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Abstract

In this paper, we consider a class of structured nonconvex nonsmooth optimization problems
whose objective function is the sum of three nonconvex functions, one of which is expressed
in a difference-of-convex (DC) form. This problem class covers several important structures in
the literature including the sum of three functions and the general DC program. We propose a
splitting algorithm and prove the subsequential convergence to a stationary point of the problem.
The full sequential convergence, along with convergence rates for both the iterates and objective
function values, is then established without requiring differentiability of the concave part. Our
analysis not only extends but also unifies and improves recent convergence analyses in nonconvex
settings. We benchmark our proposed algorithm with notable algorithms in the literature to show
its competitiveness on both synthetic data and real power system load data.

Keywords: composite optimization, DC program, Douglas–Rachford splitting, global convergence, noncon-
vex optimization, three-operator splitting.
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1. Introduction

We consider the composite optimization problem

min
x∈H

F (x) := f(x) + g(x) + h(x), (1)

where H is a real Hilbert space, f, g : H → (−∞,+∞] are proper lower semicontinuous functions,
and h = h̄−

¯
h in which h̄ : H → R is a differentiable (possibly nonconvex) function and

¯
h : H → R is

a continuous (possibly nonsmooth) convex function. This problem can be interpreted as minimizing
a loss function f over a constraint set (handled by g), with the incorporation of a regularization
term h that has a difference-of-convex (DC) form. The DC regularization has shown promising
performance in the current literature, as shown in [23, 24, 34].

If
¯
h ≡ 0, then h reduces to a differential function and problem (1) becomes a further extension

of the commonly known sum of two functions in the literature. Many practical problems arising
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in machine learning or image processing can be formulated into minimizing a sum of a smooth
function and a nonsmooth function, as shown in [9, 11]. The nonsmooth parts are usually called a
regularization term, and they can be absolute-value norm (ℓ1-norm) or group lasso, which often has
closed-form proximal operator or at least is fast to be computed. The success of those regularization
terms led to the introduction of more complex, computational demanding regularization terms,
such as the overlapping group lasso [18], structured sparsity [17], or total-variation [3]. Fortunately,
such complex terms can be decomposed into sum of terms which may have closed-form proximal
operators. This leads to the problem of minimizing the sum of three functions. Several splitting
algorithms have been developed in the literature to tackle this type of problem, both in convex
and nonconvex settings. For the convex setting, a three-operator splitting scheme, which was later
known as the Davis–Yin splitting, was proposed in [15] to solve the inclusion problem with three
maximally monotone operators. This algorithm can be viewed as an extension of the well-known
Douglas–Rachford [16] and forward-backward schemes [27]. It can also be viewed as a generalization
of the forward-Douglas–Rachford splitting, which was studied in [8]. An adaptive three-operator
splitting algorithm was developed in [14] for the sum of two generalized monotone operators and
one cocoercive operator. This also addresses the problem of minimizing the sum of three functions,
two of which are weakly and strongly convex with the weak convexity neutralized. Existing studies
for nonconvex settings are in fact limited in number. The general assumption is that at least two
terms in (1) possess Lipschitz continuous gradients. Under such an assumption, the authors in [6]
established the subsequential and full sequential convergence of the Davis–Yin splitting with the
help of the Kurdyka–Łojasiewicz property.

When f ≡ 0 and other functions are assumed to be convex, problem (1) reduces to the general
DC program

min
x∈H

g(x) + h̄(x) −
¯
h(x), (2)

which is also a broad class of optimization problems in the literature [20]. Notable algorithms to
solve the DC program is the difference-of-convex algorithm (DCA) and its variants as reported in
[20]. Recently, a splitting algorithm based on the Davis–Yin splitting has been proposed in [12] to
solve the DC program with the assumption that the concave part has Lipschitz continuous gradient.
This work suggests that the Davis–Yin splitting also has potential to solve the DC program; however,
its convergence analysis relies on the strong convexity of g and h̄.

In this work, we propose a splitting algorithm tailored to the fully nonconvex problem (1),
which includes both minimizing the sum of three nonconvex functions and solving a generalized
class of DC programs. Extending beyond the adaptive three-operator splitting in [14], our pro-
posed algorithm not only features two flexible relaxation parameters but also possesses the ability
to handle DC functions. We refer to it as the doubly relaxed forward-Douglas–Rachford splitting
(DRFDR). This algorithm exhibits the subsequential convergence to a stationary point of (1) under
mild assumptions. With the Kurdyka–Łojasiewicz property of a suitable function but without the
differentiability of the concave part, we establish global convergence for the full sequence of iterates
generated by the DRFDR, along with convergence rates for both the iterates and objective function
values. We also thoroughly analyze the ranges of the important parameters used in the DRFDR and
show that they are less restrictive than those used in previous works. Our convergence analysis uni-
fies and enhances the existing convergence results for the Douglas–Rachford, Peaceman–Rachford,
and Davis–Yin splitting algorithms in nonconvex settings [22, 21, 6].

In the following examples, we present two problems that fit the structure of (1) along with
their applications. We will also conduct numerical experiments on these problems to evaluate the
performance of our proposed algorithm in a subsequent section of this paper.
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Example 1.1 (Low-rank matrix recovery). Recovering an unknown low-rank or approximately
low-rank matrix from very limited information is a critical problem arising in many fields, such as
machine learning, control, or image processing [9, 19]. One simple example is recovering a data
matrix from a sampling of its entries. This problem also has applications in power system operation
[10, 35], where it is used to recover the missing data from the phasor measurement units (PMUs),
or load data from the supervisory control and data acquisition (SCADA) systems. The basic model
of this problem is expressed as

min
X∈Rm×d

rank(X) s.t. PΩ(X) = PΩ(M), (MR)

where Ω denotes the index set of matrix entries which are sampled uniformly, PΩ(·) is the orthogonal
projection onto the span of matrices vanishing outside the set Ω, which means that the (i, j)th entry
of PΩ(X) is equal to Xij if (i, j) ∈ Ω and 0 otherwise. Since problem (MR) is NP-hard [25], a more
robust formulation was proposed in [19] as

min
X∈Rm×d

1
2∥PΩ(X) − PΩ(M)∥2 + ιC(r)(X), (MR’)

where ιC(r)(·) is the indicator function of C(r) := {X : rank(X) ≤ r}. To ensure the coerciveness of
the objective function and the stability of the solutions, the authors in [6] incorporated an additional
Tikhonov regularization terms ρ

2∥X∥2
F (∥ · ∥F is the standard Frobenius norm and ρ ∈ (0,+∞) is

the regularization parameter) into (MR’). This led to the modified problem

min
X∈Rm×d

1
2∥PΩ(X) − PΩ(M)∥2 + ιC(r)(X) + ρ

2∥X∥2
F . (MR-M)

Clearly, problem (MR-M) fits the form of (1) with f(X) = 1
2∥PΩ(X) − PΩ(M)∥2, g(X) = ιC(r)(X),

h̄(X) = ρ
2∥X∥2

F , and
¯
h ≡ 0.

Example 1.2 (Simultaneously sparse and low-rank matrix estimation). Matrix estimation
has many modern applications such as covariance estimation, graphical model structure learning,
graph denoising, or link prediction. The objective of this problem is to estimate an unknown matrix,
which has a block-diagonal structure, from its noisy observation. As discussed in [30], solutions of
low-rank estimation problems are in general not sparse at all. Hence, it is important to introduce a
combination of regularization terms to ensure that the solution is low-rank and sparse at the same
time. A convex optimization model to solve this problem was introduced in [30] as

min
X∈Rm×m

1
2∥X −A∥2

F + ρ1∥X∥1 + ρ2∥X∥∗, (SLRME)

where A ∈ Rm×m is the initial noisy input matrix, ∥X∥∗ denotes the nuclear norm, ∥X∥1 is the
sum of the absolute values of all entries in X, and ρ1, ρ2 ∈ (0,+∞) are regularization parameters.
Recently, a new representation for the nuclear norm has been proposed using the difference of
squared Frobenius norm and squared Ky Fan 2-k norm [32, Section 6.4.4]. Based on this DC
representation, we convert problem (SLRME) into

min
X∈Rm×m

1
2∥X −A∥2

F + ρ1∥X∥1 + ρ2(∥X∥2
F − |||X|||2k,2), (SLRME-M)

in which |||·|||k,2 denotes the Ky Fan 2-k norm. Now, problem (SLRME-M) fits the form of (1) with
f(X) = 1

2∥X − A∥2
F , g(X) = ρ1∥X∥1, h̄(X) = ρ2∥X∥2

F , and
¯
h(X) = ρ2 |||X|||2k,2. Therefore, it is

worth investigating whether the nonconvex formulation (SLRME-M) has any advantages over the
convex counterpart (SLRME).
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The rest of the paper is organized as follows. Section 2 presents the preliminary materials used
in this work. In Section 3, we introduce our algorithm and then establish both subsequential and
full sequential convergence under suitable assumptions. Section 4 provides numerical results of the
proposed algorithm. Finally, the conclusions are given in Section 5.

