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Abstract

Online load balancing for heterogeneous machines aims to minimize the makespan (maximum
machine workload) by scheduling arriving jobs with varying sizes on different machines. In the
adversarial setting, where an adversary chooses not only the collection of job sizes but also their
arrival order, the problem is well-understood and the optimal competitive ratio is known to be
Θ(logm) where m is the number of machines. In the more realistic random arrival order model,
the understanding is limited. Previously, the best lower bound on the competitive ratio was
only Ω(log logm).

We significantly improve this bound by showing an Ω(
√
logm) lower bound, even for the

restricted case where each job has a unit size on two machines and infinite size on the others.
On the positive side, we propose an O(logm/ log logm)-competitive algorithm, demonstrating
that better performance is possible in the random arrival model.

1 Introduction

Online load balancing is a fundamental problem encountered in parallel/distributed computing and
network communication, appearing in various forms. It focuses on effectively distributing limited
resources to handle tasks that arrive over time (online). Due to its importance, this problem has
been extensively studied in both practice and theory [5, 22, 15].

The model of unrelated machines has received significant attention due to its effective repre-
sentation of heterogeneous processing capabilities. In this setting, the processing time of a job can
differ based on the assigned machine. Minimizing the makespan, the maximum workload across all
machines, is one of the most common objectives in this realm.

In many practical scenarios, the sequence of job arrivals is unpredictable, necessitating online
load balancing strategies. For minimizing makespan in this online setting, an O(logm)-competitive
algorithm is known [7, 3], where m represents the number of machines. This algorithm guarantees
a solution within a logarithmic factor of the optimal offline solution, which has full knowledge of
the entire job sequence in advance. Notably, this competitive ratio is known to be tight under
adversarial job arrival orders [7], where the algorithm has no information about future jobs.

One way to circumvent the strong lower bounds is to consider the random arrival order model.
In this model, the adversary first defines the machines and jobs, then the jobs arrive in a random
permutation. The appeal of this model is its simplicity: no assumptions are made about the overall
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input, and only the order of arrival is randomized. Crucially, the optimal offline solution remains
unchanged. The random arrival model has been exceptionally effective in breaking many lower
bound barriers, as seen in the secretary problem, packing integer problem, online facility location
problem, and many others. For a comprehensive overview of the results in the random arrival
model, see [20].

Despite the success of the random arrival model in other contexts, research on online load
balancing within this framework remains surprisingly thin. To the best of our knowledge, the only
non-trivial result for this problem is a lower bound of Ω(log logm) [9].

1.1 Our Results

In this paper, we make significant strides in online load balancing for unrelated machines with the
random arrival model by establishing the following new bounds.

Lower Bounds. We show lower bounds for the special case of graph balancing [14]. Here, edges
representing jobs arrive online, and we must immediately orient each arriving edge towards one
of its endpoints. The objective is to minimize the maximum in-degree of any vertex, i.e., the
highest number of incoming edges for a single vertex. This problem is equivalent to the online load
balancing scenario where each job has a unit size on exactly two machines and an infinite size on
the rest.

Even in this restricted setting, we establish a new lower bound of Ω(
√
logm) for any randomized

algorithm, where m denotes the number of machines (or the number of vertices in the graph
balancing problem). This is an exponential improvement over the previously known lower bound
of Ω(log logm). Interestingly, our bound holds even when the instance is a tree and the algorithm
knows the structure a priori. This result is presented in Section 4.1.

We further demonstrate that the intuitive greedy algorithm, which assigns each job to the less
loaded machine (breaking ties randomly), has a competitive ratio of Ω(logm/ log logm). Expressed
in graph balancing terminology, this algorithm orients each edge towards the endpoint with the lower
in-degree. This highlights the necessity of deviating from the straightforward greedy approach to
achieve a competitive ratio substantially better than the Θ(logm) bound, which is the best possible
in the adversarial order setting. This result can be found in Section 4.2.

Upper Bounds. On the positive side, we present an algorithm for online load balancing in the
random arrival order model that achieves a competitive ratio of O(logm/ log logm). Notably,
this result applies to the general setting of unrelated machines. While the improvement over
the O(logm) bound in the adversarial model is modest, it nevertheless establishes a meaningful
separation between the two models for this problem. This result is in Section 3.

