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Abstract—Reconfigurable intelligent surface (RIS) is a promis-
ing technology to enhance the spectral and energy efficiency
in a wireless communication system. The design of the phase
shifts of an RIS in every channel coherence interval demands
a huge training overhead, making its deployment practically
infeasible. The design complexity can be significantly reduced by
exploiting the second-order statistics of the channels. This paper
is the extension of our previous work to the design of an RIS
for the multi-user setup, where we employ maximisation of the
lower bound of the achievable sum-rate of the users. Unlike for
the single-user case, obtaining a closed-form expression for the
update of the filters and phase shifts is more challenging in the
multi-user case. We resort to the fractional programming (FP)
approach and the non-convex block coordinate descent (BCD)
method to solve the optimisation problem. As the phase shifts of
the RIS obtained by the proposed algorithms are based on the
statistical channel knowledge, they do not need to be updated in
every channel coherence interval.

Index Terms—MISO, Downlink, RIS, CSI, statistical knowl-
edge, bilinear precoders, Gaussian, fractional programming

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MaMIMO)

systems, wherein the base station (BS) is equipped with

a huge number of antennas, have the capacity to fulfill the

growing need for high data throughput and reduced energy

consumption in the wireless communication systems [1]. Nev-

ertheless, deploying a large number of antennas would increase

the circuit energy consumption and the hardware expenditures.

The recently proposed technology of reconfigurable intelligent

surface (RIS) has emerged as an alternative cost-effective solu-

tion to enhance the spectral efficiency [2]–[4]. Since the advent

of wireless communication systems, the propagation medium

between the transmitter and the receiver has been perceived

as an uncontrollable entity. The RIS has been proposed as a

solution to overcome the ill effects of the propagation medium

by manipulating the direction of the transmitted signal to

the user in a controlled fashion. It is composed of a large

number of passive reflecting elements and offers the flexibility

to configure these passive elements in order to achieve the

desired performance objectives. Moreover, the passive nature

of the RIS elements eliminates the need for an active transmit

radio frequency (RF) chain, thereby resulting in a significantly

reduced energy consumption and hardware cost compared to

the traditional active antennas at the BS. Thus, they can be

scaled economically compared to the scaling of active antennas

at the BS.

In this paper, we investigate an RIS-aided multi-user

multiple-input single-output (MISO) downlink (DL) commu-

nication system and try to exploit the second-order channel

statistics in order to reduce the system’s design complexity.

A. Related Works

The design of the RIS for various system models has

been extensively investigated in the literature, and it offers

a considerable performance gain in comparison to the systems

without an RIS [5]–[17]. For example, the transmit power of

the BS is minimised by employing an RIS in [5], [8], where

an alternating optimisation approach is proposed, which relies

on the semi-definite relaxation (SDR) technique. Although

this algorithm provides a good performance, its complexity

is very high, especially for a large-sized RIS. The algorithm

proposed in [6] aims to maximise the weighted sum-rate of

the users by employing an iterative approach, which utilises

the fractional programming (FP) technique [18], [19]. [9] also

considers maximisation of the weighted sum-rate of the users

by employing the Majorisation-Minimisation algorithm [20]

and the Complex Circle Manifold method [21]. However, in

order to fully exploit the potential of the RIS, the algorithms in

[5]–[10] require perfect knowledge of the RIS-associated links

in every channel coherence interval. The passive architecture

of the RIS intricates the channel estimation of its links to

the BS and the users, and the requirement to estimate these

channels perfectly in every channel coherence interval would

lead to a huge training overhead, e.g., [22]. Moreover, these

algorithms demand the joint optimisation of the phase shifts

and the transmit filters to be performed in every channel

coherence interval, which is computationally very expensive

for an RIS-aided system with a large number of passive

elements, and also practically infeasible to be implemented

for the fast-fading channels.

In order to combat this problem, many algorithms have been

proposed that exploit the statistical knowledge of the channels

to design the phase shifts of the RIS [11]–[17]. Since the

structure of the channels varies slowly, the channel statistics
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remain constant for many channel coherence intervals, and

hence, it is relatively easier to obtain accurate information

of the second-order statistics of the channels through long-

term observation. The phase shifts designed on the basis

of the channel covariance matrices do not need to be up-

dated regularly, i.e., there is no need to perform the joint

optimisation in every channel coherence interval. Moreover,

the RIS-associated channels do not need to be estimated

frequently as in the case of the algorithms in [5]–[10]. This

significantly reduces the channel training overhead and the

design complexity of the RIS.

The algorithms in [11], [12], [14] propose low complexity

methods for a single-user RIS-aided system based on the

long-term channel statistics, but these algorithms cannot be

readily extended to the multi-user case. The algorithms in

[15], [16] consider a multi-user system, but they assume

specific channel models for analytical simplicity. For example,

[15] considers a Rician fading model for the RIS-associated

channels, which assumes a deterministic line-of-sight (LoS)

component and the non-line-of-sight (NLoS) component to

have independent and identically distributed (i.i.d.) entries

following complex Gaussian distribution with zero mean and

unit variance. Similarly, [16] assumes a system model with

no direct path and the Kronecker channel model [23] with

zero mean for all the channels. In these algorithms, the

phase shifts of the RIS and the transmit filters at the BS are

only optimised in the coherence interval of the covariance

matrices. The algorithms in [13], [17] and [24] propose a

two-timescale (TTS) approach with hybrid offline and online

optimisation phases. In the offline phase, the phase shifts

of the RIS are designed considering the long-term statistics

of the channels, which are then kept fixed in the coherence

interval of the covariance matrices. On the other hand, in

the online step, the optimal filters are computed in every

channel coherence interval using the perfect knowledge of the

instantaneous channel state information (CSI). This leads to a

better performance than the algorithms in [15], [16] but at the

cost of a higher computational complexity.

