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Cosmological inflation is a popular paradigm for understanding Cosmic Microwave Back-

ground Radiation (CMBR); however, it faces many conceptual challenges. An alternative

mechanism to inflation for generating an almost scale-invariant spectrum of perturbations

is a bouncing cosmology with an initial matter-dominated contraction phase, during which

the modes corresponding to currently observed scales exited the Hubble radius. Bouncing

cosmology avoids the initial singularity but has fine-tuning problems. Taking an agnostic

view of the two early-universe paradigms, we propose a quantum measure — Dynamical

Fidelity Susceptibility (DFS) of CMBR — that distinguishes the two scenarios. Taking two

simple models with the same power-spectrum, we explicitly show that DFS behaves differ-

ently for the two scenarios. We discuss the possibility of using DFS as a distinguisher in the

upcoming space missions.

Essay received honorable mention in Gravity Research Foundation essay

competition 2024.
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The discovery of Cosmic Microwave Background radiation (CMBR) stands as a significant

milestone in our understanding of the Universe. Initially proposed as a relic of the hot big

bang model by Gamow, Alpher, and Herman in the late 1940s [1–3], its theoretical existence

became a reality when technological progress enabled Penzias and Wilson to observe the

persistent microwave background noise in all directions [4]. Subsequent measurements of

the CMBR at various wavelengths have improved the accuracy of the radiation temperature

to 2.73 K [5]. The observation of CMBR became crucial in differentiating between the

steady-state and Big Bang theories of cosmology.

To explain the large-scale structures observed in the current Universe, the Big Bang theory

necessitates some level of clumpiness in the early-universe. In the early 1970s, Harrison

and Zeldovich argued from various perspectives that the primordial matter power spectrum

should be scale-invariant [6, 7]. A significant development occurred in 1980 when Fabbri et

al. highlighted that CMBR anisotropies at angular scales larger than a few degrees would

encompass the horizon at the last scattering surface and provide a new upper bound on the

fluctuations [8, 9]. There was, however, no mechanism for generating initial perturbations

across astronomical scales at that time, making scale-invariance a suitable choice.

In the 1980s and 1990s, two mechanisms were often considered to generate nearly scale-

invariant power-spectrum — cosmological inflation, where quantum fluctuations expand

to astronomical scales due to accelerated expansion [10–15], and spontaneous symmetry

breaking, which involves relics of topological defects (such as cosmic strings) from a higher-

energy space vacuum state [16, 17]. Each of these mechanisms carries implications for

the resulting density fluctuation spectra. With advancements in cryogenic technology in

space [18, 19], measurements of CMBR temperature fluctuations by missions like WMAP [20]

and PLANCK [21] have ruled out cosmic strings as the primary source of perturbations [22].

While single-field inflationary models are phenomenologically successful and consistent

with WMAP and PLANCK [23, 24], inflation faces important conceptual challenges [25–

29]. Many toy models of inflation have been proposed, but embedding inflation into a

realistic particle-physics model has been a challenge [30]. Additionally, inflation does not

remove the initial Big Bang singularity, prompting the question: Is there a new model of

the early-universe that can address some of the issues with inflation while maintaining its

observational successes? Matter bounce paradigm avoids the initial big bang singularity at

a classical level by violating Strong Energy Condition (SEC) in General Relativity (GR) or

modify gravity by including other matter fields [31–35]. Thus, in this scenario, the matter

bounce replaces the big bang, where the Universe contracts, since the infinite past, towards

the bounce, after which it transitions to an expanding phase.

In both scenarios, quantum vacuum oscillations in the matter and the gravitational fields

lead to classical fluctuations in the energy density. These fluctuations serve as the seeds
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FIG. 1. Plot of Hubble radius H−1 as a function of cosmic time t. Both Hubble radius and cosmic

time are rescaled such that their current value is 1. The left plot depicts a Universe with an

initial period of accelerated expansion. The right plot depicts the Universe (t > 0) evolved from a

contracting matter dominated phase (t < 0) to a bounce at t = 0.

for temperature anisotropies and polarization in the CMBR, as well as for the formation

of Large Scale Structures in the present Universe [31, 33, 35]. From Fig. 1, we see that

both inflation and matter bounce scenarios provide a causal mechanism for the generation

of primordial perturbations that has observable imprints on the CMBR [33–35]. Precisely,

in the inflationary scenario, the Hubble radius, or the “apparent” horizon (blue curve), and

the forward light cone (purple dotted curve), or the “actual horizon,” do not coincide. In the

bouncing scenario, the Hubble radius (red curve) shrinks during the contraction phase. At

the level of the power spectrum, a duality between contracting phase and inflating Universe

exists [36–38]. Specifically, it is shown that a contracting Universe dominated by pressure-

less cold matter gives rise to scale-invariant power-spectrum [36–38].

