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Abstract. This paper proposes a reasoning framework for privacy prop-
erties of systems and their environments that can capture any knowledge
leaks on different logical levels of the system to answer the question:
which entity can learn what? With the term knowledge we refer to any
kind of data, meta-data or interpretation of those that might be rele-
vant. To achieve this, we present a modeling framework that forces the
developers to explicitly describe which knowledge is available at which
entity, which knowledge flows between entities and which knowledge can
be inferred from other knowledge. In addition, privacy requirements are
specified as rules describing forbidden knowledge for entities. Our model-
ing approach is incremental, starting from an abstract view of the system
and adding details through well-defined transformations. This work is in-
tended to complement existing approaches and introduces steps towards
more formal foundations for privacy oriented analyses while keeping them
as accessible as possible. It is designed to be extensible through schemata
and vocabulary to enable compatibility with external requirements and
standards.
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1 Introduction

In this work, we present a reasoning framework aiming to enable a privacy
analysis of (possibly distributed) information processing systems. The presented
method generalizes all forms of data, meta-data, and inference from combined
data to the same logical level we call knowledge. The motivation here is that an
attacker will use any knowledge to its disposal. The privacy analysis should take
the same perspective.

A standard approach to model a system is by means of Data Flow Dia-
grams (DFDs) as used in established privacy analysis frameworks [5,9]. DFDs,
however, make it harder to model the knowledge that is flowing in addition to
the intended data flows, e.g., based on the underlying technical structure. For
example, a DFD normally does not express how data is sent to an entity al-
though it has been recognized that such facts are relevant to privacy and should
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2 Rehms et al.

be considered for analysis [16]. If information is not explicitly expressed in the
model, it cannot be directly accessed in the analysis resulting in imprecision.

Information that is relevant for privacy can be leaked on different logical
layers of a system and create additional knowledge if combined. With existing
modeling approaches, it is hard or even impossible to capture the knowledge of
different logical layers of the systems. We therefore state: any system is com-
posed of sub-systems and it is important to grasp the knowledge present in views
of lower and higher levels of abstraction of system components. While we cer-
tainly acknowledge that it is far too complex to capture a system as a whole, it is
important to have the ability to at least partially capture underlying structures
and involved information resulting from those structures. It is then up to the
analyst to decide how specific something is modeled. It is important to addition-
ally consider available knowledge that is independent of the underlying structure
of a system. For example an attacker may access or derive new knowledge and
recombine it with existing one (e.g., background knowledge from other sources).

Our reasoning framework intends to enable structural analysis of privacy
guarantees with minimal trust assumptions, sometimes referred to as hard pri-
vacy (in contrast to soft privacy) [5]. In this regard, we emphasize two aspects.
The first one is data minimization, that is reducing the necessity to trust at all
if information is not present in the system and is therefore by impossibility not
subject to risk. The second one is trust distribution. This aspect can be inferred
from the first by binding data to entities of the system: if data is always stored at
some entity, one should try to minimize data at the same entity and at best also
logical neighbor entities to reduce the probability of exchange and combination
of data. If data is always bound to concrete entities, these entities should be
disjoint.

We disregard modeling soft privacy by which a user can only hope for correct
data handling or where one must hope for good intentions about the willingness
of a data processor to be actually interested in the correctness of data (handling).

Our approach is designed as a complementary method to existing works
allowing us to address named issues by introducing a modeling method that can
adapt to different views on a system, keeping track of the implied knowledge
flows and forcing to collect all knowledge for specific entities at the same logical
level. In general, we assume that, to execute an analysis of a system, one has to
model relevant aspects of the system that describe it.

The main contribution of our framework can be summarized as follows: we
take a step towards more formal foundations for privacy analyses of complex
systems. With formal foundations contradictions between requirements and sys-
tem properties are unambiguously clear. It also enables automated reasoning for
better scalability, especially during the development process, making privacy by
design more accessible. To this end, we propose a notation and informal descrip-
tion regarding the modeling and analysis process. Our intention is to introduce
the general idea. Providing a formal syntax and semantics is out of the scope of
this paper and part of future work.
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The remainder of this paper is structured as follows. In Section 2, we provide
general requirements of our framework. Subsequently in Section 3, we introduce
our framework including all components and how single components relate to
each other. In Section 4, we discuss additional aspects of our approach with
respect to certain design decisions. A comparison to existing works and building
blocks is discussed in Section 5, followed by a conclusion.

2 Framework Properties

In the following, we formulate several properties that a framework for privacy
analysis should have to capture all the aspects mentioned in the introduction.
All these aspects must comply with the possibility of formalization.

– Generality: The framework should not be restricted in its expressiveness
by implicit domain assumptions and should support different views for the
analysis. E.g. many approaches use Data Flow Diagrams (DFDs) and are
therefore bound to the expressiveness of the DFDs. (A researcher may have
a different focus than an auditor.)

– Domain Transitions: The framework should be able to express organiza-
tional, structural and technical aspects in the same model. Therefore it
should be able to capture a system with different views, from logical com-
ponents to technical parts.

– View Depth: It should be possible to specify a system at different depths
and allow to take different views depending on intended granularity. This
aspects includes the boundary problem: it is not always clear, what actually
is part of the system and what is not (e.g. is the network in a distributed
system part of it?). A system is bounded by its environment and therefore
one needs to model the relation of the system and its environment.

– Missing information: The framework should enable to model a system while
missing detailed information about the system.

– Uncertainty: Often one cannot be sure that a certain property of a system
really has a certain effect or one actually knows that the effect is only partial
(e.g. anonymizing data still might leak information about the underlying
data set).

– Argumentation: The process should include the reasoning behind modeling
decisions. This means that during the modeling processes the user has to
justify his modeling decisions.

