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We consider the single-parameter R+cR2 gravitational action and use constraints

from astrophysics and the laboratory to derive a natural relation between the coeffi-

cient c and the value of the cosmological constant. We find that the renormalisation

of c from the energy of the inflationary phase to the infrared, where the acceleration

of the expansion of the Universe takes place, is correlated with the evolution of the

vacuum energy. Our results suggest that the coefficient of the R2 term may provide

an unexpected bridge between high-energy physics and cosmological phenomena such

as inflation and dark energy.

This essay received an Honorable Mention in the 2024 Gravity Research

Foundation Essay Competition.

I. INTRODUCTION

Our understanding of the force of gravity impacts the way we view the shape and the

dynamics of the observable Universe. The current cosmological paradigm relies on General

Relativity, Einstein’s theory of gravity [1, 2] crafted as a relativistic theory of curved space-

time. Gravity is inferred to be universal, i.e. it couples equally to all types of matter and

energy, from simple requirements such as Lorentz invariance [3]. Einstein proposed three

classical tests of this theory of gravity [4]: the perihelion precession of Mercury, the deflection

of light by the Sun and the gravitational redshift of light. These classical tests illustrate the

ubiquity of the gravitational force. In addition, several modern tests are routinely performed

in order to test general relativity as well as effects that, in principle, could occur in a theory

of gravitation different from Einstein’s theory of gravity [5].

Einstein’s General Relativity has stood the test of time and remains unscathed after

more than a century of intense investigations. In the last 20 years, the emergence of the

acceleration of the expansion of the Universe [6–8] has led to various attempts to understand
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why gravity does not appear to be attractive on large cosmological scales. This could lead to

intricate models of dark energy although the recent observation of the neutron star merger

by the LIGO/Virgo consortium [9, 10] has reinforced the strength of the claim that, so far,

the best candidate as an explanation for the cosmic acceleration is dark energy in the form of

a constant vacuum energy, whose archetype is the original cosmological constant introduced

by Einstein in 1917 and leading to the de Sitter space-time of 1919.

In order the explain the expansion of the observable Universe a cosmological constant is

added (with the signature (−+++))

SEH−Λ =

∫

d4x
√−g

[

M2
Pl

2
R− Λ4 + gµνTmatter

µν

]

, (1)

with a value today given by [11]

Λ4
0 = ΩΛ0 3(H0MPl)

2 ≃ 2.4× 10−47GeV4 ≃
(

2.2× 10−3eV
)4

, (2)

where we have introduced ΩΛ0 ∼ 0.7 as the fraction of dark energy in the Universe and

ρc = 3M2
PlH

2
0 is the critical density of the Universe.

The smallness of the cosmological constant is still an open problem. This is the “old”

cosmological constant problem [12] whereby all the massive particles of the Universe con-

tribute to the vacuum energy with threshold corrections which are quartic in their masses.

Phase transitions, and at least the electro-weak and the quantum chromodynamics ones,

also contribute to an alarming level. These large contributions should cancel in order to

match with observations for a determination of (2) solely from the framework of particle

physics.

Concretely, the quantum corrections do read

Λ4
0 = Λ4(me)− 2

3
∑

f=1

m4
f

64π2
ln

m2
e

m2
f

+ δΛ4
0. (3)

where Λ4(me) encapsulates the contributions from the tower of particle masses above the

electron mass, i.e. it captures the high energy physics effects which are relevant to the

calculation of the dark energy in the deep IR. We have singled out the contributions from

the neutrino, because the neutrino masses are known to be at most in the milli-eV range

from the Planck 2018 constraints [13–18]. We have added a component δΛ4
0 coming from

new physics at low energy below the electron mass.
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Cosmological constraints: The neutrino contribution to the vacuum energy

δΛ4
neutrino = −2

3
∑

f=1

m4
f

64π2
ln

m2
e

m2
f

. (4)

can be estimated using the Planck data to be a large contribution

6× 10−7eV4 ≤ |δΛ4
neutrino| ≤ 6× 10−6eV4 (5)

which exemplifies the nature of the cosmological constant problem even at low energy.

