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Abstract

Data imputation, the process of filling in missing feature elements for incomplete data

sets, plays a crucial role in data-driven learning. A fundamental belief is that data im-

putation is helpful for learning performance, and it follows that the pursuit of better

classification can guide the data imputation process. While some works consider using

label information to assist in this task, their simplistic utilization of labels lacks flexi-
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bility and may rely on strict assumptions. In this paper, we propose a new framework

that effectively leverages supervision information to complete missing data in a manner

conducive to classification. Specifically, this framework operates in two stages. Firstly,

it leverages labels to supervise the optimization of similarity relationships among data,

represented by the kernel matrix, with the goal of enhancing classification accuracy. To

mitigate overfitting that may occur during this process, a perturbation variable is intro-

duced to improve the robustness of the framework. Secondly, the learned kernel matrix

serves as additional supervision information to guide data imputation through regres-

sion, utilizing the block coordinate descent method. The superiority of the proposed

method is evaluated on four real-world data sets by comparing it with state-of-the-art

imputation methods. Remarkably, our algorithm significantly outperforms other meth-

ods when the data is missing more than 60% of the features.

1 Introduction

The presence of missing data poses significant challenges in machine learning and data

analysis (Tresp & Hofmann., 1998; Chan et al., 2003; Garcı́a-Laencina et al., 2010;

Little & Rubin., 2019; Emmanuel et al., 2021). In many real-world application sce-

narios, ensuring that all entries in the data are complete is a difficult task, and this can

be attributed to various reasons. Firstly, it may occur due to limitations in data col-

lection, such as time constraints or limited resources, resulting in certain observations

being omitted. Secondly, data can be intentionally designed to have missing values, for

instance, in survey studies where participants may choose not to answer certain ques-
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tions, thereby introducing missing values into the data set. By completing missing data,

researchers can uncover the underlying structure and relationships within the data set,

optimizing the utilization of the complete data set to enhance the performance and ef-

ficiency of subsequent analyses. Therefore, the significance of filling in missing data

becomes self-evident.

The existing data imputation methods primarily focus on the relationships among

features. For example, mean imputation (MI, (Schafer, 1997)) considers the mean

value of the feature, while other methods consider the low-rank property of the im-

puted matrix (Candès & Tao., 2010; Cai & Zhou., 2013; Sheikholesalmi et al., 2014;

Xu et al., 2020) or incorporate similarity information (Troyanskaya et al., 2001; Batista

& Monard., 2002; Śmieja et al., 2019). Some methods also utilize label information,

with some performing different operations on data from different classes (Smola et al.,

2005; Allison., 2009), while others treat labels as additional features and then complete

the matrix (Goldberg et al., 2010). However, these utilizations of label information in

imputation models lack flexibility and are insufficient to depict the complex relationship

between data and labels. Considering a fundamental observation that data are helpful

for distinguishing the labels, we can derive an imputation criterion:

data imputation should lead to improved classification performance.

Thus we expect imputation results that can perform better on subsequent tasks. Let us

consider a toy example illustrated in Figure 1. In the synthetic two moons data set, we

have a positive data with a missing value in the x1 dimension and a negative data with
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Figure 1: Imputation of the two moons data set. Positive and negative data are denoted
by X and O, while the solid curve denotes the ideal decision boundary of the classifier.
The gray dashed lines M1 and M2 represent all possible imputations for a positive
data with a missing x1 dimension and a negative data with a missing x2 dimension,
respectively. Among them, the red results are more likely to lead to better outcomes
in the subsequent classification task compared to the pink results, making them more
desirable.

a missing value in the x2 dimension. All possible imputations for these two data are

represented by gray dashed lines, labeled as M1 and M2. By applying the proposed im-

putation criterion, we prioritize selecting the red results over the pink results to improve

the subsequent classification task.