– Extensibility/Restrictability: The framework is intended to be general (first
requirement). This means that anything can be included in a system analysis.
This freedom can effectively be restricted in order to ensure conformance
with a certain vocabulary, technical or legal standard or other interest like
a threat analysis.

– Tool Support : The approach should be designed in a way that allows devel-
opment of tools to ease the modeling process.
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K

knowledge

F

flows

N

normative

I

inference

Fig. 1. General Framework Layout

3 General Method

Our modeling method is designed to express enough properties of a system
to answer the following questions: which entity can learn what? and therefore
includes: which entities are actually relevant parts of the system? These questions
can be refined by the following one: what is the structure of an entity, that is,
what entities is an entity composed of? Additionally, to answer the first question
we can ask: does the underlying structure of the relation to other entities contain
relevant information? and does the available knowledge of an entity allow to
infer new knowledge?

What is intentionally not directly expressed in our model is where or how
data is processed. The relevant part of processing to privacy is inference, therefore
processing is not part of the model.

3.1 Overview

The framework proposes a notation of how elements and aspects of the analyzed
system are recorded. There are three main parts, each of which represents one
logical part of a described system. The knowledge part K represents the available
knowledge for each entity in the model. The flow part F represents how the
knowledge is mediated through other entities. These two parts are descriptive.
The normative part N expresses properties that should hold in the system. See
Figure 1 for an overview of the three parts. We call this the map of the model.
It is intended to be created during the modeling process, similar to DFDs or
attack trees in existing approaches.

K consists of the specification of knowledge bound to entities. It expresses
which entity or group of entities knows what in the form of sets of knowledge
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e.A e.B
k.a

e.A: {k.a, k.b, k.c}

e.B: {k.a}

k.a, k.b ⊢ k.c

k.c ∉ e.A

k.c ∉ e.B

Fig. 2. Generic Example

atoms. Such an atom is a name/symbol representing knowledge about a fact.
K also includes a section I containing inference rules, expressing what can be
inferred given certain knowledge atoms. In Figure 2 entity e.A knows facts k.a,
k.b and k.c, and e.B only knows fact k.a.

F consists of the specification of knowledge flows between entities. Such flows
may be abstract in the sense that there is a knowledge transfer from one entity
to another. This can be based for example on an abstract data flow. But it could
be something more specific, like the representation of a technical procedure, e.g.
the protocol flow of a TLS connection (the relation between the two examples
will be discussed further down). In any case, there is always a flow of some form
of knowledge implied and this is what is expressed.4 In Figure 2 entity e.B knows
about k.a because of the flow between the two entities. e.A started out with
the knowledge set {k.a, k.b}. The knowledge k.c was inferred by a rule: K has
an additional sub-part containing inference rules (I). Rules have the form of a
logical inference argument. A list of premises logically implies (⊢) a conclusion.
Here from k.a and k.b new knowledge k.c is inferred. This rule only applies to
e.A, as e.B does not know k.b.

N consists of policies. These rules express that a list of knowledge atoms
should not be element (/∈) of the knowledge set of an entity.5 If all elements left
of the /∈-symbol are element of the respective knowledge set the rule is violated.6

4 It would be possible to combine K and F in one picture but keeping them separate
makes the framework more accessible and helps to separate logic.

5 One can also add rules, that some atom should be element (∈) of a set, which
we consider out of scope of this work. This can be used to express properties like
integrity, which we leave to future work.

6 In order to express that not any of the atoms (a logical OR) should be known one
has to add a single rule for every atom.
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In the case of Figure 2 the first policy rule expresses that e.A must not know
k.c and the second rule that e.B should not have this knowledge either. The
first policy is violated, as k.c is known by e.A through the inference rule in I.
The second one is not violated. Being normative N is optional for analysis but
depending on the intention of the analysis may be instrumental. For simplicity,
we will omit this part in many of the following graphics, if it is empty.

An important aspect of our method are transformations. The central idea
is, that modeling of a system is a process where every step is a well-defined
transformation of the current state of the model (in order to allow a later for-
malization). Every step expresses a level of description (i.e. abstraction), starting
with a very abstract model and refining it step wise by adding more details. The
system is incrementally described — more information is added to the model,
thus increasing specification. Transformations include actions like adding new
flows of knowledge or deriving new knowledge from existing ones.

Entities, flows and knowledge atoms can be simple or complex. By transform-
ing any of those elements, one creates a complex element consisting of simple
elements, expressing that the parent consists of other elements functioning as a
specification of the parent element. Details on elements of the model and their
respective transformations are introduced now.

3.2 Entities and Flows

In F exist two types of elements: entities and flows, each of which may be simple
or complex. Entities are named, and flows may be named. We prepend “e.” to a
name to indicate that it refers to an entity and “f.” likewise for flows. Any entity
that exists in K must exist in F and vice versa. Entities in F can be connected
by flows. Every entity possesses a set of knowledge atoms (see next section for
details); while talking about entities in K we identify the set of knowledge of an
entity with the entity’s name.

Flows are unidirectional arrows. They are always annotated with one or more
knowledge atoms, expressing that the respective knowledge atoms are made
available to an entity by the source entity. Only knowledge atoms in the set
of an entity may flow from it to another. There can be multiple flows between
two entities. They can be merged by adding multiple atoms to one flow, but
keeping flows separate allows referring to different processes in the analyzed
system.

An existing flow can be specified — that is modeled in more detail — in
two ways, 1. by bisecting it, introducing a new intermediate entity, and 2. by
transforming a flow into a complex flow of multiple flows.