Taking an agnostic view of the two early-universe paradigms, we ask the following ques-

tions: Can CMBR provide key measures to distinguish between inflation and bounce? Can

quantum signatures provide a route to distinguish them? Due to the duality relation [36], any

measure proportional to the power spectrum will lead to a null test. Hence, the new measures

must surpass the current standards for extracting quantum signatures from CMBR [20, 21].

Given that the quantum vacuum oscillations in the matter and the gravitational fields lead

to classical fluctuations in the energy density, we propose a quantum measure that can

distinguish between the two scenarios. While the exact conditions that steered the early

moments of our Universe may now be well beyond our reach, we show in this essay that the

dynamical fidelity susceptibility (DFS) distinguishes the two scenarios [39–44].
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To go about this, we consider a massless scalar field in Friedmann-Lemaitre-Robertson-

Walker space-time whose action is given below [45, 46]:

S =
1

2

∫
d4x

√
−ggµν∂µΦ∂νΦ ; ds2 = gµνdx

µdxν = dt2 − a2(t)(dr2 + r2dΩ2), (1)

where a(t) is the scale factor. At the linear level, the equations describing both gravitational

and matter perturbations can be quantized consistently via gauge-invariant variables. The

scalar (density) perturbations are given by Mukhanov-Sasaki variables [45, 46], while the

tensor perturbations are the gravitational waves. The duality transformation between matter

dominated collapse and inflating Universes works for both sets of perturbations [36].

Upon employing a partial-wave decomposition in terms of real spherical harmonics (l,m),

followed by lattice-regularization of the field along the co-moving radial direction (r = jd),

we obtain the scalar-field Hamiltonian in terms of the canonically conjugate field variables

{Πlmj,Φlmj} as follows [47]:

H (t) =
1

2

∑
lmj

[
Π2

lmj +
∑
k

K
(lm)
jk (t)ΦlmjΦlmk

]
, (2)

which resembles a network of time-dependent oscillators, where the coupling matrix K
(lm)
jk

has a tridiagonal form indicative of nearest-neighbour coupling between the oscillators. Here,

the lattice-spacing d fixes the UV-cutoff and radial boundary Nd fixes the IR-cutoff. Also, it

should be noted that all quantities in the above Hamiltonian have already been rescaled to be

dimensionless, for e.g., cosmic-time t here replaces t/d and Hubble parameter H replaces Hd

in the derivation [47, 48]. Diagonalizing this matrix allows the Hamiltonian to be decoupled

in terms of a time-dependent normal mode spectrum {ω2
k(t)}. The wave-function evolution

for each normal mode is highly sensitive to the sign of ω2
k, which depends on whether the

mode is inside (ω2
k > 0) or outside (ω2

k < 0) the (dimensionless) Hubble radius (H−1) [47, 48].

To identify the difference in the two early-universe scenarios, at the initial time, we

assume all the quantum fluctuations to be sub-Hubble (ω2
k > 0) and in the ground state

for both scenarios [47, 48]. Since the Hamiltonian (2) is quadratic, the wave-function |Ψ⟩
retains a Gaussian form throughout the evolution [48]. While the overall system remains

in a pure state, i.e., Tr ρ2 = 1, its constituent subsystems, corresponding to field degrees of

freedom confined to spatial subregions, are in a mixed state. The subsystem corresponding

to a subregion A is therefore described by a reduced density matrix (RDM) ρA obtained by

tracing out the complementary degrees of freedom (say, B = A′) from the overall density

matrix as ρA = TrB |Ψ⟩ ⟨Ψ|. The spatial subregions of the field are therefore entangled, the

extent of which can be quantified with the help of von Neumann entropy SA = −Tr ρA ln ρA.

Here, the total entanglement entropy of the subsystem is the sum over all angular mode

contributions S =
∑

l(2l + 1)Sl, which converges for large l [49].
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To see the effects of an expanding Universe on the quantumness of CMBR, we may

focus on the off-diagonal elements of the corresponding RDM. When these elements fall to

zero, the RDM resembles a classical statistical ensemble, i.e., the subsystem decoheres upon

interacting with environmental degrees of freedom. However, decoherence is, in general,

basis-dependent. A stronger condition may, therefore, be imposed by requiring the RDM to

be maximally mixed, wherein it is proportional to the Identity matrix (ρA ∝ I ), resulting

in decoherence across all bases. For infinite-dimensional Hilbert spaces such as the ones

we consider here, maximally mixed states correspond to vanishing purity (Tr ρ2A → 0), or

equivalently, a diverging entanglement entropy (SA → ∞). Recently [47, 50], it was shown

that inflationary models resulted in the rapid growth of entanglement entropy in spatial

subregions, indicating self-decoherence of fluctuations due to the expansion [51].