Remark. In the online makespan minimization for unrelated machines problem, we use m to
denote the number of machines and n the number of jobs. This is the standard notation used in
the scheduling literature. However, in the graph balancing problem, m is the number of edges and
n is the number of nodes. Since nodes correspond to machines, a lower bound f(n) for the graph
balancing implies a lower bound f(m) for makespan minimization. In fact, this differentiation is
not critical as all lower bound instances we use for the graph balancing are trees; thus, we have
n = m+ 1.
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Figure 1: Illustration of a lower bound instance giving Ω(logm) lower bound in the adversarial
arrival model. Edges arrive in the order of solid, dashed, and dotted, and they are wlog assumed
to be oriented towards the root.

1.2 Our Techniques

As a warm-up, we review an instance that demonstrates a lower bound of Ω(logm) on the compet-
itive ratio of any deterministic algorithm for adversarial arrivals. Consider a setting with machines
indexed from 1 to m, where m is assumed to be a power of 2 for simplicity. Jobs arrive in rounds,
with each job having a size of 1 and being assignable to only two specific machines. We can rep-
resent this constraint by representing jobs as pairs of machine indices. For example, a pair (1, 2)
indicates that the job can be assigned to either machine 1 or machine 2.

The instance unfolds as follows. In the first round, jobs with pairs (1, 2), (3, 4), . . . , (m− 1,m)
arrive. Without loss of generality, assume the algorithm assigns these jobs to the even-indexed
machines. The subsequently arriving jobs can only be assigned to the even-indexed machines,
which all already have one job. By focusing on the even-indexed machines and halving their indices,
we effectively reduce the problem to m/2 machines. Each recursion of this process increases the
load on the machines considered in the current round by 1. Therefore in the (logm)th round, the
algorithm’s makespan reaches logm, while an optimal solution has a makespan of 1, establishing
the Ω(logm) lower bound.

This instance also can be viewed as a tree. See Figure 1.

Lower Bounds. In the random arrival order model, orchestrated job sequences that intentionally
concentrate load on specific machines are no longer viable, as we cannot dictate the order in which
jobs appear. While the aforementioned instance cannot establish a lower bound for arbitrary
algorithms within this model, a minor tweak of it enables us to demonstrate a lower bound of
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Ω(logm/ log logm) for the intuitive greedy algorithm, which assigns each job to the machine with
the lesser current load.

To ‘reproduce’ the adversarial order even in the random arrival order model, we use a ‘fat’
tree where every node has a polylogarithmic degree except the leaf nodes; here the tree has an
Ω(logm/ log logm) height. The key idea is that in the fat tree, a majority of leaf edges (jobs)
arrive before the other edges and we can show that this bad event can occur recursively with a high
probability, resulting a high load on the root node.

Unfortunately, we cannot use the same fat tree to show a strong lower bound for arbitrary
algorithms. This is because of the following reason. To obtain a good load balancing, it is important
to orient edges towards the leaf nodes. However, it is easy for an algorithm to distinguish the leaf
nodes from the others early in the random order model because the non-leaf nodes have high
degrees.

To overcome this issue, our recursive construction is done more carefully. The main property
the tree has is that when an edge arrives online, no algorithm should be able to distinguish between
the two end points as to which is the parent node for a large number of edges. However, this lower
bound instant construction comes at a cost. The tree become significantly fatter and has a height
Θ(

√
logm), which translates to our lower bound.

Upper Bound. For the upper bound on makespan minimization for unrelated machines, we draw
inspiration for the algorithm from [29]. The idea is to keep track of a potential function over all
machines and reset these potentials after half of the inputs have arrived [19]. The potential function
is essentially the softmax function of the machine loads. The algorithm then assigns an arriving
job to the machine that incurs the least increase in the potential. The algorithm is identical in
both phases so it suffices to analyze only one half. This restarting helps as it ensures sufficient
randomness for jobs that arrive later, which is crucial for the analysis.

