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Abstract. In this paper we investigate MV-monoids and their subquasiva-
rieties. MV-monoids are algebras 〈A,∨,∧,⊕,⊙, 0, 1〉 where 〈A,∨,∧, 0, 1〉 is a
bounded distributive lattice, 〈A,⊕, 0〉 and 〈A,⊙, 1〉 are commutative monoids,
and some further connecting axioms are satisfied. Every MV-algebra in the
signature {⊕,¬, 0} is term equivalent to an algebra that has an MV-monoid
as a reduct, by defining, as standard, 1 := ¬0, x ⊙ y := ¬(¬x ⊕ ¬y), x ∨ y :=
(x ⊙ ¬y) ⊕ y and x ∧ y := ¬(¬x ∨ ¬y). Particular examples of MV-monoids
are positive MV-algebras, i.e. the {∨,∧,⊕,⊙, 0, 1}-subreducts of MV-algebras.
Positive MV-algebras form a peculiar quasivariety in the sense that, albeit hav-
ing a logical motivation (being the quasivariety of subreducts of MV-algebras),
it is not the equivalent quasivariety semantics of any logic. In this paper, we
study the lattice of subvarieties of MV-monoids and describe the lattice of
subvarieties of positive MV-algebras. We characterize the finite subdirectly
irreducible positive MV-algebras. Furthermore, we axiomatize all varieties of
positive MV-algebras.
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2 VARIETIES OF MV-MONOIDS AND POSITIVE MV-ALGEBRAS

1. Introduction

MV-algebras were introduced in [8] to serve as algebraic semantics for the many-
valued  Lukasiewicz propositional logic. In modern accounts, they are defined as
algebras of the form 〈A,⊕,¬, 0〉 satisfying a certain list of equational axioms. The
prime example of an MV-algebra is the standard MV-algebra, i.e. the real interval
[0, 1] endowed with the operations:

x⊕ y := min{x+ y, 1}, ¬x := 1 − x, and the constant 0.(1.1)

The standard MV-algebra [0, 1] generates the variety of MV-algebras. The reader
is referred to [9] for the basic theory of MV-algebras and to [20] for more advanced
topics.

The study of MV-algebras is made easier by their tight relationship with Abelian
ℓ-groups, proved by D. Mundici. An Abelian ℓ-group is an Abelian group equipped
with a translation-invariant lattice-order; see [6] for the theory of lattice-ordered
groups. A unital Abelian ℓ-group is an Abelian ℓ-group G equipped with a strong
order unit, i.e. an element 1 ∈ G such that for every y ∈ G there is n ∈ N such
that y ≤ 1 + · · ·+ 1 (n times). The prime example of a unital Abelian ℓ-group is R,
equipped with its additive structure, its usual order, and the element 1 as a strong
order unit. The theory of unital Abelian ℓ-groups is far simpler than the one of
MV-algebras. Thus, it came as a fundamental tool in the theory of MV-algebras
the categorical equivalence between the category of MV-algebras and the category
of unital Abelian ℓ-groups, proved by D. Mundici [19, Theorem 3.9] (see also [9,
Section 2]). In particular, every MV-algebra A is the unit interval of some unital
Abelian ℓ-group G. This means that A is isomorphic to the algebra with base set
{x ∈ G | 0 ≤ x ≤ 1} and operations

(1.2) x⊕ y := (x+ y) ∧ 1, ¬x := 1 − x, and the constant 0.

One may notice the analogy between (1.1) and (1.2). In fact, under Mundici’s
categorical equivalence, the MV-algebra [0, 1] corresponds to the unital Abelian
ℓ-group R.

Further important examples of MV-algebras are Boolean algebras: every such
algebra can be equipped with the structure of an MV-algebra by defining ⊕ as the
binary join ∨. In fact, Boolean algebras are a subvariety of MV-algebras, defined
by the equation x ⊕ x = x. MV-algebras are then a “many-valued” generalization
of Boolean algebras, where the role of the 2-element Boolean algebra {0, 1} is taken
up by the standard MV-algebra [0, 1]: for example, the variety of Boolean algebras
is generated by {0, 1}, while the variety of MV-algebras is generated by [0, 1].

Much of the theory of Boolean algebras can be smoothly generalized to bounded
distributive lattices. The Boolean terms that are definable in the language of
bounded distributive lattices are precisely those that are order-preserving in each
argument. For instance, the negation is not order-preserving. So, bounded distribu-
tive lattices can be seen as the order-preserving (or positive) fragment of Boolean
algebras.

In analogy to the relationship between Boolean algebras and bounded distribu-
tive lattices, recent years have marked the beginning of the investigation of the
negation-free version of MV-algebras. To understand what an appropriate defi-
nition of a “negation-free version of MV-algebras” should be, we refer the reader
to a fundamental result [10, Theorem 3.5], which, roughly speaking, states that



VARIETIES OF MV-MONOIDS AND POSITIVE MV-ALGEBRAS 3

the order-preserving terms of MV-algebras are precisely those in the language
{∨,∧,⊕,⊙, 0, 1}, where ∨, ∧, ⊙ and 1 can be term-defined in the language of MV-
algebras as 1 := ¬0, x⊙y := ¬(¬x⊕¬y), x∨y := (x⊙¬y)⊕y and x∧y := ¬(¬x∨¬y).
This suggests that the “negation-free versions of MV-algebras” should be algebras
in the signature {∨,∧,⊕,⊙, 0, 1}.

There are two reasonable non-equivalent definitions of the negation-free ver-
sions of MV-algebras: positive MV-algebras and MV-monoidal algebras (called
MV-monoids in this paper). This is similar to what happens for Abelian groups,
where there are two possible candidates for “the inverse-free version of Abelian
groups”: cancellative commutative monoids and commutative monoids. While the
subreducts of Abelian groups are precisely the cancellative commutative monoids,
a certain portion of the theory of Abelian groups holds for commutative monoids.
The latter, in contrast with the cancellative ones, have the advantage of being
defined by equations, which make them a variety of algebras.

Positive MV-algebras (introduced in [3]) are defined as the {∨,∧,⊕,⊙, 0, 1}-
subreducts of MV-algebras. They are the quasivariety generated by [0, 1] and they
are precisely the unit intervals of unital cancellative commutative ℓ-monoids ([3,
Lemma 3.8(2)]). On the other hand, MV-monoids, introduced in [1] via a certain
list of equations (which make them a variety of algebras), are precisely the unit
intervals of unital commutative ℓ-monoids (this is the main result of [1]). In a
nutshell, positive MV-algebras are the cancellative MV-monoids, where the cancel-
lation property in this context is expressed by the following quasi-equation:

(x⊕ z ≈ y ⊕ z and x⊙ z ≈ y ⊙ z) =⇒ x ≈ y.

Note the similarity with the cancellation property for commutative monoids:

x+ z ≈ y + z =⇒ x ≈ y.

MV-monoids and positive MV-algebras are peculiar classes: their link with logic is
obvious, especially for positive MV-algebras, which constitute the quasivariety of
subreducts of MV-algebras. They are not quasivarieties of logic, though, at least in
the sense of [5]. However, many standard techniques of universal algebra, commonly
applied in algebraic logic, are amenable in this setting, as well

In this paper we investigate varieties of MV-monoids and of positive MV-algebras.
Regarding the former, our main result is a characterization of the almost minimal
varieties of MV-monoids (Theorem 4.18). For the latter, our main result is a charac-
terization of the varieties of positive MV-algebras (Theorem 7.9): these are precisely
the varieties generated by finitely many reducts of finite nontrivial MV-chains. We
also prove that such reducts are precisely the subdirectly irreducible finite posi-
tive MV-algebras (Theorem 6.6). Furthermore, in Theorem 8.18, we provide an
axiomatization for each such variety of positive MV-algebras.

The structure of the paper is as follows: in Section 2 we introduce the main def-
initions and we state the main results from the literature that will be used in the
sequel. In Section 3 we study subdirectly irreducible MV-monoids. In Section 4 we
study the bottom part of the lattice of subvarieties of MV-monoids, characterizing
all the almost minimal varieties and in Section 5 we investigate some of the vari-
eties above the almost minimal varieties. We then turn our attention to positive
MV-algebras investigating those that are subdirectly irreducible in Section 6. In
Section 7 we describe the varieties of positive MV-algebras and we show that all
of them are finitely generated. In fact, the varieties of positive MV-algebras are
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precisely the varieties generated by finitely many reducts of finite nontrivial MV-
chains. Finally, in Section 8, we present an axiomatization for each of the varieties
of positive MV-algebras.

2. Preliminaries: lattice-ordered monoids, MV-monoids and positive

MV-algebras

In this section we recall the definitions of the algebraic structures of interest in
this paper. For elementary concepts in general algebra (such as lattices, algebras,
varieties, etc.), our textbook reference is [7], while our textbook reference for MV-
algebras is [20].

We start by defining commutative ℓ-monoids and unital commutative ℓ-monoids.

Definition 2.1. A commutative ℓ-monoid is an algebra M = 〈M,∨,∧,+, 0〉 with
the following properties:

• 〈M,∨,∧〉 is a distributive lattice;
• 〈M,+, 0〉 is a commutative monoid;
• + distributes over ∨ and ∧.

We warn the reader that some authors would use the terminology “commutative
distributive ℓ-monoid”; in this paper we prefer the shorter name.

Example 2.2. (1) The algebra 〈R,max,min,+, 0〉 is a commutative ℓ-monoid,
as well as any of its subalgebras, such as Q, Z, 2Z, N, {0,−1,−2,−3, . . .}.

(2) For every preordered set X , the set of order-preserving functions from X
to R with pointwise defined operations is a commutative ℓ-monoid.

(3) (C∆∗
2 ) An example of a commutative ℓ-monoid is the two-element chain

{0 < ε}, with ∨ = max, ∧ = min, + = ∨, and 0 = 0. We write C∆∗
2 for

this commutative ℓ-monoid. It is not cancellative.
(4) (C∇∗

2 ) Dually to (3), an example of a commutative ℓ-monoid is the two-
element chain {δ < 0}, with ∨ = max, ∧ = min, + = ∧, and 0 = 0. We

write C∇∗
2 for this commutative ℓ-monoid. It is not cancellative.

(5) (C∆∗
n and C∇∗

n ) Items 3 and 4 are instances of a slightly more general
construction. For every n ∈ N, the following defines a congruence ∼n on
the additive ℓ-monoid N:

x ∼n y ⇐⇒ x = y or (x ≥ n− 1 and y ≥ n− 1).

We let C∆∗
n denote the quotient N/∼n. We let C∇∗

n denote the order-dual of

C∆∗
n , i.e. the algebra obtained from C∆∗

n by swapping ∨ and ∧. This gives a
source of examples of ℓ-monoids whose monoidal reduct is not cancellative.

(6) (LM∆∗
n and LM∇∗

n ) Items 3 and 4 are instances of another slightly more

general construction. For every n ∈ N, we let LM∆∗
n denote the commuta-

tive ℓ-monoid defined on the n-element chain, where + is defined as ∨, and
0 as the bottom element. Analogously, we let LM∇∗

n denote the commuta-
tive ℓ-monoid defined on the n-element chain, where + is defined as ∧, and
0 as the top element. This gives another source of examples of ℓ-monoids
whose monoidal reduct is not cancellative.

Remark 2.3. Since ℓ-monoids are defined by equations, they form a variety and
hence they are closed under products, subalgebras and homomorphic images. This
allows one to obtain several examples.
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Definition 2.4. A unital commutative ℓ-monoid is an algebra 〈M,∨,∧,+, 1, 0,−1〉
with the following properties:

• 〈M,∨,∧,+, 0〉 is a commutative ℓ-monoid;
• −1 + 1 = 0;
• −1 ≤ 0 ≤ 1;
• for all x ∈M there is n ∈ N such that

(−1) + · · · + (−1)
︸ ︷︷ ︸

n times

≤ x ≤ 1 + · · · + 1
︸ ︷︷ ︸

n times

.

In a unital commutative ℓ-monoid we will use the standard abbreviations

n := 1 + · · · + 1 n times,

−n := (−1) + · · · + (−1) n times,

x− n := x+ (−n),

omitting the usual superscript for the interpretation in the given algebra. As usual,
for all n ∈ N, we denote by nx the sum of n copies of x and by −nx the sum of n
copies of −x if x is invertible.

We let uℓM denote the class of unital commutative ℓ-monoids.

Example 2.5. (1) The algebra 〈R,max,min,+, 1, 0,−1〉 is a unital commu-
tative ℓ-monoid, as well as any of its subalgebras, such as Q and Z. An
example of a subalgebra of R which is not an additive subgroup of R is, for
any irrational element s in R, the algebra {a+ bs | a ∈ Z, b ∈ N}.

(2) For every preordered set X , the set of bounded order-preserving functions
from X to R with pointwise defined operations is a unital commutative
ℓ-monoid.

(3) (Lexicographic product
−→
×) For every totally ordered unital commutative

ℓ-monoid M and every commutative ℓ-monoid L, we have a unital commu-
tative ℓ-monoid M

−→
×L defined as follows: the underlying set is M ×L, the

order is lexicographic, i.e.
(
(n, x) ≤ (m, y)

)
⇐⇒

(
(n < m) or (n = m and x ≤ y)

)
,

the operation + is defined component-wise, i.e. (n, x)+(m, y) = (n+m,x+
y), the positive unit is (1, 0), the negative unit is (−1, 0), and (0, 0) is the
zero.

For example, when M = Z, the algebra Z
−→
×L stacks Z-many copies of

L one on top of the other.
When combined with the noncancellative examples of commutative ℓ-

monoids in Example 2.2, this lexicographic product produces a source of ex-
amples of unital commutative ℓ-monoids whose monoidal reduct is not can-
cellative: for instance, Z

−→
×C∆∗

n and Z
−→
×C∇∗

n , Z
−→
×LM∇∗

n , and Z
−→
×LM∆∗

n .

Remark 2.6. All the axioms of unital commutative ℓ-monoids are equations, ex-
cept for the last one. However, notice that the last one is preserved by subalgebras,
homomorphic images and finite products. Thus, unital commutative ℓ-monoids are
closed under subalgebras, homomorphic images and finite products. This is not the
case for arbitrary products: for example, RN does not satisfy the last axiom.

Given a unital commutative ℓ-monoid M, its “unit interval”

(2.1) Γ(M) := {x ∈M | 0 ≤ x ≤ 1}
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can be turned into an algebra in the signature {∨,∧,⊕,⊙, 0, 1}: set x ⊕ y :=
(x+ y) ∧ 1, x⊙ y := (x+ y − 1) ∨ 0, and define ∨, ∧, 0 and 1 by restriction.

To capture axiomatically the algebras of the form Γ(M) for a unital commuta-
tive ℓ-monoid M, the first author introduced in [1] the notion of an MV-monoidal
algebras, or MV-monoid, for short.

Definition 2.7. An MV-monoid is an algebra 〈A,∨,∧,⊕,⊙, 0, 1〉 where

• 〈A,∨,∧, 0, 1〉 is a bounded distributive lattice;
• 〈A,⊕, 0〉 and 〈A,⊙, 1〉 are commutative monoids;
• ⊕ and ⊙ distribute over ∨ and ∧;
• for every x, y, z ∈ A,

(x⊕ y) ⊙ ((x ⊙ y) ⊕ z) = (x ⊙ (y ⊕ z)) ⊕ (y ⊙ z);

(x⊙ y) ⊕ ((x ⊕ y) ⊙ z) = (x ⊕ (y ⊙ z)) ⊙ (y ⊕ z);

(x⊙ y) ⊕ z = ((x ⊕ y) ⊙ ((x ⊙ y) ⊕ z)) ∨ z;

(x⊕ y) ⊙ z = ((x ⊙ y) ⊕ ((x ⊕ y) ⊙ z)) ∧ z.