B. Contributions

Motivated by the above challenges, we propose algorithms

for designing a multi-user RIS-aided system considering a

more general channel model, where the computational com-

plexity is reduced by exploiting the statistical knowledge of

the channels. The main contributions of this paper can be

summarised as follows.

• We consider a general channel model where the direct

channel between the BS and the user and the channel

between the RIS and the user are considered to be zero

mean with perfectly known covariance matrices. Since the

RIS is expected to be deployed at a favourable position,

we assume a deterministic LoS path between the BS and

the RIS in addition to a NLoS component. This system

model is different from the one considered in [15] and

[17], where a deterministic LoS path for all the channels

is assumed. The proposed algorithms are based on the

maximisation of the sum-rate of the users by employing

the information-theoretic lower bound on the achievable

rate [25] as the figure of merit.

• The Gaussian assumption of the effective channel in

an RIS-aided system holds only asymptotically for an

infinite number of reflecting elements [26]. Unlike our

previous work [11], where we considered the asymptotic

Gaussian behaviour to derive the closed-form expression

of the lower bound on the sum-rate [25], we derive the

lower bound for the non-Gaussian channel model.

• We first propose an algorithm where both the transmit

filter at the BS and the phase shifts of the RIS need

to be optimised only in the coherence interval of the

covariance matrices. A generalised matched filter (GMF)

or the bilinear precoder [27], [28] is used as the transmit

filter at the BS.

• The algorithm based on the GMF is observed to have a

saturation of the sum-rate of the users in the high transmit

power regime for the multi-user setup. In order to combat

this problem, we also propose another algorithm that

employs the TTS approach of [13], where the phase shifts

of the RIS are optimised in the coherence interval of the

channel statistics, whereas the optimal filters are designed

in every channel coherence interval. Both the algorithms

require the channel to be estimated in every channel

coherence interval, however, we only need to estimate the

effective channel of the system and not the RIS-associated

links separately. We compare our TTS algorithm to the

one in [13], which is based on the stochastic successive

convex approximation (SSCA) method [29] employing

the maximisation of a concave surrogate function during

the offline step.

C. Organisation of the Paper and Mathematical Notation

The paper is organised as follows. In Section II, we present

the system model and formulate the optimisation problem. In

Section III, we present a simplification of the problem to a

tractable form. Section IV deals with the optimisation proce-

dure and the simulation results are presented in Section V.

Finally, we conclude the work in Section VI.

Notation: Scalars, vectors and matrices are respectively

denoted by lower/upper case, boldface lower case and boldface

upper case letters. For an arbitrary matrix A, AT and AH

represent its transpose and conjugate transpose respectively.
[
A
]

i,j
signifies the element in the i-th row and the j-th column

of the matrix A. The expectation and the variance of a random

variable are defined by E[.] and var(.) respectively, while tr(.)
denotes the trace of a square matrix. The Hadamard product

of two matrices of the same dimensions is represented by

⊙ operator, whereas ⊗ symbolises the Kronecker product

of two matrices of arbitrary dimensions. The real and the

imaginary parts of a complex number are defined by Re{.}
and Im{.} respectively. The operators (.)∗, |.| and ‖.‖ stand

for the complex conjugation, scalar magnitude and L-2 norm

respectively, whereas vec(.) denotes vectorisation of the input

matrix by stacking its columns into a vector.



II. SYSTEM MODEL AND PROBLEM FORMULATION

The DL of an RIS-aided multi-user MISO communication

system is investigated. The system is equipped with one

BS having M antennas and serving K single-antenna users.

The RIS consists of N passive reflecting elements. The

phase-shift matrix is defined by the diagonal matrix Φ =

diag(φ1, · · · , φN ), where φ1 · · ·φN are the phase shifts of the

N elements of the RIS and φφφ = [φ1, · · · , φN ]T denotes the

phase-shift vector. The channel from the BS to the k-th user is

denoted by hd,k ∈ CM and it is circularly symmetric, complex

Gaussian distributed, with zero mean and covariance matrix

Cd,k, i.e., hd,k ∼ NC(0,Cd,k). The channel from the RIS

to the user is denoted by rk ∈ CN with rk ∼ NC(0,Cr,k).
The channel from the BS to the RIS is assumed to have a

deterministic LoS component in addition to the random part,

which is modelled as

T =
(√

1− β
)

T ′

︸ ︷︷ ︸

T̄

+
√

βR
1/2
RISWR

1/2,H
Tx (1)

where
(√

1− β
)
T ′ = T̄ denotes the LoS component between

the BS and the RIS. The entries in W ∈ C
N×M are i.i.d. with

unit variance and zero mean, following circularly symmetric

complex Gaussian distributions. RRIS and RTx denote the

channel correlation matrices on the side of the RIS and the

BS respectively, and β ∈ [0, 1] is the factor controlling the

strength of the LoS component. Note that the extreme case of

β = 1 corresponds to the case of zero-mean T , similar to that

in [11]. The effective channel for the k-th user is given by

hk = hd,k + TH
Φrk (2)

where hd,k, T and rk are mutually independent. Note that

hk is zero-mean, and its covariance matrix is given by Ck.