Astrophysical constraints: We constrain the energy densities Λ4(me) and δΛ4
0 from astro-

physical considerations. The X-ray emitting gas of a galaxy cluster has a typical temperature

of TX ∼ 1 keV, in regions of total baryonic and dark matter density of about 500 times the

mean density of the Universe. These systems typically appeared at a redshift z & 0.1 and

already have a lifetime of the order of the age of the Universe. In such clusters the neutrinos,

coming either from the early Universe with an energy of order 10−4 eV or from astrophysical

processes such as the burning of stars with an energy around 100 keV, have a very small

cross section with matter and decouple from the physics inside the clusters, which can then

be described by non-relativistic matter particles (such as electrons and protons) and General

Relativity augmented with a vacuum energy. Under the strong assumption that the latter

only takes into account all the physics for energy scales greater than TX, then the vacuum

energy |Λ4(me)| cannot be too large otherwise it would significantly affect the dynamics

within the cluster. In a spherical approximation, the cluster would behave as a separate

universe [19], with its own vacuum energy Λ4(me). To ensure small dynamical effects, we

have the conservative bound

|Λ4(me)| . 200Λ4
0. (6)

This reasoning makes use of the presence at low redshift of hot high-density structures within

the cooler and lower-density cosmological background.

II. THE R2 GRAVITY

The unknown contribution δΛ4
0 is there to compensate for the other quantum corrections

to the vacuum energy in particular the large value from the neutrinos in (4). The nature of

these extra quantum corrections have led to many possible scenarios (supersymmetry, . . . )
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but so far have failed to give a convincing answer. In this text we propose a scenario from

the purely gravitational sector by embedding Einstein gravity into an effective field theory

framework.

It is very natural to embed the classical Einstein theory of gravity into a quantum gravity

framework valid at high energy, possibly close to the Planck scale, where the Einstein-Hilbert

action (1) is only the first term of a low-energy effective action

Seff =

∫

d4x
√
−g

[

M2
Pl

2
R− Λ4 + gµνTmatter

µν + Lcorrections

]

. (7)

The contributions Lcorrections arise from such extensions of Einstein gravity induced either by

high-energy quantum corrections from a high-energy completion like string theory or new

interactions from extra massless fields which are still undetected.

This approach is based on the idea that long range interactions in gravity can be described

by a low-energy effective field theory, even if the high-energy behaviour of quantum gravity

is still unknown [20–22]. Although the status of the high-energy behaviour of quantum

gravity is still open, considering the effective field theory of gravity at low energy does not

pose a problem. One can safely extract low-energy physics from the quantization of the

gravitational interactions observables that are independent of the high-energy behaviour.

We may quote J. D. Bjorken in [23] who argues that the Einstein-Hilbert term with its

universal coupling to matter is naturally the first term of an effective field theory of quantum

gravity. To the contrary to what many may think “as an open theory, quantum gravity is

arguably our best quantum field theory, not the worst. [. . . ] quantum gravity, when treated

[. . . ] as an effective field theory, has the largest bandwidth; it is credible over 60 orders of

magnitude, from the cosmological to the Planck scale of distances.” [23]. This is precisely

the philosophy that we will be following in this text.

Amongst the terms induced from the unknown high-energy corrections, the scalar R2

operator plays a distinctive role

SR2(µ) =

∫

d4x
√−g

[

M2
Pl

2
R− Λ4(µ) + c0(µ)R2 + c2(µ)

(

RµνR
µν − 1

3
R2

)]

+Smatter , (8)

it has been shown in [24, 25] that the coefficient c2(µ) is always asymptotically free, since

dc2(µ)/d logµ
2 > 0, whereas c0(µ) is asymptotically safe, dc0(µ)/d logµ

2 < 0 for the non

tachyonic case c0(µ) > 0, which is the case of interest in this paper. Therefore, at low-energy

c2(µ) tends to zero whereas c0(µ) grows, leading to the hierarchy c0(µ) ≫ c2(µ) at very low
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energy. Hence the quadratic Ricci scalar term is enhanced as compared with other quadratic

and higher order contributions.