While the entanglement entropy can shed some light on the non-trivial effects due to a

time-dependent background, it has its limitations. For instance, it is known that the Hamil-

tonian for linearized fluctuations in conformal time is invariant under a duality transforma-

tion [36], resulting in two models with identical power spectra. This implies that, regardless

of the time-coordinate used, the ensuing dynamics of both models starting from the same

vacuum state cannot be distinguished by entanglement entropy as it is a symplectic invariant

(preserved under canonical transformations) [47]. This limits its applicability to distinguish

between early-universe models compared to other quantum measures, as discussed below.

To keep things transparent, we consider two simple models for the two early-universe

scenarios — i) inflation followed by matter-dominated expansion aI(t), and ii) matter-bounce

aII(t) (cf. Fig. 2):

aI(t) =
[
W0

(
eH0(t−te)

)]2/3 ∼
e

2
3
H0(t−te) t ≪ te

(H0(t− te))
2/3 t ≫ te

; aII(t) =
(
1 +H2

0 (t− te)
2
)1/3

, (3)

where W0(x) is the principal branch of the Lambert function, and te is the transition time

for de Sitter expansion during inflation to matter-dominated expansion in aI(t) and matter-

dominated collapse to matter-dominated expansion in aII(t). The reasons for these choices

are two-fold — i) it enables semi-analytical evaluation of the quantum measures we are

interested in, based on techniques recently outlined by the current authors [47, 48], and ii) the

initial phases for both models, i.e., de Sitter expansion in aI and matter-dominated collapse

in aII correspond to identical power-spectra [36], which will help us better identify the

quantum measure that can clearly isolate the differences in the two early-universe scenarios.

While inflation begins after t > 0 in cosmic time, we have shifted its origin such that the

time at which both models aI(t) and aII(t) transition to radiation-dominated expansion

coincide (te). In both models, the modes exit the Hubble radius during inflation/bounce

and later re-enter during the matter-dominated expansion phase (cf. Fig. 1). Since we can
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FIG. 2. Hubble radius
∣∣H−1

∣∣ for the two models with scale-factors aI(t), aII(t) in Eq. (3). We

have set H0 = 1 and te = 0.

only observe up to the largest wavelength mode that re-enters, it may be difficult to tell

apart whether inflation or bounce preceded the expansion. From Fig. 3, we also see that the

qualitative features of entanglement dynamics are largely similar for both models. In fact,

since inflation and matter-dominated collapse are duals [36], the entanglement dynamics for

t < 0 in both cases are expected to coincide upon evolving them from the same vacuum

state [47]. Lastly, since the above scale factors are continuous, spurious effects that may

otherwise arise in quantum measures have also been avoided.
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FIG. 3. Entanglement entropy of massless scalar field for (a) aI(t): inflation followed by matter-

dominated expansion, and (b) aII(t): matter-bounce. Here, N = 10, and we count angular mode

contributions up to l = 10. While the dynamics are expected to coincide at earlier time-points

t → −∞, starting closer to the singularity (aI → 0) also requires tremendous computing power.
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In order to distinguish the two classes of early-universe models, it is ideal to rely on

quantum measures that are highly sensitive to the ensuing dynamics. One fundamental

quantity that is both conceptually rich and experimentally accessible is the dynamical fi-

delity susceptibility (DFS) [39–44]. Mathematically, they are evaluated from the dynamical

fidelity [52, 53] defined for pure (overall system) and mixed states (subsystems) as follows:

Fpure = ⟨Ψ(t)|Ψ(t+ δt)⟩ ; Fmixed = Tr
√

ρ1/2(t)ρ(t+ δt)ρ1/2(t) . (4)

Expanding the dynamical fidelity about small values of δt, we get:

F ∼ 1− χF (t)
δt2

2
; χF =

d2F

d(δt)2

∣∣∣∣
δt=0

, (5)

where the first derivative vanishes since fidelity is maximum (unity) at δt = 0, and the sec-

ond derivative (χF ) is the DFS. In this essay, we use cosmic time t as the control parameter,

whereas fidelity and fidelity susceptibility are more generally defined based on some control

parameter depending on the physical system at hand. We therefore add the prefix “dy-

namical” everywhere owing to this choice [43, 44]. The DFS therefore captures important

features exclusive to system dynamics, some of which are given below:

• For pure states, it is related to the dynamical quantum Fisher information FQ(t) and

satisfies the following quantum Cramer-Rao bound:

(∆t)2 ≥ 1

FQ(t)
; FQ(t) =

χF (t)

4
, (6)

which in this case fixes the maximum precision for estimating time scales from the state

evolution [44, 54]. It also coincides with the quantum speed limit (QSL), which fixes the

minimum time it takes for the state ρ(t) to unitarily evolve to a nearby, distinguishable

state ρ(t+ δt) in response to the conditions that drive the evolution [55–57].