2. Preliminaries

We assume throughout that H is a real Hilbert space with inner product ⟨·, ·⟩ and induced norm ∥·∥.
The set of nonnegative integers is denoted by N, the set of positive integers by N∗, and the set of real
numbers by R. Given a set-valued operator A : H ⇒ H, its domain is domA := {x ∈ H : Ax ̸= ∅}
and its graph is graA := {(x, u) ∈ H × H : u ∈ Ax}.

Let f : H → (−∞,+∞]. The domain of f is dom f := {x ∈ H : f(x) < +∞}. We recall that f
is proper if dom f ̸= ∅, lower semicontinuous if, for all x ∈ H, f(x) ≤ lim infz→x f(z), and coercive
if f(x) → +∞ as ∥x∥ → +∞. The function f is α-convex for some α ∈ R if, for all x, y ∈ dom f
and all λ ∈ (0, 1),

f((1 − λ)x+ λy) + α

2 λ(1 − λ)∥x− y∥2 ≤ (1 − λ)f(x) + λf(y).

We say that f is convex if α = 0, strongly convex if α > 0, and weakly convex if α < 0. It is known
that f is α-convex if and only if f − α

2 ∥ · ∥2 is convex.
Let f : H → (−∞,+∞] be proper and lower semicontinuous. The regular subdifferential of f at

x ∈ dom f is defined by

∂̂f(x) :=
{
x∗ ∈ H : lim inf

y→x

f(y) − f(x) − ⟨x∗, y − x⟩
∥y − x∥

≥ 0
}

and the limiting subdifferential of f at x ∈ dom f is defined by

∂f(x) :=
{
x∗ ∈ H : ∃xn → x and x∗

n ∈ ∂̂f(xn) with f(xn) → f(x) and x∗
n → x∗

}
.

Both regular and limiting subdifferentials of f at x /∈ dom f are defined to be the empty set. If f
is convex, then both regular and limiting subdifferentials coincide with the classical subdifferential
of convex analysis [26, Theorem 1.93], that is,

∂̂f(x) = ∂f(x) = {x∗ ∈ H : ∀y ∈ H, f(x) + ⟨x∗, y − x⟩ ≤ f(y)}. (3)

The function f is said to satisfy the Kurdyka–Łojasiewicz (KL) property at x ∈ dom ∂f if there
exist ε ∈ (0,+∞), δ ∈ (0,+∞], and a continuous concave function φ : [0, δ) → [0,+∞) such that φ
is continuously differentiable with φ′ > 0 on (0, δ), φ(0) = 0, and

φ′(f(x) − f(x)) dist(0, ∂f(x)) ≥ 1,

whenever ∥x−x∥ ≤ ε and f(x) < f(x) < f(x)+δ. If f satisfies the KL property at any x ∈ dom ∂f ,
then it is called a KL function. We say that f satisfies the KL property at x with exponent λ ∈ [0, 1)
if it satisfies the KL property at x ∈ dom ∂f in which the corresponding function φ can be chosen
as φ(t) = ct1−λ for some c ∈ (0,+∞). If f is a KL function and has the same exponent λ ∈ [0, 1)
at any point in dom ∂f , then it is called a KL function with exponent λ.

We now collect some useful properties related to α-convex functions.
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Proposition 2.1. Let f : H → (−∞,+∞] be proper, lower semicontinuous, and α-convex. Then
the following hold:

(i) ∂f = ∂̂f is maximally α-monotone in the sense that (x, x∗) ∈ gra ∂f if and only if, for all
(y, y∗) ∈ gra ∂f , ⟨y∗ − x∗, y − x⟩ ≥ α∥y − x∥2.

(ii) For all x, y ∈ H and all x∗ ∈ ∂f(x), f(x) + ⟨x∗, y − x⟩ ≤ f(y) − α
2 ∥y − x∥2. Consequently, if

x is a local minimizer of f , then, for all y ∈ H, f(x) ≤ f(y) − α
2 ∥y − x∥2.

Proof. By assumption, h := f − α
2 ∥ · ∥2 is a convex function. Using the subdifferential sum rule

([26, Proposition 1.107]) and the convexity of h, we have that, for all x ∈ H,
∂f(x) = ∂h(x) + αx = ∂̂h(x) + αx = ∂̂f(x). (4)

So, ∂f = ∂̂f . The remaining conclusion of (i) then follows from [13, Lemma 5.2(i)].
Let x, y ∈ H and x∗ ∈ ∂f(x). In view of (4), x∗ = x̃ + αx for some x̃ ∈ ∂h(x). Since

h(x) + ⟨x̃, y − x⟩ ≤ h(y), we derive that

f(x) + ⟨x∗, y − x⟩ = h(x) + α

2 ∥x∥2 + ⟨x̃+ αx, y − x⟩

≤ h(y) + α

2 ∥x∥2 + α⟨x, y − x⟩

= f(y) − α

2 ∥y − x∥2.

Finally, if x is a local minimizer of f , then 0 ∈ ∂f(x), and applying the above inequality with x∗ = 0
completes (ii). ■

Proposition 2.2. Let f : H → (−∞,+∞] be proper and let α ∈ R. Suppose that dom f is open
and convex, and that f is differentiable on dom f . Then the following hold:

(i) f is α-convex if and only if, for all x, y ∈ dom f ,

f(x) + ⟨∇f(x), y − x⟩ ≤ f(y) − α

2 ∥y − x∥2.

(ii) If ∇f is κ-Lipschitz continuous on dom f , then, for all x, y ∈ dom f ,

f(y) − κ

2 ∥y − x∥2 ≤ f(x) + ⟨∇f(x), y − x⟩ ≤ f(y) + κ

2 ∥y − x∥2

and f is (−κ)-convex.
Proof. (i): Set h := f− α

2 ∥·∥2 and let x, y ∈ dom f . Then dom h = dom f and ∇f(x) = ∇h(x)+αx.
It follows that

f(y) − f(x) − ⟨∇f(x), y − x⟩ = h(y) + α

2 ∥y∥2 − h(x) − α

2 ∥x∥2 − ⟨∇h(x) + αx, y − x⟩

= h(y) − h(x) − ⟨∇h(x), y − x⟩ + α

2 ∥y − x∥2

The conclusion is now obtained by applying [5, Proposition 17.7] to h.
(ii): This follows from [5, Lemma 2.64(i)] and (i). ■

We end this section the following technical lemma.
Lemma 2.3. Let a, b, u, v ∈ H. Then

⟨u− a, v − a⟩ = ⟨u− b, v − b⟩ + 1
2(∥u− a∥2 − ∥u− b∥2) + 1

2(∥v − a∥2 − ∥v − b∥2).

Proof. We first have that, for x ∈ {a, b}, ⟨u − x, v − x⟩ = 1
2(∥u − x∥2 + ∥v − x∥2 − ∥u − v∥2), and

the conclusion then follows. ■
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3. Doubly relaxed forward-Douglas–Rachford splitting

In this section, we propose a splitting algorithm with guaranteed global convergence to solve problem
(1). Recall that the proximity operator of a proper function f : H → (−∞,+∞] with parameter
γ ∈ (0,+∞) at x ∈ H is defined by

Proxγf (x) := argmin
z∈H

(
f(z) + 1

2γ ∥z − x∥2
)
.

Algorithm 1 (DRFDR).
▷ Step 1. Let y0 ∈ H, z0 ∈ H, and set n = 0. Let γ ∈ (0,+∞), θ ∈ (0, 1], and η ∈ (0,+∞).
▷ Step 2. Compute y∗

n ∈ ∂
¯
h(yn) and find

xn+1 ∈ Proxγf (zn),
yn+1 ∈ Proxθγg((θ + 1)xn+1 − θzn − θγ∇h̄(xn+1) + θγy∗

n),
zn+1 = zn + η(yn+1 − xn+1).

▷ Step 3. If a termination criterion is not met, set n = n+ 1 and go to Step 2.

Remark 3.1 (Discussion of the algorithm structure). Let us take a closer look at Algorithm 1
with some comments.

(i) The updating scheme of Algorithm 1 can be written as computing y∗
n ∈ ∂

¯
h(yn) and finding

xn+1 ∈ argmin
x∈H

(
f(x) + 1

2γ ∥x− zn∥2
)
,

yn+1 ∈ argmin
y∈H

(
g(y) + 1

2θγ ∥y − (θ + 1)xn+1 + θzn + θγ∇h̄(xn+1) − θγy∗
n∥2

)
,

zn+1 = zn + η(yn+1 − xn+1).

Since y−(θ+1)xn+1+θzn+θγ∇h̄(xn+1)−θγy∗
n = (y−xn+1)−θ(xn+1−zn−γ∇h̄(xn+1)+γy∗

n),
we further derive that

yn+1 ∈ argmin
y∈H

(
g(y) − 1

γ
⟨xn+1 − zn − γ∇h̄(xn+1) + γy∗

n, y − xn+1⟩ + 1
2θγ ∥y − xn+1∥2

)
= argmin

y∈H

(
g(y) + h̄(xn+1) + ⟨∇h̄(xn+1), y − xn+1⟩ −

¯
h(yn) − ⟨y∗

n, y − yn⟩

+ 1
γ

⟨zn − xn+1, y − xn+1⟩ + 1
2θγ ∥y − xn+1∥2

)
.

