance [7] for a review).

The main attractive feature of Horndeski theory -later rediscovered as Galileons [3–6]- is that it permits to violate
without obvious pathologies the Null Energy Condition (NEC) 1, upon which the singularity theorems of Penrose and
Hawking hold [9, 10]. Indeed it has been proven possible to build locally stable and subluminal bouncing cosmologies,
which however, generally have an issue with global stability [11–18]. In other words, even if the solutions are locally
healthy around the bounce - or the most physically relevant phase - an instability will certainly happen at some time
earlier or later in the evolution of the Universe [19]. The certainty of instabilities at some time is what we call global
stability issues, which were established as No-Go theorems in [13, 14] for the case without torsion. In the case with
torsion, the certainty of instabilities or an eventual superluminality of the graviton was proven in [20] for a restricted
class of theories. We refer to the latter also as a "global stability" issue, because having "stability" would force an
arguably unphysical and potentially unacceptable period of superluminality [21–23].

All in all, it has been argued that the global stability issues can be postponed and cured with other types of matter
that could become relevant at other phases [19]. However, there are generalizations of the No-Go theorems that hold
for even more general modifications of GR [17], and furthermore, some analysis have suggested that violating the NEC
potentially brings issues of some sort such as superluminality, even if singularities are successfully avoided [22]. Thus,
the global stability seems indeed a pressing issue that has to be solved concretely. Among the possible options, one
is to consider altogether other theories such as Beyond Horndeski [24, 25]. In this case the equations of motion are of
higher than second order, but there is no Ostrogradsky ghost by construction. Even for Horndeski theory there are
very particular solutions to the global stability issue [14, 18, 26, 27], but one is restricted to one of the following three
options: either the model propagates no scalar perturbation about a nonsingular Friedmann-Lemaître-Robertson-
Walker (FLRW) background - which may be unsatisfactory because we do expect small deviations from FLRW on
cosmological scales - or the scalar perturbation propagates about Minkowski spacetime [26], or one is forced to consider
non conventional asymptotics, such as gravity being the strongest force in the past [14, 27]. Finally, substantially
reconsidering Horndeski theory, now on a flat spacetime and with extra terms, fully exchanging curvature for torsion
through the teleparallel connection, the usual No-Go theorems break [28].

We suggest that another concrete solution - on the familiar curved spacetime - may be to simply lift some of
the assumptions that are usually taken for Horndeski theory. Indeed, we relax the mathematically and physically
unjustified2 assumption of considering a spacetime only with curvature, as research in Horndeski theory historically

∗ sa.mironov_1@physics.msu.ru
† mvalenciavillegas@itmp.msu.ru
1 See for instance [8] for a review.
2 Indeed, there are motivations - beyond those considered in this paper - that suggest the relevance of torsion [29]. See also the discussions

in [30]. In fact, torsion had already been explored as a potential cure for the singularities of GR, but without addressing potential issues
with global stability [29, 31–33].
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developed. Because, as we show below, assuming vanishing torsion only helps to simplicity, but at the expense of
"artificially" enabling the global stability issues. Indeed, it is remarkable that for such a general theory as Horndeski,
a No-Go theorem for the linearization holds at all. It may be that in fact that the simplifying assumptions of the
spacetime on which Horndeski theory was formulated are too restrictive given that so many criteria - 1) nonsingular,
2) stable, 3) sub/ luminal cosmology- must be satisfied. We take 1) to 3) as a definition of "healthiness" for what
follows.

This work builds on the results for up to quartic Horndeski theory with both curvature and torsion -namely, with
up to (∇2ϕ)2 terms in the action- [20], where a No-Go theorem for healthy cosmological evolution was formulated 3.
In this paper, it is shown that once we include the more complex L5 part of the action -namely, with up to (∇2ϕ)3

terms-, a No-Go theorem cannot hold. We first argue that the pressing issues with the simpler forms of Horndeski
theory -including the torsionless [13, 14] and the "up to quartic torsionful theory" in [20]- can be seen as simply
accidental to the assumptions: namely, in the familiar Horndeski theory without torsion many of the coefficients
of the quadratic action for the graviton are tightly related to the coefficients of the quadratic action for the scalar
mode, and this is nothing more than the consequence of having taken ad-hoc simplifications. This link between
coefficients ends up in the well-known contradictory requirements for the healthiness of the graviton and the scalar
mode (No-Go theorems). A simple pragmatical solution is to lift the assumptions: Turning on torsion modifies the
action for the graviton and the scalar mode in increasingly divergent ways, as more terms of the full Horndeski action
are considered. These modifications come from nontrivial tensor and scalar perturbations of torsion, which mix with
the metric perturbations. The more mixing, the more the link between the graviton and scalar actions is broken. For
instance, in the "up to quartic torsionful theory" in [20] the mixing of more perturbations is enough to break the
standard No-Go theorem [13, 14], thus ending up in a weaker form of this No-Go, where one can achieve stability
and nonsingular cosmology, but with an arbitrarily short superluminality of the graviton [20]. In this paper we show
that if we lift further the "simplicity assumptions" and consider the complete form of Horndeski theory -including
the L5 part - more torsion perturbations do not decouple, but rather they mix more with the metric perturbations.
This ends up untangling the equations that must be imposed for the healthiness of both sectors. They become two
sets of very different combinations of the Lagrangian functions L2 to L5. Thus, it is easier to independently satisfy
these equations not only locally but also without meeting any contradictions at some time in the evolution. Namely,
reaching global stability. We show in this work an explicit toy model with globally healthy cosmological solutions.

Furthermore, the gravitational waves in all potentially healthy Horndeski gravities with torsion follow a characteristic
dispersion relation that is not common to any other simpler form of Horndeski theory about the spatially flat FLRW
background. Their dispersion relation depends non-trivially on the wavelength. This follows because of the more
torsion perturbations that do not decouple, which is necessary to avoid the No-Go’s.

We proceed as follows: In section II we define the model. In section III A we summarize the gravitational waves’
characteristic features in all potentially healthy models.

In section III B we compare the situation regarding the global stability between three forms of Horndeski theory: (i)
without torsion, (ii) on a spacetime with torsion but without L5 (namely "up to quartic Horndeski-Cartan theory"),
and (iii) on a spacetime with torsion with the complete Horndeski action (which we denote as the full Horndeski-
Cartan action). We explain how the No-Go holds for the simpler forms of the theory (i),(ii), and how the usual
analysis breaks for (iii), thus first suggesting that with the full Horndeski-Cartan action (iii) healthy solutions can
be built.

Finally, in section III C we show that a toy model exists, taken from within the general Horndeski-Cartan theories,
which has a classical solution that is nonsingular, stable and sub/luminal at all times, thus showing that a "No-Go
theorem" cannot exist. We finalize with the conclusions in section IV.

In the Appendix V A we report the construction details of the stable toy model, in VB we present details of the
notation for torsion, and in VC, V D, V E we show all necessary details of the quadratic actions for the tensor and
scalar modes.

II. THE MODEL: HORNDESKI WITH CURVATURE AND TORSION

Horndeski theory is built on top of GR with four general functions G2, G3, G4, G5 that depend on a real scalar field
ϕ and its first derivatives X = − 1

2∂µϕ∂
µϕ. These general functions appear in specific Lorentz invariant combinations

of the second derivative term (∇̃µ∇̃νϕ)
p with p ≤ 3, such that the equations of motion of all the fields are at most of

second order, hence avoiding the Ostrogradsky ghost.

3 We consider torsion in the second order, metric formalism. Namely, we assume from the start that the action can be written with a
connection that can be expressed in terms of the Christoffel connection plus torsion [34, 35]. See [28, 36–48] for other formalisms and
modifications of Horndeski.
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If we consider a spacetime with curvature and torsion, the basic block to build the second-order part of the Horndeski
action (∇̃µ∇̃νϕ) is not symmetric under the exchange of indices µ ↔ ν. Thus, there are more ways to build Lorentz
invariant combinations of the type (∇̃µ∇̃νϕ)

p and still keep the second order equations of motion. These multiple
choices of Horndeski Lagrangians on a spacetime with torsion may be named by a handful of free parameters4, which
for different choices may lead to fundamentally different dynamics within the family of Horndeski-Cartan theories
[34, 35].