1.3 Other Related Work

As mentioned before, online load balancing finds numerous applications in parallel/distributed
computing and network communication. Thus, a vast literature exists on this topic [5, 22, 15, 11, 24]
and we only cover the most related work.

The online load balancing problem was introduced by Graham in his seminal work [16, 17]. The
work showed the list scheduling algorithm that assign an arriving job to the least loaded machine is
(2− 1/m)-competitive when all machines are identical. The current best known competitive ratio
for this problem is 1.916 [1]. When the machines are uniformly related, meaning that machines
have different speeds, O(1)-competitive algorithms are known [8]. For unrelated machines, O(q)-
competitive algorithms are known for minimizing the q-norm of machine loads [4, 12]. For extension
to multidimensional load balancing, see [6, 28, 21].

There has been a load of work on beyond-worst-case analysis in the recent years. The random
arrival order model is a prime example of this framework. Here, we present a selection of recent
advances within this model. For the online load balancing problem on identical machines, when
jobs arrive in random order, there is a 1.8478-competitive algorithm [2] (which is better than known
lower bounds in the adversarial setting). When the elements are revealed in a random order, the
online set cover admits a competitive ratio of O(logmn) [18], which matches the offline bound of
O(log n) when m is polynomial in n; here m is the number of sets and n is the number of elements.
The online facility location problem admits a competitive ratio of 3 in the random order model [23].
As mentioned, the reader is referred to the survey [20] for work in the random arrival order.
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Molinaro [29] provides algorithms that are simultaneously good both in the adversarial arrival
model and in the random arrival model. In particular, for the makespan objective, the work gives
an algorithm that is Θ(logm/ϵ)-competitive in the adversarial order, while simultaneously giving
a makespan of (1 + ϵ)opt + O(m logm/ϵ2) in random order. Unfortunately, the analysis requires
ϵ ∈ (0, 1] and therefore does not give a competitive ratio better than O(logm).

Online load balancing has been recently studied in the presence of ML predictions. The al-
gorithms are given certain compact predictions on the input and can achieve competitive ratios
significantly better than O(logm) when the predictions are almost accurate while asymptotically
retaining the worst case guarantees [25, 27].

We now discuss related work on the offline load balancing problems. Offline, the load balancing
problem for unrelated machines does not admit a better than 1.5-approximation unless P = NP
and a 2-approximation is known for the problem due to the seminal work by Lenstra et al. [26].
For the graph balancing problem, when G is known offline, [13] gives a 1.75-approximation.

2 Preliminaries and Notation

We consider the online makespan minimization problem on unrelated machines. Let J be a set of
n jobs and let M be a set of m machines. Let pi,j ∈ R+ ∪ {∞} denote the processing load of job j
on machine i; in the online setting the values of {pi,j} for a job j become known to the algorithm
when job j arrives. For an assignment σ : J → M of jobs to machines, we define its makespan as
makespan(σ) = maxi∈M

∑
j∈σ−1(i) pi,j . The goal of an online algorithm is to find an assignment σ

that minimizes makespan(σ).
In this paper we consider the online setting with uniformly random job arrivals. Let A be

an online algorithm. Let π be a uniformly random permutation of jobs in J . At each time
step t ∈ [n], a job π(t) ∈ J arrives and A needs to assign it to exactly one machine in M; let
makespan(A; {pi,j}, π) be the random variable denoting its makespan. The number of jobs, n, is
known to the algorithm before any of the jobs arrive.

Let σ∗ be the assignment of an optimal, offline algorithm. For any algorithm A, we define its
competitive ratio as the worst-case ratio of the expected makespan incurred by the algorithm to
the optimal makespan, i.e.,

competitive-ratio(A) = max
{pi,j}

Eπ[makespan(A; {pi,j}, π)]
makespan(σ∗)

.

Here, we will parameterize the competitive ratio by the number of machines, m. So, the competitive
ratio is defined over the instances that have at most m machines.

We also consider a very special case of the makespan minimization problem called graph bal-
ancing. Let G = (V,E) be an undirected graph. The goal is to orient the edges of the graph G so
as to minimize maxv∈V indegree(v). It can be readily seen that this is a special case of makespan
minimization on unrelated machines by considering each vertex as a machine and an edge as a job
where each job has a unit load on exactly two machines and an infinite load otherwise. Again, in
this paper, we study the graph balancing problem with edges arriving uniformly at random.