(ii) When
¯
h ≡ 0, Step 2 of Algorithm 1 becomes

xn+1 ∈ Proxγf (zn),
yn+1 ∈ Proxθγg((θ + 1)xn+1 − θzn − θγ∇h̄(xn+1)),
zn+1 = zn + η(yn+1 − xn+1).

This is the adaptive splitting algorithm studied in [14], which reduces to the Davis–Yin split-
ting if θ = 1 and η = 1.
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(iii) When h ≡ 0, Algorithm 1 reduces to the adaptive Douglas–Rachford splitting [13], which is
written as 

xn+1 ∈ Proxγf (zn),
yn+1 ∈ Proxθγg((θ + 1)xn+1 − θzn),
zn+1 = zn + η(yn+1 − xn+1).

This algorithm becomes the Douglas–Rachford splitting if θ = 1 and η = 1, and the Peaceman–
Rachford splitting [28] if θ = 1 and η = 2.

(iv) When f ≡ 0 and θ = 1, Step 2 of Algorithm 1 reduces to{
yn+1 ∈ Proxγg(zn − γ∇h̄(zn) + γy∗

n) with y∗
n ∈ ∂

¯
h(yn),

zn+1 = (1 − η)zn + ηyn+1,

which is a relaxed version of the generalized proximal point algorithm proposed in [1] for
solving (2). It is worthwhile noting that, when h̄ ≡ 0, Step 2 of Algorithm 1 becomes

xn+1 ∈ Proxγf (zn),
yn+1 ∈ Proxθγg((θ + 1)xn+1 − θzn + θγy∗

n) with y∗
n ∈ ∂

¯
h(yn),

zn+1 = zn + η(yn+1 − xn+1),

providing an alternative algorithm for the general DC program (2) with h̄ replaced by f .

(v) When f ≡ 0,
¯
h ≡ 0, θ = 1, and η = 1, the updating scheme of Algorithm 1 simplifies to{

yn+1 ∈ Proxγg(zn − γ∇h̄(zn)),
zn+1 = (1 − η)zn + ηyn+1,

which is the relaxed forward-backward algorithm; see [4, Section 4].

From now on, let (xn, yn, zn, y
∗
n−1)n∈N∗ be a sequence generated by Algorithm 1. We start our

analysis by some useful properties of the sequence (xn, yn, zn, y
∗
n−1)n∈N∗ .

Lemma 3.2. The following hold:

(i) For all n ∈ N∗, 0 ∈ ∂f(xn) − 1
γ (zn−1 − xn).

(ii) For all n ∈ N∗, 0 ∈ ∂g(yn) + ∇h̄(xn) − y∗
n−1 + 1

θγ (yn − xn) + 1
γ (zn−1 − xn).

(iii) If (yn+1, zn+1) − (yn, zn) → 0 as n → +∞ and there exists a subsequence (xkn , ykn , zkn)n∈N
converging to (x, y, z), then f(xkn) → f(x), g(ykn) → g(y), x = y, and 0 ∈ ∂f(y) + ∂g(y) +
∇h̄(y) − ∂

¯
h(y).

Proof. (i) & (ii): This follows from the optimality condition of the x- and y-updates.
(iii): By the z-update, for all n ∈ N, yn+1 − xn+1 = 1

η (zn+1 − zn) → 0. Since (xkn , ykn , zkn) →
(x, y, z) and (yn+1, zn+1) − (yn, zn) → 0 as n → +∞, we derive that x = y, ykn−1 → y, and zkn−1 →
z. As

¯
h is a continuous convex function, it follows from [5, Proposition 16.17] that (y∗

kn−1)n∈N is
bounded. Passing to a subsequence if necessary, we can and do assume that y∗

kn−1 → y∗ ∈ ∂
¯
h(y) as

n → +∞.

7



Next, the x-update implies that

f(xkn) + 1
2γ ∥xkn − zkn−1∥2 ≤ f(x) + 1

2γ ∥x− zkn−1∥2

and the y-update implies that

g(ykn) + 1
2θγ ∥ykn − (θ + 1)xkn + θzkn−1 + θγ∇h̄(xkn) − θγy∗

kn−1∥2

≤ g(y) + 1
2θγ ∥y − (θ + 1)xkn + θzkn−1 + θγ∇h̄(xkn) − θγy∗

kn−1∥2.

Letting n → +∞ and using the continuity of ∇h yield

lim sup
n→+∞

f(xkn) ≤ f(x) and lim sup
n→+∞

g(ykn) ≤ g(y).

Combining with the lower semicontinuity of f and g, we deduce that limn→+∞ f(xkn) = f(x) and
limn→+∞ g(ykn) = g(y). Now, in view of (i) and (ii),

1
γ

(zkn−1 − xkn) ∈ ∂f(xkn) and − 1
θγ

(ykn − xkn) − 1
γ

(zkn−1 − xkn) ∈ ∂g(ykn) + ∇h̄(xkn) − y∗
kn−1.

Passing to the limit, we have 1
γ (z − x) ∈ ∂f(x) and − 1

γ (z − x) ∈ ∂g(y) + ∇h̄(x) − y∗ ⊆ ∂g(y) +
∇h̄(x) − ∂

¯
h(y), hence 0 ∈ ∂f(x) + ∂g(y) + ∇h̄(x) − ∂

¯
h(y). Since x = y, the proof is complete. ■

Lemma 3.3. Suppose that f is differentiable with κ-Lipschitz continuous gradient. Then, for all
n ∈ N∗, the following hold:

(i) zn−1 = xn + γ∇f(xn).

(ii) ∥zn − zn−1∥ ≤ (1 + γκ)∥xn+1 − xn∥.

(iii) ∥yn+1 − yn∥ ≤ 1+γκ
η ∥xn+2 − xn+1∥ +

(
1 + 1+γκ

η

)
∥xn+1 − xn∥.

Proof. (i): This follows from Lemma 3.2(i) and the differentiability of f .
(ii): We have from (i) that zn − zn−1 = (xn+1 −xn)+γ(∇f(xn+1)−∇f(xn)) and the conclusion

then follows from the Lipschitz continuity of ∇f .
(iii): By the z-update, yn+1 − yn = 1

η (zn+1 − zn) − 1
η (zn − zn−1) + (xn+1 − xn), which together

with (ii) completes the proof. ■

In the upcoming analyses, we assume that H is finite dimensional and we will rely on the
following assumption.

Assumption 3.4 (Standing assumptions).

(i) f : H → R a differentiable α-convex function with κ-Lipschitz continuous gradient and α ≥ −κ.

(ii) g : H → (−∞,+∞] is a proper lower semicontinuous function.

(iii) h = h̄−
¯
h, where h̄ : H → R is a differentiable function with ℓ-Lipschitz continuous gradient,

and
¯
h : H → R is a continuous convex function.
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Remark 3.5 (Relationship between α and κ). Regarding Assumption 3.4(i), we note from
Proposition 2.2(ii) that a differentiable function with κ-Lipschitz continuous gradient is always
(−κ)-convex. Therefore, the assumption on α-convexity of f only makes sense if α ≥ −κ.

By Proposition 2.1(i), it follows from Assumption 3.4(i) that, for all x, y ∈ H, α∥y − x∥2 ≤
⟨∇f(y) − ∇f(x), y − x⟩ ≤ κ∥y − x∥2. As a result, α ≤ κ.

Let us now consider

Ln = f(xn) + g(yn) + h̄(xn) + ⟨∇h̄(xn), yn − xn⟩ −
¯
h(yn−1) − ⟨y∗

n−1, yn − yn−1⟩

+ 1
γ

⟨zn − xn, yn − xn⟩ − 2ηθ − 1
2θγ ∥yn − xn∥2 (5)

and

φ(γ) = 2θκ(κ+ ℓ)γ2 − ((ηθ + 2 − 2θ)α− (3η − 2)θℓ) γ + η − 2.

The following lemma gives a sufficient decrease as well as lower and upper bounds for the sequence
(Ln)n∈N∗ . In particular, its proof also explains how (Ln)n∈N∗ is constructed.

Lemma 3.6 (Sufficient decrease). Suppose that Assumption 3.4 holds and that (η − 1)ℓ ≥ 0.
Then, for all n ∈ N∗, the following hold:

(i) Ln+1−Ln ≤ φ(γ)
2ηθγ ∥xn+1−xn∥2. Consequently, the sequence (Ln)n∈N∗ is nonincreasing provided

that φ(γ) < 0.

(ii) Ln ≥ F (yn) + 1
2

(
1

θγ − κ− ℓ
)

∥yn − xn∥2.