Moreover, it is assumed that the channels of different users

are mutually independent, i.e., E[hih
H
j ] = 0 ∀ i 6= j. It is

clear from (2) that hk is non-Gaussian since T and rk follow

Gaussian distributions. The signal received by the k-th user is

yk = hH
k pk sk +

∑

i6=k

hH
k pi si + vk (3)

where pk ∈ CM×1 is the transmit beamforming vector for

the k-th user, sk ∼ NC(0, 1) is the transmitted data symbol

to user k and vk ∼ NC(0, 1) denotes the additive white

Gaussian noise (AWGN) at the k-th user’s side. The objective

is to reduce the training complexity, and hence, to update the

phase shifts of the RIS only in each coherence interval of the

covariance matrices, which is much longer than the channel

coherence interval. The sum-rate optimisation problem with

respect to the transmit filters and the phase shifts of the RIS

reads as

max
p1,··· ,pK ,φφφ

E

[
K∑

k=1

log2 (1 + γk)

]

s.t. γk =

∣
∣hH

k pk

∣
∣
2

K∑

j=1
j 6=k

∣
∣hH

k pj

∣
∣
2
+ 1

(P1)

K∑

k=1

E[‖pk‖2] ≤ P

|φn| = 1 ∀ n = 1, · · · , N.

Here γk denotes the k-th user’s signal-to-interference-plus-

noise-ratio (SINR) and P denotes the total transmit power

budget of the BS. It is very difficult to obtain a closed-form

expression of the expected sum-rate of the users, and hence,

we employ a lower bound on the sum-rate based on the worst-

case noise, which is extensively used in the massive MIMO

literature [25]. The lower bound of the users’ sum-rate is given

by
K∑

k=1

log2(1+γlb
k ), where γlb

k is the lower bound of the actual

SINR of the k-th user, expressed as

γlb
k =

∣
∣
∣E

[

hH
k pk

]∣
∣
∣

2

var(hH
k pk) +

K∑

j=1
j 6=k

E

[∣
∣
∣h

H
k pj

∣
∣
∣

2
]

+ 1

. (4)

In order to obtain the closed-form expressions of the expecta-

tion and the variance terms in the lower bound, we choose pk

to be a GMF, also known as the bilinear precoder [27], [30],

given by

pk = Akhk (5)

where Ak ∈ CM×M is a deterministic transformation matrix,

which only depends on the higher-order statistical knowledge

of the channels. As such, the optimisation problem in (P1) is

modified to the maximisation of the lower bound, given by

max
A1,··· ,AK ,φφφ

K∑

k=1

log2
(
1 + γlb

k

)
(P2)

s.t.

K∑

k=1

E[‖pk‖2] =
K∑

k=1

tr
(

AkCkA
H
k

)

≤ P

|φn| = 1 ∀ n = 1, · · · , N.

III. SIMPLIFICATION OF THE OPTIMISATION PROBLEM

In order to solve (P2), we need to express the optimi-

sation problem in a closed-form. Since hk is not Gaussian

distributed, the variance term in (4) is no longer similar to the

one derived in [27], [30].



Theorem 1: For pk = Akhk and hk given by (2),

var(hH
k pk) = aH

k Jkak + tr
(

AkCkA
H
k Ck

)

, where

Jk = β2 tr (QRRIS)
(

vec(RTx)vecH(RTx) + (RT
Tx ⊗RTx)

)

+ 2βRe
{

vec(RTx)vecH(T̄
H
QT̄ )

}

+ βRT
Tx ⊗

(

T̄
H
QT̄

)

+ β
(

T̄
H
QT̄

)T

⊗RTx

Q = ΦCr,kΦ
HRRISΦCr,kΦ

H.

Proof. Please refer to Appendix B.

Using (5), we get E

[

hH
k pk

]

= tr(CkAk) and

E

[∣
∣
∣h

H
k pj

∣
∣
∣

2
]

= tr
(

CkAjCjA
H
j

)

. Thus, the lower bound of

the SINR in (4) can be expressed in a closed-form as

γlb
k =

∣
∣cHk ak

∣
∣
2

K∑

j=1

aH
j

(

CT
j ⊗Ck

)

aj + aH
k Jkak + 1

(6)

where ak = vec(Ak) and ck = vec(Ck). The covariance

matrix Ck depends on the phase shifts of the RIS, and hence,

Ck must be expressed as a function of φφφ for the phase shift

optimisation.

A. Computation of the Channel Covariance Matrix

The channel covariance matrix of the effective channel for

the k-th user can be computed as

Ck = E

[

hkh
H
k

]

= Cd,k + Erk,T

[

TH
Φrkr

H
k Φ

HT
]

(a)
= Cd,k + T

H
ΦCr,kΦ

HT

+ β EW

[

R
1/2
Tx WHR

1/2,H
RIS ΦCr,kΦ

HR
1/2
RISWR

1/2,H
Tx

]

where (a) follows from (1) and using the fact that hd,k, rk
and W are mutually independent random variables. Since the

entries of W are i.i.d. with zero mean and unit variance, and

Φ = diag(φφφ), the above expression can be simplified as

Ck = Cd,k + T
H
ΦCr,kΦ

HT + βtr(RRISΦCr,kΦ
H)RTx

= Cd,k + T
H
ΦCr,kΦ

HT + βtr
(

RRIS(Cr,k ⊙φφφφφφH)
)

RTx

(b)
= Cd,k + T

H
ΦCr,kΦ

HT + βφφφH
(

RRIS ⊙CT
r,k

)

φφφRTx

(7)

where (b) uses Lemma 1 of [11].

B. Reformulation of the Objective Function

With the expression of γlb
k in (6), the objective function in

(P2) becomes very involved. (P2) can be simplified by the FP

approach [18], [19] in a more tractable form. Introducing the

auxiliary variables λk , the objective function in (P2) can be

reformulated as

K∑

k=1

log
(
1 + γlb

k

)
= max

λk≥0

K∑

k=1

log(1 + λk)− λk +
(1 + λk)γ

lb
k

1 + γlb
k

.