3 Unrelated Machines: Upper Bound

In this section we give an improved upper bound on the competitive ratio for the online makespan
minimization on unrelated machines, under uniformly random job arrivals. We assume that opt ≥
1. We further assume wlog that pi,j ∈ [0, 1] ∪ {∞}. This is because we can guess the optimum
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objective within a constant factor by the standard doubling trick: if the guess turns out to be wrong
(we can solve the offline problem within a factor of 2 [26]), then we double our guess and pretend
that all machines have zero load. When the current guess is g ≥ 2opt, j cannot be assigned to
machine i if pi,j ≥ g; therefore, we can replace the value of pi,j with ∞. For all other pi,j ≤ g, by
scaling them down by g, we have the assumption.

3.1 An O( logm
log logm

) Upper Bound

3.1.1 Algorithm

The algorithm has two phases that are identical [19, 29]. In the second phase, which starts when
the (⌊n/2⌋ + 1)st job arrives, it pretends that no jobs have arrived so far. The algorithm uses a
softmax of machine loads as the potential, and assigns a new job to the machine that increases the
potential the least.

To describe the algorithm, it will be convenient to define load vector x ∈ Rm
≥0, which describes

the current load of each machine, i.e., if Ji is the set of jobs currently assigned to machine i,
xi =

∑
j∈Ji pi,j . For easy indexing, say job jt arrives at time t. If we assign jt to machine i, it

adds to the current load vector a vector wt, whose ith entry is pi,j ∈ [0, 1] and all other entries
are 0. Notice that wt has only one non-zero coordinate. Let st be the load vector right after the
algorithm assigned jt, i.e., st = w1 + · · ·+ wt.

We are now ready to define our potential function:

ψ(x) =
1

a
ln

∑
i∈M

eaxi ,

where x ∈ Rm
≥0 is the load vector and a > 0 is a parameter to be decided later. As mentioned

above, a new job is assigned to the machine that increases the potential the least.
As observed in [19, 29], it suffices to only consider the first half of the jobs. This is because the

first half and the second half have the same distribution, and the algorithm “resets” after seeing
the first half of the jobs. This will increase the makespan only by a factor of two. Henceforth, we
will only consider the first n/2 jobs.

Define vt = ∇ψ(st−1). Notice that vti = 1
a

a·eaxi∑
i′ e

axi′ = eaxi∑
i′ e

axi′ . The following is immediate by

straightforward calculations.

Claim 1. For all t ≥ 1, we have ||vt||1 = 1 and vt ≤ eavt−1, where the inequality holds for each
coordinate.

Using the convexity of the ψ function, we have

ψ(st)− ψ(st−1) ≤ ⟨wt,∇ψ(st)⟩ = ⟨wt, vt+1⟩ ≤ ea⟨wt, vt⟩.

Then, adding the inequalities over all t’s in {1, 2, . . . , n/2}, we have

ψ(sn/2)− ψ(0) ≤ ea
n/2∑
t=1

⟨wt, vt⟩.

Noticing that ψ(sn/2) ≥ ||sn/2||∞ and ψ(0) = lnm
a , we have

||sn/2||∞ ≤ ea
n/2∑
t=1

⟨wt, vt⟩+ lnm

a
.
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Let ot ∈ [0, 1]m be the load vector induced by the job jt in the optimum solution. Then oti′ = pijt
if i′ = i and 0 otherwise. Here, we are considering the fixed optimum solution that assigns all the n
jobs in J to machines. Although each job is assigned to a fixed machine in the optimum solution,
ot is stochastic as jt is the tth job in the random order.

Claim 2. For all t ≥ 1, we have ⟨vt, wt⟩ ≤ ea⟨vt, ot⟩.

Proof.