Currently, it is known that the most physically compelling type5 of Horndeski-Cartan theories with only G2, G3, G4

functions ("up to quartic") eventually suffers of a pathology in the classical solutions at some time in the evolution of
the universe, or the graviton needs to become superluminal for at least an arbitrarily short time [20]. More precisely,
in up to quartic theories that can be written as the L2 + L3 + L4 part of the action (1), namely, with up to (∇̃µ∇̃νϕ)

2

Lorentz invariant combinations, it is not possible to obtain a FLRW cosmology that is always subluminal, nonsingular
and stable. Denoting torsionful6 quantities with a "tilde" (̃ ), and ∂GA/∂X =: GA,X ,

S =

∫
d4x (L2 + L3 + L4 + L5) , (1)

L2 = G2 , (2)
L3 = −G3 ∇̃µ∇̃µϕ , (3)

L4 = G4 R̃+G4,X

((
∇̃µ∇̃µϕ

)2

−
(
∇̃µ∇̃νϕ

)
∇̃ν∇̃µϕ

)
. (4)

In this letter we show that the situation changes drastically if we also consider the remaining structure of Horndeski
theory, namely with the G5 part which contains up to (∇̃µ∇̃νϕ)

3 Lorentz invariant combinations.
Specifically, let us take the complete action (1) and, among the many possible terms that a spacetime with curvature

and torsion allows, we consider only the following Lorentz contractions of (∇̃µ∇̃νϕ)
3 terms

L5 = G5 G̃
µν ∇̃µ∇̃νϕ− 1

6
G5, X

(
(∇̃µ∇̃µϕ)3 (5)

+ (∇̃ν∇̃ρϕ)
(
2(∇̃µ∇̃νϕ)∇̃ρ∇̃µϕ− 3(∇̃µ∇̃µϕ)∇̃ρ∇̃νϕ

))
.

Any other choice of contractions of Lorentz indices in both L4 and L5 leads to fundamentally different dynamics7,
even if the equations of motion are kept of second order.

The specific subclass (1) - (5) which we have chosen within the family of all Horndeski-Cartan theories will be enough
to show that there exist at least some Horndeski-Cartan theory that can support an all time stable, nonsingular and
subluminal cosmology.

III. STABLE COSMOLOGIES WITH A DISTINCTIVE GRAVITON

We examine the stability of the perturbations against a spatially flat FLRW background. As in GR there is no
dynamical vector perturbation. And similar as in Horndeski without torsion, there are the usual two polarizations
of the graviton and a scalar mode. However, their speed and stability are markedly different for the full theory with
torsion:

A. Modified graviton

For all actions of the type (1), containing the G5 structure on a torsionful spacetime, the dispersion relation of
gravitational waves (ω) on the FLRW background is such that the speed generally depends on the wavelength8,

ω2 =
f0 + p⃗ 2 f1
f2 + p⃗ 2 f3

p⃗ 2 , (6)

4 Namely, for Horndeski with torsion with up to L4 there are two free parameters [35]. Including L5 it is clear that many more free
parameters are possible, but it has not been classified.

5 Namely, the theory that besides a graviton also propagates a scalar mode with a relativistic dispersion relation. This corresponds to a
particular choice of parameters of a two-parameter family of (up to quartic G4) Horndeski-Cartan theories [34, 35].

6 In particular, note that the Einstein tensor G̃µν is not symmetric due to torsion.
7 See for instance [34] for the discussion in L4. In general they may have less constraints, making them algebraically more difficult to

analyze. Their analysis is left for future work.
8 This is not that surprising given that the cosmological background spontaneously breaks Lorentz invariance. Indeed, this is common in

some derivatively coupled scalars, such as in ghost condensates, which usually have a non relativistic scalar dispersion relation [49].
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where we have written all the dependance on momentum (p⃗) explicitly, and f0, f1, f2, f3 depend on the Lagrangian
functions. They are given in the Appendix V D.

For our analysis it is appropriate to take the short wavelength approximation and consider the speed of gravitational
waves as p⃗ 2 → ∞,

c2g =
f1
f3
. (7)

This peculiar dispersion relation for the graviton prevails for all Horndeski theories with torsion that contain G5,
irrespectful of the order of contraction of Lorentz indices in any term of the action (1). Indeed, it is useful to notice in
Eq. (6), f1 ∝ f3 ∝ G2

5. Thus, we can already conclude that all potentially healthy models of Horndeski on a space-time
with Torsion will be characterized by the dispersion relation (6), because they must contain the G5 part. Indeed, in
[20] it was proven that a No-Go theorem holds for the simpler form of Horndeski with torsion without G5 (See the
analysis below).

Let us now see how this new graviton with the distinctive Eq. (6) helps to the stability of Horndeski models in
comparison to simpler forms of the theory:

B. Dodging the No-Go

Let us briefly see how the dispersion relation in Eq. (6) comes to be markedly different in comparison to simpler forms
of Horndeski theory. It is obtained as follows: Defining torsion as the difference between connections T ρ

µν = Γ̃ρ
µν−Γ̃ρ

νµ,
we note that by its antisymmetry in lower indices it has 24 independent components, of which we count two two-
component tensor perturbations T (1)

ij , T
(2)
ij about the spatially flat FLRW background9. Hence, denoting with hij

the tensor perturbation of the metric, the action (1) for all tensor perturbations about the FLRW background (in
conformal time), in momentum space takes the form

Sτ =

∫
dη d3p

(
b1 (ḣij)

2 + b2 p⃗
2(hij)

2 + b3(hij)
2 (8)

+
(
c1 p⃗

2(T (2)
ij )

2 + c2 hij T
(1)
ij + c3 ḣij T

(1)
ij + c4 (T

(1)
ij )

2
)

+p⃗ 2
(
d1 T

(1)
ij + d2 ḣij + d3 hij

)
T (2)
ij + d4 p⃗

2hij T
(1)
ij

)
,

where bA, cA, dA depend on three background fields: the scale factor of the FLRW metric a(η), the Horndeski scalar,
which in the context of linearized expressions we also denote as ϕ(η) and a non-trivial torsion background x(η), which,
however, can be solved in terms of a(η), ϕ(η) (See Appendices VB 1 and V C).

The situation for the gravitational waves compares as follows between different forms of Horndeski theory:
(i) without torsion,
(ii) on a spacetime with torsion with the action (1) but without L5 (which we refer as "up to quartic

Horndeski-Cartan theory"), and
(iii) on a spacetime with torsion with the action (1) including L5 (which we denote as the full

Horndeski-Cartan action10).

(i) On a spacetime without torsion only the terms bA in the first line in (8) contribute. In this case one recognizes
that the graviton is massless (b3 = 0) after using the equations for the background fields.

(ii) On a spacetime with torsion but without L5, the first and second lines in (8) do contribute, but the third does
not (namely, dA = 0). Again the graviton turns out to be massless, but its speed is modified due to its coupling
c2, c3 to one of the torsion perturbations, T (1)

ij . The essential aspect is that in this case T (2)
ij fully decouples,

because d1 = d2 = d3 = 0 (namely, its equation gives c1 T (2)
ij ≡ 0), and as a consequence the modification to the

graviton of the up to quartic Horndeski-Cartan theory is not as marked as in (6), as reported in [20, 34, 35].

9 See Appendix VB for more details on our notation for torsion and Appendix VB1 for a detailed decomposition of perturbations and
background fields. We follow the same notation as in [34].

10 Let us however note that one could still consider additional contractions of Lorentz indices.
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(iii) On the other hand, for the full Horndeski-Cartan action (1), the third line in (8) also contributes and now T (2)
ij

no longer decouples. This is the critical difference. Its equation of motion solves torsion as

T (2)
ij = − 1

2 c1

(
d1 T

(1)
ij + d2 ḣij + d3 hij

)
. (9)

With this solution back in (8) we now obtain a − d2
1

4 c1
p⃗ 2 momentum contribution to (T (1)

ij )
2, besides the c4 term.

Indeed, now there is a term of the form − 1
4 c1

(−4 c1 c4 + p⃗ 2 d21) (T
(1)
ij )

2. This lies at the core of the peculiar
dispersion relation of the graviton, because T (1)

ij also couples to ḣij and hij , and, if d1 ∝ G5 is not identically
zero, then there will be a 1

O(p⃗ 2) contribution to the kinetic and gradient terms for the graviton.