(8)

The last fractional term in (8) is given by

(1 + λk)γ
lb
k

1 + γlb
k

(9)

=
(1 + λk)

∣
∣cHk ak

∣
∣
2

∣
∣cHk ak

∣
∣
2
+

K∑

j=1

aH
j

(

CT
j ⊗Ck

)

aj + aH
k Jkak + 1

.

Using the quadratic transform step of the FP approach, the

numerator and the denominator of the above fraction can be

decoupled with the auxiliary variables χk as

(1 + λk)γ
lb
k

1 + γlb
k

= 2Re
{

χ∗
k

(√

1 + λk

)

cHk ak

}

− |χk|2



∣
∣cHk ak

∣
∣
2
+

K∑

j=1

aH
j

(

CT
j ⊗Ck

)

aj + aH
k Jkak + 1



 .

Let a = [a1, · · · ,aK ]T, λ = [λ1, · · · , λK ]T and

χχχ = [χ1, · · · , χk]
T, the objective problem can now be

expressed in a more tractable form as

max
a,φφφ,λ,χχχ

f(a,φφφ,λ,χχχ), where

f(a,φφφ,λ,χχχ) =

K∑

k=1

(

log (1 + λk)− λk

)

+

K∑

k=1

2
(√

1 + λk

)

Re
{
χ∗
kc

H
k ak

}

−
K∑

k=1

|χk|2



∣
∣cHk ak

∣
∣
2
+

K∑

j=1

aH
j

(

CT
j ⊗Ck

)

aj + aH
k Jkak + 1





s.t.

K∑

k=1

E[‖pk‖2] =
K∑

k=1

E[‖Akhk‖2] ≤ P

|φn| = 1 ∀ n = 1, · · · , N (P3)

λk ≥ 0 ∀ k = 1, · · · ,K.

The optimisation problem (P3) is non-convex and one can

adopt the iterative non-convex BCD method [31], [32] to

decompose the problem into four disjoint blocks, containing

one of the four variables as the optimisation parameter in each

block, as done in [6]. The solution to (P3) with the non-convex

BCD method is discussed in the next section.

IV. OPTIMISATION STEPS

The objective problem in (P3) can be solved by updating

the variables a, φφφ, λ and χχχ iteratively using the BCD method.

Denoting the optimisation results from the previous iteration

by ā, φ̄φφ, λ̄ and χ̄χχ, the update rule of the variables is described

next.



A. Update of the auxiliary variables

It can be observed from (8) that the optimal λk for a fixed

γlb
k is given by

λk = γlb
k . (10)

For the update of χχχ, f(a,φφφ,λ,χχχ) has to be maximised w.r.t.

χχχ, keeping the other variables fixed. Ignoring the constant

terms, the optimisation problem now becomes

max
χχχ

K∑

k=1

2
(√

1 + λ̄k

)

Re
{
χ∗
kc̄

H
k āk

}

−
K∑

k=1

|χk|2
(

∣
∣c̄Hk āk

∣
∣
2
+

K∑

j=1

āH
j

(

C̄
T
j ⊗ C̄k

)

āj

+ aH
k Jkak + 1

)

. (11)

The closed-form solution to the above problem is

χk =

(√

1 + λ̄k

)

c̄Hk āk

∣
∣c̄Hk āk

∣
∣
2
+

K∑

j=1

āH
j

(

C̄
T
j ⊗ C̄k

)

āj + aH
k Jkak + 1

.

(12)

B. Update of the transformation matrix

The optimisation problem for this block reads as

max
a1,··· ,aK

K∑

k=1

2
(√

1 + λ̄k

)

Re
{
χ̄∗
kc̄

H
k ak

}

−
K∑

k=1

|χ̄k|2
(

∣
∣c̄Hk ak

∣
∣
2
+

K∑

j=1

aH
j

(

C̄
T
j ⊗ C̄k

)

aj

+ aH
k Jkak + 1

)

(13)

s.t.

K∑

k=1

E[‖Akhk‖2] =
K∑

k=1

tr
(

AkC̄kA
H
k

)

≤ P. (14)

The constraint in (14) can be equivalently represented in the

vectorised form as

K∑

k=1

tr
(

AkC̄kA
H
k

)

=

K∑

k=1

aH
k

(

C̄
T
k ⊗ I

)

ak ≤ P. (15)

The optimal solution to the above optimisation problem is

given by

ak = χ̄k

(√

1 + λ̄k

)
(

|χ̄k|2 c̄kc̄Hk + |χ̄k|2 Jk

+

K∑

j=1

|χ̄j |2
(

C̄
T
k ⊗ C̄j

)

+ µ
(

C̄
T
k ⊗ I

)
)−1

c̄k (16)

where µ ≥ 0 is the optimal Lagrangian multiplier correspond-

ing to the DL power constraint in (15), which can be obtained

using one-dimensional search techniques, e.g., the bisection

method. However, the matrix inversion is expensive and one

needs to perform a large number of iterations to obtain an

accurate value of µ by the bisection method. It can become

computationally very expensive if M is large. This problem

can be averted by applying the trick mentioned in [33]–[35].

The idea is to convert the constrained optimisation problem

in (14) to an equivalent unconstrained problem by introducing

the constraint into the objective function itself. The inequality

constraint in (15) will be satisfied with equality for the optimal

precoding filters, and hence, (14) can be written as

max
a1,··· ,aK

K∑

k=1

2
(√

1 + λ̄k

)

Re
{
χ̄∗
kc̄

H
k ak

}

−
K∑

k=1

|χ̄k|2
(

∣
∣c̄Hk ak

∣
∣
2
+

K∑

j=1

aH
j

(

C̄
T
j ⊗ C̄k

)

aj

+ aH
k Jkak +

K∑

j=1

aH
j

(

C̄
T
j ⊗ I

)

aj

P

)

.