⟨wt, vt⟩ = ⟨wt,∇ψ(st−1)⟩
≤ ψ(st)− ψ(st−1) ▷ st = st−1 + wt and ψ is convex

≤ ψ(st−1 + ot)− ψ(st−1) ▷Algorithm is greedy

≤ ⟨ot,∇ψ(st−1 + ot)⟩ ▷ ψ is convex

≤ ⟨ot, ea∇ψ(st−1)⟩ ▷ Since ||ot||∞ ≤ 1

= ea⟨ot, vt⟩.

Thanks to this claim, we have

||sn/2||∞ ≤ e2a
n/2∑
t=1

⟨vt, ot⟩+ lnm

a
. (1)

Consider an arbitrary time step t. So far, only jobs j1, . . . , jt−1 have been revealed and they
completely determine vt. Then, jt is sampled from the other jobs in J uniformly at random. Note
that ot+ ot+1+ · · ·+ on ≤ opt ·1. Therefore, we have E[ot | vt] ≤ opt

n−(t−1) ·1. Moreover, ||vt||1 ≤ 1;

see Claim 1. So, we have E[⟨vt, ot⟩ | vt] ≤ opt
n−(t−1) . Taking expectation over Eq. (1), we get

E[||sn/2||∞] ≤ e2aopt

(
1

n
+

1

n− 1
+ · · ·+ 1

n/2

)
+

lnm

a

≤ 2e2aopt+
lnm

a
.

The last inequality above is why we run the algorithm in two phases (otherwise, the summation
leads to a Θ(log n) term).

By setting a = ln lnm
6 , we have

2e2aopt+
lnm

a
= 2(lnm)

1
3opt+

6 lnm

ln lnm

= O

(
lnm

ln lnm

)
opt,

where the last equation follows since opt ≥ 1 and 2(lnm)
1
3 < 6 lnm

ln lnm for m ≥ 2. Thus, we have

shown that the maximum load is O( logm
log logm)opt in expectation for the first half of the arriving

jobs.
As discussed, our algorithm restarts after assigning the first half jobs, and the makespan for

the second half of jobs can be upper bounded symmetrically. Thus, we have the following.

Theorem 1. There exists an O(logm/ log logm)-competitive algorithm for minimizing makespan
on unrelated machines, when the jobs arrive in uniformly random order.
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4 Graph Balancing: Lower Bounds

In this section we obtain new lower bounds for the online graph balancing problem, which is a
special case of unrelated machines, in the random edge arrival model. Interestingly, our lower
bounds hold for tree instances even when the structure of the tree is fully known to the algorithm a
priori. It can be easily observed that in any tree instance, an optimal offline solution always attains
a maximum load of 1 by simply rooting the tree at an arbitrary node and orienting every edge
away from the root. We first present our stronger lower bound, which only holds for the greedy
algorithm, and then present a lower bound that holds for any algorithm.

4.1 Lower Bound for a Greedy Algorithm

Consider the following natural greedy algorithm. When an edge e = (u, v) arrives, the algorithm
(Greedy) assigns e to the endpoint that has the least load at that time, breaking ties uniformly
at random. Here, a node’s load is the number of already-arrived edges that have been oriented
towards it. Greedy is known to have the optimal competitive ratio of Θ(log n) for online graph
balancing in the adversarial edge arrival model.

In this section we show a lower bound of Ω(log n/ log log n) for Greedy in the random arrival
model even when the input graph is a tree. The lower bound instance is the following complete
tree.

Lower Bound Instance. Let T be a rooted tree with root r and depth k. Each internal node
of T has d = k4 children. The total number of nodes in T is thus n = Θ(dk) = Θ(k4k); so we have
k = Θ(log n/ log logn). We assume that k is sufficiently large.

Before we discuss the intuition and the analysis, we first set up some notation and terminology.
For ease of analysis, we pretend that edges adjacent to r also have a parent edge (or equivalently,
the tree is rooted at a degree 1 node r′ that connects to r). An edge’s depth is defined as the
number of edges including itself on the path from the root to the edge. Thus, the leaf edges have
depth k and the edges incident to the root have depth 1. A node u’s height is defined as the number
of edges between u to a closest leaf node. Thus, a leaf edge has two end points of height 1 and 0
respectively. Similarly, an edge’s height is defined as the height of the node of its end point that is
closer to the root.