• It captures potential signatures of dynamical quantum phase transitions (DQPT) in

the thermodynamic limit N → ∞ of many-body systems [44, 58–60]. The idea rests

on the fact that at transition points, a small change in the control parameter (here,

cosmic time) results in greatly enhanced distinguishability of corresponding states,

which would therefore be reflected in the DFS [61].

• The QFI density fQ = FQ/N is a useful measure for multi-partite entanglement in

N -body systems, i.e., the system is (m+ 1)-partite entangled if fQ > m [42, 62, 63].

To isolate model-specific features arising from cosmological expansion, we simulate the

DFS evolution in Fig. 4 for the overall state |Ψ(t)⟩ corresponding to various system sizes

(N). One can see that the distinguishing feature is the existence of two distinct peaks
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FIG. 4. Dynamical fidelity susceptibility for the overall state of the fluctuation when the back-

ground undergoes (a) inflation followed by matter-dominated expansion and (b) a matter-bounce.

Here, we count angular mode contributions up to l = 150 for (a) and l = 1000 for (b).

in the DFS evolution for the bounce model that are absent in the inflation model at the

transition point t = 0. The overall behavior is also found to match that of the Hubble

parameter as χF ∝ H2. It can also be seen that the peaks observed in the case of bounce

increase with system size N , which can be extrapolated to a possible divergent behavior in

the thermodynamic limit N → ∞. The DFS evolution, therefore, hints at DQPT in the

bouncing model, contrary to the inflationary counterpart. In Fig. 5, we simulated the DFS

for spatial subregions and observed similar peaks in the bouncing model that were absent

in the inflationary model. The peaks also became more pronounced with subsystem size

n, implying that spatial subregions also could be subject to DQPT in the thermodynamic

limit n → ∞ (such that n < N). Although the inflation plots indicate a separate peak at

the start of the evolution, this may be an artefact of the numerical limitations on the time

step (δt) required to sufficiently resolve the wave-function evolution close to the singularity

(aI → 0). While aI(t) and aII(t) are simplified models, our results imply that DFS is,

in general, highly sensitive to the background dynamics and can isolate features that help

discriminate between early-universe models.

In the laboratory setting, the protocol for obtaining DFS involves preparing multiple

copies of the same state ρ(t) and making measurements at different time-slices {t + δt, t +

2δt, ..} of its evolution [41]. In the case of Gaussian states, it is sufficient to measure the

two-point correlators of conjugate variables (the covariance matrix), which has proved to be

a successful feat in cold-atom quantum field simulators via tomographic methods [64]. In the

cosmological scenario, however, reconstructing the entire covariance matrix from the CMBR
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FIG. 5. Dynamical fidelity susceptibility of fluctuations in spatial subregions when the background

undergoes (a) inflation followed by matter-dominated expansion and (b) a matter-bounce. Here,

N = 10, and we count angular mode contributions up to l = 150 for (a) and l = 1000 for (b).

poses a considerable challenge. Nevertheless, advances have been made in utilizing the

power spectrum to construct reduced covariance matrices corresponding to disjoint spatial

sub-regions of the field [51, 65, 66]. Therefore, this approach can allow us to study the

subsystem DFS from CMBR observations and better discriminate between early-universe

models, owing to its high sensitivity to background dynamics.

To conclude, advances in cosmology and particle physics are intimately linked to tech-

nological progress through a mutually beneficial cause-and-effect relationship. From the

serendipitous discovery by Penzias and Wilson to the recent PLANCK mission, CMBR has

provided deep insights into the primordial conditions after the Big Bang, seeds of the struc-

ture formation that lead to galaxies, allowing us to probe different epochs of the Universe

with high-precision, and validating the current acceleration of the Universe [67–70]. This

progress has been made possible by advancements in detector and open-cycle cryogenics

technology [71].

This essay proposes a new quantum measure — Dynamical Fidelity Susceptibility — of

CMBR to distinguish between the two early-universe paradigms for structure formation cur-

rently under popular consideration. However, quantum measurements are highly susceptible

to environmental changes. Minor fluctuations in temperature or stray electrical or magnetic

fields can disrupt quantum measurements, leading to information degradation [72]. Cur-

rently, the threshold for error rate per gate for two-qubit gates stands above 0.1% [73, 74].

This is expected to be better in the next decade [75]. Coupled with advancements in adi-

abatic demagnetization refrigeration technology for space missions [71], there is optimism
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that the dynamical fidelity susceptibility will become experimentally accessible in the next

decade, bringing us closer to understanding the origins of the Universe.
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