1. A bisection specifies a flow by defining, what entity mediates a knowledge
flow. Putting it differently, a bisection is the answer to the question: which entity
makes the original knowledge flow possible? The rationale behind this is, that
any flow has to be mediated through some form of entity. Conceptually such an
entity can be anything. It may be a company, “the Internet”, a logical piece of
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e.Server e.Clientk.c

e.Server: {k.c}

e.Client: {k.c}

e.Server e.Cliente.ISP

e.Server: {k.c}

e.Client: {k.c}

e.ISP: {k.c}

k.c k.c

Fig. 3. Flow Bisection

software, or an Ethernet cable (or even the air).7 Consider the transformation in
Figure 3. Starting from a general knowledge flow of some content k.c (light blue)
from e.server to e.client (representing e.g. an HTTP GET from a client to a
server or the transfer of emails to a user machine through IMAP). It is specified
through a bisection, introducing an internet service provider (e.ISP). This new
entity is obviously very general and is left unspecified for now.

Note that the content is now part of the knowledge set of the newly introduced
entity. Any entity mediating a flow learns all atoms on the flow. When bisecting
a flow, the original knowledge is added to both resulting flows.

The original flow logically still exists as the parent flow. It has three children:
the two flows and the intersecting entity.

2. An existing flow can be transformed to a complex flow of flows. This allows
to model protocol-like exchanges; but it is not required to do so — one simple
flow may as well express a complete API call (see Figure 4). The e.Server holds
some content k.c which is transferred to the client. In the first step, an abstract
flow is modeled, expressing that somehow there is a knowledge transfer from the
client to the server. At this stage, it is unspecified how this happens.

After the first transformation, the abstract exchange is broken down to a bit
more specific protocol exchange, transforming the simple flow into a complex
one. In this transformation, additional information is added to the model by
specifying that the transfer is done through an HTTP request (expressed in
the name of the flow f.httpGet). The new knowledge atom k.userAgent is
introduced here. The server learns this new fact from the client and therefore

7 In some sense an entity can be understood as a collection of something, that is not
yet specified.
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e.Server e.Clientk.c

e.Server: {k.c}

e.Client: {k.c}

k.c

e.Server: {k.c, k.userAgent}

e.Client: {k.c, k.userAgent}
e.Server e.Client

k.userAgent 

f.httpGet

k.c

e.Server: {k.c, k.userAgent, k.IPcli,

   TCPStateserv, k.TCPStatecli}

e.Client: {k.c, TCPStatecli, TCPStateserv}e.Server e.Client

k.userAgent 

f.httpGet,tcp/ip

k.TCPStateserv

k.IPcli, k.TCPStatecli 

Fig. 4. Complex Flow Transformation

the atom is added to the client’s set and through the flow also to the server’s
set.8 This information is not present in the original stage of development. Note
that the original abstract simple flow still exists after the transformation as
a complex parent flow and the derived flows are a logical specification of the
abstract parent flow.

Important to this transformation is that the knowledge of the original flow
has to be included in at least one of the child flows to ensure conformity to the
model before the transformation.

For clarification and to prevent confusion we included a third transforma-
tion, specifying the underlying protocol as TCP/IP. From a network perspective
HTTP is transported over TCP, which is transported over IP, so it might be
tempting to model this through nested complex flows. The important aspect

8 Obviously it is possible to add additional information implied by a regular HTTP
GET request like other standard headers, which we omit for simplicity.
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e.Server e.Client

e.Server: {k.c}

e.Client: {k.c}

e.ISP:{

  e.Router1: {k.c}

  e.Router2: {k.c}}

k.c k.c

e.Server e.Cliente.ISP

e.Server: {k.c}

e.Client: {k.c}

e.ISP: {k.c}

k.c k.c

e.ISP

e.Router1 e.Router2
k.c

Fig. 5. Complex Entity Transformation

to note is, that here TCP/IP is not added by transforming one or both of the
HTTP modeling flows; they are simply added to the original complex flow before
the HTTP request/response.9 We want to stress here, that one is not dealing
with the common depictions of network flows and interaction of protocols but
with the flow of knowledge atoms.

These two flow operations can be applied recursively. When bisecting flows
it is often advisable to apply the operation on a complex flow and therefore
bisecting all sub-flows. But this depends of course on the situation and modeling
depth. When specifying a knowledge flow specified down to network layer 2 it
might make sense to bisect simple sub-flows.

Similar to flows, entities can be specified recursively, transforming a simple
entity to a complex entity consisting of (possibly complex) sub-entities. For ex-
ample, in Figure 5 the ISP can be specified by adding parts of the infrastructure,
e.g. the routers, a network packet can travel through. In transforming a simple
entity to a complex one, it has to be specified, (from) where exactly the in/out
flows go.

These transformations (for flows and entities) can also be done by introducing
new complex parent elements (which will probably be done mainly for grouping
purposes). So e.g. for a set of routers, one can simply create an ISP parent
entity. In principle for any set of entities one can introduce a common parent
entity containing all elements as children — it is not necessary that they are
connected by flows. To introduce a parent flow for a bisected one it is necessary
to heed the structure of the child elements: it must be clear where the flows

9 For simplicity of the explanation we do not include the flow of the server IP address.
One could argue that it is not relevant to the analysis.
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start and which entity mediates them. These two operations allow the creation
of overlapping complex entities or parent flows, which is no problem.

When collecting multiple simple flows into a complex parent one, the situ-
ation is more difficult. The parent flow has one direction but in the children,
atoms may flow in the opposite direction. One solution is to introduce a bidirec-
tional arrow. It, however, should be unambiguous, where an atom originates, if
it appears in two sets (see next section). So to avoid ambiguity no atom should
be annotated on the bidirectional arrow (which is no problem — the flow sim-
ply acts as a placeholder for the modeler). Another solution is to introduce two
complex flows which can grasp the inherent logic but may miss the point of
collecting the flows into one. It is of course possible to combine the two.