When there is no danger of confusion, we use the additive notation nx := x ⊕
· · · ⊕ x (n times) and the multiplicative notation xn := x ⊙ · · · ⊙ x (n times). For
an explanation of the choice of the axioms of MV-monoids, we direct the reader
to [1, pp. 45 ff]. Clearly, MV-monoids form a variety of algebras, which we denote
by MVM. The axiomatization above was given in this way to emphasize that the
axioms are equations.

For every unital commutative ℓ-monoid M, its unit interval

Γ(M) = 〈Γ(M),∨,∧,⊕,⊙, 0, 1〉

defined in (2.1) is an MV-monoid. The assignment M 7→ Γ(M) can be extended to
morphisms to define a functor

Γ: uℓM → MVM

from the category uℓM of unital commutative ℓ-monoids to the category MVM of
MV-monoids: a homomorphism f : M → N between unital commutative ℓ-monoids
is mapped to its restriction Γ(f) : Γ(M) → Γ(N).

The following is the crucial result connecting unital commutative ℓ-monoids and
MV-monoids.

Theorem 2.8 ([1]). The functor Γ: uℓM → MVM is an equivalence of categories.

In particular, for every MV-monoid A there is a (unique up to isomorphism)
unital commutative ℓ-monoid M such that Γ(M) ∼= A.

In this paper, an important role is taken by those unital commutative ℓ-monoids
that are cancellative. We recall that a commutative monoid M is cancellative if,
for all x, y, z ∈ M , x + z = y + z implies x = y. The MV-monoids of the form
Γ(M) for some unital commutative ℓ-monoid M that are cancellative are precisely
the positive MV-algebras.

Definition 2.9 ([3]). A positive MV-algebra is a {∨,∧,⊕,⊙, 0, 1}-subreduct of an
MV-algebra.

As proved in [3], the class MV
+ of positive MV-algebras is a proper subquasiva-

riety of MVM, axiomatized relatively to MVM by

(x⊕ z ≈ y ⊕ z and x⊙ z ≈ y ⊙ z) =⇒ x ≈ y.
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Note the similarity with the cancellation property in the language of commutative
ℓ-monoids: x + z ≈ y + z ⇒ x ≈ y. For an MV-algebra A, we denote by A+ its
MV-monoid reduct.

Theorem 2.10 ([3]). The functor Γ: uℓM → MVM restricts to an equivalence
between cancellative unital commutative ℓ-monoids and positive MV-algebras.

In particular, for every positive MV-algebra A there is a (unique up to isomor-
phism) cancellative unital commutative ℓ-monoid M such that Γ(M) ∼= A.

We next give examples of MV-monoids and positive MV-algebras. For each
n ∈ N \ {0}, we set 1

n
Z := { k

n
| k ∈ Z}. This set can be equipped in a natural

way with the structure of a unital commutative ℓ-monoid, in which the sum is
the ordinary addition in Z and the order is the natural one. We recall that  Ln

denotes the MV-algebra whose universe is {0, 1
n
, . . . , n−1

n
, 1} and whose operations

are defined in the usual way. It is easy to check that Γ( 1
n
Z) =  L+

n .
As another example of a positive MV-algebra we recall the Chang algebra C,

introduced by C. C. Chang [8, p. 474]. The Chang algebra is an MV-algebra that
we represent in the following way: the universe of C is

{nε | n ∈ N} ∪ {nδ | n ∈ N}

where nδ stands for the usual 1 − nε. We use the shorthands 0 for 0ε and 1 for
0δ. The two commutative operations ⊕,⊙ and the unary operation ¬ are defined
as follows:

nε⊕mε := (n+m)ε;

nδ ⊕mδ := 1;

nε⊕mδ = mδ ⊕ nε :=

{

(m− n)δ if n < m,

1 otherwise;

nε⊙mε := 0;

nδ ⊙mδ := (n+m)δ;

nε⊙mδ = mδ ⊙ nε :=

{

(n−m)ε if n > m,

0 otherwise;

¬nε := nδ;

¬nδ := nε.

It is easy to see that the induced lattice is given by

nε ≤ mε if and only if n ≤ m

nδ ≤ mδ if and only if m ≤ n

nε < mδ for all n,m ∈ N.

This order has 0 as the bottom element and 1 as the top element. Using the
lexicographic notation of Item 3, (the {∨,∧,⊕,⊙, 0, 1}-reduct of) C is isomorphic

to Γ(Z
−→
×Z).

Definition 2.11 (C∆ and C∇). We denote by C∆ and C∇ the subalgebras of C+

whose universes are C∆ := {0, ε, 2ε, . . . , 1} and C∇ := {0, . . . , 3δ, 2δ, δ, 1}, respec-
tively.
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Note that C∆ is isomorphic to Γ(Z
−→
×N), and C∇ is isomorphic to Γ(Z

−→
× − N),

where −N is the subalgebra of Z consisting of the nonnegative elements.
The algebras C∆ and C∇ are two proper positive MV-subalgebras of C which

are not reducts of MV-algebras.
The construction of a quasi-inverse Ξ: MVM → uℓM of Γ relies on the notion of

a good Z-sequence in an MV-monoid, which is motivated by a fact of independent
interest:

Lemma 2.12 ([2, Lemma 4.74]). Let M be a unital commutative ℓ-monoid, and
let x, y ∈ M . If for all n ∈ Z we have ((x − n) ∨ 0) ∧ 1 = ((y − n) ∨ 0) ∧ 1, then
x = y.

This shows that the elements of M can be identified with certain functions from
Z to Γ(M). To illustrate exactly which functions, we recall the notion of a good
pair.

Definition 2.13 ([2, Definition 4.30] or [1, Definition 5.1]). A good pair in an
MV-monoid A is a pair (x0, x1) ∈ A2 such that x0 ⊕ x1 = x0 and x0 ⊙ x1 = x1.

Definition 2.14 ([2, Definition 4.31]). A good Z-sequence in an MV-monoid A is
a function x : Z → A with the following properties.

(1) For all n ∈ Z, (xn, xn+1) is a good pair in A;
(2) there is n ∈ N such that, for every m ∈ N with m ≥ n, x(−m) = 1 and

x(m) = 0.

For each MV-monoid A, Ξ(A) is defined as a unital commutative ℓ-monoid
whose underlying set is the set of good Z-sequences in A. For the definition of
the operations of unital commutative ℓ-monoid on Ξ(A) and the fact that Ξ is a
quasi-inverse of Γ, we direct the reader to [2, Chapter 4].

For later usage, we mention that Lemma 2.12 admits the following analogue, in
which equality is replaced by ≤.

Lemma 2.15. Let M be a unital commutative ℓ-monoid, and let x, y ∈ M . If for
all n ∈ Z we have ((x− n) ∨ 0) ∧ 1 ≤ ((y − n) ∨ 0) ∧ 1, then x ≤ y.

Proof. Suppose that for all n ∈ Z we have ((x − n) ∨ 0) ∧ 1 ≤ ((y − n) ∨ 0) ∧ 1.
Then for all n ∈ Z we have

(((x ∧ y) − n) ∨ 0) ∧ 1 = (((x − n) ∧ (y − n)) ∨ 0) ∧ 1

= (((x − n) ∨ 0) ∧ 1) ∧ (((y − n) ∨ 0) ∧ 1)

= ((x − n) ∨ 0) ∧ 1.

By Lemma 2.12, it follows that x ∧ y = x, i.e. x ≤ y. �

We collect here some properties of Γ and Ξ.

Proposition 2.16. The functors Γ and Ξ preserve and reflect injectivity, surjec-
tivity and bijectivity of morphisms.

Proof. First, since Ξ is the quasi-inverse of Γ, it is enough to prove the statement
for Γ. Next we observe that bijective morphisms are isomorphisms and they are
always preserved by equivalences. The fact that Γ preserves and reflects injectivity
is proved in [1, Proposition 3.7].
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We prove that Γ preserves surjectivity. Let f : M → N be a surjective homo-
morphism of unital commutative ℓ-monoids, and let y ∈ Γ(N). By surjectivity of
f , there is x ∈M such that f(x) = y. Let x′ := (x ∨ 0) ∧ 1. Then x′ ∈ Γ(M) and

f(x′) = f((x ∨ 0) ∧ 1) = (f(x) ∨ 0) ∧ 1 = (y ∨ 0) ∧ 1 = y,

since 0 ≤ y ≤ 1. Thus, Γ(f) is surjective.
Finally, we prove that Γ reflects surjectivity. Let f : M → N be a homomorphism

of unital commutative ℓ-monoids, and suppose that Γ(f) is surjective. Let y ∈ N .
By [2, Proposition 4.68] there exist k ∈ Z, n ∈ N, and y0, . . . , yn ∈ Γ(N) such that
y = k + y0 + · · · + yn. Since Γ(f) is surjective, for every i ∈ {0, . . . , n} there is
xi ∈ Γ(M) such that yi = Γ(f)(xi) = f(xi). Then

f(k + x0 + · · · + xn) = f(k) + f(x0) + · · · + f(xn) = k + y0 + · · · + yn = y.

Therefore, f is surjective. �

We let Con(A) denote the congruence lattice of an algebra A. Using the previous
Proposition we can directly obtain an isomorphism between congruence lattices of
unital commutative ℓ-monoid and of MV-monoids.

Corollary 2.17. Let M be a unital commutative ℓ-monoid. The congruence lattices
of M and Γ(M) are isomorphic.

Proof. For a congruence θ on an algebra A, we denote by πθ : A → A/θ the quotient
map induced by θ. For a homomorphism f : A → B between similar algebras, we
denote by Ker(f) the kernel congruence induced by f . We claim that the function

φ : Con(M) −→ Con(Γ(M))

θ 7−→ Ker(Γ(πθ))

is a lattice isomorphism. Using the Homomorphism Theorem [7, Theorem 6.12]
and the fact that Γ preserves isomorphisms (cf. Proposition 2.16), it is easy to see
that, for every surjective homomorphism f : M → N, φ(Ker(f)) = Ker(Γ(f)).

M M/Ker(f) Γ(M) Γ(M/Ker(f))

N Γ(N)

πKer(f)

f

Γ(πKer(f))

Γ(f)

We prove that φ preserves the lattice order. Let α ≤ β be two congruences
of M. By a standard consequence of the Homomorphism theorem (see e.g. [7,
Chapter II.7]), there exists a surjective homomorphism f : M/α→ M/β such that
the diagram on the left-hand side below commutes (2.2). Applying the functor Γ to
the commutative diagram on the left-hand side of (2.2), we obtain the commutative
diagram on the right-hand side.

(2.2)

M M/α Γ(M) Γ(M/α)

M/β Γ(M/β)

πα

πβ
f

Γ(πα)

Γ(πβ)
Γ(f)

By Proposition 2.16, Γ preserves surjectivity and thus Γ(f),Γ(πα),Γ(πβ) are sur-
jective. It follows that φ(α) = Ker(Γ(πα)) ⊆ Ker(Γ(πβ)) = φ(β). This proves that
φ is order-preserving.
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We prove that φ is surjective. Let γ ∈ Con(Γ(M)). Since Γ is essentially
surjective, there are a unital commutative ℓ-monoid N and an isomorphism h from
Γ(M)/γ to Γ(N) (for example, take N = Ξ(Γ(M)/γ). Since Γ is full, there is a
homomorphism f : M → N such that Γ(f) = h ◦ πγ .

M N

Γ(M) Γ(M)/γ Γ(N)

f

Γ(f)

πγ h

By Proposition 2.16, f is surjective. Since h is an isomorphism, we have Ker(Γ(f)) =
Ker(h ◦ πγ) = Ker(πγ) = γ. Therefore, by the property observed right after the
definition of φ, we have φ(Ker(f)) = Ker(Γ(f)) = γ, and so γ belongs to the image
of φ.

We prove that φ reflects the order. Let α, β ∈ Con(M) be such that φ(α) ≤ φ(β),
i.e. Ker(Γ(πα)) ≤ Ker(Γ(πβ)), and let us prove α ≤ β. By a standard consequence
of the Homomorphism theorem [7, Chapter II.7, Exercises 6(6)], from φ(α) ≤ φ(β)
we deduce the existence of a surjective homomorphism h : Γ(M/α) → Γ(M/β) that
makes the following diagram commute.

(2.3)

Γ(M) Γ(M/α)

Γ(M/β)

Γ(πα)

Γ(πβ)
h

Since Γ is full, there is a homomorphism f : M/α→ M/β such that Γ(f) = h and
f is surjective by Proposition 2.16. Since Γ is faithful, and by commutativity of
(2.3), also the following diagram commutes.

M M/α

M/β

πα

πβ
f

Thus, α ≤ β. This concludes the proof that φ is order-reflecting.
Since φ is a surjective, order-reflecting, and order-preserving map between lat-

tices, it is a lattice isomorphism. �

3. Subdirectly irreducible MV-monoids

In this section we provide a necessary condition for an MV-monoid to be sub-
directly irreducible using the equivalence with unital commutative ℓ-monoids. We
recall that an algebra is subdirectly irreducible if and only if the identity congru-
ence is completely meet irreducible in the congruence lattice. Our investigation is
grounded on the following fact:

Theorem 3.1. Every subdirectly irreducible commutative ℓ-monoid is totally or-
dered.

This result is a corollary of [21, Lemma 1.4], but already in [18, Corollary 2] the
author proved that any commutative lattice-ordered monoid is a subdirect product
of totally ordered ones and asserted, in Remark 3 of the same paper, that this was
an unpublished result by Fuchs.
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Constants do not play any role in congruences, and so in subdirect irreducibility,
as well. Therefore, Theorem 3.1 has the following corollary.

Corollary 3.2. Every subdirectly irreducible unital commutative ℓ-monoid is totally
ordered.

We will use Theorem 3.1 to study subdirect irreducibility of MV-monoids, in
light of the following lemma.

Lemma 3.3. A unital commutative ℓ-monoid M is subdirectly irreducible (as
a {+,∨,∧, 0, 1,−1}-algebra) if and only if Γ(M) is subdirectly irreducible (as a
{∨,∧,⊕,⊙, 0, 1}-algebra).

Proof. This follows from the fact that the congruence lattices of M and Γ(M) are
isomorphic (Corollary 2.17). �

Let M be a unital commutative ℓ-monoid. Now we investigate how the prop-
erty that M is totally ordered relates to properties of Γ(M). Of course, if M

is totally ordered then Γ(M) is totally ordered. However, the converse is false.
For example, consider the subalgebra N := {(a, b) ∈ Z2 | a ≤ b} of Z2 =
〈Z,max,min,+,−1, 0, 1〉2. The three-element chain Γ(N) = {(0, 0), (0, 1), (1, 1)}
is totally ordered, but N is not. For M to be totally ordered, the property that
Γ(M) should satisfy besides being totally ordered is captured in item (4) of the
following Lemma.

Lemma 3.4. Let M be a unital commutative ℓ-monoid. The following conditions
are equivalent:

(1) for every x ∈M , there is n ∈ Z such that n ≤ x ≤ n+ 1;
(2) for every k ∈ Z and x ∈M , either k ≤ x or x ≤ k;
(3) there is k ∈ Z such that, for every x ∈M , either k ≤ x or x ≤ k;
(4) for every x, y ∈ Γ(M), either x⊕ y = 1 or x⊙ y = 0.