4.1.1 Intuition

Suppose edges of T arrive in a specific order, from bottom to top—so all leaf edges appear first,
and the edges of height two arrive, and so forth. Consider the d leaf edges that share a parent node.
With high probability, one of these d edges will be oriented towards the parent (and all the others
arriving afterwards will be directed towards the leaves). So after all the leaf edges arrive, (almost)
all nodes of height 1 will have a load of 1. Then when all the edges of the upper level—equivalently
the edges of height 2—arrive, a similar argument shows that two of the edges that share a parent
will be directed towards the parent, so nodes of height 2 get a load of 2. Continuing this way, the
root node will have a load of k = Ω(log n/ log logn). The primary intuition is that by making the
degree of each internal node large enough—even when edges arrive in random order—there is a
subtree of a similar structure where edges arrive in this specific leaf-to-root order.
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4.1.2 Analysis

For the sake of analysis, we let each edge e be associated with a random number re sampled from
[0, 1] uniformly at random. We assume that edge e arrives at time re. Note that this way we can
simulate the random arrival order of the edges. As discussed before, the greedy algorithm suffers
the most when edges arrive in the bottom-to-top order. Thus, we will seek to show that there
is a k2-ary subtree where edges arrive in the bottom-to-top order. To make the analysis more
convenient, we will only look at trees where edges arrive in a more structured manner. Let I1, . . . Ik
be an equal partition of (0, 1) into intervals, i.e., I1 = (0, 1/k), I2 = (1/k, 2/k), . . . and so on.1

Definition 1 (Bad node). We say that a node u of height h is bad if at least k2 of its child edges
arrive during Ih; let Bu denote this bad event (for the algorithm).

The following lemma is a straightforward consequence of the Chernoff bound. We bound the
probability that the bad event does not occur, i.e., for a node u of height h, at most k2 of its child
edges arrive during Ih.

Lemma 1. For a non-leaf node u, Pr[Bu] ≥ 1− 1

ek
3/8

.

Proof. Consider a non-leaf node u with height h. We want to calculate the probability that at most
k2 child edges arrive in the interval Ih. Let {ei}k

4

i=1 denote the k4 child edges of node u. For any
child edge ei, let Xi denote the random variable that is 0 if ei arrives in Ih and 1 otherwise. Define

X =
∑k4

i=1Xi. Since each edge ei arrives at rei ∈ [0, 1] independently and uniformly at random, we
have E[Xi] = 1/k, ∀ei. Applying the standard Chernoff bound (Theorem 4 in Appendix A with
µ = k3 and δ = 1− 1

k ), we get Pr[X < k2] = e−k3δ2/2 ≤ e−k3/8 for any k ≥ 3.

Definition 2 (Bad subtree). We say a rooted subtree T ′ of T is bad if it is a full k2-ary tree of
height k whose internal nodes are all bad.

By definition, the edges of a bad subtree arrive in a leaf-to-root order, i.e, for any internal node
in the tree, all child edges arrive before the parent edge. We now argue that at least one bad
subtree exists with high probability.

Lemma 2. There exits a bad subtree T ′ with probability at least 1− 2k2k

ek
3/8

.

Proof. The root is good with probability at most ρ := 1/ek
3/8. Conditioned on the root being bad,

consider some arbitrary k2 child edges that all arrive during interval Ik and let u1, . . . uk2 be the
corresponding child nodes. By Lemma1, each of those ui’s is good with probability at most ρ. So
by a union bound, the probability that at least one of those nodes is good is at most k2ρ.

Using this argument recursively and applying a union bound over all levels, the probability that
we have no bad subtree is at most ρ(1 + k2 + · · ·+ k2k) ≤ 2k2k/ek

3/8.

Lemma 3. Suppose the input graph is a bad tree, with no other edges. In other words, suppose
the input graph is a full k2-ary tree of height k where edges in the bottom-to-top order. Then, the
maximum load of a node is at least k with a probability at least 1− 1/n.

Proof. We say a node u of height h is fully loaded if its load is at least h. We denote the event as
Fu. Let fh := Pr[Fu | Fv ∀v ∈ Cu] for a node of height h; here Cu denotes u’s children (nodes).