Indeed, skipping unimportant details for this discussion, the torsion perturbation T (1)
ij can be finally solved in

(1) in terms of hij , ḣij , and critically, with terms of order 1
O(p⃗ 2) , provided c1, c2, c3 are not identically zero,

T (1)
ij =

1

f2 + p⃗ 2 f3

((
2 c1 c3 − p⃗ 2 d1 d2

)
ḣij +

(
2 c1 c2 − p⃗ 2 (d1 d3 − 2 c1 d4)

)
hij

)
, (10)

with f2 = −4 c1 c4 , f3 = d21. Finally, using the solutions Eq. (10), (9) we can write the action (8) for the usual
graviton with two polarizations, as:

Sτ =

∫
dη d3p a4

[
1

2 a2
1

f2 + p⃗ 2 f3

(
Ḡτ (ḣij)

2 − p⃗ 2 F̄τ (hij)
2
)]

(11)

with,

Ḡτ = 2
a2 c1 (c

2
3 − 4 b1 c4) , F̄τ (p⃗

2) = f̄0+p⃗ 2 f̄1
f2+p⃗ 2 f3

(12)

from which we identify the dispersion relation (6) with f0 = f̄0/Ḡτ , f1 = f̄1/Ḡτ . It is convenient to also define11

Gτ = Ḡτ

f2+p⃗ 2 f3
, Fτ = F̄τ

f2+p⃗ 2 f3
. (13)

Now, in most forms of Horndeski theory the stability or no-ghost requirements for both the tensor and scalar sectors
are contradictory. The issue is that the coefficients in the action for the tensor and scalar sectors are tightly related.
In up to quartic Horndeski-Cartan also the subluminality of the graviton is part of the inconsistent assumptions. Let
us see how the tight relation between tensor and scalar actions is broken for the full Horndeski action with torsion
(1).

The scalar sector for the action (1) can be brought to a form that is typical of Horndeski theories in the unitary
gauge, after integrating out all scalar perturbations of torsion, because they are non dynamical (We show this in detail
in the Appendix VE). Namely:

(14)Ss =

∫
dη d3x a4

(
−3

ḠS

a2
ψ̇2 +

F̄S

a2
(∂iψ)

2+6
Θ

a
α ψ̇ +2

T

a2
∂iα∂iψ +2

∂i∂iB

a2

(
aΘα − ḠS ψ̇

)
+ Σα2

)
,

where ψ, α and B are scalar perturbations for the metric, and the coefficients ḠS , F̄S , Θ, T, Σ, given in the Appendix
V E, depend on the backgrounds a(η), ϕ(η), but they do not depend on spatial momentum. Or, using the constraint
equation α = ḠS

aΘ ψ̇ imposed by the Lagrange multiplier B in Eq. (14), the action for a single dynamical scalar finally
reads

Ss =

∫
dη d3x a4

(
1

a2
GS ψ̇

2 − 1

a2
FS (∂iψ)

2

)
, (15)

11 The global factor in the part of the action for the tensor modes, of order 1
O(p⃗ 2)

, may indicate nothing more than that at very high
momenta the theory is strongly coupled, which we already expect from this effective theory. However, it is clear that the speed of
gravitational waves is well defined in any case. Now, whether this presents a danger in the perturbative expansion falls beyond the reach
of the first approximation in this paper, restricted to linear order.
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(a) N monotonous growing around any zero ηz.
(b) N in between any two zeros ηz. N is continuous in that

interval and hence vanishes at some point.

FIG. 1: Behavior of N(η) around zeros of Θ (denoted as ηz).

where,

GS = 3 ḠS +
Ḡ2
S Σ
Θ2 , FS = 1

a2
dN

dη
− F̄S , (16)

with c2S = FS/GS the speed squared of the scalar mode, and where we have defined

N =:
a ḠS T

Θ
, (17)

which is a quantity of major importance for the discussions below.
Now, let us see how the argument on the stability compares between the different forms of Horndeski theory (i) to

(iii) defined before: assuming "normal" asymptotics -more precisely, assuming no strong gravity in the asymptotic
past or future Fτ (η) > b2 > 0 as η → ±∞ - the following compelling assumptions (A), (B) are already mutually
inconsistent in the case (i) of Horndeski theory without torsion12:

A) nonsingular cosmological solution (a lower bound on the scale factor a(η) > b1 > 0),

B) the graviton and the scalar mode are not ghosts and they suffer no gradient instabilities, Gτ > 0 ,Fτ > 0 ,FS >
0 ,GS > 0 .

In the case (ii) of torsionful, up to quartic Horndeski theory one finds an inconsistency if together with the assumptions
(A, B) we also assume that

C) the graviton is always sub/ luminal (c2g ≤ 1).

Indeed, following the argument initially shown in [12–14] and then extended to the case with torsion in [20], we can
see the inconsistency in both cases (i), (ii), as follows:

On one hand N must not vanish provided the assumption of a nonsingular cosmology together with the no-ghost
condition and sub/luminality of the graviton: namely, in (i) ḠS = T = Gτ and F̄S = Fτ , hence N ∝ aG2

τ ̸= 0.
And in (ii), ḠS = Gτ > 0, F̄S = Fτ and T = Fτ (c

2
g − 2) < 0 hence N ∝ aGτ T ̸= 0.

On the other hand, the stability requirement for the scalar mode FS > 0 in (B) tells, firstable, that the function N
is monotonous increasing dN

dη
> a2 Fτ > 0. This reveals the behavior of N around any isolated zeros of Θ, which

we denote as ηz, as in Figure 1a. In particular it implies that in between any two zeros of Θ, N must vanish as in
Figure 1b. Secondly, FS > 0 also tells that the slope of N is bounded from below asymptotically: dN

dη
> b21 b2 > 0

12 In this discussion we remain within the framework of general Horndeski theories not defined by the particular eqution Θ ≡ 0, which
solves the issues in the torsionless Horndeski theory at the expense of loss of generality, having only two options: either the model
propagates no scalar perturbation about a nonsingular FLRW background, or the scalar perturbation propagates about Minkowski
spacetime [26].
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FIG. 2: N in a semi-infinite interval (−∞, ηz). Similarly N vanishes at some time in an interval (ηz,∞) or if there
are no zeros ηz at any time of the evolution, because N cannot have horizontal asymptotes dN

dη
> b21 b2 > 0 with b1

and b2 positive constants, as η → ±∞.

as η → ±∞. This implies that N will also vanish in any infinite interval - even if Θ never vanishes - because
N cannot have a horizontal asymptote. See for instance Figure 2 in the case of the left-most zero of Θ. This
contradicts the last paragraph, hence, the physically compelling assumptions in each case (i), (ii) are mutually
inconsistent. A detailed proof is given in [13, 14, 16, 20].

Finally, in the case (iii) the situation is markedly different. Considering the expression (17) for N , let us see that
it can vanish in many ways: first, notice that in general the condition in (B) Gτ > 0 does not constrain the sign
of ḠS , because ḠS ̸= Gτ (p⃗

2) 13. This is obvious because while the latter depends on momentum, the former does
not. Moreover, close inspection of the expression for T in Eq. (85) in the Appendix V E, shows that the latter is not
related in a simple way to the speed of the graviton -defined only in the short wavelength approximation (7)-, which
is the key aspect that would usually relate the stability to superluminality in up to quartic Horndeski-Cartan theory
(ii). This is not surprising, because the dispersion relation in Eq. (6) depends in a complicated way on momentum,
while the coefficient T in the scalar sector is independent of momentum.

Therefore, the usual assumptions to have a classically healthy solution (A)-(C) at some momenta -in particular
Gτ (p⃗

2) > 0 and c2g ≤ 1 - do not restrict ḠS nor T , and one could potentially design a theory where (A)-(C) hold,
and ḠS or T vanish at some time, and hence N vanishes too. All in all, if there exists a No-Go argument it must be
a momentum dependent statement. A general statement fails because the action for the tensor and scalar modes are
modified in substantially diverging ways by torsion.

Now, it is important to mention a potentially special case. For that, let us first notice the general identity

Ḡτ = f2 ḠS , (18)

which is still not a strong link between the tensor and scalar modes at all momenta - even if Gτ > 0 and Ḡτ > 0 by
(B) - because the sign of f2(η) is in principle not constrained. However, by the relation (18) and the form of Gτ in
Eqn. (13) it is clear that at low momentum a closer relation between the tensor and scalar modes arises14: namely as
p⃗ 2 → 0 we find

Gτ (p⃗
2 = 0) = ḠS , Fτ (p⃗

2 = 0) = F̄S . (19)

Thus, according to the inequalities (B) the no-ghost and stability of the tensor modes in the low momentum
constrain the sign of ḠS and F̄S of the scalar mode. Evidently this reduces the ways in which N can vanish at low
momentum, but let us recall that T is momentum independent and as we show in the Appendix V E it may vanish in
many different ways, thus making unplausible an exact No-Go even in this low momentum case. Indeed, we show an
explicit counterexample to a No-Go in the next section.