(17)

The optimal solution of (17) is given by

ak = χ̄k

(√

1 + λ̄k

)
(

|χ̄k|2 c̄kc̄Hk + |χ̄k|2 Jk

+

K∑

j=1

|χ̄j |2
(

C̄
T
k ⊗ C̄j

)

+

K∑

j=1

|χ̄j |2
P

(

C̄
T
k ⊗ I

)
)−1

c̄k.

(18)

Hence, we obtain a closed-form solution for the optimal

precoders without the need to compute µ by the iterative one-

dimensional search methods. However, it is to be noted that

the optimal ak from (18) might not necessarily satisfy the

downlink power constraint of (15). Hence, ak from (18) must

be scaled in the end to fulfill the power budget.

C. Update of the phase-shift vector

Ignoring the constant terms, the optimisation problem for

this block is given by

max
φφφ

K∑

k=1

2
(√

1 + λ̄k

)

Re
{
χ̄∗
kc

H
k āk

}

−
K∑

k=1

|χ̄k|2
(

∣
∣cHk āk

∣
∣
2
+

K∑

j=1

āH
j

(

CT
j ⊗Ck

)

āj + aH
k Jkak

)

(19)

s.t. |φn| = 1 ∀ n = 1, · · · , N. (20)

Ck from (7) is inserted in (19), and φφφ is replaced by ejϕϕϕ,

where φn = ejϕn ∀ n and ϕϕϕ ∈ RN×1 denotes the vector

containing the corresponding angles in radians. We would then

employ the iterative gradient ascent method to find the optimal

ϕϕϕ. The gradient of (19) w.r.t. ϕϕϕ is given by 2Re
{
−jφ̄φφ∗⊙∆

}
,

where the expression of ∆ is provided in Appendix C. Hence,

the update rule for ϕϕϕ can be written as

ϕϕϕ← ϕ̄ϕϕ+ 2 κ Re
{
− jφ̄φφ∗ ⊙∆

}
(21)



where κ is the optimal step size, which can be computed by

the Armijo rule [36].

The iterative BCD method results in the improvement of

the objective function in each sub iteration and its conver-

gence has been established in [31], [32]. Once the optimal

phase shift vector φφφ and the transformation matrices Ak are

obtained, they are kept fixed in the coherence interval of

the covariance matrices. The filters are then updated in each

channel coherence interval by (5), i.e., the filter update in each

channel coherence interval only requires multiplication of the

precomputed matrices Ak with the perfectly estimated channel

hk. The proposed algorithm is summarised in Algorithm 1.

Algorithm 1 Bilinear Precoders based Design of RIS using

the Statistical Channel Knowledge

1: Initialise the phase-shift vector φφφ and the auxiliary vari-

ables λ and χχχ with feasible values;

2: Initialise a according to (18);

3: Repeat

4: Update λ, χχχ and a according to (10), (12), and (18)

respectively;

5: Find the optimal step size κ by the Armijo rule and update

ϕϕϕ according to (21);

6: Until The value of the objective function in (P3) con-

verges.

7: Obtain the precoding vectors by (5).

It will be later shown in the simulation results that the

proposed algorithm offers a performance gain with low com-

plexity. However, it is also observed that the GMFs cannot

suppress the inter-user interference, which results in a satu-

ration of the sum-rate at high power levels [27], [30], [37].

This leads to a considerable performance loss compared to

the algorithms requiring instantaneous CSI for the phase shift

update [6] at high transmit power. This saturation problem

can be resolved by employing a hybrid online and offline

optimisation algorithm as adopted in [13], [17], [24]. The

key idea here is to design the phase shifts based on the

channels’ statistical knowledge so that we do not need to

compute the phases in every channel coherence interval. The

phase shift optimisation is again performed by maximising

the lower bound of the users’ sum rate given in (P3). Once

the optimised phase shifts are obtained, they are kept fixed in

the coherence interval of the covariance matrices. The design

of the phase shifts belongs to the offline optimisation part,

which relies only on the long-term statistics of the channels.

After performing the offline optimisation, the transmit filters

are now designed in the online optimisation step, i.e., the

filter optimisation (for fixed phase shifts) is now performed

in every channel coherence interval using the BCD or zero-

forcing (ZF) methods, instead of multiplying the perfectly

estimated channel vector with the precomputed matrices as

in Algorithm 1. After estimating the effective channel vectors

for the users, the filter update step in Algorithm 1 has the

complexity of O(M2), but this hybrid method computing the

optimal filters in every channel coherence interval has the

complexity of O(M3). However, the filter design in every

channel coherence interval still does not require the knowledge

of the RIS-associated links separately. Instead, the BS only

requires the knowledge of the effective channels, thereby

reducing the channel training overhead as compared to the

algorithms only based on the instantaneous CSI, e.g., [6]. The

overall hybrid algorithm is summarised in Algorithm 2.

Algorithm 2 Hybrid Online and Offline Design of RIS using

the Statistical Channel Knowledge

1: Perform the offline optimisation with the statistical knowl-

edge of the channels:

• Initialise the phase-shift vector φφφ and the auxiliary

variables λ and χχχ with feasible values;

• Initialise a according to (18);

• Repeat

– Update λ, χχχ and a according to (10), (12), and

(18) respectively;

– Find the optimal step size κ by the Armijo rule and

update ϕϕϕ according to (21);

• Until The value of the objective function in (P3)

converges.