(iii) Ln ≤ F (yn) + ⟨y∗
n − y∗

n−1, yn − yn−1⟩ + 1
2

(
1

θγ + κ+ ℓ
)

∥yn − xn∥2.

Proof. Let n ∈ N. As xn+1 is a minimizer of the (α+ 1
γ )-convex function f + 1

2γ ∥ · −zn∥2, it follows
from Proposition 2.1(ii) that

f(xn+1) + 1
2γ ∥xn+1 − zn∥2 ≤ f(xn) + 1

2γ ∥xn − zn∥2 −
(
α

2 + 1
2γ

)
∥xn+1 − xn∥2. (6)

In view of Remark 3.1(i),

g(yn+1) + h̄(xn+1) + ⟨∇h̄(xn+1), yn+1 − xn+1⟩ −
¯
h(yn) − ⟨y∗

n, yn+1 − yn⟩

+ 1
γ

⟨zn − xn+1, yn+1 − xn+1⟩ + 1
2θγ ∥xn+1 − yn+1∥2

≤ g(yn) + h̄(xn+1) + ⟨∇h̄(xn+1), yn − xn+1⟩ −
¯
h(yn)

+ 1
γ

⟨zn − xn+1, yn − xn+1⟩ + 1
2θγ ∥yn − xn+1∥2. (7)

We note from the z-update that

⟨zn − xn+1, yn+1 − xn+1⟩ = ⟨zn+1 − xn+1, yn+1 − xn+1⟩ − ⟨zn+1 − zn, yn+1 − xn+1⟩
= ⟨zn+1 − xn+1, yn+1 − xn+1⟩ − η∥yn+1 − xn+1∥2, (8)

and from Lemma 2.3 that

⟨zn − xn+1, yn − xn+1⟩ = ⟨zn − xn, yn − xn⟩ + 1
2(∥xn+1 − zn∥2 − ∥xn − zn∥2)
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+ 1
2(∥yn − xn+1∥2 − ∥yn − xn∥2). (9)

For ω ∈ (0,+∞),

h̄(xn+1) + ⟨∇h̄(xn+1), yn − xn+1⟩
= h̄(xn+1) + ⟨∇h̄(xn), yn − xn+1⟩ + ⟨∇h̄(xn+1) − ∇h̄(xn), yn − xn+1⟩
= h̄(xn+1) + ⟨∇h̄(xn), xn − xn+1⟩ + ⟨∇h̄(xn), yn − xn⟩ + ⟨∇h̄(xn+1) − ∇h̄(xn), yn − xn+1⟩

≤ h̄(xn) + ℓ

2∥xn+1 − xn∥2 + ⟨∇h̄(xn), yn − xn⟩ + ℓ∥xn+1 − xn∥∥yn − xn+1∥

≤ h̄(xn) + ⟨∇h̄(xn), yn − xn⟩ +
(
ℓ

2 + ℓω

2

)
∥xn+1 − xn∥2 + ℓ

2ω∥yn − xn+1∥2, (10)

where the first inequality is due to the Lipschiz continuity of ∇h and Proposition 2.2(ii), while the
last one follows from Young inequality.

Now, let n ∈ N∗. Since y∗
n−1 ∈ ∂

¯
h(yn−1), the convexity of

¯
h along with (3) yields

¯
h(yn−1) + ⟨y∗

n−1, yn − yn−1⟩ ≤
¯
h(yn). (11)

We deduce from (6), (7), (8), (9), (10), and (11) that

Ln+1 − Ln ≤
(

− 1
2γ − α

2 + ℓ

2 + ℓω

2

)
∥xn+1 − xn∥2

+
(
ℓ

2ω + θ + 1
2θγ

)
∥yn − xn+1∥2 + 2ηθ − θ − 1

2θγ ∥yn − xn∥2. (12)

Next, it follows from the z-update and Lemma 3.3(i) that

yn − xn = 1
η

(zn − zn−1) = 1
η

(xn+1 − xn) + γ

η
(∇f(xn+1) − ∇f(xn)),

and so

yn − xn+1 = (yn − xn) − (xn+1 − xn) = −η − 1
η

(xn+1 − xn) + γ

η
(∇f(xn+1) − ∇f(xn)).

Since f is α-convex, we have from Proposition 2.1(i) that

⟨xn+1 − xn,∇f(xn+1) − ∇f(xn)⟩ ≥ α∥xn+1 − xn∥2.

By combining with (12) and the Lipschitz continuity of ∇f , we derive that

Ln+1 − Ln ≤
(

− 1
2γ − α

2 + ℓ

2 + ℓω

2 + (η − 1)2ℓ

2η2ω
+ (η − 1)2(θ + 1)

2η2θγ
+ 2ηθ − θ − 1

2η2θγ

)
∥xn+1 − xn∥2

−
((η − 1)ℓγ

η2ω
+ (η − 1)(θ + 1)

η2θ
− 2ηθ − θ − 1

η2θ

)
⟨xn+1 − xn,∇f(xn+1) − ∇f(xn)⟩

+
(
ℓ

2ω + θ + 1
2θγ + 2ηθ − θ − 1

2θγ

)
γ2

η2 ∥∇f(xn+1) − ∇f(xn)∥2

=
(
η − 2
2ηθγ − α

2 + ℓ

2 + ℓω

2 + (η − 1)2ℓ

2η2ω

)
∥xn+1 − xn∥2
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−
((η − 1)ℓγ

η2ω
+ 1 − θ

ηθ

)
⟨xn+1 − xn,∇f(xn+1) − ∇f(xn)⟩

+
(
ℓγ2

2η2ω
+ γ

η

)
∥∇f(xn+1) − ∇f(xn)∥2

≤ Ψ(γ)∥xn+1 − xn∥2,

where

Ψ(γ) := η − 2
2ηθγ − α

2 + ℓ

2 + ℓω

2 + (η − 1)2ℓ

2η2ω
− (η − 1)αℓγ

η2ω
− (1 − θ)α

ηθ
+ κ2ℓγ2

2η2ω
+ κ2γ

η

= η − 2
2ηθγ − (ηθ + 2 − 2θ)α

2ηθ + ℓ

2 + ℓψ(ω) + γκ2

η

with

ψ(ω) := ω

2 + (η − 1)2

2η2ω
− (η − 1)αγ

η2ω
+ κ2γ2

2η2ω
= ω

2 + (η − 1 + γκ)2 − 2(η − 1)(α+ κ)γ
2η2ω

.

If ℓ > 0, then η ≥ 1 and, since α ≥ −κ, we can choose ω = η−1+γκ+
√

2(η−1)(α+κ)γ
η > 0 to obtain

ψ(ω) = η−1+κγ
η , which implies that

Ψ(γ) = η − 2
2ηθγ − (ηθ + 2 − 2θ)α

2ηθ + ℓ

2 + (η − 1 + κγ)ℓ
η

+ γκ2

η

= η − 2
2ηθγ − (ηθ + 2 − 2θ)α

2ηθ + (3η − 2)ℓ
2η + κ(κ+ ℓ)γ

η

= η − 2 − ((ηθ + 2 − 2θ)α− (3η − 2)θℓ) γ + 2θκ(κ+ ℓ)γ2

2ηθγ .

As the latter also holds when ℓ = 0, we get (i).
To get (ii) and (iii), we first have from the z-update and Lemma 3.3(i) that

zn = zn−1 + η(yn − xn) = xn + γ∇f(xn) + η(yn − xn).

Substituting this into (5) yields

Ln = f(xn) + ⟨∇f(xn), yn − xn⟩ + g(yn) + h̄(xn) + ⟨∇h̄(xn), yn − xn⟩

−
¯
h(yn−1) − ⟨y∗

n−1, yn − yn−1⟩ + 1
2θγ ∥yn − xn∥2. (13)

In view of Proposition 2.2(ii), the Lipschitz continuity of ∇f and ∇h gives

f(yn) − κ

2 ∥yn − xn∥2 ≤ f(xn) + ⟨∇f(xn), yn − xn⟩ ≤ f(yn) + κ

2 ∥yn − xn∥2,

h̄(yn) − ℓ

2∥yn − xn∥2 ≤ h̄(xn) + ⟨∇h̄(xn), yn − xn⟩ ≤ h̄(yn) + ℓ

2∥yn − xn∥2.

As y∗
n−1 ∈ ∂

¯
h(yn−1) and y∗

n ∈ ∂
¯
h(yn), it follows from the convexity of

¯
h that

¯
h(yn) − ⟨y∗

n, yn − yn−1⟩ ≤
¯
h(yn−1) ≤

¯
h(yn) − ⟨y∗

n−1, yn − yn−1⟩

Combining these inequalities with (13), we get (ii) and (iii). ■

11



As observed in Lemma 3.6, to obtain the sufficient decrease property of (Ln)n∈N∗ , we require
that φ(γ) < 0. Let us now explore the condition for γ further.

Remark 3.7 (Condition for parameter γ). We first examine the scenario where κ = 0. Then
α = 0 (see Remark 3.5) and

φ(γ) < 0 ⇐⇒ (3η − 2)θℓγ + η − 2 < 0 ⇐⇒
(
η ≤ 2

3

)
or

(2
3 < η < 2 and γ <

2 − η

(3η − 2)θℓ

)
.