13 Although the notation for ḠS and GS is similar, they are very different functions (See Eqn. (16), and note that Σ is a complicated
function of the Lagrangian functions.). So, the condition in (B) GS > 0 does not constrain the sign of ḠS .

14 This is not that surprising given that in Eq. (6), the low momentum limit p⃗ 2 → 0 is equivalent to the limit G5 → 0. Namely, the low
momentum limit recovers a dispersion relation of the graviton similar to the form of "up to quartic" theories (let us recall that f1 ∝ G2

5
and f3 ∝ G2

5).
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(a) Speed of gravitational waves and of the scalar mode. The
Hubble showing a short bounce phase centered at η = 0 and of

width τ = 1. The isotropic torsion background, x(η).
(b) Detail of the speed of gravitational waves close to the

bounce phase.

FIG. 3: Physically relevant quantities.

C. A counter example to a "No-Go": an all time stable, nonsingular and subluminal toy model

We support the previous discussion showing that a model exists, taken from within the general Horndeski-Cartan
theories (with G5) (1), which has a classical solution that is nonsingular, stable and sub/luminal at all times, thus
showing that a "No-Go theorem" cannot exist.

Our sole intention is to show that there are such potentially interesting models. Thus, our criteria is limited to the
latter and whether further features can be achieved - such as physically interesting asymptotics - is left as an open
question.

The strategy to build the model is to take an Ansatz for the scalar potentials G2 to G5, as an expansion in powers
of X, with coefficients that are general functions of ϕ. Then, assuming a set of physically compelling solutions for a
bouncing cosmology, H and ϕ (Eqns. (20), (21)), we work backwards to solve the free functions in the Ansatz such
that the equations of motion of the background fields are satisfied. In this section we summarize the key features of
the model. The details are relegated to the Appendix V A.

In our model the background fields are

a = (τ2 + η2)
1
6 , H = ȧ

a2 = η

3 (τ2+η2)
7
6
, ϕ = η , x = − 1

3(1+η2)
1
6
, (20)

and to satisfy the conditions (A)-(C) for the tensor perturbation at all momenta, the following inequalities hold

Ḡτ > 0 , f̄0 > 0 , f̄1 > 0 , f2 > 0 , f3 = d21 > 0 , c2g = f1
f3

≤ 1 , (21)

which we plot in Figures 4a and 3. The fourth inequality in (21) guarantees that in the global factor of the tensor
sector the following holds for all p⃗: (f2 + p⃗ 2 d21) > 0. Hence, the stability and non-ghosty conditions remain the same
for all momenta. Similarly, the second inequality is required for the stability of the graviton at all momenta.

For the (momentum independent) scalar sector the inequalities that must hold are simply those in (B) in the last
section, which we plot for our model in Figure 4b.

Now, because N must vanish and simultaneously we have no ghosty graviton at low momentum Gτ (p⃗
2 = 0) =

ḠS > 0, we have chosen a model where T vanishes, as in the Figure 5, which was the only option left to avoid any
pathologies. Importantly, all Euler-Lagrange equations for the background fields a(η), ϕ, x (20) are satisfied and the
Lagrangian functions are everywhere regular. Indeed, the Ansatz for the Lagrangian functions G2 to G5 is finally
solved as in Figures 6, 7. In Figure 3 we also show the Hubble parameter, the speed of the tensor modes and the
scalar, and the torsion background.
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IV. CONCLUSIONS

We showed that with the most general Horndeski theories with curvature and torsion it is possible to build classically
"healthy" models, namely, with nonsingular, all time stable and subluminal cosmological solutions, at least at linear
order in a perturbative expansion.

We first argued how the latter compares to simpler forms of the theory, namely: the historically common form of
Horndeski without torsion, and a simplified version of the theory with torsion (namely, without G5). We explained
where the usual No-Go arguments break when generalizing from the latter two to the former full Horndeski theory
with curvature and torsion.

In brief, we noted that the mathematically and physically unjustified assumption of a torsionless spacetime (or the
restriction to up to quartic torsionful theory) leads to accidental relations at linear order, which restrict the healthiness
of the solutions in these simpler variations of the theory, in the form of the "No-Go theorems".

Torsion solves the issues by mere "force", simply because the tensor sector and the scalar sector couple in different
ways to torsion perturbations, thus breaking the usual links between the two sectors, which would otherwise lead
to the "No-Go". Namely, despite the fact that the torsion perturbations are non dynamical, these couplings of the
metric perturbation and the Horndeski scalar to the Torsion field, greatly modify in diverging ways the coefficients
in the action for the final graviton and the scalar mode. Thus, the stability, sub/ luminality and no ghost criteria
restrict very different combinations of the Lagrangian functions for both sectors, allowing to independently satisfy
them without meeting any contradictions at some time in the evolution.

We also showed that all the healthy models must have a peculiar dispersion relation for the gravitational waves. It
opens the question whether there are phenomenological imprints left by this distinctive graviton.

We showed a toy model where all the criteria of healthiness can be satisfied. However, the usual construction
methods used in the literature (e.g. [19] or [24]) prove hard to implement, because the usual criteria for healthiness
splits into many conditions that usually cannot be solved algebraically (See Appendix V A). We presume that obtaining
models with physically relevant asymptotics besides the criteria of healthiness is a computational challenge rather
than a fundamental obstruction.

ACKNOWLEDGEMENTS

The work of S.M. is partly supported by the grant of the Foundation for the Advancement of Theoretical Physics
and Mathematics “BASIS" and by RFBR grant 21-51-46010.

(a) The gradient stability of the graviton at all momenta holds
because f̄0 > 0, f̄1 > 0. The sign of the no-ghost condition for
the graviton remains invariant for all momenta because f2 > 0
and f3 = d21 > 0 (That d1 ̸= 0 holds is clear in the plot of the

speed in Figure 3, or also in Figure 7).
(b) Non ghosty graviton. Stable, non ghosty, luminal scalar

mode.

FIG. 4: Stability and no-ghost condition for tensor and scalar modes at all momenta.
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V. APPENDICES

A. Construction of the healthy toy model

In this appendix we show the details of how to construct the model given in section III C.
A reasonable assumption is that taking the all-time nonsingular and stable bouncing solution with a short period

of superluminality that was built in [20], one can cure the superluminality issue with a contribution from the new G5

part of the action (1). This is our approach below 15.

1. Lagrangian functions G3, G4

As a first step to a "Healthy model" including G5, let us first build a model with a bouncing solution, but with
up to G4. By [20] we know that without G5 the model will suffer at least instabilities or superluminal periods. We
will refer to the latter as the "Unhealthy part" of the model. The strategy is then to introduce G5 to remedy these
problems.

For the "Unhealthy part" we will closely follow the example built in [20]. Therefore, for this subsection let us first
consider the action (1) without L5. In that case we can also reach the same form of the actions (11), (14) and we use
the same notation for these simplified functions that, let us stress again, only in this section do not contain G5 nor
its derivatives.

Using in our advantage the generality of Horndeski theory, let us choose the following Ansatz for the general
Lagrangian functions G3 and G4:

G3(ϕ,X) = g30(ϕ) + g31(ϕ) (X −X0) , (22)
G4(ϕ,X) = g40(ϕ) + g41(ϕ) (X −X0) , (23)

where we choose X0 as the function X valued on the choice of background fields

a = (τ2 + η2)
1
6 , ϕ = η . (24)

This choice must be such that the Euler-Lagrange equations for the background fields of the full Horndeski-Cartan
theory (including G5) are solved. We guarantee it in the sections below by suitably fixing the g30, G2 Lagrangian
functions.

(a) Plot of the function T , which we designed to vanish at two
points near the bounce phase (We chose −Θ = H). N is

monotonous increasing, as required, and vanishes at the zeros
of T . (b) Detail of the vanishing of T and N .

FIG. 5: Avoiding the No-Go

15 This approach is taken by mere simplicity. Namely, close inspection shows that building such a model including G5 with the "recon-
struction" method used in [20, 24] is computationally challenging. The main issue is that simple Ansätze usually lead to differential
equations of the Lagrangian functions GA, which are difficult to solve.
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The parameter τ > 0 fixes the maximum of H and the width of the bounce phase (the domain where Ḣ(η) > 0
around η = 0), as in Figure 3. With the solutions (24) we have the following function of ϕ for the Ansatz: X0 =

1/(2 (τ2 + ϕ2)
1
3 ) and we choose a short bounce τ = 1.