We show that ch ≥ 1 − 1

2k2−h
. Indeed, consider an arbitrary node u of height h. Since we

assume that edges arrive in the bottom-to-top order, before any child edges of u arrives, we know

1Here, we do not distinguish between closed intervals and open intervals as almost surely no edge will arrive at a
time that is a multiple of 1/k.
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that every child node v of u has load at least h − 1 from the condition Fv, ∀v ∈ Cu. So, the first
h − 1 child edges of u will orient towards u. For any other edge (u, v) arriving later, if v already
has load more than h − 1, the claim is immediate. So, suppose not. Then, u can have load h − 1
only when all the child edges of u, except the first h− 1, are not oriented towards u, which occurs
with probability 1

2k2−h
≤ 1

2k2−k
.

The bad tree has at most (k2)k+1 internal nodes, and the root has load at least h if Fu

occurs for every internal node u. Thus, by a simple union bound, the root has load at least
k = Θ(log n/ log logn) with probability at least 1− (k2)k+1 1

2k2−k
> 1− 1/n.

We now explain why we continue to have the lower bound of k, independent of the other edges
different from the bad tree. This follows from the monotonicity of the greedy algorithm. In other
words, inserting an edge (job) to an input sequence can only increase the maximum load.

Since k = Ω(log n/ log log n), we have the following theorem.

Theorem 2. There exists a tree T with n nodes such that, for uniform random edge arrivals, the
greedy algorithm outputs an orientation with maximum load Ω(log n/ log log n) with high probability.

4.2 Lower Bound for Arbitrary Algorithms

In this section we show a lower bound of Ω(
√
log n) for the graph balancing problem with random

edge arrivals. Unlike Section 4.1, this lower bound is not restricted to the greedy algorithm and
holds for all online algorithms.

Lower Bound Instance. We denote the lower bound instance of height D as TD, where D ≥ 0
is an integer. For every 0 ≤ d ≤ D, Td is constructed recursively as follows: T0 is a singleton node.
Let r be the root of Td. For every d

′ = 0, 1, . . . , d−1, there are 2D−d′ copies of Td′ , each of which is
a subtree of r. Here, it is important to note that T1, . . . , TD have dependency on D. See Figure 2
for an illustration of the instance T2.

T2

T1

T0 T0 T0 T0

T1

T0 T0 T0 T0

T0 T0 T0 T0

Figure 2: Example of a lower bound instance for D = 2. Consider the time when the dashed edge
appears. Edges are dotted if they have already arrived, solid otherwise. For the dashed edge, no
algorithm can distinguish which of its end points is the parent node.

We label each node v in TD with an integer in [0, D]: if the sub-tree rooted at v is a copy of Td,
then we set ℓ(v) = d to be the label of v. Therefore, for two integers 0 ≤ d′ < d ≤ D, any node u
with label d has 2D−d′ children with label d′.
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4.2.1 Intuition

The main idea behind this lower bound instance is that when some edges arrive online, the algorithm
cannot distinguish between their parent node and the child node. Therefore, we can assume that
the algorithm assigns such an edge e = (u, v) to u with probability 1/2 and to v with probability
1/2. In particular, consider any node v of with label d. Then, for each d′ ∈ [0, d − 1], there
is at least one edge (v, u) with ℓ(u) = d′, such that with probability at least 1/2 the algorithm
cannot distinguish the subtree rooted at u consisting of the edges that have arrived so far, and the
analogously defined subtree rooted at v. Using this observation and the fact that D = Ω(

√
log n),

we can lower bound the maximum load on the root of the tree.

4.2.2 Analysis

We begin by defining the event when the algorithm cannot distinguish between the parent and
child node.

Definition 3. Let π be a random permutation over all edges in TD. Consider an edge e = (u, v)
with u being the parent. The permutation π is bad for e, if the following hold:

• the parent edge of u appears after e in the order π, and

• all other child edges (u, v′) of u with ℓ(v′) ≥ ℓ(v) appear after (u, v) in the order π.