Next, assume that κ > 0. Then φ is a quadratic polynomial of γ with leading coefficient
2θκ(κ+ℓ) > 0 and discriminant ∆ := ((ηθ + 2 − 2θ)α− (3η − 2)θℓ)2 −8(η−2)θκ(κ+ℓ). Therefore,

φ(γ) < 0 ⇐⇒ (∆ > 0 and γ < γ < γ),

where γ := (ηθ+2−2θ)α−(3η−2)θℓ−
√

∆
4θκ(κ+ℓ) and γ := (ηθ+2−2θ)α−(3η−2)θℓ+

√
∆

4θκ(κ+ℓ) .

(i) Given that γ ∈ (0,+∞), we consider the following cases.
Case 1: η < 2. Then ∆ > 0, γ > 0, and

(φ(γ) < 0 and γ ∈ (0,+∞)) ⇐⇒ γ ∈ (0, γ).

Case 2: η ≥ 2. Then γγ = η−2
2θκ(κ+ℓ) ≥ 0 provided that ∆ > 0. Thus,

(∆ > 0 and γ > 0) ⇐⇒
(

∆ > 0 and (ηθ + 2 − 2θ)α− (3η − 2)θℓ
2θκ(κ+ ℓ) = γ + γ > 0

)
⇐⇒ (ηθ + 2 − 2θ)α− (3η − 2)θℓ >

√
8(η − 2)θκ(κ+ ℓ).

Since ηθ + 2 − 2θ > 0, we deduce that

(φ(γ) < 0 and γ ∈ (0,+∞)) ⇐⇒
(
α >

(3η − 2)θℓ+ 2
√

2(η − 2)θκ(κ+ ℓ)
ηθ + 2 − 2θ and γ ∈ (γ, γ)

)
,

where the condition for α is ensured when either α > 0 and θ is sufficiently small, or α > 2θℓ
and η is sufficiently close to 2. We should also keep in mind that α ≤ κ.

(ii) As seen later in Theorem 3.8, to guarantee the boundedness of the sequence generated by
Algorithm 1, it is essential to require γ < 1

θ(κ+ℓ) . We observe that, since α ≤ κ,

φ

( 1
θ(κ+ ℓ)

)
= 2κ
θ(κ+ ℓ) − (ηθ + 2 − 2θ)α− (3η − 2)θℓ

θ(κ+ ℓ) + η − 2

≥ 2κ− (ηθ + 2 − 2θ)κ+ (3η − 2)θℓ+ (η − 2)θ(κ+ ℓ)
θ(κ+ ℓ) = 4(η − 1)ℓ

κ+ ℓ
.

Suppose that (η − 1)ℓ ≥ 0. Then φ
(

1
θ(κ+ℓ)

)
≥ 0. Hence, in the case when ∆ > 0, we must

have 1
θ(κ+ℓ) /∈ (γ, γ), and so

γ <
1

θ(κ+ ℓ) ⇐⇒ γ ≤ 1
θ(κ+ ℓ)

⇐⇒ η − 2
2θκ(κ+ ℓ) = γγ <

( 1
θ(κ+ ℓ)

)2

⇐⇒ η < 2 + 2κ
θ(κ+ ℓ) .
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We now arrive at the main convergence results, indicating that the DRFDR indeed offers flex-
ibility with two adjustable relaxation parameters θ and η. Even when these parameters are set to
match those of existing algorithms, our proposed algorithm allows for a larger range of the stepsize
parameter γ.

Theorem 3.8 (Subsequential convergence). Suppose that Assumption 3.4 holds, that F is
coercive, and that either

(a) κ > 0, η ∈ (0, 2) if ℓ = 0, η ∈ [1, 2) if ℓ > 0, and γ ∈ (0, γ); or

(b) κ > 0, η ∈
[
2, 2 + 2κ

θ(κ+ℓ)

)
, α > (3η−2)θℓ+2

√
2(η−2)θκ(κ+ℓ)

ηθ+2−2θ , and γ ∈ (γ, γ); or

(c) κ = 0, η ∈ (0, 2), γ ∈
(
0, 1

θℓ

)
if η ≤ 1, and γ ∈

(
0, 2−η

(3η−2)θℓ

)
if η > 1,

where

γ := (ηθ + 2 − 2θ)α− (3η − 2)θℓ−
√

∆
4θκ(κ+ ℓ) and γ := (ηθ + 2 − 2θ)α− (3η − 2)θℓ+

√
∆

4θκ(κ+ ℓ)

with ∆ := ((ηθ + 2 − 2θ)α− (3η − 2)θℓ)2 − 8(η − 2)θκ(κ+ ℓ). Then the following hold:

(i) The sequence (xn, yn, zn, y
∗
n−1)n∈N∗ is bounded and

+∞∑
n=1

∥(xn+1, yn+1, zn+1) − (xn, yn, zn)∥2 < +∞.

Consequently, (xn+1, yn+1, zn+1) − (xn, yn, zn) → 0 as n → +∞.

(ii) For every cluster point (x, y, z) of (xn, yn, zn)n∈N∗, it holds that x = y,

lim
n→+∞

Ln = lim
n→+∞

F (yn) = F (y), and 0 ∈ ∂(f + g + h̄)(y) − ∂
¯
h(y).

Proof. We first have from Remark 3.7 that φ(γ) < 0 and γ < 1
θ(κ+ℓ) . By Lemma 3.6(i)&(ii),

the sequence (Ln)n∈N∗ is nonincreasing (14)

and, for all n ∈ N∗,

L1 ≥ Ln ≥ F (yn) + 1
2

( 1
θγ

− κ− ℓ

)
∥yn − xn∥2. (15)

Since F is proper, lower semicontinuous, and coercive, it is bounded below due to [31, Theorem 1.9].
Moreover, 1

θγ − κ − ℓ > 0 because γ < 1
θ(κ+ℓ) . In view of (15), (F (yn))n∈N∗ and (∥yn − xn∥)n∈N∗

are bounded. Combining with the coercivity of F , this implies the boundedness of (yn)n∈N∗ and
then of (xn)n∈N∗ . Next, the boundedness of (zn)n∈N∗ follows from the continuity of ∇f and the fact
that zn = xn+1 + γ∇f(xn+1). Since y∗

n−1 ∈ ∂
¯
h(yn−1) and

¯
h is continuous and convex, we use [5,

Proposition 16.20] to get the boundedness of (y∗
n−1)n∈N∗ .

Since both terms on the right-hand side of (15) are bounded below, so is (Ln)n∈N∗ . Together
with (14), we obtain that (Ln)n∈N∗ converges to some L ∈ R. Now, by again using Lemma 3.6(i)
and telescoping sum,

−φ(γ)
2ηθγ

+∞∑
n=1

∥xn+1 − xn∥2 ≤
+∞∑
n=1

(Ln − Ln+1) = L1 − L < +∞,
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and thus,
∑+∞

n=1 ∥xn+1 − xn∥2 < +∞. This combined with Lemma 3.3(ii)&(iii) yields

+∞∑
n=1

∥(xn+1, yn+1, zn+1) − (xn, yn, zn)∥2 < +∞,

and so (xn+1, yn+1, zn+1) − (xn, yn, zn) → 0 as n → +∞.
Let (x, y, z) be a cluster point of (xn, yn, zn)n∈N∗ . Then there exists a subsequence

(xkn , ykn , zkn)n∈N converging to (x, y, z). We derive from Lemma 3.2(iii) that x = y,

0 ∈ ∇f(y) + ∂g(y) + ∇h̄(y) − ∂
¯
h(y) = ∂(f + g + h̄)(y) − ∂

¯
h(y),

and g(ykn) → g(y) as n → +∞. Note that

Lkn = f(xkn) + g(ykn) + h̄(xkn) + ⟨∇h̄(xkn), ykn − xkn⟩ −
¯
h(ykn−1) − ⟨y∗

kn−1, ykn − ykn−1⟩

+ 1
γ

⟨zkn − xkn , ykn − xkn⟩ − 2ηθ − 1
2θγ ∥ykn − xkn∥2.

Using the boundedness of (y∗
n−1)n∈N∗ and the continuity of f , h̄, ∇h̄, and

¯
h, we have Lkn →

f(y) + g(y) + h̄(y) −
¯
h(y) = F (y) as n → +∞. By the convergence of the whole sequence (Ln)n∈N∗ ,

it follows that

lim
n→+∞

Ln = F (y).

Finally, since (y∗
n−1)n∈N∗ is bounded and yn − xn = 1

η (zn − zn−1) → 0, yn − yn−1 → 0 as n → +∞,
we deduce from Lemma 3.6(ii)&(iii) that limn→+∞ F (yn) = limn→+∞ Ln, completing the proof. ■

Remark 3.9 (Larger range of parameter γ). Regarding the condition for γ in Theorem 3.8,
we consider the following cases.