2: The phase-shift vector obtained from the offline optimisa-

tion step is kept fixed and the online optimisation step is

performed in each channel coherence interval:

• Apply either the iterative BCD algorithm or the zero-

forcing method with the optimal power allocation

(waterfilling solution [38]) to obtain the precoding

vectors p1, · · · ,pK .

D. Convergence and Complexity

The convergence of the BCD algorithm is discussed in [32].

Since the value of the objective function improves in each sub-

problem, the convergence to a local minimum is guaranteed.

The reduction in the complexity by the proposed algorithms

is achieved due to the fact that the phase shifts of the RIS

only need to be updated in the coherence interval of the

covariance matrices. Both of the algorithms employ the same

update step for the phase shifts of the RIS. The complexity

for updating the phase shifts by the proposed algorithms is

O(Ia(KN2+KNM2)), where Ia is the number of iterations

required by the algorithms for convergence. We next compare

the complexity of the proposed algorithms with the TTS

algorithm in [13], which uses the SSCA method in which

several random channel samples are generated from their

known distributions in each iteration. For each of the generated

samples, the optimal filters are computed by employing the

iterative weighted minimum mean-square error (IWMMSE)

method [39] and this process needs to be repeated several

times till the convergence is reached. The optimisation of

the phase shifts with the SSCA based TTS method [13]

has the complexity of O(Ib(KNM + THJKM3)), where Ib
denotes the number of iterations required for convergence, J

denotes the number of IWMMSE iterations, and TH denotes
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Figure 1: Convergence Plot for IWMMSE method for K = 3,

M = 8

the number of random channel samples required for the SSCA

method. Even though the complexity of our proposed algo-

rithms grows with N2, whereas the SSCA method has a linear

growth with N , using Algorithms 1 and 2 results in a reduced

computational time for the practical systems. This is due to

the fact that the complexity of the SSCA method is dominated

by the requirement to perform IWMMSE iterations several

times. From the convergence plot of the IWMMSE method in

Fig. 1, it can be seen that its convergence is very slow for

high power levels, and it takes more than 100 iterations to

converge for P = 30 dB. Each IWMMSE iteration in Fig. 1

needs several iterations to compute the optimal Lagrangian

parameter, which is needed for the update of the transmit filters

in [39] (discussed in [40]). However, the proposed algorithms

bypass this requirement because of the closed-form solution

given by (18). Moreover, the IWMMSE method needs to be

applied for each of the TH random samples, which is generally

around 50 to 100 in number. This increases the computational

time of the TTS approach in [13] and its run-time is observed

to be approximately 10 times higher than that of the propsoed

algorithms.

V. SIMULATION RESULTS

In this section, numerical results are provided to validate

the effectiveness of the proposed algorithms. The system

comprises of one BS equipped with M = 16 antennas, serving

K single-antenna users. The RIS is equipped with N = 100
passive reflecting elements. The setup is illustrated in Fig. 2.

The users are placed inside a circle of radius 50m with the

centre of the circle at a distance D m from the BS. Each of the

channels is generated according to its distribution described in

Section II. The covariance matrix of each channel is generated

according to the 3GPP specifications [41]. The BS, users and

the RIS are equipped with a uniform linear array (ULA). To

model each of the channels, a spatial channel propagation

model is considered similar to [42], where the channels are

obtained by the superposition of multiple-path components

resulting from the scatterers in the surrounding propagation

BS (0 m, 0 m)

k-th user

RIS (50 m, 10 m)

hd,k

D m

T

r
k

Figure 2: Simulation Setup
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Figure 3: Convergence Plot of the Proposed Algorithms (a)

and with the Normalised Objective (b) for K = 1

environment. Assuming Npath = 6 main clusters and Nray = 20
rays in each cluster, each covariance matrix is given by

Ci,k = αi,k

Npath∑

n=1

νn

Nray

Nray∑

m=1

xi,k(θn,m)xH
i,k(θn,m)

where θn,m corresponds to the incident angle of the received

signal from the scatterer of the m-th ray in the n-th cluster, and

the index i is used to differentiate the different components of

the effective channel, i.e., hd,k, rk and T . xi,k(θn,m) denotes

the array steering vector of the i-th channel component of the

k-th user at an angle θn,m and is given by

xi,k(θn,m) =
[

1, ejπsin(θn,m), · · · , ejπ(Mi−1)sin(θn,m)
]T

where Mi denotes the number of antennas. νn signifies the

power of the n-th cluster and αi,k corresponds to the slow-

fading coefficient which depends on the distance. According

to the 3GPP model, αi,k is equal to the signal to noise

ratio (SNR) at distance δi,k and is given by [43]

10 log10(αi,k) = 78.7− 37.6 log10(δi,k) dB.

The deterministic LoS component T ′ is considered to have

rank one, and it is generated by taking the outer product of

two array-steering vectors of lengths N and M respectively,

and β is set to 0.2. The achievable sum-rate of the users is

taken as the performance metric, which is averaged over 1000

channel realisations for 100 different covariance matrices Ci,k,

generated by varying the position of the users and the path

powers νn.

A. Single-User Case

We first consider the single-user case where the user is

placed at (Dm, 0m). In order to compare the proposed algo-

rithms for the single-user case with the single-user algorithms



in [11] exploiting the statistical channel knowledge, we con-

sider T ′ = 0 similar to [11]. At first, the convergence plot

of the long-term optimisation part of the proposed algorithms

is presented in Fig. 3a for a single scenario of covariance

matrices with D = 30m and the transmit power levels of

P = 0 dB and P = 30 dB. Both Algorithm 1 and

Algorithm 2 have the same long-term optimisation method.