In a given sequence of triplets {(xi,oi, yi)}Ni=1, where xi ∈ Rd and yi ∈ R, we

typically use the set of observable features oi ⊆ 2{1,··· ,d} and missing features ∗ to rep-

resent the missing data xi
oi

∈ (R ∪ {∗})d. This sequence is then consolidated into an

incomplete data set D = {xi
oi
, yi}Ni=1. The task now becomes to find suitable missing

values that aid in classification. For kernel-based methods widely applied in machine

learning, such as support vector machine (SVM, (Vapnik., 1999; Schölkopf & Smola.,

2002; Steinwart & Christmann., 2008; Lee & Lin., 2013)), a significant characteristic
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is that classifiers can be explicitly written as functions of the relationship between data

and labels. The relationship between data will be defined by a kernel function, and

different kernel functions provide distinct measures of similarity. Specifically, a kernel

matrix or Gram matrix, denoted as K ∈ RN×N , is constructed, where Ki,j = k(xi,xj)

represents the similarity between data xi and xj using a proper positive definite ker-

nel function k(·, ·) : Rd × Rd → R. A classifier is then trained based on this kernel

matrix K. When handling missing data, represented as xi
oi

, the value of Ki,· ∈ RN is

unknown. Thus, it is necessary to find K̃i,j for data with missing features in order to

establish appropriate relationships with other data. In SVM, this process can be seam-

lessly integrated with supervised information, leading to enhanced prediction accuracy

in subsequent classification tasks. By considering prior knowledge of missing values

and imposing constraints on the adjustment of the kernel matrix, we can effectively in-

corporate this information into the modeling process. The next step is to recover the

missing values from the imputed matrix K̃. This step is relatively easy, particularly

in the traditional scenario where N ≫ d. Because for each data, there is N–1 avail-

able supervised information stored in the kernel matrix to guide the imputation of d

or fewer elements. In this paper, we propose a two-stage learning framework for data

imputation: I) the kernel matrix is completed by pursuing high classification accuracy;

II) the missing features are reconstructed to approximate the optimized kernel matrix.

With the proposed method, we can find good estimates for missing values that lead to

better classification performance in the subsequent task. Therefore, when faced with

situations depicted in Figure 1, we are able to obtain the imputation results indicated by

the red crosses and circles.
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In the first stage, specifically, we begin by computing the initial kernel matrix based

on the observed features. This matrix is then further modified through a process referred

to as kernel matrix imputation throughout this paper. Recent studies (Liu et al., 2020;

Wang et al., 2023) have demonstrated that integrating kernel learning and classifier op-

timization tasks, and alternating between them, can improve classification performance

and naturally lead to a fine-tuned kernel matrix. The effectiveness of such joint learn-

ing ideas has recently been also confirmed in neural network-based methods as well (Le

Morvan et al., 2021). Inspired by these ideas, we adopt a similar approach by combining

the tasks of kernel matrix imputation and classifier training into a maximum-minimum

optimization problem. However, for such joint optimization objectives, we need to en-

sure that the kernel matrix is optimized to achieve high classification accuracy while

also making the classifier sufficiently robust. Otherwise, the flexibility of modifying

the similarity relationships between data can make the classifier susceptible to overfit-

ting. To prevent this situation, we introduce an additional perturbation matrix during the

optimization of the kernel matrix. In the second stage, we utilize the block coordinate

descent (BCD, (Tseng., 2001)) method to solve a non-convex problem. Although find-

ing the global optimal solution is challenging, our numerical experiments demonstrate

that when the data size is much larger than the feature dimension, the abundant supervi-

sory information from the kernel matrix effectively guides the imputation process. As

a result, we can still achieve highly accurate solutions. The main contributions of this

paper are summarized as follows:

• To fully leverage label information, we propose a novel two-stage data imputa-

tion framework. This framework optimizes the similarity relationships between
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data by utilizing supervision information and guides the data imputation process

accordingly.

• We have developed a nonparametric method to impute the kernel matrix, which

is performed alternately with the training of the classifier. By introducing a per-

turbation variable, we enhance the robustness of the classifier.

• We provide a solving algorithm based on the BCD to accurately recover missing

data from a given kernel matrix. This algorithm effectively utilizes the learned

similarity information among the training data.

• Experimental results on real data sets indicate that the imputed data generated

by our framework exhibits excellent performance in classification tasks. Notably,

when the missing ratio exceeds 60%, our algorithm outperforms other imputation

methods significantly.

2 Related Work

The task of learning a classifier from missing data has been extensively studied in the

past few decades, leading to the development of three main approaches as below.

Filling data before classification. A large portion of the research focuses on filling

in the data before using it in the subsequent classification task. For instance, Ghahra-

mani & Jordan. (1993) introduces a framework based on maximum likelihood density

estimation for coping with missing data, utilizing mixture models and the expectation-

maximization principle. And Bhattacharyya et al. (2004) modeled the missing values

as Gaussian random variables and estimated their mean and covariance from the ob-
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served data and labels, which were then used in a modified SVM. Later, Williams et al.