(i) η = 1. Then the condition for γ becomes

γ < γ =
(2 − θ)α− θℓ+

√
((2 − θ)α− θℓ)2 + 8θκ(κ+ ℓ)
4θκ(κ+ ℓ) ,

which is equivalent to φ(γ) = 2θκ(κ + ℓ)γ2 − ((2 − θ)α− θℓ) γ − 1 < 0 (see Remark 3.7). If
additionally θ = 1, then the condition reduces to

γ <
α− ℓ+

√
(α− ℓ)2 + 8κ(κ+ ℓ)
4κ(κ+ ℓ) ,

or equivalently,

φ(γ) = 2κ(κ+ ℓ)γ2 − (α− ℓ) γ − 1 < 0. (16)

This considerably improves the convergence result for the Davis–Yin splitting (Algorithm 1
with

¯
h ≡ 0, θ = 1, and η = 1) analyzed in [6]. Indeed, the latter requires

1
2

(1
γ

+ α

)
− ℓ−

(1
γ

+ ℓ

2

)(
(−1 − 2αγ) + (1 + κγ)2

)
> 0,
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which can be written as

φ(γ) + (κγ − 1)2ℓγ + 2(κ− α)ℓγ2 + 4(κ− α)γ < 0. (17)

Since α ≤ κ, (17) implies (16) and moreover, by Remark 3.7, γ < 1
κ+ℓ ≤ 1

κ , which yields
(κγ − 1)2 > 0. Therefore, (17) even strictly more restrictive than (16) once ℓ > 0 or α < κ.
Let us now consider the case when h̄ ≡ 0 (which yields ℓ = 0), θ = 1, and η = 1. Then the
condition for γ becomes

γ <
α+

√
α2 + 8κ2

4κ2 , or equivalently, 2κ2γ2 − αγ − 1 < 0. (18)

If additionally
¯
h ≡ 0, then Algorithm 1 reduces to the Douglas–Rachford splitting whose

convergence is established in [22] under the setting of Theorem 3.8 except that

(1 + κγ)2 − 5αγ
2 − 3

2 < 0, or equivalently, (2κ2γ2 − αγ − 1) + 4(α− κ)γ < 0,

which is more restrictive than (18) since α ≤ κ.

(ii) η = 2. Then we require that α > 2θℓ and

γ <
α− 2θℓ
θκ(κ+ ℓ) .

If, in addition, h̄ ≡ 0 (which yields ℓ = 0), these requirements reduce to α > 0 (f is strongly
convex) and γ < α

θκ2 . This significantly improves the result for the Peaceman–Rachford
splitting (Algorithm 1 with h̄ ≡ 0,

¯
h ≡ 0, θ = 1, and η = 2) in [21] which requires α > 3

2κ and
γ < 3α−2κ

κ2 .

Now, we recall that the conjugate of a proper function p is p∗ : H → (−∞,+∞] given by

p∗(u) = sup
x∈H

(⟨u, x⟩ − p(x)).

According to, e.g., [5, Proposition 16.10], for all y ∈ H and all y∗ ∈ ∂
¯
h(y),

−
¯
h(y) =

¯
h∗(y∗) − ⟨y∗, y⟩ and y ∈ ∂

¯
h∗(y∗). (19)

The former together with (5) implies that, for all n ∈ N∗,

Ln = f(xn) + g(yn) + h̄(xn) + ⟨∇h̄(xn), yn − xn⟩ +
¯
h∗(y∗

n−1) − ⟨y∗
n−1, yn⟩

+ 1
γ

⟨zn − xn, yn − xn⟩ − 2ηθ − 1
2θγ ∥yn − xn∥2

= L(xn, yn, zn,∇h̄(xn), y∗
n−1),

where L : H5 → (−∞,+∞] defined by

L(x, y, z, u, v) = f(x) + g(y) + h̄(x) + ⟨u, y − x⟩ +
¯
h∗(v) − ⟨v, y⟩

+ 1
γ

⟨z − x, y − x⟩ − 2ηθ − 1
2θγ ∥y − x∥2.
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Theorem 3.10 (Full sequential convergence). Suppose that the assumptions of Theorem 3.8
hold and that L is a KL function. Then

+∞∑
n=1

∥(xn+1, yn+1, zn+1) − (xn, yn, zn)∥ < +∞.

and the sequence (xn, yn, zn)n∈N∗ converges to (x̃, ỹ, z̃) with x̃ = ỹ and

0 ∈ ∂(f + g + h̄)(ỹ) − ∂
¯
h(ỹ).

Moreover, if L is a KL function with exponent λ ∈ [0, 1), then exactly one of the following alterna-
tives holds:

(i) (Finite convergence) λ = 0 and there exists n0 ∈ N such that, for all n ≥ n0, (xn, yn, zn) =
(x̃, ỹ, z̃).

(ii) (Linear convergence) λ ≤ 1
2 and there exist Γ ∈ (0,+∞) and ρ ∈ (0, 1) such that, for all

n ∈ N∗, ∥(xn, yn, zn) − (x̃, ỹ, z̃)∥ ≤ Γρ
n
2 and |F (yn) − F (ỹ)| ≤ Γρ

n
2 .

(iii) (Sublinear convergence) λ > 1
2 and there exists Γ ∈ (0,+∞) such that, for all n ∈ N∗,

∥(xn, yn, zn) − (x̃, ỹ, z̃)∥ ≤ Γn− 1−λ
2λ−1 and |F (yn) − F (ỹ)| ≤ Γn− 1−λ

2λ−1 .

Proof. For each n ∈ N∗, set wn = (xn, yn, zn,∇h̄(xn), y∗
n−1). Let n ∈ N∗. We derive from

Lemma 3.6(i) that

L(wn+1) − φ(γ)
2ηθγ ∥xn+1 − xn∥2 ≤ L(wn),

and from Theorem 3.8(i) that (xn, yn, zn, y
∗
n−1)n∈N∗ is bounded, and so is (wn)n∈N∗ due to the

continuity of ∇h. For every cluster point w of (wn)n∈N∗ , one has w = (x, y, z,∇h̄(x), y∗) with
y∗ ∈ ∂

¯
h(y) and, by Theorem 3.8(ii) along with the equality in (19), x = y and

L(wn) = Ln → F (y) = L(w) as n → +∞.

Next, we see that

∂L(wn) =


∇f(xn) + ∇h̄(xn) − ∇h̄(xn) − 1

γ (zn − xn) − 1
γ (yn − xn) + 2ηθ−1

θγ (yn − xn)
∂g(yn) + ∇h̄(xn) − y∗

n−1 + 1
γ (zn − xn) − 2ηθ−1

θγ (yn − xn)
1
γ (yn − xn)
yn − xn

∂
¯
h∗(y∗

n−1) − yn

 .

On the other hand, we have from Lemma 3.3(i) that ∇f(xn) = 1
γ (zn−1−xn), from Lemma 3.2(ii) that

− 1
θγ (yn−xn)− 1

γ (zn−1−xn) ∈ ∂g(yn)+∇h̄(xn)−y∗
n−1, from the z-update that yn−xn = 1

η (zn−zn−1),
and from (19) that yn−1 ∈ ∂

¯
h∗(y∗

n−1). This leads to

ηθ−θ−1
ηθγ (zn − zn−1)
− 1

γ (zn − zn−1)
1

ηγ (zn − zn−1)
1
η (zn − zn−1)
−(yn − yn−1)

 ∈ ∂L(wn),
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By combining with Lemma 3.3(ii)&(iii), there exists C ∈ (0,+∞) such that, for all n ≥ 2,

dist(0, ∂L(wn)) ≤ C(∥xn+1 − xn∥ + ∥xn − xn−1∥).

We now apply [7, Theorem 5.1] with ∆n = ∥xn+1 − xn∥, αn ≡ − φ(γ)
2ηθγ , I = {0, 1}, λ1 = λ2 = 1/2,

βn ≡ 1/(2C), and εn ≡ 0 to obtain that

+∞∑
n=1

∥xn+1 − xn∥ =
+∞∑
n=1

∆n < +∞,

which together with Lemma 3.3(ii)&(iii) implies that

+∞∑
n=0

∥(xn+1, yn+1, zn+1) − (xn, yn, zn)∥ < +∞.

Therefore, (xn, yn, zn, )n∈N converges to a point (x̃, ỹ, z̃) ∈ H3. By Theorem 3.8(ii), x̃ = ỹ and
0 ∈ ∂(f + g + h̄)(ỹ) − ∂

¯
h(ỹ).

Now, assume that L is a KL function with exponent λ ∈ [0, 1). We distinguish the following
three cases.

Case 1: λ = 0. Following the arguments in the proof of [7, Theorem 5.1] and [2, Theorem 2(i)],
we get (i).

Case 2: λ ≤ 1
2 . In view of [7, Theorem 5.1(iv)], there exist Γ0 ∈ (0,+∞) and ρ ∈ (0, 1) such

that, for all n ∈ N∗,

∥xn − x̃∥ ≤ Γ0ρ
n
2 and |L(wn) − L(w̃)| ≤ Γ0ρ

n.