Semantically the absence of some flow is expressing that the flow either does
not exist or that it is considered irrelevant to the privacy analysis.

For the sake of clarity and displayability, it is allowed to draw the same entity
multiple times in F. Logically it is the same entity.

3.3 Knowledge Atoms and Inference Rules

A knowledge atom is a symbol representing the fact of knowledge of something.
One atom may represent arbitrary complex data. We prepend “k.” to express
names for such atoms.

Knowledge atoms, or short atoms, are always bound to an entity, and there-
fore in K they exist only inside of sets belonging to entities. In the modeling
process, any new atom symbol can be added to any knowledge set of any entity.
There is only one restriction in the general model: Any atom symbol may be
newly created only once in the whole model. This implies that any knowledge
atom existing in the system has to be generated at a definitive entity and every
other occurrence of the symbol anywhere in the system must come from a flow
or inference from other atoms (inference is discussed in the next section).10

Semantically the absence of some atom in the knowledge set of an entity
is expressing that the entity either does not know it or that it is considered
irrelevant to the privacy analysis.

When adding nested entities to an entity (making it a complex entity) it has
to be resolved, where exactly the knowledge atoms of the parent go. This results
in a recursive application of the modeling method: atoms may flow to one child
entity from outside the parent entity or the atoms may be generated at single
child entities, if no conflict blocks this (e.g. not generated twice). Of course, they
may also flow between the child entities.

Taking the abstract view of only looking at the complex entity, it contains
all the knowledge contained in the sub-entities. When only looking at the parent
the knowledge set consists of the union of the knowledge of its sub-entities.

10 This expresses that any knowledge must come from somewhere. By generating a new
knowledge atom one simply abstracts from the flow behind it, implicitly stating that
it is not relevant to the analysis.
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e.Server e.Cliente.ISP

e.Server: {k.c}

e.Client: {k.c}

e.ISP: {k.c}

k.c k.c

e.Server e.Cliente.ISP

k.pubK k.pubK

k.enc(c) k.enc(c)

e.Server: {k.c, k.pubK, k.enc(c)}

e.Client: {k.privK, k.pubK,
   k.enc(c) k.c}

e.ISP: {k.pubK, k.enc(c)}

k.privK -> k.pubK
k.pubK, k.c -> k.enc(c)
k.enc(c), k.privK -> k.c

Adding Encryption

Fig. 6. Public Key Encryption

As mentioned, we introduce the concept of inference. A somewhat trivial
example is to derive the knowledge of the length k.lenStr from the string k.str.
Other examples are: a geographical location can be inferred from an IP address;
from an HTTP GET request and the IP address of a client at the same entity
it can be derived what content the IP address is interested in (generating a new
atom, e.g. k.linkIPtoContent). Also consider Figure 3: from the TCP state
information new knowledge may be inferred identifying the operating system
[12].

The result of inference on atoms is a new atom. Inference may include any
finite number (> 1) of atoms, expressing the combination of knowledge.11 To
perform an inference operation in the model one needs to define an inference
rule which is contained in a separate section of K, namely I. Rules are global.
They apply to all knowledge sets and therefore any entity knowing the necessary
atoms generates the implied knowledge. Knowledge inferable by one entity is
inferable by every entity with the same knowledge.12

We now show an example of how the inference mechanism can be used to
model exchanges. In Figure 6 the first stage is the second of Figure 3. One might
want to change the situation such that the ISP does not learn the content. A
public key exchange can be introduced.13

11 Note that generating new knowledge atoms is not inference.
12 There exists a corner case: In abstracting from sub-entities to the parent entity, the

rules have to be reevaluated again to guarantee consistency.
13 For simplicity we model a very simple asymmetric, deterministic key exchange with-

out added randomness.
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The client generates a private key and from the first rule in I it infers the
corresponding public key. This knowledge is transferred to the server mediated by
the ISP (both learning the public key). Based on the second rule the server infers
the encrypted form of the content, transferring it back to the client through the
ISP, both learning the knowledge. Based on the third rule the client can derive
the content — this rule only applies to the client as the private key is required for
application. After these transformations k.c is not an element of the set e.ISP.

Note that here not only the model changed but the represented system as
encryption was introduced. With regular transformations only additional infor-
mation is added to the model, so all statements from before the transformations
need to be represented in the model (see e.g. Figure 4 where the content needs to
be an element of the complex flow). In the example of Figure 6 k.c disappeared
from the flow breaking consistency, which actually implies a system change.

3.4 Uncertainty

It may be likely or unlikely that some knowledge is available to some entity (for
example the identity of the reviewer to the author). Inference may be sometimes
possible only with some uncertainty or to some degree (e.g. if some relatively
weak anonymization procedure like k-anonymity has been applied to a data set
it might be possible to re-identify individuals given some unspecified background
knowledge); or a flow may only happen with some probability. The inference of
such knowledge can therefore be more likely or unlikely. In our approach, these
circumstances translate to the fact that the membership of a knowledge atom in
a set might not be certain. It also may be desirable to express, that some flow
may only happen with some probability. General uncertainty can be expressed
through the use of fuzzy sets for knowledge atoms. Any atom may only be a
partial member of a knowledge set of an entity, expressed by annotating it with
a degree in the range [0,1].

Inference rules and flows may also be characterized by uncertainty. The re-
sulting atoms then inherit this uncertainty from the evaluation of a rule. The
grade of a rule expresses the certainty of the derived knowledge, not of the
knowledge about the inference rule. An entity may infer knowledge atoms only
to some degree based on the grade of the input atoms and the grade of the rule
or flow.