The convergence analysis reveals that the proposed algorithms

converge in approximately 20 iterations for both lower and

higher power levels, i.e., the convergence behaviour is inde-

pendent of the transmit power level. We also compare the

convergence of our algorithms to the SSCA based TTS method

of [13] in Fig. 3b. Since the algorithms have different metrics

for optimisation, we normalise the objective values between

0 and 1, where 0 denotes the minimum objective value and

1 denotes the maximum value over the iterations. It is clear

from Fig. 3b that the proposed algorithms have a faster rate of

convergence than the TTS method of [13], which takes more

than 50 iterations to converge.

The user’s rate is next plotted in Fig. 4, which is computed

with the different algorithms and compared over the transmit

power levels P with D varying in between 15m to 60m.

The performance of the proposed algorithms is compared with

the algorithms in [11], [13] exploiting the statistical channel

knowledge, and also with [6] employing the instantaneous

CSI for both the filter and the phase shift optimisation.

Fig. 4 shows that the algorithm in [6] serves as an upper

bound to the algorithms using only the statistical information

for the phase shift design. Both of the proposed algorithms

have a similar performance at low P , however, Algorithm 1,

employing the bilinear precoder, is not optimal at the higher

power levels [27]. Hence, Algorithm 2 with the optimal filters

computed using the BCD method outperforms Algorithm 1

at high P and at the price of higher complexity. The pro-

posed algorithms clearly offer a considerable performance gain

when compared to a system without RIS [27] or to the one

employing RIS with random phase shifts. Fig. 4 also shows

that Algorithm 2 slightly outperforms the TTS approach in

[13] based on the SSCA method, which also uses the optimal

precoding filters computed via the IWMMSE method [39]

in every channel coherence interval. Moreover, Algorithm 2

employing the hybrid design with the optimal BCD filters also

slightly outperforms the hybrid algorithms with the optimal

filters in [11] at high transmit power levels.

B. Multi-User Case

We next consider a multi-user system with K = 3 users,

randomly placed inside a circle of radius 50m at a distance

D = 30m from the BS. At first, the convergence plot of

the proposed algorithms for the multi-user case is shown in

Fig. 5a. Similar to the single-user case, the convergence of the

algorithms is independent of the transmit power level and they

converge in approximately 25 iterations. We again compare

the rate of convergence of our algorithms to the SSCA based

TTS method of [13] in Fig. 5b. The objective values of the

algorithms are normalised between 0 and 1 for comparison.
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Figure 5: Convergence Plot of the Proposed Algorithms (a)

and with the Normalised Objective (b) for K = 3

The proposed algorithms have a faster rate of convergence than

the TTS method of [13], which takes more than 100 iterations

to converge, and the difference in rate is even larger here than

the single-user case in Fig. 3b.

The sum-rate of the users is plotted in Fig. 6. The algorithm

in [6] performing the optimisation of both the filters and the

phase shifts in every channel coherence interval acts as the

upper bound to the algorithms involving only the statistical

channel knowledge for the optimisation of the phase shifts.

It can be seen that Algorithm 1 using the bilinear precoders

offers a good performance only for low P and the sum-rate

starts to saturate gradually when the transmit power is higher

than 10 dB. This sum-rate saturation in the multi-user scenario
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is owing to the fact that the GMF cannot mitigate the inter-

user interference. It can also be seen that Algorithm 2 is able

to solve this saturation problem as it computes the optimal

precoding filters in every channel coherence interval with the

BCD method or the zero-forcing solution (optimal at high P ).

It can be observed in Fig. 6 that the hybrid algorithm using the

zero-forcing filters performs almost similar to the algorithm

using the BCD method at high power levels, but there is some

performance gap at lower power levels since the zero-forcing

solution is not optimal when the noise level is high. Moreover,

Algorithm 2 performs slightly better than the SSCA-based

hybrid algorithm of [13] on an average with the BCD filter

and at high P with the zero-forcing filter. All the algorithms

are compared with systems having no RIS or having an RIS

with random phase shifts. For these two baseline systems, the

chosen filters are either the low-complexity bilinear precoders

or those computed by the BCD method. Algorithm 2 with the

optimal filters performs better than the baseline algorithms

at all transmit power levels. The bilinear precoders based

Algorithm 1 offers a performance gain when compared to

the baseline algorithms employing the bilinear precoders [27].

However, it is only better than the baseline cases with the BCD

filters at low P . This behaviour is expected and the difference

in performance is attributed to the suboptimality of the low

complexity bilinear precoders at high P in comparison to the

BCD filters. We also compare the simulation run-time of the

long-term optimisation method of the proposed algorithms and

SSCA-based TTS approach of [13] for P = 20 dB in Fig. 6.

Since the run-time also depends on the processor, we only

plot the ratio of run-time of [13] to the proposed algorithms

for comparison. From the histogram plot, it is observed that

the ratio is always greater than 10, i.e. the proposed algorithms

are an order of magnitude faster than the SSCA-based method

even in the worst-case trials.

Finally, Fig. 7 shows the impact of the number of passive

reflecting elements N on the performance of the different

algorithms at a fixed power P = 10 dB. It is observed that

the sum-rate computed with the algorithm performing the

optimisation of the phase shifts in every channel coherence

interval [6] grows at a faster rate with N than the other

lower complexity algorithms in Fig. 7. The performance of

the proposed algorithms improves with an increase in N at a

similar rate. This behaviour is expected as both the algorithms

employ the same optimisation procedure for the update of the

phase shifts. Also, it is observed that the sum-rate does not

improve with increasing N , if the phase shifts of the RIS are

not optimised.

VI. CONCLUSION

This work has addressed the problem of the existing algo-

rithms for an RIS-aided system relying on the knowledge of

the instantaneous CSI for all the channels in every channel

coherence interval. The information-theoretic lower bound of

the users’ sum-rate based on the worst-case noise is used as the

figure of merit. This lower bound is then maximised to design

the transmit filters at the BS and the phase shifts of the RIS.