Then

∥xn+1 − xn∥ ≤ ∥xn+1 − x̃∥ + ∥xn − x̃∥ ≤ 2Γ0ρ
n
2 ,

which combined with Lemma 3.3(ii)&(iii) implies that

∥zn − zn−1∥ ≤ 2(1 + γκ)Γ0ρ
n
2 and ∥yn+1 − yn∥ ≤ 2

(
1 + 2(1 + γκ)

η

)
Γ0ρ

n
2 . (20)

By the z-update,

∥yn − xn∥ = 1
η

∥zn − zn−1∥ ≤ 2(1 + γκ)
η

Γ0ρ
n
2 . (21)

As x̃ = ỹ, it follows that

∥yn − ỹ∥ ≤ ∥xn − x̃∥ + ∥yn − xn∥ ≤
(

1 + 2(1 + γκ)
η

)
Γ0ρ

n
2 .

Recall from Lemma 3.3(i) that zn−1 = xn + γ∇f(xn). Passing to the limit yields z̃ = x̃+ γ∇f(x̃),
from which and the Lipschitz continuity of ∇f we have

∥zn−1 − z̃∥ ≤ ∥xn − x̃∥ + γ∥∇f(xn) − ∇f(x̃)∥ ≤ (1 + γκ)∥xn − x̃∥ ≤ (1 + γκ)Γ0ρ
n
2 .
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Therefore,

∥(xn, yn, zn) − (x̃, ỹ, z̃)∥ ≤ ∥xn − x̃∥ + ∥yn − ỹ∥ + ∥zn − z̃∥ ≤
(

3 + γκ+ 2(1 + γκ)
η

)
Γ0ρ

n
2 .

On the other hand, we derive from Lemma 3.6(ii)&(iii) that

|Ln − F (yn)| ≤ ∥y∗
n − y∗

n−1∥∥yn − yn−1∥ + 1
2

( 1
θγ

+ κ+ ℓ

)
∥yn − xn∥2

By the boundedness of (y∗
n−1)n∈N∗ (see Theorem 3.8(i)), (20), and (21), there exists Γ1 ∈ (0,+∞)

such that, for all n ∈ N∗, |Ln − F (yn)| ≤ Γ1ρ
n
2 . Noting that L(wn) = Ln and L(w̃) = F (ỹ), we

obtain that

|F (yn) − F (ỹ)| ≤ |L(wn) − L(w̃)| + |Ln − F (yn)| ≤ (Γ0ρ
n
2 + Γ1)ρ

n
2 .

Letting Γ = max{
(
3 + γκ+ 2(1+γκ)

η

)
Γ0,Γ0ρ

n
2 + Γ1}, we get (ii).

Case 3: λ > 1
2 . Arguing as in the proof of [7, Theorem 5.1(iv)] and [2, Theorem 2(iii)], there

exists Γ0 ∈ (0,+∞) such that, for all n ∈ N∗,

∥xn − x̃∥ ≤ Γ0n
− 1−λ

2λ−1 and |L(wn) − L(w̃)| ≤ Γ0n
− 2−2λ

2λ−1 .

By the same steps as in Case 2, we also have that, for all n ∈ N∗,

∥(xn, yn, zn) − (x̃, ỹ, z̃)∥ ≤
(

3 + γκ+ 2(1 + γκ)
η

)
Γ0n

− 1−λ
2λ−1

and

|F (yn) − F (ỹ)| ≤ (Γ0n
− 1−λ

2λ−1 + Γ1)n− 1−λ
2λ−1 for some Γ1 ∈ (0,+∞).

Again letting Γ = max{
(
3 + γκ+ 2(1+γκ)

η

)
Γ0,Γ0ρ

n
2 + Γ1}, we complete the proof. ■

Remark 3.11 (Comments on the assumption on
¯
h). There are several previous studies in the

literature [1, 34, 29] employing the subgradient of the subtrahend part
¯
h. When it comes to proving

the convergence of the whole sequence, they need an additional assumption that
¯
h has Lipschitz

continuous gradient. Inspired by the technique in [23], we utilize the conjugate of
¯
h to construct

the Lyapunov function L, and we do not require any additional assumptions on
¯
h to prove the full

sequential convergence, as shown in Theorem 3.10.

4. Numerical results

All of the experiments are performed in MATLAB R2023b on a 64-bit laptop with Intel(R)
Core(TM) i7-1165G7 CPU (2.80GHz) and 32GB of RAM.

4.1. An analytical example

Consider the toy example

min
x∈Rd

∥Ax∥2 + ρ∥x∥1 + 1
2e

−∥x∥2 − ρ∥x∥, (22)
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where A ∈ Rd×d and ρ ∈ (0,+∞). One stationary point of this problem is y∗ = 0 ∈ Rd. We
will examine Algorithm 1 in solving (22). Let f(x) = ∥Ax∥2 (κ = 2λmax(A⊤A)), g(x) = ρ∥x∥1,
h̄(x) = 1

2e
−∥x∥2 (ℓ = e−2), and

¯
h(x) = ρ∥x∥. Here, λmax(M) denotes the maximum eigenvalue of

matrix M .
We run the DRFDR starting at the point y0 = z0 = [10, 10]⊤, and the stopping condition is

∥yn+1 − yn∥ < 10−2. Let us choose

A =
[
1 0
0 0

]
.

For this case, α = 0. First, we fix γ = 0.22 and let η vary from 1.0 to 1.5. We then fix η = 1.5 and
let γ vary from 0.05 to 0.22 (By Theorem 3.8, γ < γ = 0.223). From Figure 1(a)&(b), we observe
that larger η and γ result in faster convergence.

(a) (b)
Figure 1: Effects of η and γ.

Next, we choose A ∈ R2×2 to be the identity matrix. Then α = 2 > 0 and we can choose η ≥ 2.
Let θ = 1, ρ = 0.1, and γ = 0.3. According to Theorem 3.8, η ∈ [2, 3.87). Now, Figure 2(a) shows
that larger η results in faster convergence. We then fix η = 2 and vary γ. Again it can be seen from
Figure 2(b) that the DRFDR converges faster with larger γ.

(a) (b)
Figure 2: Effects of η and γ when α > 0.
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4.2. Low-rank matrix recovery on synthetic data and real power system load
data

We revisit the problem introduced in Example 1.1. In this case, f(X) = 1
2∥PΩ(X) − PΩ(M)∥2,

g(X) = ιC(r)(X), h̄(X) = ρ
2∥X∥2

F , and
¯
h ≡ 0. We set θ = 1, α = 0, ρ = 1.8 × 10−6 (since the

value of the term h̄(X) is much larger compared to that of the term f(X)), ℓ = ρ, and κ = 1. The
updating steps of Algorithm 1 in this case become

Xij
n+1 =

{ 1
1+γ (Zij

n + γM ij) if (i, j) ∈ Ω,
Zij

n if (i, j) /∈ Ω,
Yn+1 = PC(r)((2 − γρ)Xn+1 − Zn),
Zn+1 = Zn + η(Yn+1 −Xn+1),

where PC(r)(X) = U
∑

r V
⊤ = Udiag({σi}1≤i≤r)V ⊤. We employ the heuristic in [22] to set the

parameter γ. First, initialize γ = kγ0 and update γ = max{γ/2, 0.9999γ} whenever γ > γ0 and the
sequence Xn satisfies ∥Xn+1 −Xn∥F > 1000/n or ∥Xn∥F > 1010. We choose η = 1.8, then in view
of Theorem 3.8, γ ≈ 0.32, so we set γ0 = 0.2 for our algorithm. We compare our algorithm with
the forward-backward splitting (FBS), the Douglas–Rachford splitting applied to (MR’) (denoted
as DRS) and to (MR-M) (denoted as DRSR), and the Davis–Yin splitting (DYS), all of which are
considered in [6]. According to [6], γ0 = 0.22 for the DRS and DRSR, and γ0 = 0.15 for the DYS.
The DRS, DRSR, and DYS used the same heuristic described above to update γ, while γ = 2/3
for the FBS. We let k = 106 for the DRS, DRSR, DYS, and the DRFDR. All the singular value
decomposition (SVD) involved in this experiment were conducted by using PROPACK toolbox.

Let us now assess the performance of the DRFDR on randomly generated data. We generate
n × n matrices of rank r by sampling two n × r matrices M1 and M2 independently, each having
i.i.d Gaussian entries, and let M = M1M

⊤
2 . The set of observed entries Ω is sampled uniformly at

random among all sets of cardinality m. The sampling ratio is defined as R = m/n2. We run all the
algorithms, initialized at the sampled matrix, for a maximum of 2000 iterations. All the algorithms
are run for 10 times, at each time M and Ω are randomly generated. The stopping criterion for all
algorithms is

∥PΩ(Yn −M)∥
∥PΩ(M)∥ < 10−4, and the evaluation metric is relative error (RE) := ∥Yopt −M∥F

∥M∥F
.