Proof. (1) ⇒ (2). This is straightforward.
(2) ⇒ (1). Let x ∈M . Set I := {n ∈ Z | n ≤ x} and set S := {n ∈ Z | x ≤ n}. It

is immediate that I is downward closed and that S is upward closed in the natural
order of Z. Moreover, I and S are nonempty by the last axiom in the definition of
a unital commutative ℓ-monoid. Furthermore, by (2), S ∪ I = Z. It follows that
there is n ∈ S such that n+ 1 ∈ I. Then n ≤ x ≤ n+ 1.

(2) ⇒ (3). This follows from the fact that Z is nonempty.
(3) ⇒ (2). Suppose there is k ∈ Z such that, for every x ∈ M , either k ≤ x

or x ≤ k. For every n ∈ Z and x ∈ M , since we have either k ≤ x − n + k or
x− n+ k ≤ k, we have either n ≤ x or x ≤ n.

(2) ⇒ (4). Let x, y ∈ Γ(M). By (2) (applied to k = 1), either 1 ≤ x + y or
x+ y ≤ 1. In the first case, x⊕ y = 1. In the second case, x⊙ y = 0.

(4) ⇒ (3). We prove (3) with k = 1. Let x ∈ M . For n ∈ Z, let xn :=
((x−n)∨ 0)∧ 1. By [2, Proposition 4.64], for every n ∈ Z we have xn ⊕ xn+1 = xn
and xn ⊙ xn+1 = xn+1. In particular, x0 ⊕ x1 = x0 and x0 ⊙ x1 = x1. By (4),
either x0 ⊕ x1 = 1 or x0 ⊙ x1 = 0. In the first case we have x0 = 1, which implies
that for every n ∈ Z with n ≤ 0 we have xn = 1; by Lemma 2.15, it follows that
x ≥ 1. In the second case, we have x1 = 0, which implies that for every n ∈ Z with
n ∈ N \ {0} we have xn = 0; by Lemma 2.15, it follows that x ≤ 1. �
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Note that the equivalent conditions of Lemma 3.4 fail in the example N seen
above. We are now ready to provide conditions on Γ(M) that are equivalent to M

being totally ordered.

Proposition 3.5. Let M be a unital commutative ℓ-monoid. The following condi-
tions are equivalent:

(1) M is totally ordered;
(2) Γ(M) is totally ordered, and, for every x, y ∈ Γ(M), x⊕y = 1 or x⊙y = 0.

Proof. (1) ⇒ (2). If M is totally ordered, then Γ(M) is totally ordered. Moreover,
by the implication (1) ⇒ (4) in Lemma 3.4, for every x, y ∈ Γ(M) we have x⊕y = 1
or x⊙ y = 0.

(2) ⇒ (1). For every n ∈ Z, the map x 7→ x + n is an order-automorphism of
M. Therefore, from the fact that Γ(M) is totally ordered it follows that for every
n ∈ Z the interval {x ∈M | n ≤ x ≤ n+ 1} is totally ordered. By the implication
(4) ⇒ (1) in Lemma 3.4, for every x ∈ M there is n ∈ Z such that n ≤ x ≤ n+ 1.
It follows that M is totally ordered. �

At the beginning of the section we observed that there are totally ordered MV-
monoids A such that Ξ(A) is not totally ordered. Using Proposition 3.5 we can
produce other examples of this fact by considering MV-monoids with elements x, y
such that x ⊕ y 6= 1 and x ⊙ y 6= 0. For example, this happens in any bounded
chain L with |L| > 2 in which ⊕ and ⊙ coincide with the standard join and meet,
respectively, and where x, y ∈ L \ {0, 1}. By Proposition 3.5, Ξ(L) is not totally
ordered.

Theorem 3.6. If an MV-monoid A is subdirectly irreducible, then it is nontrivial,
totally ordered, and such that, for all x, y ∈ A, x⊕ y = 1 or x⊙ y = 0.

Proof. Nontriviality is obvious. Let A be a subdirectly irreducible MV-monoid.
Then there is a unital commutative ℓ-monoid M such that Γ(M) and A are iso-
morphic. By Lemma 3.3, M is subdirectly irreducible. By Theorem 3.1, M is
totally ordered and thus Γ(M) and A are totally ordered. By Proposition 3.5, for
all x, y ∈ A we have x⊕ y = 1 or x⊙ y = 0. �

The previous Theorem was proved also in [1, Theorems B.3 and C.4] (see also
[2, Theorem 4.42 and Corollary 4.48]) with a different strategy. Here we included
a new proof, which uses the categorical equivalence between unital commutative
ℓ-monoids and MV-monoids [1], allowing us to piggyback on the known fact that
subdirectly irreducible commutative ℓ-monoids are totally ordered [21].

We will see later (Lemma 5.1) that the converse of Theorem 3.6 does not hold, in
the sense that there is a nontrivial totally ordered MV-monoid A satisfying x⊕y = 1
or x⊙ y = 0 for all x, y ∈ A which is not subdirectly irreducible. However, we will
prove that if we restrict to finite positive MV-algebras the conditions in Theorem 3.6
are also sufficient for subdirect irreducibility.

4. The almost minimal varieties of MV-monoids

Given any variety V, we denote by Λ(V) the set of all subvarieties of V. It is
well-known that ordering Λ(V) by inclusion makes Λ(V) a complete lattice, and so
we refer to Λ(V) as the lattice of subvarieties of V. The description of this lattice
is always a very important step in understanding the variety.



VARIETIES OF MV-MONOIDS AND POSITIVE MV-ALGEBRAS 13

In the case of MV-monoids, besides the usual tools, we have a very useful result
to exploit; since MV-monoids are congruence distributive we can use Jónsson’s
Lemma [16], which allows us to find all the subdirectly irreducible algebras in a
variety starting from a generating set. So, we start considering MV-monoids with
few elements (that generate varieties that are very “small” in the lattice ordering)
and we use Jónsson’s Lemma to climb up the lattice. A picture of the bottom part
of the lattice is in Figure 2; showing that it is a faithful representation, at least in
the very bottom part, turns out to be no simple task.

First, we can observe that  L+
1 is a subalgebra of any nontrivial MV-monoid,

and so V( L+
1 ) is the only atom in Λ(MVM). The covers of an atom are usually

called the almost minimal subvarieties. These often play an important role in the
description of the lattice of all subvarieties. In Theorem 4.18 we characterize the
almost minimal varieties of MV-monoids: these are precisely the varieties V( L+

p )

(for p prime), V(C∆
2 ) and V(C∇

2 ); definitions to follow.
We recall that, as a consequence of Birkhoff’s Subdirect Representation The-

orem ([7, Theorem 8.6]), every variety of algebras is generated by its subdirectly
irreducible members. Moreover, we recall that an algebra A is simple if its con-
gruence lattice is the 2-element chain, and that any simple algebra is subdirectly
irreducible. Therefore, to motivate our attention to the algebras of type  Ln, we
show that they are simple.

Proposition 4.1. Every subalgebra of the unital commutative ℓ-monoid R is sim-
ple.

Proof. Let M be a subalgebra of R. The algebra M is nontrivial because it contains
Z, and thus the congruence lattice of M has at least two elements. Let θ ∈ Con(M)
with 0Con(M) < θ. Then there is a pair (a, b) ∈ θ with a < b. By the classical
Archimedean property of R, there exists n ∈ N such that nb − na ≥ 2, and hence
there is k ∈ Z such that na ≤ k and k + 1 ≤ nb. Since θ is a lattice congruence,
from (a, b) ∈ θ we deduce (na, nb) ∈ θ. From na ≤ k ≤ k+ 1 ≤ nb and (na, nb) ∈ θ
we deduce (k, k + 1) ∈ θ. It follows that (0, 1) = (k, k + 1) + (−k,−k) ∈ θ and
then it is easy to prove that for all c, d ∈ Z we have (c, d) ∈ θ. Since θ is a lattice
congruence, we conclude that 1Con(M) = θ. �

Using Proposition 2.16 and Corollary 2.17 we get the next corollary as an im-
mediate consequence of Proposition 4.1.

Corollary 4.2. Every subalgebra of the MV-monoid [0, 1]+ is simple.

In particular, for every n ∈ N, the algebra  L+
n is simple and hence subdirectly

irreducible.
For our description of the almost minimal varieties of MV-monoids, we need to

introduce the three-element algebras C∆
2 and C∇

2 .

The algebra C∆
2 is the unique MV-monoid on the 3-element chain 0 < ε < 1

satisfying ε⊕ε = ε and ε⊙ε = 0. (Roughly speaking, ε is an infinitesimal element).

Equivalently (up to isomorphism), C∆
2 can be defined as Γ(Z

−→
×C∆∗

2 ) or as the

quotient of C∆ = 〈{0, ε, 2ε, . . . , 1},∨,∧,⊕,⊙, 0, 1〉 by the equivalence relation that
identifies all elements that are neither 0 nor 1.

The algebra C∇
2 is defined “dually” as the unique MV-monoid on the 3-element

chain 0 < δ < 1 satisfying δ⊕ δ = 1 and δ⊙ δ = δ. Equivalently, C∇
2 can be defined
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as Γ(Z
−→
×C∇∗

2 ) or as the quotient of C∇ = 〈{0, . . . , 3δ, 2δ, δ, 1},∨,∧,⊕,⊙, 0, 1〉 by
the equivalence relation that identifies all elements that are neither 0 nor 1.

We will prove that C∆
2 and C∇

2 are subdirectly irreducible, and that C∆ and C∇

are relatively subdirectly irreducible positive MV-algebras that are not subdirectly
irreducible in the absolute sense (Section 6). To do so, we characterize the congru-

ence lattices of C∆ and C∇, a fact of independent interest. The lattice reducts of
C∆ and C∇ are chains. For every chain L regarded as a distributive lattice, and
for all a, b ∈ L with a < b, it is easily seen that the principal congruence ϑL(a, b) is
the congruence in which the only nontrivial block is the interval [a, b]. It is a nice
exercise in lattice theory to prove that:

Lemma 4.3. If L is the n + 1-element chain, then Con(L) is isomorphic to the
2n-element complemented distributive lattice.

In particular, if A is a finite totally ordered MV-monoid, then any of its congru-
ences is a lattice congruence, and so it is the join of finitely many congruences of the
form described above. In other words, a congruence on A is always a congruence
in which the congruence classes are intervals.

Proposition 4.4. Let θ be a congruence of C∆.

(1) If θ < 1Con(C∆), then (nε, 1) /∈ θ for all n ∈ N;

(2) for all n,m ∈ N with n < m, if (nε,mε) ∈ θ, then (nε, lε) ∈ θ for all l ≥ n.

Proof. (1). We prove the contrapositive. Suppose (nε, 1) ∈ θ for some n ∈ N. Then

(0, 1) = (nε⊙ nε, 1 ⊙ 1) ∈ θ.

Since θ is a lattice congruence, from (0, 1) ∈ θ we deduce θ = 1Con(C∆).

(2). If (nε,mε) ∈ θ with n < m, then n < n+ 1 ≤ m and thus (nε, (n+ 1)ε) ∈ θ,
since θ is a lattice congruence. Next we observe that

((n+ 1)ε, (n+ 2)ε) = (nε⊕ ε, (n+ 1)ε⊕ ε) ∈ θ.

By transitivity of θ, from (nε, (n+ 1)ε) ∈ θ and ((n+ 1)ε, (n+ 2)ε) ∈ θ we deduce
(nε, (n+ 2)ε) ∈ θ. The conclusion follows by induction. �

Corollary 4.5. The congruence lattice of C∆ is an infinite chain, ordered as the
order dual of ω + 1, and the proper nontrivial congruences of C∆ are exactly those
whose associated partition is

γ∆n := {{0}, {ε}, {2ε}, . . . , {(n− 1)ε}, {nε, . . .}, {1}},

for some n ≥ 0.

Proof. If θ is proper, then 1/θ = {1} by Proposition 4.4. Since θ is nontrivial we
have (nε,mε) ∈ θ for some n < m; let

n̄ := min{k ∈ N | (kε,mε) ∈ θ}.

Since {k ∈ N | (kε,mε) ∈ θ} is nonempty, its minimum n̄ exists; by Proposi-
tion 4.4(2), θ = γn̄. �

With a totally similar argument we can prove that the nontrivial proper congru-
ences of C∇ are exactly

γ∇n = {{0}, {. . . , nδ}, {(n− 1)δ}, . . . , {δ}, {1}},

and thus also the congruence lattice of C∇ is an infinite chain.
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For each n ∈ N\{0}, we let Ln be the (n+1)-element chain seen as a distributive
lattice; we define the following MV-monoids having Ln as their lattice reduct.

•  L+
n := Γ( 1

n
Z);

• C∆
n := C∆/γ∆n−1 := Γ(Z

−→
×C∆∗

n );

• C∇
n = C∇/γ∇n−1 = Γ(Z

−→
×C∇∗

n ).

We have:

(1) if n = 1, they are all isomorphic to the 2-element bounded distributive
lattice;

(2) for n ≥ 2,  L+
n , C∆

n and C∇
n are pairwise nonisomorphic;

(3) for all n, the only positive MV-algebra among them is  L+
n and it is subdi-

rectly irreducible because it is simple (Corollary 4.2).

Lemma 4.6. For every n ∈ N \ {0}, both C∆
n and C∇

n are subdirectly irreducible.

Proof. By Corollary 4.5 the congruence lattice of C∆ is an infinite chain. As C∆
n
∼=

C∆/γ∆n−1, by the Correspondence Theorem [7, Theorem 6.20] we get that Con(C∆
n )

is the n+ 1-element chain isomorphic to the interval [γ∆n−1, 1] of Con(C∆), and the

same holds mutatis mutandis for C∇
n . Hence they are both subdirectly irreducible.

�

The following important result will be used in the proof of the main result of the
section (Theorem 4.18) and other statements in the remaining part of the paper.
Moreover, as we will discuss after its corollary for MV-monoids, it implies a version
for commutative ℓ-monoids of the celebrated Hölder’s theorem for Abelian ℓ-groups.

Theorem 4.7. Let M be a nontrivial totally ordered unital commutative ℓ-monoid.
There is a unique homomorphism from M to R.

Proof. Let M be a nontrivial totally ordered unital commutative ℓ-monoid. For all
x ∈M , we define

Ix :=

{
k

n
∈ Q | k ∈ Z, n ∈ N \ {0}, nx ≥ k

}

;

Sx :=

{
k

n
∈ Q | k ∈ Z, n ∈ N \ {0}, nx ≤ k

}

.

We prove sup Ix = inf Sx ∈ R. To do so, it is enough to prove Ix 6= ∅ 6= Sx,
Ix∪Sx = Q, that for all x1 ∈ Ix and x2 ∈ Sx x1 ≤ x2, and that Ix∩Sx has at most
one element. Since every element is bounded from above and from below by some
integer multiples of 1, Ix 6= ∅ 6= Sx. Furthermore, let k1

n1
∈ Ix and k2

n2
∈ Sx. By

monotonicity of + we have n2k1

n1n2
∈ Ix and n1k2

n1n2
∈ Sx. Then wn2k1 ≤ n1n2x ≤ n1k2

and thus k1

n1
≤ k2

n2
. Moreover, since M is totally ordered, Ix ∪ Sx = Q. We prove

that Ix∩Sx has at most an element. Suppose there are k, k′ ∈ Z and n, n′ ∈ N\{0}

such that k = nx and k′ = n′x. We shall prove that the rational numbers k
n

and k′

n′

coincide, i.e. that kn′ = k′n. Without loss of generality, we may assume kn′ ≤ k′n.
Since k = nx and k′ = n′x, we have kk′ = k′nx = kn′x, and thus (k′n− kn′)x = 0,
since the element kk′ = k′nx is invertible. Then, either x = 0 or k′n − kn′ = 0.
If x = 0, then the interpretations of k and k′ in M are 0, which implies that the
integers k and k′ are 0, by nontriviality of M, and hence k′n = 0 = kn′. Thus in
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both cases we have k′n = kn′ and this proves that Ix ∩ Sx has at most an element.
Therefore, sup Ix = inf Sx ∈ R. We define the map

ϕ : M −→ R

x 7−→ sup Ix = inf Sx.