Consider the arrival time of an edge e = (u, v) where ℓ(u) = d and ℓ(v) = d′ < d. We observe
that conditioned on the event that the permutation π is bad for edge (u, v), the subtrees rooted
at u and v comprised only of the edges that have arrived so far are stochastically identical. Thus,
we can assume wlog that any fixed algorithm orients the edge (u, v) towards each of its end points
with probability 1

2 , which can be formally shown in the following claim. Note that it suffices to
consider a fixed deterministic algorithm thanks to Yao’s minmax principle [10].

Claim 3. Conditioned on the event that the permutation π is bad for edge (u, v), any fixed deter-
ministic algorithm orients the edge towards each of its end points with probability 1

2 .

Proof. Let ψ be a random permutation of the node identities that is generated by the adversary,
which is unknown to the deterministic algorithm. Let π be the random permutation of edges that
denotes the arrival order. We condition on the event that the arrival order π is bad for some
specific edge (u, v). Note that the algorithm makes its decisions based on revealed edges of the
form (ψ(x), ψ(y)). By our construction, the subtrees Tu and Tv rooted at u and v respectively
consisting of arrived edges are stochastically identical. Suppose the algorithm orients the revealed
edge (ψ(u), ψ(v)) towards u in a specific instantiation. Since Tu and Tv are stochastically identical,
they will have their instantiations swapped equiprobably, meaning that the algorithm must orient
(u, v) towards v with the same probability (over the random choice of ψ and π).

In the following lemma, we calculate the probability that a permutation is bad for an edge. For
our purpose, it is enough to consider an edge with the root r of TD as one of its end points.

Lemma 4. A permutation π over the edges of TD is bad for the first appearing edge (r, u) with
ℓ(u) = d with probability at least 1

2 .

Proof. The probability can be easily calculated as

#edges with ℓ(v) = d

#edges with ℓ(v) ≥ d
=

2D−d

2D−d + · · ·+ 2D−(D−1) + 1
≥ 1

2
.
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Focus on the root r with ℓ(r) = D, and an integer d < D. Consider the first edge (r, u)
with ℓ(u) = d. With probability 1/2, the permutation is bad for this edge. Conditioned on the
permutation being bad, the algorithm assigns the edge to r with probability 1/2. Therefore, the
algorithm assigns the edge to r with probability at least 1/4. Consider all values of d < D, in
expectation the root will get a load of Ω(D). The size of the tree is 2O(D2), as we will see below.
Therefore we can obtain a lower bound of Ω(

√
log n).

Lemma 5. If n is the size of the tree TD, then D = Ω(
√
log n).

Proof. Let n(d) denote the number of nodes in Td. From the recursive construction of the trees,
we have

n(d) =

{
1 d = 0

2D−0n(0) + · · ·+ 2D−(d−1)n(d− 1) + 1 d ∈ [1, D − 1]

Since n(d) is increasing in d, when d ≥ 1, we have n(d) ≤ 2DD ·n(d−1) ≤ 4D ·n(d−1). Therefore,
n = n(D) ≤ 4D

2
. This gives us the desired result D = Ω(

√
log n).

Theorem 3. There exists a tree T with n nodes such that for uniform random edge arrivals, any
algorithm outputs an orientation with maximum load Ω(

√
log n), with high probability.

5 Concluding Remarks

In this paper, we revisit the classic online load balancing problem for unrelated machines in the
random arrival order model. While we achieve an exponential improvement over the previous lower
bound, a substantial gap remains between the lower bound of Ω(

√
logm) and the upper bound of

O(logm/ log logm). Importantly, the question of whether an algorithm with a better competitive
ratio exists even for tree inputs in the online graph balancing problem remains open. This holds
true even when the entire tree structure is known a priori (with the identities of nodes and edges
hidden).
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A Chernoff Bound

Theorem 4. Let X1, . . . , Xn be n independent, Bernoulli random variables, where P[Xi = 1] = pi,
for all i. For X =

∑
Xi, its expectation is µ = E[X] =

∑
i pi. Then for any 0 < δ < 1, we have

P [X < (1− δ)µ] <

(
e−δ

(1− δ)1−δ

)µ

. (2)

Further, the upper bound is at most e−µδ2/2 when δ ∈ [0, 1).
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