Now, let us start with a similar model as the one built in [20]. Namely, let us solve for g31, g40, g41 algebraically
from the following three equations,

Fτ (g40, g41) =
23

25
, (25)

T (g40, g41)

Fτ
= −7

5
+

1

4
sech

(
29

50

η

τ

)2

+
1

2
sech

(
2

5

(
η

τ
+

3

2

))
(26)

Θ(g30, g31, g40, g41) = −H, (27)

where only for these equations we plug-in the Ansatz

x =: −8 a3 HX G4,X + a2 ϕ̇ (G3 − 2G4,ϕ)

4 (G4 + 2X G4,X)
. (28)

Let us stress that the equation (28) is only physically meaningful within the context of up to quartic Horndeski-
Cartan theory (See [20] for more details). Namely, the expression (28) is devoid of meaning for the full Horndeski-
Cartan theory with G5 and in this note it is simply an Ansatz for the function x(η) that appears in the functions
Fτ (g40, g41), T (g40, g41), Θ(g30, g31, g40, g41) in this section. Here, we take this definition for the mere practical
purpose of building the "Unhealthy part of the model" in the same way as in [20]. Up to this point this amounts
to nothing more than a choice of a part of the free Lagrangian functions G3, G4.

Now, the key issue of solving the Euler-Lagrange equation derived from the full Horndeski-Cartan theory (with G5)
will be resolved later by suitably fixing the free Lagrangian functions g30, G2.

2. Lagrangian functions G2, G5

Let us take this "Unhealthy part of the model" as a basis. Namely, keeping our choice of g31, g40, g41 which are
functions of time and g30, but are independent of G5 and G2, let us now consider the full Horndeski-Cartan action
(1) with G5, and let us take the Ansatz

G2(ϕ,X) = g20(ϕ) + g21(ϕ) (X −X0) + g22(ϕ) (X −X0)
2 , (29)

G5(ϕ,X) = g50(ϕ) + g51(ϕ) (X −X0) + g52(ϕ) (X −X0)
2 . (30)

With this particular Ansatz all equations to satisfy the stability, subluminality and no-ghost criteria become differential
equations of the free Lagrangian functions g50, g51. To avoid these issues, we take a practical simple approach and
choosing an Ansatz for the functions g50, g51 we show that a model exists with the desired features. Indeed, careful
choice of parameters with a general Ansatz (and potentially fine tuning16) proves that the following choice is enough
for our purpose:

g50 =
1

100

(
−94− 26 sech

(
1

2
− η

)
+ 49 tanh

(
3

2
− η

)
− 90 sech (η) tanh(η)

− 80 sech
(

7

10
(η + 1)

)
tanh

(
7

10
(η + 1)

)2
)
, (31)

g51 =
1

20

(
95 + 97 sech

(
37

25
− η

)
+ 20 tanh (η + 1) + 150 sech

(
3

5

(
η − 7

4

))
tanh

(
3

5

(
η − 7

4

))
+ 20 sech

(
7

10

(
η +

11

20

))
tanh

(
7

10

(
η +

11

20

))2
)
. (32)

16 This would most probably be a problem of the Ansatz and our approach. Whether it can be avoided is an open question that we do
not address in this note.
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(a) Plot of g20, g21, g22 which we chose to satisfy two of the
equations of motion for the background fields, and the

luminality of the scalar.

(b) Plot of g30, g31 which we chose to satisfy the third
independent equation of motion of background fields, and to

fix the function Θ

FIG. 6: Everywhere regular Lagrangian functions G2, G3

Now, plugging-in these Lagrangian functions g50, g51 and g31, g40, g41 of the last section, we can solve for g30, g52
algebraically from the following equations

Θ(g30, g52) = −H +
1

100

(
7 sech

(
3

(
η +

27

20

))
− 10 sech (2 (η − 1))

)
, (33)

E0K0ij
(g30) = 0 , (34)

where Ef = 0, which denotes the Euler-Lagrange equation for the background field f , and Θ(g30, g52) (which corre-
sponds to the function Θ obtained from the action (14)) are computed from the full Horndeski-Cartan lagrangian (1)
with G5. It is important to note that Θ(g30, g52) in (33) is totally different from the function (27) Θ(g30, g31, g40, g41)
of the last section, which was computed without G5 only to choose the Lagrangian functions g31, g40, g41.

Furthermore, for simplicity -and in order to mimic the x(η) profile in [20]- when solving (33), (34), we have chosen
a model within the full Horndeski-Cartan theories (1) whose torsion background is

x(η) = − 1

3 (1 + η2)
1
6

. (35)

In other words, by solving the Euler-Lagrange equation (34) we have suitably found the Lagrangian function g30 that
leads to our desired solution (35). Thus, the torsion background (35) has actual physical meaning because it is used
to solve the equations of motion (34) and (36) below, in contrast to the function (28) that we took as Ansatz for mere
practical purposes in three ad-hoc equations in the last section just to select the Lagrangian functions g31, g40, g41.

The approach in this section of fixing x(η) and finding g30 from the Euler-Lagrange equation is simpler because
E0K0ij

(g30) is quadratic in the former and linear in the latter.
Finally, to make our choices of background fields a(η), ϕ(η), x(η) (24) and (35) consistent, we must satisfy the

remaining Euler-Lagrange equations. We do this by choosing a model within the general action (1) (with G5) with
g20, g21, g22 solving algebraically the three independent equations

GS = FS , Eg00 = 0 , Eg11 = Eg22 = Eg33 = 0 , (36)

of which the first equation implies a model with a scalar mode that propagates exactly at the speed of light.
The solution for the Lagrangian functions are nonsingular everywhere. They are plotted in Figures 6 and 7.

B. Notation for torsion and its decomposition into irreducible components

We consider torsion in the second order (metric formalism). We closely follow the notation in [20, 34]. We give the
necessary details below for completeness. As before, let us denote the torsion tensor as the difference between the
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(a) Plot of g40, g41

(b) Plot of g50, g51, which we carefully chose starting with an
ad-hoc Ansatz and with the sole criteria of obtaining all-time

stability and subluminality of the bounce.

FIG. 7: Everywhere regular Lagrangian functions G4, G5. Let us notice that f3 ∝ d1 ∝ G5 = g50 on-shell, which
does not vanish. Hence, the speed of gravitational waves ∝ f−1

3 in Eq. (7) is well defined.

non-symmetric connection:

T ρ
µν = Γ̃ρ

µν − Γ̃ρ
νµ , (37)

and for convenience we also introduce the contortion tensor:

Kρ
µν = −1

2
(Tν

ρ
µ + Tµ

ρ
ν + T ρ

µν) , (38)

and let us notice the antisymmetry T ρ
µν = −T ρ

νµ, Kµνσ = −Kσνµ. It is easy to see that we can express torsionful
quantities in terms of torsionless covariant derivatives (∇) associated with the Christoffel connection (Γρ

µν), plus
contortion, as follows:

Γ̃ρ
µν = Γρ

µν −Kρ
µν , (39)

∇̃µV
ν = ∂µV

ν + Γ̃ν
µλV

λ (40)

∇̃µV
ν = ∇µV

ν −Kν
µλV

λ , (41)

where we draw attention to our convention to sum over the second lower index of the torsionful connection in Eq
(40). Thus, we can explicitly write the action (1) in terms of contortion, the metric and the Horndeski scalar using
Eq. (41), such as in [34]. For instance, we can rewrite the Ricci tensor computed with the nonsymmetric connection,
R̃, in terms of the Ricci tensor computed with the Christoffel connection, R, as

R̃µν = Rµν +∇νK
ρ
ρµ −∇ρK

ρ
νµ +Kρ

ρσK
σ
νµ −Kρ

νσK
σ
ρµ , (42)

and similarly for the Einstein tensor. Thus, the latter are not symmetric [29] and they introduce far from trivial
O(K2, K3) contributions in the first term of the action (5), G5 G̃

µν ∇̃µ∇̃νϕ, which, as dicussed before, is responsible
for the momentum dependent dispersion relation of the graviton (6). More precisely, the p2 T (1)

ij T
(2)
ij , which is essential

to the stark modification of the graviton in comparison to other forms of Horndeski theory, stems from the third term
of the Ricci tensor in Eq. (42) plugging in the first term of the action (5): G5 (∇ρK

ρνµ) ∇̃µ∇̃νϕ . This turns out to
be essential to allow globally healthy Horndeski gravities.
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1. Linearization

For the perturbative expansion at linear order about a spatially flat FLRW background let us decompose the
perturbations into irreducible components under small rotation group. We show all details below for completeness.
The perturbed metric is denoted as

ds2 = (ηµν + δgµν)dxµ dxν (43)

where

ηµνdxµ dxν = a2(η)
(
−dη2 + δij dxi dxj

)
(44)

and η is conformal time. The metric perturbation is

δgµν dxµ dxν = a2(η)
(
−2α dη2 + 2 (∂iB + Si)dη dxi + (−2ψ δij + 2 ∂i∂jE + ∂iFj + ∂jFi + 2hij) dxi dxj

)
, (45)

with α, B, ψ, E scalar perturbations, Si, Fi transverse vector perturbations, and hij , a symmetric, traceless and
transverse tensor perturbation.