Therefore we can restrict ourselves to the scalar R2

SR2(µ) =

∫

d4x
√
−g

[

M2
Pl

2
R− Λ4(µ) + c0(µ)R2

]

+ Smatter . (9)

At late time, a relevant effective action in the same Wilsonian sense is

Slate =

∫

d4x
√−g

[

M2
Pl

2
R− Λ4

0 + c0(µlate)R2

]

. (10)

Stelle [26] showed that the presence of the R2 term leads to the propagation of a scalar

massive degree of freedom, the scalaron, of mass

m2
scalaron =

M2
Pl

6c0(µlate)
, (11)

which could contribute to a fifth force in gravitational experiments

V (r) = −GNM

r

(

1 +
1

3
e−mscalaronr

)

. (12)

The absence of evidence for short range forces in the Eöt-Wash experiment [27–29] provides

an upper bound on the range of scalar forces d ≤ 52µm corresponding to the strong lower

bound

mscalaron & 3.8× 10−3 eV . (13)

At this point we notice the observational coincidence that this lower bound in the milli-eV

range is strikingly close to the typical energy scale set by the cosmological constant (2) and

suggest that the scalaron could lead to the δΛ4
0 contribution to the vacuum energy (4). Or

equivalently that the value of the coefficient of the R2 term could be connected to the value

of the cosmological constant. The scalaron contributes to the vacuum energy as

δΛ4
scalaron =

m4
scalaron

64π2
log

(

m2
e

m2
scalaron

)

. (14)

Assuming that only the scalaron and the neutrinos have a mass smaller than the electron

mass, then δΛ4
0 = δΛ4

scalaron. Combining the condition (6) with the range (5) we deduce that

the scalaron mass is bounded from above by the fourth-power mean value of the neutrino

masses

mscalaron . m̄ν = (m4
1 +m4

2 +m4
3)

1

4 ≃ 0.1 eV, (15)
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leading to the narrow interval on the scalaron mass

3.8× 10−3eV . mscalaron . 0.1 eV (16)

or for the coefficient the R2 term in the gravity effective action in the infrared (IR)

1057 . c0(µIR) . 7× 1059. (17)

III. R2 RUNNING FROM INFLATION TO DARK ENERGY

The R2 term plays an interesting role in two regimes of interest for cosmology. Its role

could be significant from the large energies and early times of the inflationary era to the

late time and low energy regime where dark energy sets the scene. Inflation is one of the

most successful and elegant theoretical descriptions of the post-Planck early time, since

it overcomes in a rigid way most of the shortcomings of the standard Big Bang cosmology.

During the inflationary era, the currently best model when compared to data is well described

by the effective action with the R2 correction [30]

Sinfl. =

∫

d4x
√
−g

(

M2
Pl

2
R+ c0(µinfl)R2

)

. (18)

This so-called Starobinski’s model produces a very good fit of the observed spectrum of

primordial perturbations. As the coefficient of the R2 term is dimensionless, it naturally

depends on the energy scale in a Wilsonian sense, here set to be µinfl which can be identified

with the nearly-constant Hubble rate during inflation.

Let us now review how to relate the inflation models (18) and the late time effective

action (10) by the renormalisation group equation.

The effective action in (9) is an f(R) theory with

f(R) = −2Λ4(µ)

M2
Pl

+R+
2c0(µ)

M2
Pl

R2. (19)

This f(R) model can be written as scalar-tensor theories with an action

Sscalaron =

∫

d4x
√−gM2

Pl

(

1

2
R− 1

2
(∂ϕ)2 − V (ϕ)

)

+ Smatter(e
2
√

6
ϕ
gµν) (20)

where ϕ is dimension less and the coupling to matter is via the Jordan metric gJµν = e
2

√

6
ϕ
gµν .

The potential in the action is given by the relation

V (ϕ) =
Rdf(R)

dR
− f(R)

(df(R)
dR

)2
(21)
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whilst the field ϕ is related to the curvature as

df(R)

dR = exp

(

− 2√
6
ϕ

)

. (22)

The potential for the scalaron reads explicitly

V (ϕ) =
M2

Pl

8c0(µ)

(

e
2ϕ
√

6 − 1
)2

+ 2
Λ4(µ)

M2
Pl

e
4ϕ
√

6 (23)

as a function of the scalaron ϕ. From this potential we can read-off the effective mass of the

scalaron

m2
scalaron(µ) =

M2
Pl

6c0(µ)
+

16

3

Λ4(µ)

M2
Pl

. (24)

Having fixed the Planck mass M2
Pl, which is then independent of µ and fixes all the energy,

distance and time scales, the parameters in the Wilson effective action (20) are µ depen-

dent. The cosmological constant Λ(µ) and the coefficient c0(µ) of the R2 term follow the

renormalisation group equations where they evolve each time a particle species of mass m is

integrated out [31], i.e. when µ ≤ m. In the history of the Universe, particles in the thermal

bath are integrated out when the temperature falls below the mass m, leading to

dm2
scalaron(µ)

d lnµ
= − 1

48π2M2
Pl

Str(M4)θ(µ−M). (25)

and
dΛ4(µ)

d lnµ
= − 1

32π2
Str(M4)θ(µ−M) (26)

in terms of the supertrace of the complete mass matrix M of all the particles in the Universe.