We prove that ϕ is a homomorphism. It is not difficult to see that it preserves all
constant symbols.

Let x, y ∈ M . First, we prove ϕ(x) + ϕ(y) = ϕ(x + y). To do so, we prove
that the element-wise sum Ix + Iy is contained in Ix+y. Let k

n
∈ Ix (i.e. nx ≥ k)

and k′

n′ ∈ Iy (i.e. n′y ≥ k′). We shall prove k
n

+ k′

n′ ∈ Ix+y, i.e. n′k+nk′

nn′ ∈ Ix+y,
i.e. nn′(x + y) ≥ n′k + nk′. Since nx ≥ k and n′y ≥ k′, we have respectively
n′nx ≥ n′k and nn′y ≥ nk′, by monotonicity of +. Thus nn′(x + y) ≥ n′k + nk′,
still by monotonicity. This proves Ix + Iy ⊆ Ix+y. Therefore, sup(Ix + Iy) ≤ Ix+y.
Since +: R2 → R is continuous, we have sup(Ix + Iy) = sup Ix + sup Iy. Therefore,

ϕ(x) + ϕ(y) = sup Ix + sup Iy = sup(Ix + Iy) ≤ sup Ix+y = ϕ(x + y).

Replacing in the proof above Ix with Sx, sup with inf, and reversing the inequalities,
we obtain ϕ(x) + ϕ(y) ≥ ϕ(x + y) and hence ϕ(x) + ϕ(y) = ϕ(x + y).

For the compatibility with the lattice operations let x′, y′ ∈ M . If x′ ≤ y′

then Ix′ ⊆ Iy′ and hence ϕ(x′) ≤ ϕ(y′). Thus ϕ respects the order and hence
ϕ(x) ∨ ϕ(y) = ϕ(x ∨ y) and ϕ(x) ∧ ϕ(y) = ϕ(x ∧ y), since M and R are totally
ordered. Therefore, ϕ is a homomorphism.

The uniqueness follows from the fact that for every homomorphism ψ : M → R
and every x ∈ M the condition nx ≥ k implies nψ(x) ≥ k and the condition
nx ≤ k implies nψ(x) ≤ k. Therefore, for all k

n
∈ Ix, we have nx ≥ k and thus

ψ(x) ≥ k
n

. Hence, ψ(x) ≥ sup Ix = ϕ(x). With a symmetric proof using Sx we see
that ψ(x) ≤ ϕ(x) and thus ψ = ϕ. �

Corollary 4.8. Let A be a nontrivial totally ordered MV-monoid such that for all
x, y ∈ A we have x ⊕ y = 1 or x ⊙ y = 0. There is a unique homomorphism from
A to [0, 1]+.

Proof. This follows from Proposition 3.5, Theorem 4.7, the categorical equivalence
between MV-monoids and unital commutative ℓ-monoids, and the fact that Γ(R) =
[0, 1]+. �

Hölder’s Theorem for Archimedean ordered groups ([6, Theorem 2.6.3]), which
goes back to [15], asserts that every totally ordered Archimedean group is isomor-
phic to a subalgebra of R. We now show that Theorem 4.7 implies a version of
Hölder’s Theorem for unital commutative ℓ-monoids.

We recall that a unital Abelian ℓ-groups G is Archimedean provided that, for
every y ∈ G, if for every n ∈ N we have ny ≤ 1, then y ≤ 0. In the context of unital
commutative ℓ-monoids, we propose the following definition.

Definition 4.9. A unital commutative ℓ-monoid M is Archimedean provided that,
for all x, y ∈M , if for all n ∈ N we have nx ≤ ny + 1, then x ≤ y.

This definition is motivated by the following observation.

Proposition 4.10. Archimedean cancellative unital commutative ℓ-monoids are
precisely the subreducts of Archimedean unital Abelian ℓ-groups.
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Proof. It is easy to see that every {∨,∧,+, 1, 0,−1}-subreduct of an Archimedean
unital Abelian ℓ-group is an Archimedean unital commutative ℓ-monoid.

Let M be an Archimedean cancellative unital commutative ℓ-monoid. Since M is
a cancellative unital commutative ℓ-monoid, it is the subreduct of a unital Abelian
ℓ-group G [3, Proposition 4.4]. Without loss of generality, we can assume that M

generates G. Therefore, every element of G is of the form x − y for x, y ∈ M (cf.
[3, Lemma 4.2]). Let us prove that G is Archimedean. Let z ∈ G and suppose that
for every n ∈ N we have nz ≤ 1. We should prove z ≤ 0. There are x, y ∈M such
that z = x− y. For every n ∈ N we have

nx− ny = n(x− y) = nz ≤ 1,

which implies nx ≤ ny + 1. Since M is Archimedean as a unital commutative
ℓ-monoid, we deduce x ≤ y. Thus, z = x− y ≤ 0. �

We are now ready to prove a version of Hölder’s theorem for unital commutative
ℓ-monoids.

Theorem 4.11 (Hölder’s theorem for unital commutative ℓ-monoids). Let M be an
Archimedean nontrivial totally ordered unital commutative ℓ-monoid. The unique
homomorphism from M to R is injective, and so M is isomorphic to a subalgebra
of R.

Proof. Let ϕ be the unique homomorphism from M to R. Let x, y ∈M be such that
ϕ(x) = ϕ(y), and let us prove that x = y. Since M is totally ordered, either x ≤ y
or y ≤ x. Without loss of generality, we can suppose x ≤ y. We shall prove y ≤ x.
By the definition of Archimedean unital commutative ℓ-monoid (Definition 4.9), it
suffices to prove that, for every n ∈ N, ny ≤ nx+ 1. Let n ∈ N. We have

(4.1) ϕ(ny) = nϕ(y) < nϕ(y) + 1 = nϕ(x) + 1 = ϕ(nx+ 1).

Since M is totally ordered, either ny ≤ nx+ 1 or nx+ 1 ≤ ny. The second case is
not possible because otherwise we would have ϕ(nx+ 1) ≤ ϕ(ny) by monotonicity
of ϕ, contradicting (4.1). Thus, the first case holds, i.e. ny ≤ nx+ 1. �

Remark 4.12. Theorem 4.11 implies Hölder’s Theorem for Archimedean unital
ordered groups, since monoid homomorphisms between groups are group homo-
morphisms.

To proceed further, we need some definitions.

Notation 4.13. Let M be a nontrivial totally ordered unital commutative ℓ-
monoid, and let ϕ be the unique homomorphism from M to R (which exists by
Theorem 4.7). For every z ∈ ϕ−1[Z], we denote by Kz the interpretation in M of
ϕ(z).

Lemma 4.14. Let M be a nontrivial totally ordered unital commutative ℓ-monoid,
and let ϕ be the unique homomorphism from M to R (which exists by Theorem 4.7).
The following are universes of subalgebras of M:

(1) S := ϕ−1[Z];
(2) T := {z ∈ S | Kz ≤ z};
(3) Z := {z ∈ T | Kz = z}.
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Proof. (1). S is a subalgebra of M because it is the preimage of Z (which is a
subalgebra of R) under the homomorphism ϕ.

(2). Since M is totally ordered, T is closed under ∨ and ∧. Moreover, T contains
0, 1 and −1. To prove closure under +, let z1, z2 ∈ T . We already know that
z1 + z2 ∈ S. Moreover,

Kz1+z2 = Kz1 +Kz2 ≤ z1 + z2,

and thus z1 + z2 ∈ T , proving the closure of T under +. This proves (2).
(3). This can be proven using an argument similar to the one for (2), or using

the fact that Z is the image of the unique homomorphism from Z to M. �

Theorem 4.15. Let M be a nontrivial totally ordered unital commutative ℓ-monoid.
At least one of the following conditions holds.

(1) M is isomorphic to a subalgebra of R.

(2) Z
−→
×C∆∗

2 ∈ HS(M);

(3) Z
−→
×C∇∗

2 ∈ HS(M).

Proof. Since M is a nontrivial totally ordered unital commutative ℓ-monoid, by
Theorem 4.7 there is a unique homomorphism ϕ : M → R. If ϕ is injective, then
M is isomorphic to a subalgebra of R, and so (1) holds. Let us now suppose that

ϕ is not injective and let us prove that at least one between Z
−→
×C∆∗

2 and Z
−→
×C∇∗

2

belong to HS(M). Since ϕ is not injective, there is a ∈ M and n ∈ Z such that
ϕ(a) = n and a 6= n. Up to replacing a with a−n, we can suppose n = 0 and, since
M is totally ordered, either a ≥ 0 or a ≤ 0. Let us suppose first that a ≥ 0. Recall
that, for every x ∈M , Kx denotes the interpretation in M of the integer ϕ(x). Set
T := {x ∈M | x ≥ Kx}. Then T is a subalgebra of M, by Lemma 4.14. We define
the function

ψ : T −→ Z
−→
×C∆∗

2

x 7−→

{

(Kx, 0) if x = Kx,

(Kx, ε) otherwise.

We show that ψ is a homomorphism. We have K0 = 0, K1 = 1, and K−1 = −1,
and so ψ preserves 0, 1 and −1. We prove that ψ is order-preserving. Let x, y ∈ T
be such that x ≤ y. Then ϕ(x) ≤ ϕ(y), and so Kx ≤ Ky. If Kx < Ky, then
ψ(x) < ψ(y) by inspection on the first coordinates of ψ(x) and ψ(y). If Kx = Ky,
either y = Kx and then x = Kx, since x ≤ y and ϕ(x) = ϕ(y) = Kx, or y > Kx

and thus ψ(x) = (Kx, z) ≤ (Kx, ε) = ψ(y), for some z ∈ {0, ε}. This proves
that ψ is order-preserving. Since T is totally ordered, it follows that ψ is a lattice
homomorphism.

We prove that ψ preserves +. Let x, y ∈ T and let (Kx, zx) = ψ(x) and
(Ky, zy) = ψ(y) for some zx, zy ∈ {0, ε}. We prove that

ψ(x+ y) = (Kx +Ky,max({zx, zy})) = ψ(x) + ψ(y).

If x = Kx and y = Ky, then

ψ(x+ y) = ψ(Kx +Ky) = (Kx +Ky, 0) = (Kx +Ky,max({zx, zy})) = ψ(x) +ψ(y).

If x > Kx or y > Ky, then

ϕ(x + y) = ϕ(x) + ϕ(y) = Kx +Ky
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and x+ y > Kx +Ky. Thus

ψ(x + y) = (Kx +Ky, ε) = (Kx +Ky,max({zx, zy})) = ψ(x) + ψ(y).

We then show that ψ is surjective. Let (K, y) ∈ Z
−→
×C∆∗

2 . We have two cases. If
y = 0, then (K, y) = (K, 0) = ψ(K). If y = ε, then ϕ(a +K) = ϕ(a) + ϕ(K) = K
and thus ψ(a+K) = (K, ε) = (K, y) because a+K 6= K (since K is invertible and
a 6= 0).

Therefore, Z
−→
×C∆∗

2 ∈ H(T) ⊆ HS(M). If instead a ≤ 0, we can prove in a

similar way that Z
−→
×C∇∗

2 ∈ HS(M). �

Corollary 4.16. Let A be a nontrivial totally ordered MV-monoid such that for
all x, y ∈ A we have x⊕y = 1 or x⊙y = 0. At least one of the following conditions
hold:

(1) A is isomorphic to a subalgebra of [0, 1]+;

(2) C∆
2 ∈ HS(A);

(3) C∇
2 ∈ HS(A).

Proof. The statement follows from Theorem 4.15 using the equivalence between uℓM
and MVM, Proposition 3.5 and the fact that Γ preserves and reflects injectivity and
surjectivity (Proposition 2.16). �

Lemma 4.17. Let A be a subalgebra of [0, 1]+. Then, either there is n ∈ N \ {0}
such that A =  L+

n or HSP(A) = HSP([0, 1]+).

Proof. Suppose there is no n ∈ N \ {0} such that A =  L+
n , and let us prove

HSP(A) = HSP([0, 1]+). The left-to-right inclusion is trivial since A is a sub-
algebra of [0, 1]+. For the converse inclusion, we prove that [0, 1]+ ∈ HSP(A).
Let S be the subalgebra of the ω-power Nω consisting of the converging sequences.
Let ϕ : S → [0, 1]+ be the function that maps an element of S to its limit as a
sequence. This is a well-defined homomorphism. Since there is no n ∈ N \ {0} such
that A =  L+

n , A is dense in [0, 1] and thus ϕ is surjective. Therefore, [0, 1]+ is a
homomorphic image of S. �

Theorem 4.18. The almost minimal varieties in MVM are precisely V(C∆
2 ), V(C∇

2 )
and V( L+

p ) (for p prime), and they are all pairwise distinct.

Proof. First of all we prove that V(C∆
2 ), V(C∇

2 ) and V( L+
p ) (for p prime) are all

pairwise distinct and distinct from the atom V( L+
1 ) (i.e., the variety of bounded

distributive lattice). Consider the equations

(4.2) x⊕ x ≈ x

and

(4.3) x⊙ x ≈ x.

We can see that:

(1)  L+
1 satisfies both (4.2) and (4.3);

(2)  Lp (p prime) satisfies neither (4.2) nor (4.3);

(3) C∆
2 satisfies (4.2) but not (4.3);

(4) C∇
2 satisfies (4.3) but not (4.2).
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Therefore, V(C∆
2 ), V(C∇

2 ) and V( L+
p ) (for p prime) are not minimal varieties. More-

over, V(C∆
2 ) and V(C∇

2 ) are distinct, and both of them are distinct from any V( L+
p )

(for p prime). For distinct primes p < q, V( L+
p ) and V( L+

q ) are distinct because

(p + 1)x ≈ px is satisfied by  L+
p but not by  L+

q . This proves that V(C∆
2 ), V(C∇

2 )

and V( L+
p ) (for p prime) are all pairwise distinct and distinct from the atom V( L+

1 ).

Let V be a nontrivial variety of MV-monoids such that V( L+
1 ) ( V. We prove

that V is above one of the varieties in the statement. By Birkhoff’s Subdirect Rep-
resentation Theorem [7, Theorem 8.6], V is generated by its subdirectly irreducible
members. Therefore, from V( L+

1 ) ( V we deduce that there is a subdirectly irre-
ducible A ∈ V \ V( L+

1 ). By Theorem 3.6, A is totally ordered and such that, for
all x, y ∈ A, x⊕ y = 1 or x⊙ y = 0.

Hence, by Corollary 4.16 one of the following conditions holds: (i) A is isomor-

phic to a subalgebra of [0, 1]+, (ii) C∆
2 ∈ HS(A), (iii) C∇

2 ∈ HS(A).