For contortion, antisymmetric in the first and third indices, there are 24 independent components. They are
written as eight scalars denoted as C (n) with n = 1, . . . , 8, six (two-component) transverse vectors denoted as V (m)

i with
m = 1, . . . , 6 and two (two-component) traceless, symmetric, transverse tensors T (1)

ij , T
(2)
ij .

Explicitly, the decomposition of contortion perturbation reads, for the scalar sector

δKscalar
i00 = ∂iC

(1)

δKscalar
ij0 = ∂i∂jC

(2) + δijC
(3) + ϵijk∂kC

(4)

δKscalar
i0k = ϵikj∂jC

(5)

δKscalar
ijk = (δij∂k − δkj∂i)C

(6) + ϵikl∂l∂jC
(7) + (ϵijl∂l∂k − ϵkjl∂l∂i)C

(8) , (46)

for the vector sector

δKvector
i00 = V (1)

i

δKvector
ij0 = ∂iV

(2)
j + ∂jV

(3)
i

δKvector
i0k = ∂iV

(4)
k − ∂kV

(4)
i

δKvector
ijk = δijV

(5)
k − δkjV

(5)
i + ∂j∂iV

(6)
k − ∂j∂kV

(6)
i , (47)

and for the tensor sector

δKtensor
ij0 = T (1)

ij

δKtensor
ijk = ∂iT

(2)
jk − ∂kT

(2)
ji , (48)

Thus, the components of contortion perturbation are

δKiµν = δKscalar
iµν + δKvector

iµν + δKtensor
iµν . (49)

The non-vanishing components of the background contortion tensor on a homogeneous and isotropic background
spacetime are

0K0jk = x(η)δjk
0Kijk = y(η)ϵijk , (50)

thus the contortion tensor with all indices down is written as:

Kµνσ = 0Kµνσ + δKµνσ (51)

Finally, the scalar field is written in terms of a time dependent part ϕ(η) plus a spacetime dependent perturbation
Π. The distinction between the background field ϕ(η) and the spacetime dependent field ϕ(x) will be clear from the
context.
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C. Equations of motion for the background fields

From (1) we can compute the action for the background fields a, ϕ, x, y. The Euler-Lagrange equations Ef = ∂L
∂f = 0

for f one of the following components g00, gij , Kij0, Kijk, ϕ are of up to second order in the background fields. In
particular,

(52)EKijk
= −y

2 a4G4 + G5

(
a2 ϕ̈+ x ϕ̇

)
a10

,

leads to two branches of background solutions: namely, either the torsion background y vanishes or not. Throughout
this note we have assumed the simpler, former branch

y(η) ≡ 0 . (53)

Let us notice that if there is no G5 in the action (up to quartic Horndeski-Cartan), Eq. (53) would be the only
possible solution to Eq. (52). Thus, the branch (53) is a natural continuation to previous results in up to quartic
Horndeski-Cartan theory in [20, 34, 35].

With (53) the remaining equations can be written with

Eg00 =
1

2 a12

(
a10(−G2 − 6G4H

2 + (2G2,X − 2G3,ϕ + (24G4,X − 18G5,ϕ)H
2)X + (24G4,XX − 12G5,ϕX)H2X2)

+ a7(H(72G4,X x− 36G5,ϕ x)X + H(48G4,XX x− 24G5,ϕX x)X2)

+ a4(6G4 x
2 + (48G4,X x2 − 18G5,ϕ x

2)X + (24G4,XX x2 − 12G5,ϕX x2)X2)

+ a9(−6G4,ϕH + ((6G3,X − 12G4,ϕX)H + 10G5,X H3)X + 4G5,XX H3X2) ϕ̇

+ a6(3G3 x− 6G4,ϕ x+ 9G5H
2 x+ (6G3,X x− 12G4,ϕX x+ 36G5,X H2 x)X + 12G5,XX H2 xX2) ϕ̇

+ a3(18G5H x2 + 42G5,X H x2X + 12G5,XX H x2X2) ϕ̇+ (9G5 x
3 + 16G5,X x3X + 4G5,XX x3X2) ϕ̇

)
,

(54)

Egij =
δij
2 a12

(
a10(G2 + 6G4H

2 + (−2G3,ϕ + 4G4,ϕϕ)X) + (−3G5 x
3 − 2G5,X x3X) ϕ̇

+ a6(G3 x− 2G4,ϕ x+ 3G5H
2 x+ (−8G4,ϕX x+ 4G5,ϕϕ x+ 18G5,X H2 x)X + 8G5,XX H2 xX2) ϕ̇

+ a3(6G5H x2 + 14G5,X H x2X + 4G5,XX H x2X2) ϕ̇

+ a9(4G4 Ḣ + (2G4,ϕH + ((2G3,X − 12G4,ϕX + 4G5,ϕϕ)H + 2G5,X H3)X + 4G5,XX H3X2) ϕ̇)

+ a8(2G4,ϕ ϕ̈− 4G5,XX H2X2 ϕ̈+ X(−2G3,X ϕ̈+ 4G4,ϕX ϕ̈− 6G5,X H2 ϕ̈)− 4G5,X HX Ḣ ϕ̇

+ ((−2G4,X − G5,ϕ)H
2 + (8G4,XX − 6G5,ϕX)H2X) ϕ̇2)

+ a7((H(−4G4,X ϕ̈+ 4G5,ϕ ϕ̈) + HX(−8G4,XX ϕ̈+ 4G5,ϕX ϕ̈)) ϕ̇+ (−4G4,X + 2G5,ϕ) Ḣ ϕ̇2)

+ a4(−2G4 x
2 + (−8G4,X x ϕ̈+ 4G5,ϕ x ϕ̈+ X(−8G4,XX x ϕ̈+ 4G5,ϕX x ϕ̈)) ϕ̇+ ϕ̇2(−4G4,X ẋ+ 2G5,ϕ ẋ))

+ a2(−2G5 x
2 ϕ̈− 10G5,X x2X ϕ̈− 4G5,XX x2X2 ϕ̈+ (−2G4,X x2 − G5,ϕ x

2 − 2G5,ϕX x2X) ϕ̇2

+ ϕ̇(−4G5 x ẋ− 4G5,X xX ẋ)) + a5(−2G5H x ϕ̈− 16G5,X H xX ϕ̈− 8G5,XX H xX2 ϕ̈

+ (H(12G4,X x− 8G5,ϕ x) + H(8G4,XX x− 8G5,ϕX x)X) ϕ̇2

+ ϕ̇(−2G5 x Ḣ − 2G5H ẋ+ X(−4G5,X x Ḣ − 4G5,X H ẋ)))
)
,

(55)

EKij0 =
δij
2 a10

(
a7(−8G4,X + 4G5,ϕ)HX + a4(−4G4 x+ (−8G4,X x+ 4G5,ϕ x)X)

+ a6(−G3+2G4,ϕ−G5H
2−2G5,X H2X) ϕ̇+ a3(−4G5H x−4G5,X H xX) ϕ̇+(−3G5 x

2−2G5,X x2X) ϕ̇
)
,

(56)

and, due to gauge redundancy, the equation for ϕ is trivially satisfied by the latter and their time derivatives. Indeed,

Eϕ = a2
(
Ėg00 + a (5 Eg00 + 3 Egii) H

)
+ 3x

(
ĖKii0 + 4 aH EKii0

)
, (57)

where repeated spatial indices are not summed in (57).
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D. Quadratic action for the tensor sector

From (1) we can write the quadratic action for the tensor modes in the form (8). The coefficients bA, cA, dA are
functions of time only. They are given by the following expressions:

