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We propose a novel approach for precision measurement utilizing an ensemble of probabilistic bits (p-bits).
This method leverages the inherent fluctuations of p-bits to achieve high sensitivity in various applications, in-
cluding magnetic field sensing, temperature monitoring and timekeeping. The sensitivity scales proportionally
to the square root of the total number of p-bits, enabling unprecedented accuracy with large ensembles. Further-
more, the robustness of this method against device imperfections and non-uniformity enhances its practicality
and scalability. This work paves the way for a new paradigm in precision measurement, offering a cost-effective
and versatile alternative to traditional methods.

Introduction - The scientific discovery and technological in-
novation are fundamentally anchored in our ability to measure
the universe around us. Classical measurement, with its deter-
ministic framework rooted in the laws of classical physics, has
long served as the bedrock of this quest, enabling the precise
quantification of physical quantities like length, mass, veloc-
ity, and temperature. This approach has facilitated a direct
and predictable relationship between measurement and phys-
ical reality, allowing scientists and engineers to describe, pre-
dict, and manipulate the macroscopic world with unparalleled
accuracy. The deterministic nature of classical measurement
has not only profoundly shaped our understanding of the uni-
verse but has also laid the groundwork for the technologies
that define modern society.

However, as we venture further into the microscopic and
quantum realms, the classical framework begins to reveal its
limitations. This is where quantum computation [1] and quan-
tum precision measurement [2], leveraging the unique prop-
erties of qubits, herald a new era of exploration and under-
standing. Qubits, the fundamental units of quantum informa-
tion, exhibit extraordinary characteristics such as superposi-
tion, entanglement, and squeezing. These properties enable
the execution of complex calculations and the attainment of
measurement precision on the quantum scale, far beyond the
reach of classical techniques.

Quantum precision measurement [2], in particular, stands
as a testament to the groundbreaking progress in our capa-
bility to probe the natural world. By exploiting the peculiar
principles of quantum mechanics, such as entanglement and
squeezing [3], it is possible to detect and quantify physical
phenomena with an accuracy that transcends the classical lim-
its. This enhanced sensitivity, achievable through the metic-
ulous preparation and manipulation of quantum states, has
practical implications across a spectrum of fields, including
metrology [4], navigation [5], timing [6, 7], and the detection
of gravitational waves [8].

In parallel with these quantum advancements, probabilis-
tic computing emerges as a paradigm shift [9]. This innova-
tive computing model is underpinned by the probabilistic bit
[10], or p-bit, which embodies a fluctuating state governed by
a certain probability distribution. Unlike the binary bit of clas-

sical computing, which exists in a definite state of 0 or 1, or
the qubit of quantum computing, which leverages phase co-
herence, the p-bit captures the probabilistic nature of the real
world without the complexity of quantum mechanics. This
unique characteristic enables p-bits to encode and process in-
formation in a manner that mirrors the inherent fluctuations
of physical systems, thereby facilitating the efficient simula-
tion of complex systems, optimization problems, and stochas-
tic processes [11–13].

In this Letter, we endeavor to broaden the scope of p-bits
by exploring their potential in the domain of measurements.
This exploration is predicated on the innovative concept of
harnessing an ensemble of p-bits for probabilistic precision
measurement, a method that stands to significantly enhance
the accuracy of measurements under conventional conditions,
such as room temperature. The practicality of deploying p-bits
in the precise detection and measurement of nuanced phenom-
ena, such as the detection of minute magnetic fields, the mon-
itoring of subtle temperature variations, and the provision of
robust mechanisms for timekeeping, is thoroughly examined.

Principle of Probabilistic Measurement - A physical im-
plementation of a probabilistic-bit (p-bit) can be viewed as a
double well system [13–15], where the two stable states (en-
coded as 0 or 1) are separated by a potential barrier, whose
height ∆ is comparable to the thermal activation energy kBT :
∆/kBT ≲ 10, such that the physical state undergoes an ever-
lasting fluctuation between the two states. The relative prob-
ability of residing in the 0 or 1 state depends on the energy
bias 2U between the two wells according to the Boltzmann
distribution:

p1
p0

= e−2βU or p0 − p1 = tanh(βU),

in which β = 1/kBT . Consider an ensemble of N indepen-
dent p-bits, and the population imbalance between 0s and 1s
is expected to be

n ≡ N0 −N1 = N tanh(βU), (1)

which grows linearly as the function of p-bit number N . By
measuring this number of p-bit imbalance, it is possible to
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Figure 1. Probabilistic bit measurements. Top: reference distribu-
tions of the ensemble in zero field B = 0, initial temperature T and
the beginning of timekeeping t = 0. Bottom: deviated distributions
in the presence of magnetic field B ̸= 0, temperature change δT and
time elapse t > 0.

extract information about β or U . Since the p-bits keep fluc-
tuating, the measured number n also fluctuates. However, the
uncertainty in n due to this fluctuation is proportional to the
square root of the total number: δn ∝

√
N . Therefore, for

sufficiently large N , the mean value of the population imbal-
ance can always overshadow the uncertainty: n > δn, thus
enabling the p-bit ensemble for the purpose of measurement.