If (ii) holds then V(C∆
2 ) ⊆ V. Similarly, if (iii) holds then V(C∇

2 ) ⊆ V.
We are left with the case (i). In this case, by Lemma 4.17, either A ∼=  L+

n

for some n ∈ N \ {0, 1} (where we have excluded n = 1 because A /∈ V( L+
1 )) or

[0, 1]+ ⊆ HSP(A). In the first case there is a prime p that divides n; we then get
 L+
p ∈ S( L+

n ) ⊆ HSP(A) ⊆ V and so V( L+
p ) ⊆ V. In the second case, for any prime

p we have  L+
p ∈ S([0, 1]+) ⊆ HSP(A) ⊆ V and hence V( L+

p ) ⊆ V. �

5. Above the almost minimal varieties of MV-monoids

In this section we start looking at “small” MV-monoids; it is obvious that the
only 2-element MV-monoid is the 2-element bounded distributive lattice. There
are exactly four 3-element MV-monoids, represented in Figure 1; the right-most
one is the 3-element bounded chain, which clearly does not satisfy the conclusion of
Theorem 3.6. The remaining three ones are all subdirectly irreducible. In Figures 1
and 3 we use the convention of specifying the outputs of ⊕ and ⊙ when they are not
derivable from other outputs, i.e. when they cannot be inferred by the monotonicity
of ⊕ and ⊙ and by the properties of 1 and 0 with respect to ⊕ and ⊙.

0 = a ⊙ a

a

1 = a ⊕ a

0 = a ⊙ a

a = a⊕ a

1

0

a = a⊙ a

1 = a ⊕ a

 L
+
2 C

∆
2 C

∇
2

0

a = a⊙ a = a⊕ a

1

L2

Figure 1. the 3-element MV-monoids

Furthermore, for each n ∈ N we define the MV-monoids LM∆
n and LM∇

n whose
lattice reduct is the (n+1)-element chain and whose monoidal operations are defined
as follows:

• LM∆
n = Γ(Z

−→
×LM∆∗

n ) is the MV-monoid in which x⊕ y = x ∨ y and

x⊙ y =

{

y if x = 1,

0 otherwise;
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· · ·· · ·

V( L+
1 )

V(C∆
2 ) V(C∇

2 )

V(C∆
3 ) V(C∇

3 )

V( L+
2 )V( L+

3 )V( L+
5 )

V(C∆) V(C∇)

V(C+)

Figure 2. Λ(MVM)

• LM∇
n = Γ(Z

−→
×LM∇∗

n ) is the MV-monoid in which x⊙ y = x ∧ y and

x⊕ y =

{

y if x = 0,

1 otherwise.

We can observe that:

(1) LM∆
1 and LM∇

1 are isomorphic to the 2-element bounded distributive lat-
tice;

(2) LM∆
2
∼= C∆

2 , and LM∇
2
∼= C∇

2 ;

(3) for n ≥ 3,  L+
n , C∆

n , C∇
n , LM∆

n and LM∇
n are pairwise nonisomorphic;

(4) for all n the only positive MV-algebra among them is  L+
n and it is subdi-

rectly irreducible;
(5) for all n ∈ N \ {0},  L+

n , LM∆
n , LM∇

n , C∆
n , and C∇

n satisfy the conclusion
of Theorem 3.6.

Lemma 5.1. If n ≥ 3, neither LM∆
n nor LM∇

n are subdirectly irreducible.

Proof. Suppose n ≥ 3; then there are a, b ∈ LM∆
n such that 0 < a ≺ b < 1. We

claim that {a, b} and {0, a} identify two congruences (meaning that they are the
only nontrivial blocks) whose meet is the bottom congruence. To prove that {a, b}
is the only nontrivial block of a congruence, we have to show that, for all x ∈ LM∆

n ,

either a⊕ x = b⊕ x or {a⊕ x, b ⊕ x} = {a, b}, and

either a⊙ x = b⊙ x or {a⊙ x, b ⊙ x} = {a, b}.

The proof is really straightforward given the definition of the operations; note
that a ≺ b is used critically. The argument for {0, a} is similar, but easier. It is
immediate that the meet of these two congruences is the bottom congruence.

Finally, the argument for LM∇
n is analogous. �
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This shows that even a finite MV-monoid satisfying the conclusion of Theo-
rem 3.6 need not be subdirectly irreducible. For C∆

n and C∇
n the situation is

different, since they are subdirectly irreducible (Lemma 5.1).
Using the softwares Prover-9 and Mace4 [17], we can observe that there are 19

totally ordered 4-element MV-monoids; only nine of them satisfy the conclusion of
Theorem 3.6.

0 = a ⊙ b

b = a⊙ a

a = b⊕ b

1 = a ⊕ b

0 = a ⊙ a

b = b⊕ b

a = a⊕ a = a⊕ b

1

0

b = a⊙ b = b⊙ b

a = a⊙ a

1 = b⊕ b

0 = a ⊙ a

b

a = a⊕ b = b⊕ b = a⊕ a

1

 L
+
3 LM

∆
3 LM

∇
3 C

∆
3

0

b = a⊙ a = b⊙ b

a

1 = b⊕ b

0 = a ⊙ b

b = b⊕ b

a = a⊕ b = a⊙ a

1 = a ⊕ a

0 = a ⊙ b

b = b⊕ b = a⊙ a

a = a⊕ b

1 = a ⊕ a

0 = b⊙ b

b = a⊙ b

a = b⊕ b = a⊙ a

1 = a ⊕ b

C
∇
3 A

1
3 A

2
3 A

3
3

0 = b⊙ b

b = b⊕ b = a⊙ b

a = a⊙ a

1 = a ⊕ b

A
4
3

Figure 3. the 4-element MV-monoids satisfying the conclusion of Theorem 3.6

We already know that  L+
3 is simple (Corollary 4.2) and that C∆

3 and C∇
3 are

subdirectly irreducible (Lemma 4.6). On the other hand, neither LM∆
3 nor LM∇

3

are subdirectly irreducible (Lemma 5.1). What about the others? As they are all
4-element chains, the congruence lattice of their lattice reduct is the 23 = 8-element
distributive complemented lattice, depicted in Figure 4.

• We can see that {0, b} is a congruence of A1
3. Moreover, if θ ∈ Con(A1

3)
and (a, b) ∈ θ, then

(1, a) = (a⊕ a, b⊕ a) ∈ θ

(a, 0) = (a⊙ a, b⊙ a) ∈ θ.
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Thus (0, 1) ∈ θ, and therefore θ is the total congruence. If instead (a, 1) ∈ θ,
then

(0, b) = (a⊙ b, 1 ⊙ b) ∈ θ.

It follows that Con(A1
3) is the 4-element chain

0A1
3
< {0, b} < {{0, b}{1, a}} < 1A1

3

and A1
3 is subdirectly irreducible.

• For A2
3 a similar computation proves that Con(A2

3) is the 3-element chain
and the minimal congruence is again {0, b}. So A2

3 is subdirectly irreducible
as well.

• Similar computations show that Con(A3
3) is the 3-element chain with min-

imal congruence {a, 1} and Con(A4
3) is the 4-element chain with minimal

congruence {a, 1}. So they are both subdirectly irreducible.

{0, b} {a, b} {a, 1}

{0, a, b} {0, b} {a, 1} {a, b, 1}

Figure 4. Con(L3)

Now we can start to depict the subposet of Λ(MVM) given by subvarieties of
MV-monoids with “small” generators. As stated in the introduction of the section
it is clear that  L+

1 is a subalgebra of any MV-monoid, so V( L+
1 ) is the only atom

in Λ(MVM) and its covers are described in Theorem 4.18. By an application of
the Jónsson’s Lemma [16, Corollary 3.4], we get that if A ∈ { L+

n | n ∈ N \ {0}} ∪
{C∆

n ,C
∇
n | n ∈ {1, 2, 3, 4}} then every subdirectly irreducible algebra in V(A) is

in IS(A) since  L+
n is hereditary simple (Corollary 4.2) and since any quotient of

C∆
n or C∇

n is isomorphic to one of their subalgebras, for n ∈ {1, 2, 3, 4}. Indeed, it

is easy to see that, for every n ∈ {1, 2, 3}, C∆
n ∈ IS(C∆

n+1) and C∇
n ∈ IS(C∇

n+1).

Moreover, IS(C∆
2 ) = { L+

1 ,C
∆
2 } and IS(C∇

2 ) = { L+
1 ,C

∇
2 }.

Above V( L+
1 ) and V(C∇

1 ) we have two countable chains {V(C∆
n ) | n ∈ N \ {0}}

and {V(C∇
n ) | n ∈ N \ {0}}; we show that their joins are V(C∆) and V(C∇)

respectively.
We define an algebra C∆

[n] whose universe is {0, ε, 2ε, . . . , nε, 1} ⊆ B; ⊙ in C∆
[n]

is the restriction of ⊙ in C∆ to {0, ε, 2ε, . . . , nε, 1} and

kε⊕ k′ε =

{

(k + k′)ε if k + k′ ≤ n,

nε otherwise.

It is straightforward to check that C∆
[n]

∼= C∆
n for n ∈ N \ {0}; moreover:
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Lemma 5.2. C∆ ∈ ISPu({C∆
[n] | n ∈ N \ {0}}).

Proof. For every n ∈ N \ {0}, let Jn := {n, n+ 1, . . . }; clearly Jn ∩ Jm = Jmax(n,m)

and so the set {Jn | n ∈ N \ {0}} has the finite intersection property. Therefore,

there is an ultrafilter U on N\{0} which contains all the Jn. If C =
∏

n∈N\{0} C∆
[n],

then it is easy to check that

kε 7−→ {max(k, n)δ | n ∈ N \ {0}}/U

is an embedding of C∆ in C. �

This shows that
∨

n∈N\{0} V(C∆
n ) = V(C∆); a dual argument (with the necessary

adjustments) shows that
∨

n∈N\{0} V(C∇
n ) = V(C∇), as well. Furthermore, we can

observe that, for every n ∈ N \ {0, 1}, the equation nx ≈ (n − 1)x distinguishes

V(C∆
n ) from V(C∆

n+1), while its dual xn ≈ xn−1 distinguishes V(C∇
n ) from V(C∇

n+1).
If we want the 4-element chains to come into play, then we have to zoom in; first

observe that using the description of the congruences we can show that

HS(A1
3) = { L+

1 ,C
∆
2 ,C

∇
2 ,A

1
3}

HS(A2
3) = { L+

1 ,C
∆
2 ,  L

+
2 ,A

2
3}

HS(A3
3) = { L+

1 ,C
∆
2 ,  L

+
2 ,A

3
3}

HS(A4
3) = { L+

1 ,C
∆
2 ,C

∇
2 ,A

4
3}.

Now we can draw the picture in Figure 5, which describes the inclusion relations
of the other 4-element chains. However this picture can be improved. Indeed, if we
zoom in more we can see that the interval [T,V(A1

3,A
2
3,A

3
3,A

4
3)] (T is the trivial

variety) consists of three isomorphic posets glued together. In Figure 6 we display
one of the posets (the labels for the unlabeled points are obvious).

V( L+
1 )

V(C∆
2 ) V( L+

2 ) V(C∇

2 )

V(C∆
2 ,  L

+
2 ) V(C∆

2 ,C
∇

2 ) V( L+
2 ,C

∇

2 )

V(A2
3) V(A1

3) V(A4
3) V(A3

3)

Figure 5. The first zoom in

A similar pattern repeats itself for all n ∈ N but it gets hopelessly complicated
very quickly. There are already thirty-five 5-element MV-monoids satisfying the
conclusion of Theorem 3.6, but we already know that two of them (LM∆

4 and

LM∇
4 ) are not subdirectly irreducible and three of them ( L+

4 , C∆
4 and C∇

4 ) are
subdirectly irreducible. The remaining thirty could be checked by hand (or one
could implement a script) and in principle we can establish all the covering relations
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V( L
+
1 )

V(C∇
2 ) V(C∆

2 ) V( L
+
2 )

V(A1
3)

V(A1
3,  L

+
2 )

V(A2
3)

V(A2
3,C

∇
2 )

V(A1
3,A

2
3)

Figure 6. The second zoom in

among them. Drawing the proper interval would be a real (albeit pointless) work
of art.

6. Subdirectly irreducible positive MV-algebras

In this section we begin our investigation of positive MV-algebras. As it is usual
for many other classes of algebraic structures, one of the first pivotal steps to be
done is to characterize the subdirectly irreducible algebras, when this is feasible.
The principal aim of this section, achieved in Theorem 6.5, is to provide such a
characterization for the finite case. Furthermore, in the last part of the section we
provide two examples of (totally ordered) relatively subdirectly irreducible positive
MV-algebras that are not subdirectly irreducible in the absolute sense.

We start recording some basic properties of cancellative commutative ℓ-monoids.
We recall that a commutative monoid M is called torsion-free if for every n ∈ N\{0}
and every x, y ∈M such that nx = ny we have x = y.

Lemma 6.1. Any cancellative commutative ℓ-monoid is torsion-free.

Proof. It is a standard fact that any Abelian ℓ-group is torsion-free [6, Corol-
lary 1.2.13]. Cancellative commutative ℓ-monoids are precisely the subreducts of
Abelian ℓ-groups (see e.g. [3, Proposition 4.3]), and thus they are torsion-free. �

Lemma 6.2. Let M be a cancellative commutative ℓ-monoid. For all x, x′, y, y′ ∈
M , if x+ y = x′ + y′, x ≤ x′ and y ≤ y′, then x = x′ and y = y′.

Proof. M is a subreduct of an Abelian ℓ-group (see [3, Proposition 4.3]), and these
quasi-equations hold in Abelian ℓ-groups. �

We then turn our attention to the following consequence of Theorem 4.7. Note
that, given a subalgebra A of the unital commutative ℓ-monoid R, the set Γ(A) is
finite if and only if there is n ∈ N \ {0} such that A = 1

n
Z.
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Proposition 6.3. Let M be a nontrivial cancellative totally ordered unital commu-
tative ℓ-monoid such that Γ(M) is finite. There is n ∈ N \ {0} such that M ∼= 1

n
Z.

Proof. Since M is a nontrivial totally ordered unital commutative ℓ-monoid, by
Theorem 4.7 there is a unique homomorphism h : M → R. Since Γ(M) is finite,
also h[Γ(M)] is finite. Furthermore, we claim that Γ(h[M]) = h[Γ(M)]. Indeed, let
y ∈ Γ(h[M]). Then there is x ∈ M such that h(x) = y and 0 ≤ y ≤ 1. Set x′ :=
(x∨0)∧1. We observe that x′ ∈ Γ(M) and h(x′) = (h(x)∨0)∧1 = (y∨0)∧1 = y.
Thus y ∈ h[Γ(M)]. For the other inclusion, let y ∈ h[Γ(M)]. Then, there is x ∈M
such that 0 ≤ x ≤ 1 and h(x) = y. We prove that 0 ≤ y ≤ 1 and thus that
y ∈ Γ(h[M]):

y = h(x) = h((x ∨ 0) ∧ 1) = (h(x) ∨ 0) ∧ 1 = (y ∨ 0) ∧ 1.

Thus, Γ(h[M]) = h[Γ(M)], and hence Γ(h[M]) is finite. Therefore, there is n ∈
N \ {0} such that h[M] = 1

n
Z. We prove that h is also injective and thus that

M ∼= 1
n
Z. To do so we claim that, for all x ∈ M and n, k ∈ Z, if h(nx) = k, then

nx = k. Let x ∈M and n, k ∈ Z and suppose h(nx) = k; then h(nx− k) = 0 and,
since M is totally ordered, either nx− k ≤ 0 or nx− k ≥ 0. We only deal with the
case nx − k ≥ 0 since the other one is analogous. Let us then assume nx− k ≥ 0;
for every l ∈ N \ {0} we have h(l(nx − k)) = 0 and l(nx − k) ≥ 0, from which we
conclude l(nx− k) ∈ Γ(M). From the facts that {l(nx− k) | k ∈ N \ {0}} ⊆ Γ(M),
that Γ(M) is finite, and that M is cancellative, it follows that nx−k = 0, and thus
nx = k. This proves our claim, i.e. that for all x ∈ M and n, k ∈ Z, if h(nx) = k,
then nx = k. It follows that, for all x, y ∈M with h(x) = h(y), we have h(x) ∈ 1

n
Z

and thus nh(x) = nh(y) = k for some k ∈ Z. Using the claim we obtain that
nx = ny = k, which implies x = y since M is torsion-free (Lemma 6.1). Thus h is
injective and M ∼= 1

n
Z. �

Corollary 6.4. Let A be a finite nontrivial totally ordered positive MV-algebra
such that for all x, y ∈ A we have x ⊕ y = 1 or x ⊙ y = 0. There is n ∈ N \ {0}
such that A ∼=  L+

n .