(58)b1 = a2(G4 + (−2G4,X + G5,ϕ)X)− aG5,X HX ϕ̇− x(G5 + 2G5,X X) ϕ̇

2 a2
,

(59)b2 = −2 a4(G4 − G5,ϕX) + aG5,X H ϕ̇3 − ϕ̇(3G5 x+ G5,X ϕ̈ ϕ̇)

2 a2
,

(60)

b3 = − 2

a6

(
x3(3G5 + 2G5,X X) ϕ̇− 4 a3H x2(G5 + X(3G5,X + G5,XX X)) ϕ̇

− a6 x(2(−2G4,ϕX + G5,ϕϕ)X + H2(G5 + 4X(2G5,X + G5,XX X))) ϕ̇

+ 2 a2 x(x(G5 + X(5G5,X + 2G5,XX X)) ϕ̈+ x(2G4,X + G5,ϕX X) ϕ̇2 + 2(G5 + G5,X X) ϕ̇ ẋ)

− a5(x(−H(G5 + 4X(2G5,X + G5,XX X)) ϕ̈− (G5 + 2G5,X X) Ḣ ϕ̇

+ H(4G4,X − 3G5,ϕ + 4G4,XX X − 4G5,ϕX X) ϕ̇2)− H(G5 + 2G5,X X) ϕ̇ ẋ)

− a4(2x(−2G4 x+ (−2G4,X + G5,ϕ − 2G4,XX X + G5,ϕX X) ϕ̈ ϕ̇) + (−2G4,X + G5,ϕ) ϕ̇
2 ẋ)

)
,

(61)c1 =
2 a4G4 + a2G5 ϕ̈+ G5 x ϕ̇

2 a6
,

(62)c2 = −2x(2 a4(G4 + 2G4,X X − G5,ϕX) + 2 a3H(G5 + G5,X X) ϕ̇+ x(3G5 + 2G5,X X) ϕ̇)

a6
,

(63)c3 =
ϕ̇(2x(G5 + G5,X X) + a3H(G5 + 2G5,X X) + a2(2G4,X − G5,ϕ) ϕ̇)

a4
,

(64)c4 =
1

4x
c2 ,

d1 =
G5 ϕ̇

a4
= − 1

a2
d2 =

1

2x
d3 =

1

a2
d4 , (65)

Let us highlight that one can always get rid of second derivatives of the background fields by using their equations of
motion. In this note, we have used the equations of motion for the background fields to express G2, G4,X , G4,XX , G3,ϕ,
G2,ϕX (non-vanishing by assumption) in terms of other derivatives of the Lagrangian functions in order to obtain
shorter expressions.

1. Details for the speed of the graviton

We wrote the dispersion relation of the gravitational waves as,

ω2 =
f0 + p⃗ 2 f1
f2 + p⃗ 2 f3

p⃗ 2 ,

and the speed c2g = f1/f3, where f0 = f̄0/Ḡτ , f1 = f̄1/Ḡτ , f2 = −4 c1 c4 , f3 = d21 and Ḡτ = c1 (c
2
3− 4 b1 c4). The latter

are fixed by the coefficients bA, cA, dA given in the first part of this appendix, and
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f̄1 = − 2

a20

(
G5

2X(−8 a10G4(G4
2 + 2G4,X G4X − G5(G3 + 2G5H

2)X)

+ 2 a9G5H(4G4
2 + 8G4(G4,X − G5,ϕ)X + G5X(G3 + H2(G5 + 2G5,X X))) ϕ̇

+ 2G5
2 x2 ϕ̇(xX(3G5 + 2G5,X X)− G5 ϕ̈ ϕ̇) + a3G5

2H x ϕ̇(2xX(5G5 + 6G5,X X)− G5 ϕ̈ ϕ̇)

+ 2 a7G5 ϕ̇(−H((−4G4,X + G5,ϕ)G5X + 2G4(G5 + 2G5,X X)) ϕ̈+ G4G5 Ḣ ϕ̇)

+ 2 a8((4G4G5,ϕG5X + G3G5
2X − 2G4

2(3G5 + 2G5,X X)) ϕ̈

+ G5H
2(2(G4,X − G5,ϕ)G5X + G4(G5 + 4G5,X X)) ϕ̇2)

+ 2 a6(−2G4
2 x(G5 + 2G5,X X) ϕ̇+ G4G5(−2G5 ϕ̈

2 + 8G4,X xX ϕ̇− 4G5,ϕ xX ϕ̇+ G5

...
ϕ ϕ̇)

+ G5
2(G5,ϕX ϕ̈2 + 2G3 xX ϕ̇+ H2 ϕ̇(xX(5G5 + 6G5,X X) + G5 ϕ̈ ϕ̇)))

+ 2 a4G5(x(6G4G5 xX + ((4G4,X + G5,ϕ)G5X − 2G4(3G5 + 2G5,X X)) ϕ̈ ϕ̇) + 2G4G5 ϕ̇
2 ẋ)

+ a2G5
2 ϕ̇(4(3G4,X − G5,ϕ)x

2X ϕ̇+ G5 ϕ̈ ϕ̇ ẋ+ G5 x(−3 ϕ̈2 +
...
ϕ ϕ̇+ 4X ẋ)) + a5G5 ϕ̇(8G4G5,X H xX ϕ̇

+ 2G5H x(6G4 + 8G4,X X − 5G5,ϕX) ϕ̇+ G5
2(−2H ϕ̈2 + 2xX Ḣ + H

...
ϕ ϕ̇+ ϕ̈ Ḣ ϕ̇+ 2HX ẋ)))

)
.

(66)

f̄0 is of little significance for the speed of the graviton and its form is cumbersome. Thus, we do not show it in this
note. However, it can be easily obtained from the action (8).

E. Quadratic action for the scalar mode

1. Initial form of the action

From (1), a direct computation gives the quadratic action for the scalar mode. It can be written in the unitary
gauge (namely, with Π = E = 0), as follows:

(67)
Sτ =

1

2

∫
dη d3p

(
M1 C

(3) ψ̇ +M2B ψ̇ +M3 C
(2) C (3) +M4BC

(3) +M5 C
(2) ψ̇ +M6 C

(2) ψ +M7B ψ +M8 C
(3) ψ

+M9 α ψ̇ +M10 C
(3) α +M11B α +M12 C

(2) α +M13 αψ +M14 ψ̇
2 +M15 (C (3))

2
+M16 α

2 +M17 ψ
2
)
,

Eq. (67) is trivially obtained after using the constraint equations for the Lagrange multipliers C (1), C (5), and C (7), which
impose C (4) = C (6) = C (8) = 0. The coefficients MA depend on conformal time and momentum, and can be written as:

(68)M1 =
a4(48G4,X − 24G5,ϕ)X + a3(12G5H + 24G5,X HX) ϕ̇+ (24G5 x+ 24G5,X xX) ϕ̇

a4
,

(69)M2 = −p
2 a2

3
M1 +

4(2 a4G4 + G5( a
3H + x) ϕ̇) p2

a2
,

(70)M3 =
1

a4
M2 −

8(2 a4G4 + G5( a
3H + x) ϕ̇) p2

a6
,

M4 =M5 = −p
2

3
M1 , (71)

(72)M6 = −2xM3 ,

M7 =
2 p2 x

3
M1 , (73)

(74)p2M8 = 6xM3 +
4

a2
p4 G5 ϕ̇ ,
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M9 =
1

a4

(
a7(−24G4H + (48G4,X − 48G5,ϕ)HX + (96G4,XX − 48G5,ϕX)HX2)

+ a4(−24G4 x+ (96G4,X x− 48G5,ϕ x)X + (96G4,XX x− 48G5,ϕX x)X2)

+ a6(−6G3 − 6G5H
2 + (12G3,X − 24G4,ϕX + 48G5,X H2)X + 24G5,XX H2X2) ϕ̇

+ a3(12G5H x+ 120G5,X H xX + 48G5,XX H xX2) ϕ̇+ (18G5 x
2 + 72G5,X x2X + 24G5,XX x2X2) ϕ̇

)
,

(75)

M10 =
1

a6

(
a7((96G4,X − 48G5,ϕ)HX + (96G4,XX − 48G5,ϕX)HX2)

+ a4((144G4,X x− 48G5,ϕ x)X + (96G4,XX x− 48G5,ϕX x)X2)