Based on this simple principle, we explore the pos-
sibility and practicality of probabilistic measurement (p-
measurement), and propose strategies that leverage p-bits
for various purposes. Compared to some previous works
that use noisy or chaotic systems for magnetic field sensing
[16, 17], temperature monitoring [18] and timekeeping [19–
21], the outlined measurement methodologies put emphasis
on bistable systems (bits) while preserving the exploitation of
randomness. The principles are delineated in Fig. 1, where
the field sensing and temperature variation monitoring make
use of equilibrium states of the p-bit ensemble and the time-
keeping relies on transient states.

Field sensing - For magnetic field sensing, an ensemble of
p-bits initially assume a state of equilibrium characterized by
an even distribution of 0s and 1s (with U = 0), albeit within
a certain statistical margin of error. Upon the introduction of
an external magnetic field denoted as B, an energy bias U =
2MB emerges between the state-0 and the state-1, prompting
an asymmetry in the quantities N0 and N1 as expressed in
Eq. (1). By measuring the imbalance n = N0−N1, it becomes
feasible to deduce the intensity of the magnetic field.

Temperature monitoring - In a manner analogous to field
sensing, it is possible to determine the temperature based on
the energy bias U ̸= 0 and the measured quantities N0 and
N1. However, this approach necessitates prior knowledge
of the energy bias U , which is a parameter that may not be
readily available and could vary from one p-bit to another.
Consequently, it is not practical to directly ascertain the ab-
solute temperature using p-bits. However, it is feasible to

accurately gauge the variations in temperature without pre-
cise knowledge of potentially non-constant device parameters
like U . For a collection of p-bits with an energy bias of U ,
the population imbalance n is contingent upon temperature.
As the temperature rises, the population in state-1 also in-
creases. By measuring the alteration in population imbalance
δn = nT ′ − nT , it is possible to infer the temperature change
δT = T ′ − T .

Timekeeping - Timekeeping is yet another task that can be
achieved probabilistically. Most timekeeping devices rely on
some kind of oscillating phenomena with fixed periods. From
the rhythmic swings of a pendulum to the consistent vibra-
tions of quartz crystals and the intricate quantum transitions
between energy levels, these mechanisms serve as the founda-
tion for tracking time by counting cycles. However, a unique
form of timekeeping makes use of the radioactive decay of
certain atoms, notably Carbon-14 (14C). While this method
may not boast the same level of precision as its counterparts,
it stands out for its simplicity and resilience against various
external disturbances. An ensemble of p-bits can emulate the
behavior of radioactive atoms. The timekeeping is initialized
by resetting all p-bits into one single state (say the 0 state).
Afterwards, the ensemble undergoes thermal fluctuation and
would eventually approach the thermal equilibrium on a time
scale comparable to the thermalization time. Therefore, it is
possible to estimate the elapsed time by counting the number
of p-bits in state-1. Here the thermalization of p-bit is equiv-
alent to the radioactive decay of 14C. The thermalization time
for a p-bit, equivalent to the half-life of 14C, is dictated by
the energy barrier τ ∝ exp(β∆) and can vary significantly,
ranging from sub-microseconds to years.

Realization with MTJ p-bits - We now consider a possible
realization of the probabilistic measurement utilizing the p-
bits based on the magnetic tunnel junction (MTJ) [22–25]. We
assume a typical MTJ p-bit with the following parameters:
the free layer magnetization has total magnetization of M =
MsV with volume V and saturation magnetization Ms, and
the barrier separating the two equilibrium states is ∆ = KM
with anisotropy K. We shall assume that ∆/kBT ≲ 10 for
enabling fast thermal fluctuation. In the absence of external
magnetic fields, the MTJ p-bit fluctuates between parallel (0)
and anti-parallel (1) state with equal probability.