Proof. This follows from Propositions 3.5 and 6.3, the equivalence between positive
MV-algebras and cancellative unital commutative ℓ-monoids, and the fact that
Γ( 1

n
Z) =  L+

n . �

Theorem 6.5. Every finite positive MV-algebra is a finite subdirect product of
positive MV-algebras of the form  L+

n for some n ∈ N \ {0}.

Proof. Let A be a finite positive MV-algebra; this means that A is a subreduct of
an MV-algebra B. By Birkhoff’s Subdirect Representation Theorem [7, Theorem
8.6], B is a subdirect product of a family {Bi}i∈I of subdirectly irreducible MV-
algebras. In conclusion, A is a subalgebra of a product of a family {Bi}i∈I of
subdirectly irreducible MV-algebras. Every subdirectly irreducible MV-algebra is
totally ordered (in fact, a nontrivial MV-algebra is totally ordered if and only if
it is finitely subdirectly irreducible [14, Theorem 15]). Therefore, for every i ∈ I,
Bi is totally ordered. Moreover, for every totally ordered MV-algebra D and all
x, y ∈ D, we have x ⊕ y = 1 (if ¬y ≤ x) or x ⊙ y = 0 (if x ≤ ¬y). Therefore, for
all i ∈ I and all x, y ∈ Bi, we have x ⊕ y = 1 or x ⊙ y = 0. For every i ∈ I, let
pi : B → Bi be the i-th projection, and set Ai := pi(A). For each i ∈ I, Ai is a
finite nontrivial totally ordered positive subalgebra of B+

i such that for all x, y ∈ Ai
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we have x ⊕ y = 1 or x⊙ y = 0. Therefore, by Corollary 6.4, for every i ∈ I there
is ni ∈ N \ {0} such that Ai

∼=  L+
ni

. This shows that A is a subdirect product of

positive MV-algebras of the form  L+
n for some n ∈ N\{0}. Since A is finite, finitely

many of them suffice. �

Theorem 6.6. For a finite positive MV-algebra A, the following are equivalent:

(1) A is subdirectly irreducible;
(2) A ∼=  L+

n for some n ∈ N \ {0};
(3) A is nontrivial, totally ordered and, for all x, y ∈ A, either x ⊕ y = 1 or

x⊙ y = 0.

Proof. The implication (1) ⇒ (2) follows from Theorem 6.5, the implication (2) ⇒
(1) follows from the fact that each  L+

n is simple (Corollary 4.2), the implication (2)
⇒ (3) is straightforward, and the implication (3) ⇒ (2) is Corollary 6.4. �

By Di Nola’s representation theorem [12], the standard MV-algebra [0, 1] gener-
ates the class of MV-algebras as a quasi-variety. As observed in [3, Proposition 2.5],
an immediate consequence of this fact is that the class of positive MV-algebras is the
quasivariety generated by the reduct [0, 1]+ of the standard MV-algebra [0, 1]. By
[11, Lemma 1.5], every relatively subdirectly irreducible in MV

+ is in ISPu([0, 1]+)
and hence is totally ordered.

Remark 6.7. The variety of MV-monoids generated by [0, 1]+ contains MV-

monoids that are not positive MV-algebras. For example, C∆
2 ∈ HSP([0, 1]+).

Indeed, let S be the subalgebra of [0, 1]ω consisting of the sequence constantly

equal to 1 and the sequences that converge to 0. Let ϕ : S → C∆
2 be the homomor-

phism that maps the sequence constantly equal to 1 to 1, the sequences that are
definitely equal to 0 to 0 and all the remaining ones to ε. This is a surjective homo-
morphism. This shows that C∆

2 ∈ HSP([0, 1]+). Analogously, also C∇
2 belongs to

HSP([0, 1]+). Note also that C∆
2 is an MV-monoid that is not cancellative. This

gives another proof of the fact that MV
+ = ISPu([0, 1]+) is not a variety.

To conclude the section we observe that we have produced two examples of
(totally ordered) relatively subdirectly irreducible positive MV-algebras that are

not subdirectly irreducible in the absolute sense, namely C∆ and C∇, i.e. the
positive MV-subalgebras of C+ introduced in Section 2. Indeed, we can observe
that

∧

n∈N
γ∆n = 0Con(C∆). Hence C∆ is a positive MV-algebra which satisfies the

conclusion of Theorem 3.6 without being subdirectly irreducible. We next prove
that C∆ is relatively subdirectly irreducible. For each n ∈ N \ {0} there is an

element a ∈ C∆/γ∆n (namely nε/γ∆n ) such that a⊕ a = a but a⊙ a = 0. Now the
quasi-equations x⊕x ≈ x⇐⇒ x⊙x ≈ x hold in MV-algebras and hence in positive
MV-algebras. It follows that C∆/γ∆n /∈ MV

+ for all n ∈ N\{0}. However C∆/γ∆0 is

the 2-element bounded distributive lattice, so C∆/γ0 ∈ MV
+; this implies that the

relative congruence lattice of C∆ (i.e. the lattice of congruences θ ∈ Con(C∆) such

that A/θ ∈ MVM) is the 3-element chain. So C∆ is relatively subdirectly irreducible
in MV

+ and it is also finitely subdirectly irreducible in MVM.
Clearly also C∇ ∈ MV

+ and with a totally similar argument we can prove that
∧

n∈N
γ∇n = 0Con(C∇); so Con(C∇) is an infinite chain and C∇ is not subdirectly

irreducible. However, as above, C∇/γ∇n /∈ MV
+ and so C∇ is relatively subdirectly

irreducible in MV
+.
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7. Varieties of positive MV-algebras

In this section we investigate varieties of positive MV-algebras. We will provide
a characterization of the varieties of positive MV-algebras (Theorem 7.9): these
are precisely the varieties generated by finitely many reducts of finite nontrivial
MV-chains. In fact, the varieties of positive MV-algebras are in bijection with
the divisors-closed finite subsets of N \ {0} (Definition 7.11, Theorem 7.12). Fur-
thermore, we prove that positive MV-algebras form an unbounded sublattice of
Λ(MVM) (Corollary 7.10).

First we observe that not every positive MV-algebra generates a variety of pos-
itive MV-algebras: we have seen that C+,C∆, and C∇ have subalgebras having
non-positive MV-algebras as quotients. Therefore V(C+), V(C∆) and V(C∇) are
all varieties of MV-monoids that do not consist entirely of positive MV-algebras.
However, let:

(7.1) L = { L+
n ∈ MV

+ | n ∈ N \ {0}}.

Lemma 7.1. If T is a finite subset of L, then

V(T ) = ISP(T ).

Hence, V(T ) consists entirely of positive MV-algebras.

Proof. From Jónsson’s Lemma, in its version for a finite set of finite algebras [16,
Corollary 3.4], we have V(T ) = IPSHS(T ), where with PS(K) we denote the
class of all subdirect products of algebras in K. Furthermore, any algebra in T is
hereditarily simple (Corollary 4.2), and thus

V(T ) = IPSS(T ) ⊆ ISPS(T ) ⊆ ISSP(T ) = ISP(T ).

Since the class of positive MV-algebras is a quasivariety, it is closed under subalge-
bras and products. Therefore, V(T ) consists entirely of positive MV-algebras. �

Corollary 7.2. The variety generated by finitely many finite positive MV-algebras
consists of positive MV-algebras.

Proof. Let K be a finite set of finite positive MV-algebras and let V := V(K).
By Theorem 6.5, every finite positive MV-algebra is a finite subdirect product of
algebras in L. Therefore, there is a finite subset T of L such that V(K) = V(T ). By
Lemma 7.1, the class V(K) = V(T ) consists entirely of positive MV-algebras. �

Lemma 7.3. If T is an infinite subset of L, then V(T ) coincides with V([0, 1]+)
and hence it is not a variety of positive MV-algebras.

Proof. The inclusion V(T ) ⊆ V([0, 1]+) is obvious. To prove the converse inclusion,
set I := {n ∈ N \ {0} |  L+

n ∈ T }. Let S be the subalgebra of
∏

n∈I  Ln consisting

of the converging sequences. Let ϕ : D → [0, 1]+ be the homomorphism that maps
a sequence to its limit. It is not difficult to see that, since I is infinite,

⋃

n∈I  L+
n

is dense in [0, 1]. Therefore, ϕ is surjective, which proves [0, 1]+ ∈ HSP(T ). This
proves the inclusion V([0, 1]+) ⊆ V(T ). By Remark 6.7, it follows that V(T ) is not
a variety of positive MV-algebras. �

Corollary 7.4. There is no largest variety of positive MV-algebras.

Proof. Suppose there is one such variety V and let us reach a contradiction. By
Lemma 7.1,  L+

n ∈ V for all n. Thus, by Lemma 7.3, V is not a variety of positive
MV-algebras, a contradiction. �
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Corollary 7.2 states that the variety generated by finitely many finite positive
MV-algebras is a variety of positive MV-algebras. We will now show that these are
the only varieties of positive MV-algebras. In other words, the varieties of positive
MV-algebras are exactly the varieties generated by a finite set of finite positive MV-
algebras. The proof relies on Theorem 7.6, for proving which we use the following
lemma.

Lemma 7.5. Let M be a nontrivial totally ordered unital commutative ℓ-monoid
such that every quotient of every subalgebra of M is cancellative. Let ϕ be the
unique homomorphism from M to R (which exists by Theorem 4.7). For all y ∈M
and k ∈ Z, if ϕ(y) = k, then y = k.

Proof. Let S = {x ∈ M | ϕ(x) ∈ Z}. By Lemma 4.14, S is a subalgebra of
M. We shall prove that the unique homomorphism Z → S is surjective. By
Theorem 4.15, one of the following conditions hold: (i) S ∼= Z, (ii) the image of the

unique homomorphism from S to R is not Z, (iii) Z
−→
×C∆∗

2 ∈ HS(S), (iv) Z
−→
×C∇∗

2 ∈
HS(S). The condition (ii) is not possible by definition of S. The conditions (iii)

and (iv) are excluded since Z
−→
×C∆∗

2 and Z
−→
×C∇∗

2 are not cancellative. Therefore,
the condition (i) holds, i.e. there is an isomorphism Z → S. This proves that the
unique homomorphism Z → S is surjective. �

Theorem 7.6. Let M be a nontrivial totally ordered unital commutative ℓ-monoid
such that every quotient of every subalgebra of M is cancellative. Then, the unique
homomorphism from M to R is injective, and thus M is isomorphic to a subalgebra
of R.

Proof. Let ϕ be the unique homomorphism from M to R, which exists by Theo-
rem 4.7. Let x, y ∈ M be such that ϕ(x) = ϕ(y). We shall prove x = y. We have
two cases:

(1) ϕ(x) ∈ Q;
(2) ϕ(x) /∈ Q.

Case (1). In this case, there are n ∈ N\{0} and k ∈ Z such that ϕ(x) = ϕ(y) = k
n

,
i.e. nϕ(x) = nϕ(y) = k, which implies ϕ(nx) = ϕ(ny) = k, and thus nx = ny = k
by Lemma 7.5, and hence x = y by Lemma 6.1.

Case (2). Without loss of generality, we may suppose x ≤ y. We set W :=
{nϕ(x) + k ∈ R | n ∈ N, k ∈ Z}. Note that W is a subalgebra of the unital
commutative ℓ-monoid R. We set

R := ϕ−1[W ].

Since ϕ(x) is irrational, for every z ∈ R there is exactly one pair (n, k) ∈ N × Z
such that ϕ(z) = nϕ(x)+k. We denote the two elements of this pair by Nz and Cz,
respectively. Note that ϕ(z1) = ϕ(z2) implies Nz1 = Nz2 and Cz1 = Cz2 . Moreover,
for all z1, z2 ∈ R, we have:

(Nz1 +Nz2)ϕ(x) + (Cz1 + Cz2) = Nz1ϕ(x) + Cz1 +Nz2ϕ(x) + Cz2 = z1 + z2,

which proves that z1 + z2 ∈ R with Nz1+z2 = Nz1 + Nz2 and Cz1+z2 = Cz1 + Cz2 .
Let

T ′ := {z ∈ R | Nzx+ Cz ≤ z}.

We claim that T′ is a subalgebra of M. Since M is totally ordered, its subset
T′ is a sublattice. Moreover, T′ contains 0, 1 and −1, as witnessed by the pairs
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(0, 0), (0, 1), (0,−1) ∈ N×Z, respectively. To prove closure under +, let z1, z2 ∈ T ′.
We already know that z1 + z2 ∈ R. Moreover,

Nz1+z2x+ Cz1+z2 = (Nz1 +Nz2)x+ (Cz1 + Cz2)

= Nz1x+ Cz1 +Nz2x+ Cz2

≤ z1 + z2.

Therefore, z1 + z2 ∈ T ′, proving the closure of T ′ under +. This proves our claim
that T′ is a subalgebra of M.

We define the function

ψ : T′ −→ R
−→
×C∆∗

2

z 7−→

{

(ϕ(z), 0) if z = Nzx+ Cz ,

(ϕ(z), ε) otherwise.

We show that this is a homomorphism. We have ψ(0) = (0, 0), ψ(1) = (1, 0),
and ψ(−1) = (−1, 0). Thus ψ preserves 0, 1 and −1. We prove that ψ is order-
preserving: let z1, z2 ∈ T ′ be such that z1 ≤ z2. Then ϕ(z1) ≤ ϕ(z2), and so
Kz1ϕ(x) +Cz1 ≤ Kz2ϕ(x) +Cz2 . If Kz1ϕ(x) +Cz1 < Kz2ϕ(x) +Cz2 , then ψ(x) <
ψ(y) by inspection on the first coordinates of ψ(x) and ψ(y). If Kz1ϕ(x) + Cz1 =
Kz2ϕ(x) + Cz2 , either z2 = Kz1x + Cz1 and then z1 = Kz1x + Cz1 , since z1 ≤ z2
and ϕ(z1) = ϕ(z2) = Kz1ϕ(x) + Cz1 , or z2 > Kz1x + Cz1 and thus ψ(z1) =
(Kz1ϕ(x) + Cz1 , t) ≤ (Kz1ϕ(x) + Cz1 , ε) = ψ(z2), for some t ∈ {0, ε}. This proves
that ψ is order-preserving, and thus ψ is a lattice homomorphism because T′ is
totally ordered.

We prove that ψ preserves +. Let z1, z2 ∈ T ′ and let (Kz1ϕ(x)+Cz1 , tz1) = ψ(z1)
and (Kz2ϕ(x) + Cz2 , tz2) = ψ(z2) for some tz1 , tz2 ∈ {0, ε}. We prove that

ψ(z1 + z2) = (Kz1ϕ(x) + Cz1 +Kz2ϕ(x) + Cz2 ,max({tz1 , tz2})) = ψ(z1) + ψ(z2).