+ a6(12G5H
2 + (12G3,X − 24G4,ϕX + 60G5,X H2)X + 24G5,XX H2X2) ϕ̇

+ a3(48G5H x+ 144G5,X H xX + 48G5,XX H xX2) ϕ̇+ (36G5 x
2 + 84G5,X x2X + 24G5,XX x2X2) ϕ̇

)
,

(76)

(77)M11 = −1

3
p2M9 ,

(78)M12 = −1

3
p2M10 ,

M13 =
1

a6

(
a7(H(−192G4,X x+ 96G5,ϕ x)X + H(−192G4,XX x+ 96G5,ϕX x)X2)

+ a4((−288G4,X x2 + 96G5,ϕ x
2)X + (−192G4,XX x2 + 96G5,ϕX x2)X2)

+ a6(−24G5H
2 x+ (−24G3,X x+ 48G4,ϕX x− 120G5,X H2 x)X − 48G5,XX H2 xX2) ϕ̇

+ a3(−96G5H x2−288G5,X H x2X−96G5,XX H x2X2) ϕ̇+(−72G5 x
3−168G5,X x3X−48G5,XX x3X2) ϕ̇

+ ( a8(−8G4 + (16G4,X − 8G5,ϕ)X) + 8 a7G5,X HX ϕ̇+ a4(4G5 x+ 8G5,X xX) ϕ̇) p2
)
,

(79)

(80)p2M14 = −3

2
M2 ,

(81)p2M15 = −3

2
M3 ,

M16 =
1

a6

(
a10(−12G4H

2 + (−2G2,X − 36G5,ϕH
2)X + (4G2,XX − 4G3,ϕX + (144G4,XX − 84G5,ϕX)H2)X2

+ (48G4,XXX − 24G5,ϕXX)H2X3)

+ a3(46G5H x2 + 208G5,X H x2X + 156G5,XX H x2X2 + 24G5,XXX H x2X3) ϕ̇

+ (18G5 x
3 + 82G5,X x3X + 56G5,XX x3X2 + 8G5,XXX x3X3) ϕ̇

+ a9(−8G4 Ḣ + (−2G3H − 2G5H
3 + ((12G3,X − 36G4,ϕX)H + 44G5,X H3)X

+ ((12G3,XX − 24G4,ϕXX)H + 44G5,XX H3)X2 + 8G5,XXX H3X3) ϕ̇) + a7(8G4H x− 72G5,ϕH xX

+ H(336G4,XX x− 168G5,ϕX x)X2 + H(96G4,XXX x− 48G5,ϕXX x)X3 − 8G4,X H ϕ̈ ϕ̇)

+ a4(−4G4 x
2 − 36G5,ϕ x

2X + (192G4,XX x2 − 84G5,ϕX x2)X2 + (48G4,XXX x2 − 24G5,ϕXX x2)X3

− 8G4,X x ϕ̈ ϕ̇) + a8(−2G3 ϕ̈− 2G5H
2 ϕ̈− 4G5,X H2X ϕ̈− 4G5H Ḣ ϕ̇+ 22G4,X H2 ϕ̇2)

+ a6((−4G3 x+ 26G5H
2 x+ (18G3,X x− 36G4,ϕX x+ 170G5,X H2 x)X

+ (12G3,XX x− 24G4,ϕXX x+ 144G5,XX H2 x)X2 + 24G5,XXX H2 xX3) ϕ̇− 8G4 ẋ)

+ a2(−2G5 x
2 ϕ̈− 4G5,X x2X ϕ̈+ 50G4,X x2 ϕ̇2 − 4G5 x ϕ̇ ẋ)

+ a5(−4G5H x ϕ̈− 8G5,X H xX ϕ̈+ 72G4,X H x ϕ̇2 + ϕ̇(−4G5 x Ḣ − 4G5H ẋ))
)
,

(82)
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M17 =
1

a6

(
(72G5 x

3 + 48G5,X x3X) ϕ̇

+ a6(−12G5H
2 x+ (48G4,ϕX x− 24G5,ϕϕ x− 96G5,X H2 x)X − 48G5,XX H2 xX2) ϕ̇

+ a3(−48G5H x2 − 144G5,X H x2X − 48G5,XX H x2X2) ϕ̇

+ a4(48G4 x
2 + (48G4,X x ϕ̈− 24G5,ϕ x ϕ̈+ X(48G4,XX x ϕ̈− 24G5,ϕX x ϕ̈)) ϕ̇+ ϕ̇2(24G4,X ẋ− 12G5,ϕ ẋ))

+ a2(24G5 x
2 ϕ̈+ 120G5,X x2X ϕ̈+ 48G5,XX x2X2 ϕ̈+ (48G4,X x2 + 24G5,ϕX x2X) ϕ̇2

+ ϕ̇(48G5 x ẋ+ 48G5,X xX ẋ)) + a5(12G5H x ϕ̈+ 96G5,X H xX ϕ̈+ 48G5,XX H xX2 ϕ̈

+ (H(−48G4,X x+ 36G5,ϕ x) + H(−48G4,XX x+ 48G5,ϕX x)X) ϕ̇2

+ ϕ̇(12G5 x Ḣ + 12G5H ẋ+ X(24G5,X x Ḣ + 24G5,X H ẋ)))

+ ( a8(4G4 − 4G5,ϕX)− 4 a6G5,X X ϕ̈− 6 a4G5 x ϕ̇+ 4 a7G5,X HX ϕ̇) p2
)
.

(83)

Again, as in the Appendix V D, we use the equations of motion for the background fields to expressG2, G4,X , G4,XX , G3,ϕ,
G2,ϕX (non-vanishing by assumption) in terms of other derivatives of the Lagrangian functions in order to obtain
shorter expressions.

2. Obtaining the quadratic action for the scalar mode in its final form

Now, from the action (67) we can obtain the form (14) as follows: the Euler-Langrange equation for the Torsion
scalar C (2) -which is a Lagrange multiplier- is a constraint that can be used to express C (3) in terms of α, ψ, ψ̇. Plugging
back C (3)(α, ψ, ψ̇) in (67) gives (14). In particular, as explained before, the functions of time ḠS and T in Eq. (14)
are essential to avoid the No-Go theorems. Let us explicitly write them:

(84)ḠS =
(2 a4G4 + G5( a

3H + x) ϕ̇)2

2 a8G4 + 2 a7H(G5 + G5,X X) ϕ̇+ a4 x(3G5 + 2G5,X X) ϕ̇+ a6(2G4,X − G5,ϕ) ϕ̇2
,

T =
t1
t2
, (85)

with

t1 =
(
2(x2X2(G5,X G5 +4G5,X

2X − 2G5,XX G5X)− 2 a3H xX(G5
2 − 4G5,X

2X2 +2G5,XX G5X
2)+ a6(−2G4

2

+ X(−G5
2H2 +2X((−2G4,X + G5,ϕ)

2 +2G5,X
2H2X)− G5X(G3,X − 2G4,ϕX + H2(G5,X +2G5,XX X))))

− 2 a5H(G4G5 + (−4G4,X G5,X + 2G5,ϕG5,X + 2G4,XX G5 − G5,ϕX G5)X
2) ϕ̇

− 2 a2 x(G4G5 + (−G4,X + G5,ϕ)G5X + (−4G4,X G5,X + 2G5,ϕG5,X + 2G4,XX G5 − G5,ϕX G5)X
2) ϕ̇)

)
,

(86)

(87)t2 =
(
2 a6(G4 + 2G4,X X − G5,ϕX) + 2 a5H(G5 + G5,X X) ϕ̇+ a2 x(3G5 + 2G5,X X) ϕ̇

)
.

Thus, by inspection it is clear that even if Eq. (19) obligues us to satisfy ḠS > 0 in order to have a stable graviton
at low momentum, t1 and hence T can still vanish in many ways with a careful choice of Lagrangian functions (it is
worth to note at this point that in general T ̸= Θ).

That we can choose Lagrangian functions that allow T to vanish at some point -while still satisfying the stability
of all modes at all momenta, and subluminality- is the key tool to build theories without suffering the usual No-Go
theorems.

The technical detail that leads to these new possibilities boils down to a newG5 term in the action (67) in comparison
to up to quartic Horndeski-Cartan theories: namely, the p2 part in the term M8 C

(3) ψ . Indeed, the constraint imposed
by C (2) is of the form C (3) = −M12

M3
α + . . . , which then gives a new O(p2G5) term in −M12

M3
M8 αψ which gives a

totally new T in comparison to simpler forms of the theory.
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