Field Sensing - In order to measure weak magnetic fields,
the p-bit must respond to the external field. As shown in
Fig. 1(a), the magnetic field B along the anisotropy direction
gives rise to an energy bias UB = MB between the paral-
lel and anti-parallel state, which leads to an imbalance of the
MTJ p-bits

nB = N tanh(βMB) ≃ NβMB ≡ χBB, (2)

where χB = NβM is the susceptibility of the imbalance in
response to a small external field B. The statistical fluctuation
of the p-bits is roughly

δn = 2
√
N0N1/N =

√
N sech(βMB) ≃

√
N, (3)
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Figure 2. a) Upper: Simulation result of imbalance |nB | as a function of dimensionless field βMB for N = 106(1Mb), 109(1Gb) and
1012(1Tb); Lower: Theoretical prediction of field detectivity DB in Eq. (4) as a function of N and total magnetization βM . The negative nB

values are marked with double open symbols. b) Upper: Simulated change of imbalance |δnT | as a function of relative temperature change
δT/T for βU = 1 and room temperature (T = 300K); Lower: Predicted temperature detectivity DδT /T in Eq. (8) as a function of N and
barrier height βU at room temperature. The optimal choice is at βU = 1.2. c) Upper: Simulated imbalance |nt| as a function of dimensionless
time t/τ ; Lower: Predicted temporal detectivity Dt/t in Eq. (12) as a function of N and time t. d) The effect of device-to-device variation of
p-bits on the overall performance for field sensing (upper) and room temperature monitoring (lower).

which equals to
√
N when the external field is weak. There-

fore, when the field induced imbalance is greater than the fluc-
tuations |nB | > |δn|, the external field can be distinguished
by the imbalance nB . The weakest detectable field, or the
field detectivity DB , is given by

DB =
δn

χB

=
1√
N

kBT

MsV
. (4)

The upper panel of Fig. 2(a) shows the readout of nB as func-
tion of external magnetic field for N = 1Mb, 1Gb, 1Tb,
respectively. The lower panel of Fig. 2(a) shows the field de-
tectivity Eq. (4) as a function of βM and N . Eq. (4) shows
that increasing the total magnetization MsV is more effective
in enhancing the field sensitivity than increasing p-bit num-
ber N . However, the larger magnetization would suppress the
magnetization fluctuation. As shown by Chen et. al. [26], this
contradiction can be resolved by applying a transverse mag-
netic field to reduce the potential barrier between the 0 and 1
state, thus enhancing the fluctuation rate significantly. Based
on a MTJ with Ms = 9.6 × 105 A/m and V = 104 nm3

[27, 28], kBT/M ∼ 0.3mT in room temperature, thus a field
sensitivity of 1 nT can be achieved with N ∼ 100Gb outputs
from p-bits at room temperature.

Temperature Monitoring - We now consider biased p-bits
whose parallel and anti-parallel configurations have energy
difference of 2U . The bias can be implemented by some in-
trinsic pinning within the MTJ or by applying a fixed external

field. Because of the energy difference, the imbalance at ther-
mal equiblirium is non-zero (at temperature T ):

nT = N1(T )−N0(T ) = −N tanh(βU). (5)

A temperature change δT will cause a change in nT by

δnT =
∂nT

∂T
δT = NβU sech2(βU)

δT

T
= χT

δT

T
. (6)

Here χT ≃ NβU is the susceptibility of the imbalance in re-
sponse to the temperature variation δT/T . In the mean time,
the statistical fluctuation in nT is roughly

δn ≃ 2
√
Np0p1 = 2

√
N0N1/N =

√
N sech(βU). (7)

When the temperature-change induced imbalance-change ex-
eeds the statistical fluctuation |δnT | > |δn|, the temperature
change can be inferred from δnT . This also defines the min-
imum temperature change detectable, or the temperature de-
tectivity DδT

DδT

T
=

δn

χT

=
cosh(βU)

βU
√
N

≳
1.5√
N

. (8)

The lower bound in Eq. (8) happens at βU ≃ 1.2. The upper
panel of Fig. 2(b) shows the readout of δnT as a function of
temperature variation δT . The lower panel of Fig. 2(b) shows
the temperature detectivity Eq. (8) as a function of βU and N ,
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according to which a temperature variation of ∼1mK at room
temperature can be detected with N = 200Gb of p-bits and
βU = 1.