(2007) used a Gaussian mixture model to estimate the conditional probability of miss-

ing values given the observed data and imputed them using expectations. Additionally,

some work estimated complete data by computing the corresponding marginal distri-

butions of the missing data (Smola et al., 2005) or assumed a low-rank subspace for

the data and treated labels as an additional feature to handle missing values (Goldberg

et al., 2010). In recent years, Rabin. (2020) proposed a kernel-based multi-scale data

imputation method, and López. (2023) utilized the known matrix structure in terms of

subspaces to assist in matrix imputation. But these methods separate the imputation

process from the classification task, which may not necessarily lead to improved per-

formance with their imputation outcomes.

Filling the kernel matrix before classification. Another research direction focuses

on kernel-based machine learning algorithms. In this approach, classification or regres-

sion tasks only require the kernel matrix based on the training data. Therefore, methods

have been explored to compute kernel function values between data with missing values

instead of directly imputing the missing data. Hazan et al. (2015) proposed a param-

eterized kernel function based on the low-rank assumption of data, which allows for

input vectors with missing values. However, when computing similarities, only the di-

mensions present in both data are considered, and the rest are discarded. There is also

work that modeled the squared distance between two missing data as a random variable

following a gamma distribution and computed the expectation of the Gaussian kernel

function under missing data (Mesquita et al., 2019). Similarly, Śmieja et al. (2019)

modeled possible outcomes of missing values with the data distribution and computed
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the expectation of similarity between two missing data. Still, these methods have limita-

tions in flexibly utilizing the supervision information from labels during the imputation

process, which consequently restricts their performance in practical tasks.

Direct classification of incomplete data. Researchers have also explored meth-

ods for directly classifying missing data. In the study by Pelckmans et al. (2005), they

defined a modified risk to address the uncertainty in prediction results caused by miss-

ing data. And in (Chechik et al., 2008), they maximized the margin of the subspace

correlated with the observed data. However, when computing kernel values, they en-

counter similar issues of incomplete information utilization as in (Hazan et al., 2015).

In a different approach, Dekel et al. (2010) treated missing values as a specific type of

noise and developed a linear programming problem that resembled SVM formulation

in order to learn a robust binary classifier. And some works optimize the nonlinear

classifier while seeking the linear subspace where the data might lie (Sheikholesalmi

et al., 2014; Xu et al., 2020). Due to the necessity of predefining the dimension of the

subspace in these methods, they may fail to fully capture the intrinsic structure of the

data, thus constraining its flexibility in practical applications. In addition to the afore-

mentioned kernel-based methods, there are also numerous works in the field of neural

networks that focus on classifying missing data. Recently, Śmieja et al. (2018) replaced

the responses of neurons in the first hidden layer with their expected values, thereby

minimizing the extent of modifications when adapting to various networks. Later, a

neural network architecture called NeuMiss was introduced (Le Morvan et al., 2020).

It utilized a Neumann-series approximation of the optimal predictor and demonstrated

robustness against various missing data mechanisms. However, as it essentially learns
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a linear model, its capability may be limited in complex scenarios. It is worth noting

that neural network-based methods typically do not perform data imputation. On the

one hand, training neural networks typically requires a large amount of data, making

it difficult to impute missing values for small-scale data. And in fact, imputing small-

scale data is even more critical and meaningful. This is because they inherently provide

limited information, and imputation can be used to uncover the underlying structure.

On the other hand, it may be challenging to control the outcome of data imputation due

to the high degree of freedom during network optimization. Furthermore, apart from

explorations in algorithmic applications, there are also dedicated efforts focused on the-

oretical derivations related to missing data. For example, Bullins et al. (2016) provided

the information-theoretic upper and lower bounds of precision limits for vanilla SVM

in the context of learning with missing data. Josse et al. (2019) proved that a predictor

designed for complete observations can achieve optimal predictions on incomplete data

by utilizing multiple imputation.

3 Two-stage Data Imputation

3.1 Preliminaries

Notations. The set of real numbers is written as R. The set of integers from 1 to N

is written as [N ]. The cardinality of the set A is written as |A| denotes. We take a, a,

and A to be a scalar, a vector, and a matrix, respectively. Let 0 and 1 denote vectors

consisting of all zeros and all ones with the appropriate size. The inner product of

two vectors in the given space is written as ⟨·, ·⟩. We take diag(a) to be an operator
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that extends a vector to a diagonal matrix and vec(A) to be an operator that converts a

matrix into a vector by stacking the columns of A on top of one another. The Frobenius

norm of a matrix is written as ∥ · ∥F. The set of symmetric matrices is denoted as S,

while the set of positive semi-definite (PSD) matrices is denoted as S+. The Hadamard

product is written as ⊙.