If z1 = Kz1x+ Cz1 and z2 = Kz2x+ Cz2 , then

ψ(z1 + z2) = ψ(Kz1x+ Cz1 +Kz2x+ Cz2)

= (Kz1ϕ(x) + Cz1 +Kz2ϕ(x) + Cz2 , 0)

= ψ(z1) + ψ(z2).

If z1 > Kz1x+ Cz1 or z2 > Kz2x+ Cz2 , then

ϕ(z1 + z2) = ϕ(z1) + ϕ(z2) = Kz1ϕ(x) + Cz1 +Kz2ϕ(x) + Cz2

and z1 + z2 > Kz1x+ Cz1 +Kz2x+ Cz2 . Thus,

ψ(z1 + z2) = ψ(Kz1x+ Cz1 +Kz2x+ Cz2)

= (Kz1ϕ(x) + Cz1 +Kz2ϕ(x) + Cz1 , ε)

= ψ(z1) + ψ(z2).

Note that Nx +Ny = 1 and Cx = Cy = 0. Therefore, ψ(x) = (ϕ(x), 0), because
x = 1x+ 0. Furthermore, there is ν ∈ {0, ε} such that ψ(y) = (ϕ(x), ν). We have

ψ(x) + ψ(y) = (ϕ(x), 0) + (ϕ(x), ν)

= (2ϕ(x), ν)

= (ϕ(x), ν) + (ϕ(x), ν)

= ψ(y) + ψ(y).
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By hypothesis, the image of ψ is a cancellative subalgebra of R
−→
×C∆∗

2 . Thus, from
ψ(x)+ψ(y) = ψ(y)+ψ(y) we deduce ψ(x) = ψ(y). Hence, ψ(y) = ψ(x) = (ϕ(x), 0).
Therefore, y = Nyx+ Cy = 1x+ 0 = x. �

Corollary 7.7. Let A be a nontrivial totally ordered positive MV-algebra such that
for every x, y ∈ A we have x ⊕ y = 1 or x ⊙ y = 0. Moreover, suppose that every
quotient of every subalgebra of A is a positive MV-algebra. Then A is isomorphic
to a subalgebra of [0, 1]+.

Proof. First we observe that Ξ(A) is nontrivial since A is nontrivial, is totally
ordered by Proposition 3.5, and is cancellative since A is a positive MV-algebra.
Furthermore, by Proposition 2.16, every quotient Q of Ξ(A) is such that Γ(Q) is
isomorphic to a quotient of A and hence to a positive MV-algebra. Thus Q is
cancellative for each quotient Q of Ξ(A).

From Theorem 7.6 we have that Ξ(A) is isomorphic to a subalgebra of R and
thus A ∼= Γ(Ξ(A)) is isomorphic to Γ(R) = [0, 1]+ still by Proposition 2.16. �

Using mainly Corollary 7.7 we are able to prove the main result of the section,
which characterizes all varieties of positive MV-algebras in terms of some of their
finite subdirectly irreducible members.

Theorem 7.8. Let V be a variety of positive MV-algebras. For every subdirectly
irreducible member A of V there is n ∈ N \ {0} such that A is isomorphic to  L+

n .

Proof. Let A be a subdirectly irreducible algebra in V. By Proposition 3.5, A is
nontrivial, totally ordered, and such that, for all x, y ∈ A, x ⊕ y = 1 or x⊙ y = 0.
Since HS(A) ⊆ V, every algebra in HS(A) is a positive MV-algebra. So, by
Corollary 7.7, A is isomorphic to a subalgebra of [0, 1]+. By Lemma 4.17, either
there is n ∈ N \ {0} such that A =  L+

n or HSP(A) = HSP([0, 1]+). However,
the latter is not possible, because otherwise we would have [0, 1]+ ∈ V, which, by
Remark 6.7, would imply the existence of an algebra in V that is not a positive
MV-algebra, contradicting the fact that V consists of positive MV-algebras. �

Theorem 7.9. The varieties of positive MV-algebras are precisely the varieties
generated by a finite set of finite positive MV-algebras. Equivalently, they are pre-
cisely the varieties generated by a finite subset of { L+

n | n ∈ N \ {0}}.

Proof. Let V be a variety of positive MV-algebras. By Theorem 7.8, any subdirectly
irreducible algebra A in V is isomorphic to  L+

n for some n ∈ N \ {0}. Furthermore,
the set {n ∈ N \ {0} |  L+

n ∈ V} is finite because, otherwise, by Lemma 7.3, V

would not consist entirely of positive MV-algebras. Thus, by Birkhoff’s Subdirect
Representation Theorem [7, Theorem 8.6], V is generated by a finite subset of
{ L+

n | n ∈ N \ {0}}.
Clearly, every variety generated by a finite subset of { L+

n | n ∈ N \ {0}} is
generated by a finite set of finite positive MV-algebras. Moreover, by Corollary 7.2,
every variety generated by a finite set of finite positive MV-algebras is a variety of
positive MV-algebras. �

Corollary 7.10. The varieties of positive MV-algebras form an unbounded sublat-
tice (really, an ideal) of the lattice of subvarieties of MVM.

Proof. We need only to show that the join (as varieties of MV-monoids) of two
varieties of positive MV-algebras is still a variety of positive MV-algebras. But this
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follows from Theorem 7.9 since the join of two varieties is the variety generated by
the union of the two generating classes. �

Definition 7.11. We call divisor-closed finite set a finite subset I of N \ {0} such
that, for every n ∈ I and k ∈ N \ {0}, if k divides n, then k ∈ I.

For a divisor-closed finite set I, we set

KI := { L+
n ∈ MV

+ | n ∈ I}.

We can refine the statement and proof of Theorem 7.9 to get the characterization
of the varieties of positive MV-algebras in the following result. We recall that  L+

n

is simple for any n ∈ N \ {0} (Corollary 4.2). Moreover, it is not difficult to show
that  L+

n ∈ IS( L+
m) if and only if n | m.

Theorem 7.12. The set Λ(MV
+) of varieties of positive MV-algebras is in bijection

with the set J of divisor-closed finite sets, as witnessed by the inverse functions:

f : J −→ Λ(MV
+) g : Λ(MV

+) −→ J

I 7−→ V(KI) V 7−→ {n ∈ N \ {0} |  L+
n ∈ V}.

Proof. Let f : J → Λ(MV
+) and g : Λ(MV

+) → J be the functions in display. The
function f is well-defined by Corollary 7.2. The function g is well-defined since for
all V ∈ Λ(MV

+), if m | n ∈ g(V) then  L+
m ∈ IS( L+

n ) ⊆ V and thus m ∈ g(V).
We prove that f and g are inverse functions. The composite f ◦ g : Λ(MV

+) →
Λ(MV

+) is the identity because every variety is generated by its subdirectly ir-
reducible members, by Birkhoff’s Subdirect Representation Theorem [7, Theorem
8.6], and every subdirectly irreducible member of a variety of positive MV-algebras
is isomorphic to  L+

n for some n ∈ N \ {0} (Theorem 7.8).
We prove that the composite g ◦ f : J → J is the identity. Let I ∈ J. Since

KI ⊆ V(KI), it is immediate that I ⊆ g(f(I)). For the converse inclusion, let
n ∈ g(f(I)). Then,  L+

n ∈ V(KI). Since  L+
n is subdirectly irreducible, via an

application of Jónsson’s Lemma [16, Corollary 3.4] we get  L+
n ∈ HS(KI). Therefore,

there is m ∈ I such that L+
n is a homomorphic image of a subalgebra of L+

m ∈ KI .
Since  L+

m is hereditary simple by Corollary 4.2 and since  L+
n is nontrivial,  L+

n is
isomorphic to a subalgebra of  L+

m. Thus, n divides m and hence n ∈ I since I is
a divisor-closed finite set. This proves the inclusion g(f(I)) ⊆ I and so we have
I = g(f(I)). �

Remark 7.13. A reduced set is a finite subset I of N\{0} such that, for all distinct
n,m ∈ I, n ∤ m. The set J in Theorem 7.12 of divisor-closed finite sets is clearly in
bijection with the set of reduced sets.

By Theorem 7.12, the set Λ(MV
+) of all varieties of positive MV-algebras is

countably infinite, since Λ(MV
+) is in bijection with an infinite subset of the subset

of all finite members of the power set P(N). Theorem 7.12 will be also the main
tool used to find axiomatizations of the varieties of positive MV-algebras in the
next section.

8. Axiomatizations

In this section we present an axiomatization of all the varieties of positive MV-
algebras. Our strategy will be as follows: by Theorem 7.12 each variety of positive



VARIETIES OF MV-MONOIDS AND POSITIVE MV-ALGEBRAS 33

MV-algebras is finitely generated; since any such variety is congruence distributive,
we can apply Baker’s Finite Basis Theorem [4] to conclude that any such variety
has a finite axiomatization. In particular, for any divisor-closed finite set I there is
a finite set of equations holding in V(KI) and implying (relatively to MV-monoids)
the quasiequation

(8.1) (x⊕ z ≈ y ⊕ z) ∧ (x⊙ z ≈ y ⊙ z) =⇒ x ≈ y.

Our idea to find such a finite set of equations is as follows: for each n ∈ N \ {0}
we find a set of equations Φn (Definition 8.7) that axiomatizes V( Ln) within the
variety of MV-monoids (Theorem 8.13). Then Φlcm(I) (where we set lcm(∅) = 1) is
a finite set of equations holding in V(KI) and implying (relatively to MV-monoids)
the quasiequation (8.1).

Next, we consider further axioms to distinguish between two varieties V(KI)
and V(KJ ) with I 6= J and lcm(I) = lcm(J), for I and J divisor-closed finite sets.
Letting m denote the maximum of I (or setting m = 0 if I is empty) we will define
ΣI as the set of equations given by the equation

(8.2) (m+ 1)x ≈ mx

union the equations of the form

(8.3) m((k − 1)x)k ≈ (kx)m

for all 1 ≤ k ≤ m such that k /∈ I. To give a rough idea of the meaning of
the equations in (8.2) and (8.3), we may say that they are constructed to exclude
selected  L+

n ’s from the generating set of a variety of positive MV-algebras. Namely,
(8.2) excludes the subdirectly irreducible generators  L+

n ’s with n > m. Similarly,
(8.3) excludes the  L+

n ’s with n ≤ m and n not in I.
The equations ΣI are inspired by the ones used by Di Nola and Lettieri in [13] to

axiomatize the varieties of MV-algebras. Our equation (8.2) plays a similar role to
the role played by the equation (1) in [13, p. 466]; cf. our Lemma 8.15 below with [13,
Theorems 2 and 3]. The equations in (8.3) are simplified versions of the equations
(2) in [13, p. 466]: we take the dual of their equation (kxk−1)m+1 ≈ (m+ 1)xk and
we observe that we can replace m+ 1 with m. The main difference in our setting is
the fact that varieties of positive MV-algebras are generated by a finite set of finite
subdirectly irreducible elements (Theorem 7.9).

In conclusion, for any divisor-closed finite set I, we will prove that a finite equa-
tional axiomatization of V(KI) consists of the set of axioms of MV-monoids union
Φlcm(I) ∪ ΣI (Theorem 8.18).

We now start to deal with the sets Φlcm(I) of equations holding in V(KI) and im-
plying the cancellation law. In order to define Φlcm(I) we introduce a few definitions
regarding MV-monoids and unital commutative ℓ-monoids.

Definition 8.1. Let A be an MV-monoid. An element x ∈ A is said to be idem-
potent if x⊕ x = x and x⊙ x = x.

Definition 8.2. Let M be unital commutative ℓ-monoid. An element x ∈ M is
said to be integer if x = k for some k ∈ Z.

It is easy to observe that any integer element is invertible.
We are now ready to introduce the set of equations Φn in the language of MV-

monoids. The idea behind those equations is that for any subdirectly irreducible
MV-monoid A satisfying Φn and for any x ∈ A, nx should be an integer element
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of Ξ(A). This is the key tool that will allows us to prove the cancellation law for
the subdirectly irreducible MV-monoids satisfying Φn.

Definition 8.3. For n ∈ N and k ∈ Z we define a unary term τn,k(x) inductively
on n. The idea is that τn,k(x) equals ((nx − k) ∨ 0) ∧ 1 (where the computations
are done in the enveloping unital commutative ℓ-monoid). The base case (n = 0),
is set as follows:

τ0,k(x) :=

{

1 if k ≤ −1,

0 if k ≥ 0.

The inductive case is as follows:

(8.4) τn+1,k(x) = τn,k−1(x) ⊙ (x⊕ τn,k(x)),

or, equivalently,

(8.5) τn+1,k(x) = (τn,k−1(x) ⊙ x) ⊕ τn,k(x)).

Remark 8.4. To see that (8.4) and (8.5) are equivalent it is enough to observe
that (τn,k−1(x), τn,k(x)) is a good pair (Definition 2.13); indeed, if (x0, x1) is a
good pair in an MV-monoid A, and y ∈ A, then x0 ⊙ (y ⊕ x1) = (x0 ⊙ y) ⊕ x1
([2, Lemma 4.35]). The fact that (τn,k−1(x), τn,k(x)) is a good pair follows from
Lemma 8.6 below (in the proof of which we use only the first definition) and from
the fact that, for each x in a unital commutative ℓ-monoid M, the pair

(
((x − 1) ∨ 0) ∧ 1, (x ∨ 0) ∧ 1

)

is a good pair [2, Proposition 4.64].

Example 8.5. Computing the terms τn,k(x) for n ∈ {1, 2, 3} we get:

τ1,k(x) =







1 if k ≤ −1,

x if k = 0,

0 if k ≥ 1,

for n = 1. We have

τ2,k(x) =







1 if k ≤ −1,

x⊕ x if k = 0,

x⊙ x if k = 1,

0 if k ≥ 2,

for n = 2 and for n = 3 we get

τ3,k(x) =







1 if k ≤ −1,

x⊕ x⊕ x if k = 0,

(x⊕ x) ⊙ (x⊕ (x⊙ x)), if k = 1,

x⊙ x⊙ x if k = 2,

0 if k ≥ 3.

Note that in the whole section we are often considering equalities where one of
the members is computed using the operations of commutative ℓ-monoid (and the
result is in the interval [0, 1]) and the other using the operations of MV-monoids. An
example of this fact is given by the next lemma with the equality ((nx−k)∨0)∧1 =
τn,k(x). This should not cause any confusion since given a unital commutative ℓ-
monoid M we have that ((nx − k) ∨ 0) ∧ 1 ∈ Γ(M), for all x ∈ Γ(M), since by
Eq. (2.1) Γ restricts M to its unit interval and 0 ≤ ((nx− k) ∨ 0) ∧ 1 ≤ 1.
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Lemma 8.6. Let M be a unital commutative ℓ-monoid. For every x ∈ Γ(M),
n ∈ N and k ∈ Z, we have

((nx− k) ∨ 0) ∧ 1 = τn,k(x),

where the left-hand side is computed in M and the right-hand side in Γ(M).

Proof. We prove this by induction on n ∈ N.
The base case n = 0 is immediate.
For the inductive case, let n ≥ 0, and suppose that, for all k ∈ Z, we have

((nx− k) ∨ 0) ∧ 1 = τn,k(x).

We should prove

(((n+ 1)x− k) ∨ 0) ∧ 1 = τn+1,k(x),

i.e.

(((nx− k) + x) ∨ 0) ∧ 1 = τn+1,k(x).

Set z := nx− k. We shall prove

((z + x) ∨ 0) ∧ 1 = τn+1,k(x).