Timekeeping - In order to use p-bits for timekeeping, an
ensemble of unbiased p-bits is first initialized by resetting
them to state-0 at t = 0, such that the initial imbalance
n = N0 − N1 = N maximizes. Afterwards, the thermal-
ization process will drive the system towards a balanced dis-
tribution with n ∼ 0. During the thermalization process, the
imbalance decreases exponentially as function of time:

nt = N0(t)−N1(t) = Ne−t/τ , (9)

where τ ∝ eβ∆ is the thermalization time, or the half-life of
p-bits. By measuring the imbalance nt at a later time, the time
t elapsed since the initialization can be inferred as:

t = −τ ln(nt/N). (10)

The statistical fluctuation in nt is given by

δnt = 2
√
N0N1/N ≃

√
N(1− e−2t/τ ), (11)

and the relative uncertainty δt (detectivity Dt) is

Dt

t
=

δt

t
=

∣∣∣∣ ∂t∂nt

∣∣∣∣δnt

t
=

τ

t

√
e2t/τ − 1

N
, (12)

which reaches its minimum when the elapsed time is compa-
rable to half-life of the p-bits. The upper panel of Fig. 2(c)
shows the readout of nt as a function of time t, which shows
that merely 1Kb p-bits can already make a timekeeping on
the time scale of one half-life. The lower panel of Fig. 2(c)
shows uncertainty in time Eq. (12) as a function of elapsed
time t and bit number N .

Efficient read-out - Traditionally, the determination of im-
balance in a system comprising N p-bits requires reading all
p-bits, which is notably time-consuming. Fortunately, since
the specific states of the p-bits (whether 0 or 1) are irrelevant
to the imbalance, it is feasible to ascertain this information
through minimal measurements. By arranging the p-bits in
a P × Q = N series-parallel circuit configuration [23], the
imbalance is intricately linked to the overall resistance of the
circuit. Let r and R be the resistance of the MTJ p-bit in
the parallel (0) and anti-parallel (1) states. Suppose the i-th
branch has N i

0 p-bits in r and N i
1 in R with P = N i

0+N i
1 and

ni ≡ N i
1 − N i

0 ≪ P , and the total resistance of the series-
parallel circuit is

Rsp =

(
Q∑
i=1

1

N i
0r +N i

1R

)−1

≃ R+ r

2Q/P

(
1 +

R− r

R+ r

n

N

)
,

(13)

which establishes a one-to-one association between Rsp and
the imbalance n =

∑
i ni = N1 − N0 ≪ N . The exact par-

tition of the p-bits for P and Q can be tuned according to the
range and precision of resistance measurement. This approach

not only simplifies the process but also significantly reduces
the time and resources needed for determining the imbalance.

Influence of imperfections of p-bits - To achieve higher
measurement accuracy, traditional methods typically rely on
the enhancement of instrument or device quality. However,
the probabilistic measurements discussed in this Letter devi-
ate from this norm. Here, accuracy is improved by increas-
ing the quantity of p-bits rather than by refining the quality
of each individual p-bit. This methodology not only proves
to be more cost-effective but also enhances flexibility and
scalability across various applications. As demonstrated in
Fig. 2(d), discrepancies among p-bits, simulated through pa-
rameter variations like M,β,B,U by up to ±30%, do not ad-
versely affect the measurement sensitivity. This robustness
stems from the error-cancelling effect achieved when employ-
ing a large ensemble of p-bits.

Discussion - The concept of probabilistic field sensing
hinges on the ability to achieve remarkably high sensitivity
levels, contingent upon the acquisition of substantial data vol-
umes, as illustrated in Fig. 2(a). Specifically, with an N value
approximating 1020, or equivalently 108 Tb, femto-Tesla sen-
sitivity becomes attainable. This can be realized through re-
peated measurement of a series-parallel circuit of a p-bit array,
where N represents the cumulative total of the p-bits in the
circuit multiplied by the number of measurement iterations.
Conversely, temperature monitoring demands a significantly
lower number of p-bits – mere gigabits suffice to achieve a
sensitivity of 10mK at room temperature. While probabilis-
tic timekeeping may not rival the precision of atomic clocks
or conventional timepieces in terms of accuracy, its simplicity
in design and robustness against non-uniformity and distur-
bances make it a viable option. Requiring around 1Kb inde-
pendent p-bits, probabilistic timekeeping is particularly con-
ducive to biomorphic implementations [29]. The discussion
thus far has centered on probabilistic measurements utilizing
independent p-bits. Given the nature of probabilistic comput-
ing, which involves interconnecting p-bits into a network, it
prompts an inquiry into how such interconnected p-bits might
enhance measurement sensitivity in probabilistic systems.

In conclusion, we proposed an innovative probabilistic
measurement framework utilizing an ensemble of p-bits. This
approach was demonstrated to be effective in applications
such as field sensing, temperature variation monitoring and
timekeeping. Notably, by augmenting the total number of p-
bits, we can attain unprecedented sensitivity in these domains.
Furthermore, the requisite quality and uniformity of the p-bits
are not critical factors for achieving high sensitivity, which
significantly enhances the scalability of our proposed scheme.
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