In this regard one needs to be careful, how the degree of membership of
inferred knowledge atoms is derived. It may be the case that there exists a
stochastic dependency in the derivation of an atom from another atom based on
a rule. For a simple example let k.name express the fact of knowledge of a name.
Let there be some uncertainty on the spelling: it might be “Jane Doe” or “Jan
Doe”. We therefore decrease the certainty of k.name to 0.9. When inferring the
last name from the atom this inference is not independent of the uncertainty: In
any case “Doe” will be the outcome of the inference, independent of the original
reason for the uncertainty. As a consequence, when inferring from uncertain
atoms one needs to be careful and specify, how the uncertainty is inherited or
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not. This circumstance is due to the decision to only express general (i.e. under-
specified) uncertainty for elements. For the sake of simplicity, we decided to keep
it like this; an extension of the model may allow us to express more appropriate
stochastic inference.

3.5 Annotations

There are different types of annotations applicable to any element and collection
of elements as well as any transformation. One basic optional annotation type is
purely descriptive and is intended to add arbitrary explanatory aspects to the
model. It can be interpreted like comments as used in program code. They can
be used for example to link atoms to data, to explain why a certain specification
is thought to be meaningful or why some inference is thought to be justified.

There are also obligatory annotations. The most important one is always
present by default to any element (flows, entities, knowledge atoms, knowledge
sets as a whole): that the element is not fully specified. This annotation has
to be explicitly overwritten giving a reason why further specification of the
element is omitted. The rationale for this is the following: At any point in time
of the modeling process, the constructed model is always just a model, that is,
it is under-specified. There is no inherent reason to any model, that everything
relevant to the knowledge of an entity has been captured by the model (like
possible inferences, additional background knowledge, or any flow of knowledge
from some not yet modeled entity) and therefore the default state always is not-
fully-specified — it might be that with further specification something relevant
can be added to the model. However, to stop the modeling process one needs to
explicitly state for every element, that it is sufficiently specified. Therefore, the
modeling can be seen as (temporarily) done only if one accepts the current state
— this is expressed with the explicit statement for every element, that there
is nothing relevant to add. One can use descriptive annotations to justify the
omission of some specification considered by the modeler or the “sufficiently-
specified”-attribute. For example, one may state that there is no knowledge flow
from an air-gaped computer because it is isolated enough for relevant cases.
Therefore such justification can simply use well-known patterns like “assume
TLS is secure” to enable practical and relatively quick modeling of uncritical
parts of a system.

3.6 Class Annotations

Entities, flows and knowledge atoms may be annotated with classes (prepended
with “c.”). For example, some knowledge atom may be of the class c.network-
Packet or c.PII (personally identifiable information). There are three reasons
for us to introduce classes. First, it allows the formulation of general inference
rules (in contrast to the examples in Figures 2 and 6 where the inference rules
relate to concrete atoms). For example, there could be an inference rule stating,
that from any atom of class c.networkPacket one can derive the fact about the
time of activity, from c.PII the name of a natural person or from c.privKey a
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corresponding public key. Second, it allows the formulation of general restricting
and normative rules (discussed below). Third, it allows to define mappings of our
model to existing vocabulary, ontologies, or taxonomies (for example this may
allow GDPR conformance through interfacing with works like from Grünewald et
al. [8]). It also allows mappings of entities to other structural notation methods
like DFDs.

The class mechanism may be helpful to enable simplification of the mod-
eling process. They may implement some kind of “templates”. The annotation
mechanism in general and the class mechanism in particular allows the defini-
tion of ontologies or schemata for the whole analysis. In the standard form, our
approach is very unrestricted: The user may define any symbol/name for any
atom, entity, flow, or class. To ensure conformance with a certain vocabulary,
technical or legal standard, or other interest like a threat analysis, one may de-
fine an ontology or schema. Such an extension may contain automatic inference
rules, possibly for given classes. It may also add restricting rules and normative
rules, which will be explained in the next section. Automatic domain-specific
extensions may make analysis accessible.

3.7 Restricting Rules

One may add additional rules relating to anything. For example let there be
two classes for flows c.network (expressing that such flows represent network
connections) and c.bus (for attached hardware); additionally, let there be a class
of atoms c.data. A rule may be added that any atom of class c.data may only
be transferred to other entities through flows of class c.network or c.bus. Such
rules exist to force certain restrictions during the modeling process.

This mechanism exists mainly to enable the use of ontologies and schemata
in our method to enforce conformance with those. It also can be used to simplify
the modeling process by restricting it to a certain vocabulary and therefore to a
certain domain of analysis. It restricts expressiveness.

There are some default rules in the model already introduced with the ex-
planations above:

1. No knowledge symbol may be generated twice (at two different entities). It
has to be derived or there has to be a flow if it exists in more than one set.
To us, this captures the essential property of knowledge in the domain of
confidentiality. This rule make flows and inferences sensible.

2. In case of a flow bisection the atoms of the parent flow must be contained
in both children flows.

3. In case of a transformation to a complex flow the original atoms still have
to flow at least once.

4. In case of a transformation to a complex entity all atoms have to be contained
in the union of all sub-entities and it must be clear how they flow there, if
not generated (heeding rule 1.).

Note that those rules and restrictions are not represented in the model map.
These rules are part of the overall modeling system and are not up to the modeler
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during the modeling process to be added. They are assumed to be sound, i.e.
there is no contradiction in the rules. This stands in contrast to normative rules,
which we will explain now.

3.8 Normative Statements

The component N also contains rules, very similar to those just discussed. How-
ever, the function of normative rules is not to restrict the modeler. They exist
to express properties that should hold. The rationale behind this is to emphasize
the difference between descriptive and normative parts of an analysis.