Our proposed algorithms, utilising the second-order channel

statistics, significantly reduce the training overhead as the

coherence interval of the covariance matrices consists of many

channel coherence intervals. It is seen from the simulation

results that there is a decline in the performance gain as

compared to the algorithms optimising both the phase shifts

and the transmit filters in every channel coherence interval,

however, the proposed algorithms still bring a considerable

improvement in the sum-rate of the users in comparison to the

systems with no RIS or with random phase shifts. The first

proposed algorithm uses the bilinear precoder and it performs

all the optimisation processes only in the coherence interval

of the channel statistics. However, it is observed to saturate

in the high power regime for the multi-user case. The second

algorithm employs the hybrid online/offline optimisation step

and performs the transmit filter optimisation in every channel

coherence interval, thereby having a higher complexity than

the first algorithm. Nevertheless, it is seen to combat the

observed saturation effect with the bilinear precoder. We have

considered the covariance matrices to be perfectly known

in this work. As a possible future work, one can focus on

the effect of the imperfect covariance information on the

performance of the RIS-aided communication systems.

APPENDIX

A. Lemma 1

For any u ∼ NC(0,C), it holds that

E
[
uHM1uu

HM 2u
]
= tr(CM1CM2)

+ tr(CM 1) tr(CM2).

Proof. The lemma is a straightforward extension of Lemma 2

in [44].

B. Proof of Theorem 1

Proof.

var(hH
k pk) = E[|hH

k pk − E[hH
k pk]|2]

= E
[
hH
k Akhkh

H
k A

H
k hk

]
−
∣
∣tr
(
CkAk)

∣
∣
2
.



Since hd,k, T and rk are mutually independent, and denoting√
βR

1/2
RIS WR

1/2,H
Tx by T r, we have

E
[
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H
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H
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]
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]
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H
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H
k hd,k]

+ E[|rH
k Φ

HTAkT
H
Φrk|2

]
. (22)

For the computation of the terms in (22), we need some

additional results.

E
[
T rAkT

H
r

]
= β E

[

R
1/2
RISWR

1/2,H
Tx AkR

1/2
Tx WHR

1/2,H
RIS

]

= β tr(RTxAk)RRIS. (23)

Using Lemma 2 of [44], we get

E
[
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H
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(24)

The first term in (24) can be written as

ET r

[∣
∣
∣tr
(

Cr,kΦ
HT rAkT

H
r Φ

)∣
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where Y1,k = R
1/2,H
Tx AkR

1/2
Tx , Y2,k = β2

ΦCr,kΦ
H and

w = vec(W ), and since the entries of W are i.i.d. with zero

mean and unit variance, it follows that w ∼ NC(0, I). The

above expression can hence be computed as follows
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H
)
)

where we have used the property that for all square matrices

P , Q, R and S, we have tr (P ⊗Q) = tr(P ) tr(Q), and

(P ⊗Q)(R ⊗ S) = (PR)⊗ (QS) [45].
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Let the matrix C
1/2,H
r,k Φ

HR
1/2
RIS be decomposed by its SVD as

UΛΛΛV H, where U and V contain the singular vectors and ΛΛΛ
is a diagonal matrix containing the singular values. Using the

fact that V HW = Z has the same distribution as W , since

V is a unitary matrix, the above expression can be written as

β2
EZ

[
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HΛΛΛ2
ZY
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.

Denoting the eigen values of C
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r,k Φ

HRRISΦC
1/2
r,k by λis,

the diagonal matrix ΛΛΛ can be written as
∑

i

λieie
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i . Hence,

the above expression is equivalent to
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where the matrix ZH is denoted by [z1, · · · , zN]. Since zis

have the same distribution as wis, zi ∼ NC(0, I), and the

expectation can be computed as
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where (a) again uses Lemma 2 of [44]. Now using (23)-(26),

Lemma 1 and Lemma 2 of [44], all the terms in (22) can be

calculated in closed-form.

Using the expression of Ck from (7) and with some

calculations, we get
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where Q = ΦCr,kΦ
HRRISΦCr,kΦ

H.

C. Computation of the gradient

From (7), we get

cHk ak = tr (CkAk) = tr(Cd,kAk) + tr(ΓkV ) tr(RTxAk)
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T
H
ΦCr,kΦ

HTAk

)

(28)



where Γk = β
(

RRIS ⊙CT
r,k

)

and V = φφφφφφH. Both Γk and V

are Hermitian matrices. The above expression can be further

simplified as
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where (a) follows from Lemma 1 in [11] and Dk is given by
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Similarly, we get
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Further expanding the terms,
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Denoting the constant terms which are independent of φφφ as

ℓ1, we get
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where ℓ1 consists of the terms which are independent of φφφ.

The terms can be further simplified as

tr(Cd,kAjT
H
ΦCr,jΦ

HTAH
j )

= tr

(
((

TAH
j Cd,kAjT

H)⊙CT
r,j

)

φφφφφφH

)

.
(37)

Similarly, we have
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Now, the first term in (19) can be simplified using (29) as

follows
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The second term in (19) can be simplified using (31).
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)
D̄

H
k

)

.

(46)

The third term in (19) can be simplified using (36) - (40).
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āH
j

(

CT
j ⊗Ck

)

āj
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where ℓ4 denotes the constant terms, which are independent

of φφφ, and
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Finally, ignoring all the constant terms, (19) can be written as

a function of φφφ as
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where G is given by
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The gradient of f(φφφ) in (53) w.r.t. φφφ∗ is given by ∆, which

can be expressed as follows
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