Table 1 reports the CPU time, the number of iterations, the RE at termination. The DRFDR
outperforms all of the remaining algorithms in terms of CPU time and RE, and also requires fewer
iterations to converge.

Next, we evaluate the performance of the DRFDR on a real dataset. The dataset is taken from
the “2023 Distribution zone substation data”, which is publicly published by Ausgrid1. We take the
load data from four 11kV meters, namely “Beacon Hill”, “Botany”, “City East”, and “Surry Hill”,
to form a 480 × 364 matrix. As studied in [35, 10, 33], load data and PMU data have low rank
property, and can be compressed using SVD with negligible error. Hence, we compress our data
into a 20-rank matrix using the SVD. We then evaluate the performance of all algorithms on this
20-rank matrix. Set γ0 = 0.22 and η = 1.8 for the DRFDR, while the parameters of the remaining
algorithms are the same ones as before. Let k = 10 for the DRS, DRSR, DYS, and the DRFDR.

1The dataset can be found at https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share/
Distribution-zone-substation-data.
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Table 1: Results of 10 randomly generated instances

CPU time (seconds) Iterations RE
R = 0.1, rank 10

Size∗ FBS DRS DRSR DYS DRFDR FBS DRS DRSR DYS DRFDR FBS DRS DRSR DYS DRFDR
5000 133.8 42.1 181.2 37.5 18.5 178 45 212 45 22 1.19E-04 1.02E-04 1.22E-04 9.86E-05 8.84E-05
8000 297.2 101.3 407.5 89.5 43.5 163 44 194 44 21 1.13E-04 1.03E-04 1.14E-04 1.01E-04 8.23E-05
12000 622.0 260.5 881.4 198.9 95.8 155 44 185 44 21 1.07E-04 9.05E-05 1.09E-04 9.08E-05 6.88E-05

R = 0.15, rank 10
5000 86.4 40.9 119.7 36.1 20.0 107 40 129 40 22 1.11E-04 8.55E-05 1.10E-04 9.24E-05 7.63E-05
8000 195.2 96.1 275.9 88.0 47.0 100 39 122 40 21 1.10E-04 9.62E-05 1.02E-04 8.33E-05 8.36E-05
12000 421.6 256.4 599.5 190.8 103.5 97 39 118 39 21 1.01E-04 8.37E-05 9.92E-05 1.01E-04 6.74E-05

R = 0.1, rank 15
5000 171.5 49.3 229.7 44.9 22.7 193 46 230 46 23 1.26E-04 1.04E-04 1.28E-04 1.00E-04 9.96E-05
8000 372.2 116.2 494.8 106.1 52.1 173 45 204 45 22 1.16E-04 9.93E-05 1.16E-04 9.60E-05 7.57E-05
12000 766.2 275.5 1045.3 231.9 110.4 161 44 192 44 21 1.13E-04 1.01E-04 1.08E-04 1.00E-04 8.05E-05

R = 0.15, rank 15
5000 106.3 45.0 140.9 40.7 23.0 113 40 135 40 22 1.18E-04 9.82E-05 1.17E-04 1.01E-04 8.51E-05
8000 244.4 112.9 329.1 101.7 56.1 105 40 126 40 22 1.08E-04 8.44E-05 1.10E-04 9.21E-05 7.16E-05
12000 502.6 321.5 680.2 219.3 118.4 100 39 121 40 21 1.04E-04 9.66E-05 1.02E-04 8.38E-05 7.97E-05
∗Size m means that the matrix M is m × m.

We run all the algorithms for 10 times, at each time we create a random Ω. Table 2 shows the
average results of 10 runs. It can be seen that on this real dataset, the DRFDR still outperforms all
of the remaining algorithms, on different sampling ratios. Note that the sampling ratio in this case
is R = m/(n1n2), where (n1, n2) = (480, 364). In Figure 3, we plot the load of one representative
day in the matrix recovered by the DRFDR (when R = 0.4) versus its corresponding ground truth
value, and this figure shows that the accuracy of the recovering process is high.

Table 2: Results of 10 runs on power system load dataset

CPU time (seconds) Iterations RE
R FBS DRS DRSR DYS DRFDR FBS DRS DRSR DYS DRFDR FBS DRS DRSR DYS DRFDR
0.4 25.9 31.1 28.0 29.7 15.0 2000 1928 1949 1858 1080 3.21E-02 1.71E-02 1.89E-02 1.63E-02 3.33E-04
0.5 31.3 17.3 13.5 17.5 6.5 1632 817 767 1039 328 7.89E-03 2.59E-04 2.27E-04 4.41E-03 2.03E-04
0.6 10.92 7.82 7.44 7.34 3.45 853 542 553 551 251 1.91E-04 1.40E-04 1.35E-04 1.84E-04 1.05E-04
0.7 7.39 6.20 4.34 4.52 1.52 543 362 314 328 107 1.73E-04 1.31E-04 1.36E-04 1.28E-04 1.13E-04

Figure 3: Reconstructed load by DRFDR versus ground truth load.

4.3. Simultaneously sparse and low-rank matrix estimation

In this section, we consider the problem introduced in Example 1.2. Let f(X) = 1
2∥X − A∥2

F

(κ = 1), g(X) = ρ1∥X∥1, h̄(X) = ρ2∥X∥2
F (ℓ = 2ρ2), and

¯
h(X) = ρ2 |||X|||2k,2. We choose θ = 1,

21



ρ1 = ρ2 = 0.1, and η = 1.4. The updating of the DRFDR in this case is
Xn+1 = γ

1 + γ
(A+ Zn),

Yn+1 = Proxγρ1∥·∥1(2Xn+1 − Zn − γ∇h̄(Xn+1) + γY ∗
n ),

Zn+1 = Zn + η(Yn+1 −Xn+1).

where Proxγρ1∥·∥1 is the soft shrinkage operator imposed on all the entries of the input matrix. The
subgradient Y ∗

n is calculated as described in [32, Proposition 1]. We consider two cases when α = 0
and α = 1. By Theorem 3.8, γ ≈ 0.4167 when α = 0, and γ ≈ 0.7385 when α = 1. Let γ = γ−10−20.
We first generate a block diagonal matrix AG, formed by five smaller, randomly generated square
matrices of size 300 × 300, 400 × 400, 100 × 100, 200 × 200, and 100 × 100. Each of them is formed
by vv⊤ where the entries of v are drawn i.i.d. from the uniform distribution on [−1, 1]. Hence, all
the submatrices have rank 1. We then randomly choose R percent of the entries of AG and add
Gaussian noise to them to form the noisy input matrix A (this means that R percent of the entries
of AG are corrupted by noise). We compare the DRFDR with the Incremental Proximal Descent
(IPD) in [30], for 10 runs over 10 randomly generated instances, initialized at A, and for each run
we regenerate A. The maximum iteration is 2000 and the stopping condition for both algorithms is
∥Yn+1−Yn∥F

∥Yn∥F
< 10−6. The proximal stepsize for the IDP is set to 0.5. The evaluation metrics in this

case is the relative error RE := ∥Yopt−AG∥F

∥AG∥F
. Table 3 shows that the DRFDR outperforms the IPD,

and it also shows that the new formulation (SLRME-M) can yield competitive solutions compared
to those of the conventional (SLRME), which justifies the potential of the DC regularization term.
It can also be seen that larger α yields larger γ, which leads to faster convergence and slightly better
solutions.

Table 3: Average results of 10 random generated instances
CPU time (seconds) Iterations RE

R IPD DRFDR DRFDR IPD DRFDR DRFDR IPD DRFDR DRFDR
(α = 0) (α = 1) (α = 0) (α = 1) (α = 0) (α = 1)

15% 6.32 4.20 3.89 17 12 10 7.27E-01 6.68E-01 5.54E-01
20% 6.01 4.18 3.87 17 12 10 8.24E-01 6.88E-01 6.35E-01
25% 6.15 4.16 3.53 17 12 10 9.14E-01 7.08E-01 6.83E-01
30% 6.78 4.67 3.45 17 12 10 9.88E-01 7.25E-01 7.30E-01

5. Conclusion

We have proposed a splitting algorithm for minimizing the sum of three nonconvex functions, one
of which is expressed in a DC form. The sequence of iterates generated by the proposed algorithm
is bounded and any of its cluster points is a stationary point of the model problem. We have also
established the global convergence of the whole sequence and derived the convergence rates of both
the iterates and objective function values by further assuming the KL property for a suitable merit
function, without any additional assumption on the concave part in the objective function. Our
analysis not only extends the scope but also unifies and enhances recent convergence analyses of the
Douglas–Rachford, Peaceman–Rachford, and David–Yin splitting algorithms in nonconvex settings.
Intensive numerical experiments on both synthetic data and real data shows the superiority of our
proposed algorithm. The experiment on the real Ausgrid dataset suggests that splitting algorithms
have strong potential in developing data recovery methods for power system operators, providing
a proof-of-concept for future research. The experiment on the simultaneously sparse and low-rank
matrix estimation with the new nonconvex formulation also shows promising results.
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