A contradiction between a rule in N and the descriptive part F/K expresses
the violation of a requirement.14 As a consequence, one might want to change
the system (and respectively the model of the system). It is of course possible, to
accept and ignore the problem and simply continue the modeling process. For an
example consider Figure 7, extending Figure 6. New classes are introduced and
applied to some symbols (marked in blue): the ISP is annotated as untrusted
(c.u) and the content is classified as private (c.priv). N is not empty and
contains one rule: Anything of class c.priv should not be part of any set of
class c.u. In the first stage, the rule is violated while after the transformations
it is not.

Of course, when simply describing a system, N may be empty — then there
are simply no normative requirements. N may contain rules about: Knowledge
atoms and classes of knowledge atoms, how they flow (e.g. through classes of
flows), and members of which set of subjects or classes of subjects they are. And
there is one important special type of rule: Rules that require certain specifi-
cations or specification classes, express what has to be specified (or what not).
This may of course depend on the ontology or schema in the background. Such
rules exist to force the modeler to (not) consider certain aspects of a system.

In the normative part of the framework, one may also utilize thresholds to
define, which grade of knowledge is viewed as known to the entity, if uncertainty
is used. This allows one to express an acceptable grade of knowledge for an entity
(e.g. it is possible that an entity derives some confidential knowledge but it is
acceptably unlikely).

3.9 Remarks on Transformations

Each of the actions mentioned above is a transformation, except descriptive
annotations.

When doing a transformation a re-evaluation of other elements of the model
has to be done. This may be very simple: when creating a new flow (possibly to
a new entity) the respective target entity’s knowledge set has to be expanded or
created depending on the flowing atoms (except the atom already is present).

14 Contradicting statements in N are possible, in which case the requirements are in-
consistent. It is up to the modeler to simply accept this or change it.
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Adding Encryption

e.Server e.Cliente.ISPc.u

e.Server: {k.cc.priv}

e.Client: {k.cc.priv}

e.ISPc.u: {k.cc.priv}

k.cc.priv k.cc.priv

e.Server e.Cliente.ISPc.u

k.pubK k.pubK

k.enc(c) k.enc(c)

e.Server: {k.cc.priv, k.pubK, k.enc(c)}

e.Client: {k.privK, k.pubK,

   k.enc(c) k.cc.priv}

e.ISPc.u: {k.pubK, enc(c)}

k.privK -> k.pubK

k.pubK, k.cc.priv -> k.enc(c)}

k.enc(c), k.privK -> k.cc.priv

c.priv ∉ c.u

c.priv ∉ c.u

Fig. 7. Public Key Encryption with Classes and Normative Rules

Other re-evaluations are more complex. When adding new inference rules,
all sets have to be checked if any rule is applicable. This has to be re-iterated as
from new knowledge other rules might subsequently apply.

4 Discussion

In this section, we discuss several aspects and design decisions of our proposed
approach. We particularly revisit our framework requirements.

Model Trust A model is always incomplete in the sense that it never captures
the whole world (otherwise it would not be a model anymore). However, a model
could be called complete if it captures all relevant aspects of the world for the
application case. The problem with a privacy analysis is that one can not easily
determine if all relevant aspects have been incorporated into the model; security
and privacy research has proven that there are ever more bits of knowledge in
parts of a system that can be used to infer new privacy-relevant knowledge, e.g.
to fingerprint users.

In security research exists the notion of trusted components: the components
that can break your security policy [4]. Mapped to the privacy analysis problem:
we never know, if we considered all relevant aspects of any component of a
system and especially if we considered all relevant components. Our solution is,
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that we force the modeler to explicitly state that there are no further aspects
to a component that could be relevant to privacy. The second aspect is not so
easy to include in the modeling process, namely that there are no more relevant
components of a system. Any atom or flow that is not explicitly added to the
model does not exist in the model, implying that they are not relevant to privacy.

One solution we propose is, that for any entity in our model, there is by
default a flow of an unspecified abstract atom to an unspecified, abstract entity.
This expresses that there could be something. This flow then has to be explicitly
annotated as accepted.

For completeness, we state that, if using uncertainty, the counterprobability
expresses that the respective entity does not have the respective knowledge. The
same holds for uncertain flows, implying that by counterprobability the flow
does not happen. An alternative interpretation would be that those probabilities
express that such aspects are not relevant to privacy to some degree.

Flows A source of confusion can be the relation of knowledge flows from a net-
work perspective, especially in the case of complex flows. In almost all networked
communication the very first packet contains information resulting in a flow of
some sort of knowledge to the target from a source.15 Consider a TCP/IP hand-
shake from a client connecting to a public server from behind a NAT. It seems
like there is a flow of the client’s public IP address to the servers, although being
behind a NAT it does not necessarily know it. How can it flow if it is not part
of the client’s knowledge set? The answer is that the public IP of the client is
generated not at the client, but at an intermediate hop (the NAT-device). Our
modeling approach requires to make such situations explicit.

Knowledge Atoms and Inference In our method, inference rules are global.
Knowledge atoms, in contrast, represent facts that are only known by and there-
fore bound to concrete entities. One could treat inference rules the same way
as atoms, expressing that inference is only possible if an entity knows how to
infer. We decided against this approach as this can be interpreted as security by
obscurity: inference of new knowledge based on available knowledge can always
be discovered or learned. In our model this can be put like this: it is always a
knowledge component relevant to the inference that is preventing the application
of a rule.

Theoretically, there is an infinite number of knowledge atoms for each entity:
it can trivially derive new facts by expressing that it knows or not knows some
fact (the fact of (non-)knowledge). This is not included in the analysis, as it is
simply not deemed relevant.