The scalaron arising from the gravitational sector of the theory couples to all particles in

the spectrum. This implies that the coefficient of the R2 term has an evolution linked to

the one of the cosmological constant

d(M4
Plc0(µ)

−1 + 28Λ4(µ))

d lnµ
= 0 . (27)

The initial values of the renormalisation group are taken at the end of inflation corresponding

to the reheat temperature Treh, i.e. larger than any physical masses of the particles in the

spectrum of the theory.

The value of c0(µend) at the end of inflation can be deduced from the normalisation of

the CMB spectrum as

V (ϕ⋆)
3

M2
Pl(V

′(ϕ⋆))2
≃ 3e

−
4ϕ⋆
√

6

32c0(µend)
≃ 2× 10−11 (28)
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evaluated at the value of ϕ⋆ determined by the spectral index

ns − 1 = 2η⋆ = 2
V ′′(ϕ)

V (ϕ)

∣

∣

∣

ϕ=ϕ⋆

≃ −8

3
e

2ϕ⋆
√

6 . (29)

giving the constraint on the coefficient of the R2 from the CMB data

c−1
0 (µend) ≃ 1.52 10−9 (ns − 1)2 ≃ 2× 10−12, (30)

where we used that ns − 1 ≃ −0.0351 according to the Planck data [13].

The cosmological constant Λ4(µend) at the end of inflation is not directly determined by

the experimental data, but from an ultraviolet (UV) point of view, its value is constrained

by the renormalisation group equation (27) reinforcing the fact that the physics at high

energy seems to be largely constrained by the physics at low energy. This is the case of

the coefficient of the R2 term during inflation which is constrained by the CMB data. Here

the physics of the vacuum in the IR, i.e. the vacuum stability combined with gravitational

tests, determines indirectly the value of the cosmological constant in the UV. Of course, our

analysis does not provide any explanation for this value from a top-bottom point of view.

IV. OBSERVATIONAL PREDICTIONS

The gravitational effective action (9) displays an interesting universality behaviour as it

can be applied to the inflation regime and the late cosmological times. The effective action

has a priori two free parameters the cosmological constant Λ4(µ) and the coefficient c0(µ) of

the R2 term. We have argued that these two coefficients have an evolution that is related

by the renormalisation group equation in (27) and determined the value of c0(µ) in the UV

and IR from observations.

At late time, the coefficient of the R2 term is in the narrow interval for the scalaron

mass (16). This prediction can be tested by the Eöt-Wash experiments [27–29].

We remark that this interval is compatible with the value mscalaron ≃ 4.4 × 10−3 eV for

which the R2 induced scalaron could be at the origin of the observed dark matter abun-

dance [32–35]. In this scenario, at low energy compared to the inflation scale, the vacuum

expectation value of the scalaron is displaced from the origin by an amount depending on

the electroweak scale v ≃ 250 GeV because of its coupling to the Higgs field. For more

generic initial conditions after inflation taking into account the quantum fluctuations of the
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scalaron during inflation, the whole interval up to mscalaron ≃ 0.1 eV could accommodate

dark matter. As the electroweak transition begins, the scalaron starts oscillating with a

decreasing amplitude eventually converging to the origin. This misalignment mechanism is

similar to what happens for axions and leads an abundance of dark matter which fits the

observed value for mscalaron ≃ 4.4×10−3 eV [35]. Combining both scenarios, this would lead

to a possible signal in gravitational experiments below a distance d . 45 µm, which is well

within the allowed interval (16). This strongly supports the exciting possibility of testing

the existence of the new gravitational interaction R2, which could play a role in both the

late acceleration of the universe and dark matter. All in all, we believe that this a is a

consequence of the universality of the effective long distance physics of gravity compared to

the scales of quantum gravity.
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