Set z−1 := ((z − 1) ∨ 0) ∧ 1 and z0 := (z ∨ 0) ∧ 1. By [2, Lemma 4.65], we have

(8.6) ((z + x) ∨ 0) ∧ 1 = z−1 ⊙ (x⊕ z0).

By the inductive hypothesis, we have

(8.7) z0 := (z ∨ 0) ∧ 1 = ((nx− k) ∨ 0) ∧ 1 = τn,k(x),

and

(8.8) z−1 := ((z − 1) ∨ 0) ∧ 1 = ((nx− (k − 1)) ∨ 0) ∧ 1 = τn,k−1(x).

By (8.6), (8.7) and (8.8), we have

((z + x) ∨ 0) ∧ 1 = z−1 ⊙ (x⊕ z0) = τn,k−1(x) ⊙ (x⊕ τn,k(x)) = τn+1,k. �

Definition 8.7. For every n ∈ N, let Φn be the following set of equations, for k
ranging in {0, . . . , n− 1}:

τn,k(x) ⊕ τn,k(x) ≈ τn,k(x)

and

τn,k(x) ⊙ τn,k(x) ≈ τn,k(x).

In other words, we impose that τn,k(x) is idempotent.

The following is a key proposition connecting integer elements of a totally ordered
unital commutative ℓ-monoid M and the satisfaction of the equations in Φn in
Γ(M).

Proposition 8.8. Let M be a totally ordered unital commutative ℓ-monoid, let
x ∈ Γ(M) and let n ∈ N. The following conditions are equivalent:

(1) the element nx is integer;
(2) for every k ∈ {0, . . . , n−1}, τn,k(x) is an idempotent element of Γ(M), i.e.

the element x satisfies Φn.
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Proof. (1) ⇒ (2). This implication is immediate since if nx is integer then nx = k′,
for some k′ ∈ Z. Thus ((nx− k)∨ 0)∧ 1 = ((k′ − k)∨ 0)∧ 1 which is 1 if k′ > k and
0 otherwise. Hence, by Lemma 8.6, either τn,k(x) = 1 or τn,k(x) = 0 and therefore
τn,k(x) is idempotent.

(2) ⇒ (1). We first prove that every idempotent element of Γ(M) is either 0 or
1. Let y be an idempotent element of Γ(M). Then y ⊕ y = y and y ⊙ y = y. By
Proposition 3.5, since M is totally ordered, y⊕ y = 1 or y⊙ y = 0, i.e. either y = 1
or y = 0. This proves that every idempotent element of Γ(M) is either 0 or 1.

Therefore, by Item 2, for every k ∈ Z the element τn,k(x) is either 0 or 1.
By Lemma 8.6, for every k ∈ Z we have τn,k(x) = ((nx − k) ∨ 0) ∧ 1, and thus
((nx − k) ∨ 0) ∧ 1 is either 0 or 1. Since the sequence {((nx − k) ∨ 0) ∧ 1)}k∈Z

is increasing and M is totally ordered, it follows that there is k0 ∈ Z such that
for every k < k0 we have ((nx − k) ∨ 0) ∧ 1 = 1 and for every k ≥ k0 we have
((nx− k) ∨ 0) ∧ 1 = 0. By Lemma 2.12, nx = k0. �

We turn now our attention at  L+
m and characterize when it satisfies Φn for

m,n ∈ N \ {0}.

Lemma 8.9. Let m,n ∈ N with n > 0. Then  L+
m satisfies Φn if and only if m | n.

Proof. Recall that  L+
m = Γ( 1

n
Z).

For (⇒), suppose L+
m satisfies Φn. Then, by Proposition 8.8 applied to the unital

commutative ℓ-monoid 1
m
Z and to the element x = 1

m
, the element n 1

m
is an integer

element of 1
m
Z, i.e. n

m
∈ Z. This implies that m divides n.

For (⇐), suppose m divides n. For every x ∈ Γ( 1
m
Z) =  L+

m, the element

nx ∈ 1
m
Z belongs to Z because m divides n, and hence is an integer element.

By Proposition 8.8 τn,k(x) is idempotent for all x ∈  L+
m and k ∈ {0, . . . , n − 1}.

Hence,  L+
m satisfies Φn. �

Lemma 8.10. Let M be a totally ordered unital commutative ℓ-monoid such that
Γ(M) satisfies Φn for some n ∈ N.

(1) For all x ∈ Γ(M), nx is an integer element of M ;
(2) if n > 0, M is cancellative.

Proof. (1). Let x ∈ M . For every k ∈ {0, . . . , n − 1}, τn,k(x) is an idempotent
element of Γ(M) since Γ(M) satisfies Φn. By Proposition 8.8(1), nx is integer.

(2). Suppose n > 0. By [3, Proposition 4.5(2)], the cancellativity of M can be
checked in its unit interval Γ(M); this means that it is enough to prove that, for
all x, y, z ∈ Γ(M), if x+ z = y + z we have x = y. Let x, y, z ∈ Γ(M) be such that
x + z = y + z. Since n 6= 0, we have x + nz = y + nz. By (1), nz is an integer
element and thus is invertible. It follows that x = y. �

Theorem 8.11. Let A be a subdirectly irreducible MV-monoid satisfying Φn for
some n ∈ N \ {0}. Then, A is a positive MV-algebra.

Proof. By Lemma 3.3, Ξ(A) is subdirectly irreducible, and thus, by Theorem 3.1,
totally ordered. Therefore, by Lemma 8.10(2), Ξ(A) is cancellative. Hence, by
Theorem 2.10, A is a positive MV-algebra. �

From the previous theorem we get immediately the next Corollary.

Corollary 8.12. Let V be a variety of MV-monoids and suppose that V satisfies
Φn for some n ∈ N \ {0}. Then V is a variety of positive MV-algebras.



VARIETIES OF MV-MONOIDS AND POSITIVE MV-ALGEBRAS 37

Proof. We should prove that every algebra in V is a positive MV-algebra. By
Birkhoff’s Subdirect Representation Theorem [7, Theorem 8.6], and since positive
MV-algebras are closed under products and subalgebras, it is enough to prove that
every subdirectly irreducible algebra in V is a positive MV-algebra. This follows
from Theorem 8.11. �

We are now ready to prove one of the main results of the section which states
that V( L+

n ) is axiomatized by Φn relatively to the variety of MV-monoids.

Theorem 8.13. Let n ∈ N \ {0}. Then V( L+
n ) is axiomatized by Φn relatively to

the variety of MV-monoids.

Proof. Let W be the variety of MV-monoids satisfying Φn.
We have V( L+

n ) ⊆ W because, by Lemma 8.9,  L+
n satisfies Φn.

To prove the converse inclusion, i.e. W ⊆ V( L+
n ), it is enough to prove that

every subdirectly irreducible algebra in W belongs to V( L+
n ). Let A be a subdirectly

irreducible algebra in W. Every quotient of every subalgebra of A belongs to W and
hence, by Corollary 8.12, is a positive MV-algebra. Therefore, by Corollary 7.7, A

is isomorphic to a subalgebra of [0, 1]+. Thus, Ξ(A) is isomorphic to a subalgebra
of R. By Lemma 8.10, for every x ∈ Ξ(A) there is m ∈ Z such that, in Ξ(A),
nx = m, i.e. x = m

n
. Therefore, Ξ(A) is isomorphic to a subalgebra of 1

n
Z. Thus,

A is isomorphic to a subalgebra of  L+
n , and so A ∈ V( L+

n ). �

We now start to deal with the sets of equations ΣI which have the purpose of
distinguishing between two varieties V(KI) and V(KJ ) with I 6= J and lcm(I) =
lcm(J), for I and J divisor-closed finite sets.

Definition 8.14. Let I be a divisor-closed set, and let m be the maximum of I
(with the convention that m = 0 if I = ∅). We define ΣI as the set of equations
given by the single equation

(8.9) (m+ 1)x ≈ mx

union the equations of the form

(8.10) m((k − 1)x)k ≈ (kx)m

for all 1 ≤ k ≤ m such that k /∈ I.

Lemma 8.15. Let m,n ∈ N with n > 0. Then  L+
n satisfies

(m+ 1)x ≈ mx,

if and only if n ≤ m.

Proof. If n ≤ m, it is not difficult to see that  L+
n satisfies (m+ 1)x ≈ mx. Indeed,

for all a ∈  L+
n \ {0} we have ma = 1 and so the evaluation of both the left-hand

side and the right-hand side at a is 1, while for a = 0 they are both 0.
If n > m, the equation (m+ 1)x ≈ mx fails in  L+

n , as witnessed by 1
n
∈  L+

n . �

The following proposition is similar to [13, Theorem 8]. In our case we use m((k−
1)x)k ≈ (kx)m instead of (kxk−1)m+1 ≈ (m+ 1)xk as characterizing equation. The
former is the dual of the latter up to replacing (m + 1) with m. We give a proof
of the proposition since both the hypothesis and the equation are slightly different
from those of [13, Theorem 8].
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Proposition 8.16. Let m ∈ N \ {0} and 1 ≤ k ≤ m. For every 1 ≤ n ≤ m, the
algebra  L+

n satisfies
m((k − 1)x)k ≈ (kx)m

if and only if k does not divide n.

Proof. Fix 1 ≤ n ≤ m. We investigate which elements a ∈  L+
n satisfy the equation

in the statement. Let a ∈  L+
n . We consider three cases.

Case a < 1
k

. In this case, ka < 1 and (k − 1)a < k−1
k

. From ka < 1 we

obtain ka ≤ n−1
n

≤ m−1
m

, and so (ka)m = 0. From (k − 1)a < k−1
k

we obtain

((k − 1)a)k = 0 = m((k − 1)a)k. Therefore, the equation m((k − 1)x)k ≈ (kx)m

holds for a < 1
k

(for every n).

Case a > 1
k

. In this case, ka = 1 and (k − 1)a > k−1
k

. From ka = 1 we

obtain (ka)m = 1. From (k − 1)a > k−1
k

we obtain ((k − 1)a)k > 0, which implies

((k − 1)a)k ≥ 1
n

≥ 1
m

, and hence m((k − 1)a)k = 1. Therefore, the equation

m((k − 1)x)k ≈ (kx)m holds for a > 1
k

(for every n).

Case a = 1
k

. In this case, ka = 1 and (k−1)a = k−1
k

. From ka = 1 we obtain that

(ka)m = 1. From (k−1)a = k−1
k

we obtain ((k−1)a)k = 0, and so m((k−1)a)k = 0.

Thus, the equation m((k − 1)x)k ≈ (kx)m fails for a = 1
k

. We have 1
k
∈  L+

n if and

only if k divides n. Therefore, the equation m((k−1)x)k ≈ (kx)m holds if and only
if k does not divide n. �

Using the previous proposition and the definition of divisor-closed finite set we
get immediately the next corollary.

Corollary 8.17. Let I be a divisor-closed finite set and let m = max(I) if I is
nonempty and m = 0 otherwise. Let ΨI be the equations of the form (8.10) in ΣI .
For every 1 ≤ i ≤ m, i ∈ I if and only if  L+

i satisfies all equations in ΨI .

Proof. Recall that, by Definition 8.14, ΨI consists of all equations of the form
m((k − 1)x)k ≈ (kx)m ∈ ΨI where k /∈ I.

We first prove (⇒). Suppose i ∈ I. Consider an equation in ΨI ; this will be of the
form m((k− 1)x)k ≈ (kx)m for some k /∈ I. Since I is closed under divisors, k does
not divide i. Therefore, by Proposition 8.16,  L+

i satisfies m((k − 1)x)k ≈ (kx)m.
This proves that  L+

i satisfies all equations in ΨI .
Then, we prove the contrapositive of (⇐). Suppose i 6∈ I with 1 ≤ i ≤ m. Then,

by Definition 8.14, m((i − 1)x)i ≈ (ix)m ∈ ΨI and, by Proposition 8.16,  L+
i does

not satisfy m((i − 1)x)i ≈ (ix)m. �

We are now ready to prove the main result of the section describing the axioma-
tizations of all the varieties of MV-algebras relatively to the variety of MV-monoids.

Theorem 8.18. Let I be a divisor-closed finite set; then V(KI) is axiomatized by
Φlcm(I) ∪ ΣI relatively to the variety of MV-monoids.

Proof. Let V be the variety of MV-monoids satisfying all equations in Φlcm(I) ∪ΣI .
Since V satisfies Φlcm(I), by Corollary 8.12 V is a variety of positive MV-algebras.

Set J := {n ∈ N \ {0} |  L+
n ∈ V}. By Theorem 7.12, J is a divisor-closed finite

set, and V is generated by KJ . It is then enough to prove I = J .
We first prove I ⊆ J . Let n ∈ I. By Lemma 8.9,  L+

n satisfies Φlcm(I). By

Lemma 8.15 and Corollary 8.17,  L+
n satisfies ΣI . Therefore,  L+

n ∈ V and so n ∈ J .
This proves I ⊆ J .



VARIETIES OF MV-MONOIDS AND POSITIVE MV-ALGEBRAS 39

We now prove J ⊆ I. Let n ∈ J . Then  L+
n ∈ V, and so  L+

n satisfies ΣI . Set
m = max(I) (with the convention that m = 0 if I = ∅). Since  L+

n satisfies ΣI , it
satisfies (m+ 1)x ≈ mx, and hence by Lemma 8.15 we have n ≤ m. Therefore, by
Corollary 8.17, n ∈ I. This proves J ⊆ I, and this concludes the proof. �

To conclude the section we produce some easy examples of axiomatizations of
varieties of positive MV-algebras using Theorem 8.18.

Example 8.19. Let I = {1, 2, 3} and J = {1, 2, 3, 6}. By Theorem 8.18, V(KI)
is axiomatized by the axioms of MV-monoids, Φ6 and 4x ≈ 3x, while V(KJ ) is
axiomatized by the axioms of MV-monoids, Φ6, 7x ≈ 6x, 6(3x)4 ≈ (4x)6 and
6(4x)5 ≈ (5x)6. Note that the failure of 4x ≈ 3x in  L+

6 is witnessed by 1
6 .

9. Conclusions

In the Introduction we claimed that the main motivation for our investigation
was to show that MV-monoids and positive MV-algebras can be studied (with some
success) employing techniques that are usually implemented for varieties of logic.
We believe we have substantiated our claim by proving several structural results as
strong as in the context of MV-algebras, within a more relaxed framework.

In details we characterized the almost minimal varieties of MV-monoids (Theo-
rem 4.18) and we proved two versions of Hölder’s theorem for unital commutative
ℓ-monoids (Theorems 4.7 and 4.11).

In the cancellative setting, we characterized the varieties of positive MV-algebras
as precisely the varieties generated by finitely many reducts of finite nontrivial
MV-chains (Theorem 7.9). We also proved that such reducts coincide with the
subdirectly irreducible finite positive MV-algebras (Theorem 6.6). Furthermore,
we provided an axiomatization for each variety of positive MV-algebras (Theo-
rem 8.18).

Where can we go from here? We believe that there are at least a couple of paths
worth exploring. First one could go on applying universal algebraic techniques to
those classes, in order to get a better general knowledge of their behavior. For
instance, what are the structurally complete or primitive sub(quasi)varieties? Can
one characterize to some degree the projective algebras or the splitting algebras?

Another possibility is to weaken further the axioms of MV-algebras while trying
to maintain the possibility of finding a reasonable characterizations of some of
their most descriptive features (subdirectly irreducible algebras, minimal varieties,
finitely generated varieties and so forth). As an example one could introduce a
weaker version of cancellativity, as in the proofs of Proposition 6.3 and Theorem 7.6
for example, and study its consequences.
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