Inference is a relatively old and problematic concept in security. To formalize
it universally one needs a logical reference system [7], which we think is not uni-
versally possible. For privacy, the many published de-anonymization techniques

15 In general there are always facts like the fact that there is communication happening,
the time the packet arrives, etc that can be added to the model when analyzing
network flows.
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for almost any area (from communication to data level) demonstrate the prob-
lem. Therefore we think it is best to keep this space open and leave it to the
user to freely add inference rules (possibly by using pre-defined schemata and
catalogues).

Hard Privacy Our model puts a strong focus on the question: who learns what?
To the best of our knowledge, all common hard privacy goals can be subsumed
under this question. It is expressing confidentiality of facts — that certain facts
are not known (by some entity). Consider the following protection goals selected
from [14,5,11]:

– For unlinkability we capture it as the not-knowing of the fact of a link be-
tween two items of interest.

– Anonymity is simply a special form of a link (here we agree with [5]).

– Observability is expressing the absence of a certain kind of knowledge, e.g.
that a message is sent by someone.

– Refutablity can be taken to express that an entity does not possess the
knowledge it requires to unambiguously (or to some degree) infer the fact of
assignment of something to someone.

One drawback of our method is that it is not directly possible to express
incomplete, incorrect, or time limited knowledge (e.g. data that is deleted after
some time). We argue, that these problems are not a strong drawback but express
a certain focus and perspective of our method:

Within incomplete knowledge, there is a part of knowledge and that is the rele-
vant part. When aggregated with additional (completing) knowledge an inference
based on multiple knowledge atoms can generate the accumulated knowledge.

For incorrect knowledge it is either incorrect and therefore not relevant or
there is something in the incorrect knowledge that is relevant. For example, a
client may use an anonymization network service when accessing a server on the
Internet. The server learns the “wrong” IP address. When doing the analysis we
may now accept this state of the model but we can undertake steps to model
this “incorrect” knowledge to be known as incorrect: We can add the knowledge,
that this IP address belongs to the anonymization service and an inference rule
that one can infer the fact that such IP addresses do not belong to the clients’
Internet IP addresses.

When data is deleted after some time (something that is part of a privacy
analysis following [15]) our model inherently stresses that information once avail-
able to an entity is under the control of that entity. It may delete it of course
but that is up to the entity and therefore for a rigorous privacy analysis it would
be naive to model it otherwise. Still, if someone really wants to express such as-
pects, this can be done in our model by introducing time indices for knowledge
atoms. Normative statements can then refer to such indexed atoms (that e.g.
some atom should not be element of a set at some point in time). Subsequently,
inference also has to consider such time indices.
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Scalability One aspect is how our method scales for complex and larger sys-
tems. Here it can of course adapt to scalability issues by decreasing the grade of
specification. This can be done selectively on single parts. However, to grasp a
system with sufficient accuracy one has to add many elements and rules, blow-
ing up the model very fast and requiring many transformations. One solution we
propose are templates. This is only possible if there is some ontology or schema
available. In that case, properties can automatically be derived and hidden if
not deemed relevant.

Modeling Convergence Through the abstract nature of entities, the same
system can be modeled in different ways and with different focus. For example,
one could model software components and interfaces like API endpoints or one
could focus on hardware components. As a result, the same system modeled
multiple times can be described with different entities. We hypothesize that in-
dependent of the focus of the model it is always possible to arrive at the same
knowledge result independent of the way entities are nested: different configura-
tions in F can result in the same state of K. This cannot be proven here as it is
necessary to have a complete formal model to show this. The significance of this
hypothesis is that there are no (in this sense) wrong ways to model a system,
only — depending on the perspective — inconvenient ones.

Additional Properties In Section 2 we introduced several properties our ap-
proach should have. We individually address them now.

– Generality: Our framework builds on entities, atoms, and flows, which are as
general as possible but at the same time capture the essence of hard privacy.
It is possible to reduce this generality by adding classes. Our approach can
be used in the design phase of a system to compare different architectures.
It can be used to model existing systems and assess the impact of possible
transformation, e.g. the application of “countermeasures”. The normativity
mechanism helps to separate requirements and descriptions.

– Domain Transitions: The term “system” can be interpreted very broad in our
approach: It may refer to a technical (possibly distributed) system but it may
also include human operators or organizational parts. Abstract entities and
flows can be recursively specified allowing to bridge logical, organizational
and technical views of a system.

– View Depth: To a large extent, this has been answered by the previous point.
A complex entity/flow represents a more abstract view. The possibility of
simply adding abstract entities allows one to model a system with practically
no boundaries: one can add an entity “world” and model published or stolen
data simply as flows to this entity.

– Missing information: Our approach does not require extensive system knowl-
edge: anything unknown can simply be modeled as unspecified. This lack of
information is still represented in the model.

– Uncertainty: For a discussion of this point we refer to the previous section
“Knowledge Atoms and Inference”.
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– Argumentation: Annotations allow to add argumentation to modeling deci-
sions. The (to us) most important modeling decision — to state what is not
specified — is enforced.

– Extensibility/Restrictability: The generality can be restricted through the
class functionality and modeling rules.

– Tool Support : The proposed layout can inspire a user interface. The well
defined transformations can be used as possible user interactions with a
software. The (re-)evaluation steps can be realized through a logic checker,
given there is a sound formal foundation for all components.

5 Related Work

One prominent approach to privacy analysis is LINDDUN [5] which we take as a
reference approach for the following discussion. The name is an acronym indicat-
ing threats like linkability, identifiablity etc, including two soft privacy threats.
In the original paper, the authors define six distinct steps16 for a systematic pri-
vacy threat analysis where the first step is the construction of a system model
based on a DFD. In a distinct step, threats are to be elicited (originally specific
to DFD element types, e.g. “linkability at a data store”). For this LINDDUN
provides threat specific trees. Additional steps are the prioritization of threats
and the selection of countermeasures.

LINDDUN originally considered only the elements of a DFD (except flows)
but was later extended to reflect on the problem that privacy threats cannot
only be related to the DFD elements but also to the interaction between the
elements expressed in flows [16]. Especially for privacy aspects interactions may
yield interesting knowledge for an attacker. As a consequence, one has to consider
the risks at the source, destination, and the data flow itself (including risks in
transit). This is an interesting extension as it already represents a move towards
our modeling approach. The main difference here is, that we enable to model a
flow and involved entities of a flow explicitly. This allows to make the properties
explicit and to apply the analysis recursively.

This articulates one reason why we refrained from using DFDs. DFDs by
design tend to put the modeling focus wrong, by differentiating between types
of components, namely entities, data stores, and processes. This makes it harder
to express certain things like interactions. These problems hold for any data-flow
oriented approach.17 Other system model based approaches are stronger focused
on certain environments, decreasing the ability to capture all relevant aspects of
a system [2,1].

An additional aspect to the discussion of DFDs is, that through the class
mechanism we can define a mapping between the two methods: The elements in

16 In the current version on the LINDDUN website these six steps are categorized into
three categories.[6]

17 DFDs inherently lack possibilities to express relevant aspects, therefore extension
are required to make them usable for practicable security analysis, e.g. through a
meta-model [17].
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a DFD can be represented through classes in our framework. A trust boundary
of a DFD would be represented through a complex entity in our approach.

Another difference between our method and LINDDUN and other approaches
like privacy impact assessments (PIAs) [3,9,13] is the departure from threat-
oriented analysis in the steps following the system modeling. Our approach is
missing threats as generic concepts and therefore also threat trees and risk anal-
ysis. As discussed in Section 4 in the part on “Hard Privacy” we believe that
all hard privacy threats can be expressed in our model but we do not have an
explicit threat elicitation step. In our approach threats are expressed through
the normative section N to capture unwanted conditions.18 Risk in this context
is a notable concept as intended by PIAs. In our framework risk can be captured
through the uncertainty mechanism. Normative statements can be adapted to
express acceptable low grades of memberships of atoms.

One frequently mentioned problem with threat modeling is threat explosion.
As a consequence, it is proposed to reduce the problem space, e.g. by exclusion of
threats through domain refinement [19]. This effectively boils down to dismissing
threats because of assumptions. Once done they run risk to be missed in case the
assumptions turn out not to hold anymore [18]. In our approach the situation is
inverted : The situation that an assumption does not hold anymore, is translated
in our model to one or more transformations: the corresponding flow or inference
is added (probably resulting in a new atom in some set). Consider for example
a broken encryption algorithm: in our model an inference rule can be added
expressing that an attacker is now able to do the decryption (analogous to Figure
6).

The existing definitions of threats and threat trees as available in LINDDUN
can be reused in our model: they act like a kind of catalog to create inference rules
on specific knowledge classes. We believe that there exists a synergy between our
approach and threat-oriented ones: effectively threats, trees, and DFD elements
provide proposals for categories, where and for what kind of problems to look
for. Using them as classes provides them as vocabulary in our approach.

In most existing approaches prioritization is a distinct step in the process.
In our model, this happens implicitly by omitting specification, markable by
annotations.

One of the last steps in threat-oriented analysis is often the selection of
countermeasures. We think this often effectively transforms the system (as it
is actually the in Figures 5 and 6). Many effective privacy mechanisms require
different architectures, certain query structures, etc. This has to be reflected in
the system model to see the effect of the respective measures making a reiteration
of the complete process necessary. Having automatic derivations based on an
underlying logic can help here and our framework is taking steps there.

18 Any threat that cannot be captured through confidentiality requirements can cur-
rently not be expressed in our modeling method. We, however, think that other goals
like integrity can be expressed through some modifications. We leave this to future
work.
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An interesting approach that is not data-flow oriented is the Standard Data-
Protection Model (SDM) [15], which has been designed as an auditing and im-
plementation compendium regarding GDPR compliance. It puts focus on the
data life cycle, from creation to deletion, while protection has to be ensured in
each stage. It also enforces three views on a system: organizational-process level,
application level, and infrastructure level. This aspect is somewhat similar to our
model, where, however, our model does not force one to use these three levels (it
is up to the user to define them as required and may define intermediate levels if
necessary). As shortly mentioned in the Section 4 data life cycles are laborious
to express in our model. The background here is that the SDM is much more
exhaustive [10], thus enabling such features. The SDM, however, lacks concrete
approaches how to analyze systems in detail and how protection guarantees are
ensured. Overall the SDM may be used for a privacy analysis but it has not
been designed for that but for auditing and process design. Our approach can
complement the SDM by providing a clear model and interface layers through
classes. This is especially possible as it can express different views making the
two compatible.

6 Conclusion

Our method enables reasoning about the privacy properties of systems and pos-
sible configurations from a novel perspective. By emphasizing knowledge, which
is always bound to entities, it can grasp the essence of hard privacy, that is:
who learns what? It does so by adapting the classical flow perspective but al-
lowing more granular specifications and reinterpreting systems as complex. Any
element of a system can be understood as a composition of sub-systems (this
holds for flows and entities) and any deeper or higher layer may add relevant
information to the analysis, especially for inference. Through global inference
rules the analysis aims to include interpretation and combination of available
knowledge into the system model. The very general nature of the framework
can be restricted through classes allowing the adoption of and conformance to
established concepts, terms from existing works or standards.

Our work has been presented very informally. This was intentional to depict
the general approach. The next step is formalization, taking privacy analysis
of systems towards a formal foundation. An implementation would allow us
to make the approach intuitively available to users. By developing ontologies
about possible classes of entities, flows, and atoms according to established threat
structures our work may help to simplify privacy engineering.
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