We begin by introducing the vanilla SVM and then demonstrate how to fill in miss-

ing data to achieve improved classification performance. In the hard-margin SVM,

the objective is to find a hyperplane w⊤x + b = 0 that maximally separates the data

x ∈ Rd of different classes with zero training errors. When the data is not linearly

separable, the soft-margin SVM is proposed, which allows for some training errors by

introducing slack variables denoted as ξi ≥ 0 for each training sample. Meanwhile, in

order to find a more flexible decision boundary, a nonlinear mapping ϕ(·) from the Rd

to a reproducing kernel Hilbert space Hk is introduced, yielding the decision function

f(x) = sign(w⊤ϕ(x) + b). With the completed data, the optimization problem can be

formulated as

min
w,b,{ξi}

1

2
∥w∥22 + C

N∑
i=1

ξi

s.t. yi(w
⊤ϕ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, ∀i ∈ [N ],

(1)

where C ≥ 0 is a hyperparameter that controls the balance between maximizing the

margin and minimizing the training errors. For problem (1), previous researchers have
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proven that we only need to solve its corresponding dual problem:

max
α∈RN

1⊤α− 1

2
α⊤diag(y)Kdiag(y)α

s.t. y⊤α = 0, 0 ≤ α ≤ C1,

(2)

where y = [y1; y2 ; . . . ; yN ] ∈ RN and each entry Ki,j = ⟨ϕ(xi), ϕ(xj)⟩Hk
of the kernel

matrix K ∈ RN×N represents the similarity between two data. Through a technique

known as the kernel trick, this similarity can be computed using a predefined positive

definite kernel function k(xi,xj) : Rd × Rd → R, allowing us to calculate it without

knowing the explicit expressions of ϕ. And the resulting kernel matrix K is guaranteed

to be PSD.

3.2 Stage I: Kernel Matrix Imputation with SVM

In this stage, our goal is to find a new kernel matrix K̃ that further reduces the objec-

tive function value in (2), aiming to improve the classification accuracy of the trained

classifier. We propose a novel algorithm that integrates kernel matrix imputation with

the classification task. Initially, we compute the observed kernel matrix Ko, and then

optimize an adjustment matrix K∆ with the same dimension to derive K̃ = Ko ⊙K∆

as the optimized kernel matrix. This approach distinguishes itself from previous algo-

rithms by effectively utilizing each observed feature value. Considering the Gaussian

kernel function kγ(x,y) = exp(−γ∥x−y∥22) as an example and recalling the definition

of the incomplete data set D = {xi
oi
, yi}Ni=1, we can decompose Ki,j into an observed
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part and unknown parts:

Ki,j = exp (−γDi,j) where

Di,j = ∥xi
oi
− xj

oj
∥22

=
∑

p∈oi∩oj

(
xi
p − xj

p

)2
+
∑

p∈oi\oj

(
xi
p − ∗

)2
+
∑

p∈oj\oi

(
∗ − xj

p

)2
+

∑
p/∈oi∪oj

(∗ − ∗)2 .

(3)

Recall that ∗ represents an unknown real number. Methods in (Chechik et al., 2008;

Hazan et al., 2015) only consider the similarity between the intersecting observed fea-

tures of two data, i.e., the part related to p ∈ oi ∩ oj . In doing so, they disre-

gard the features that are observed in one data but missing in the other, namely xi
p

(p ∈ oi\oj) and xj
p (p ∈ oj\oi). In contrast, our algorithm calculates Ko using

the first term in the last line of (3) and implicitly incorporates the remaining terms

by constraining the potential ranges for K∆. Assuming x is min-max normalized

within the range of [0, 1], the ranges of the second, third, and fourth terms in (3) are

denoted as [0,
∑

p∈oi\oj
max{(xi

p)
2, (1 − xi

p)
2}], [0,

∑
p∈oj\oi

max{(xj
p)

2, (1 − xj
p)

2}],

and [0, d − |oi ∪ oj|], respectively. By computing the range of each entry Ki,j =

(Ko)i,j · (K∆)i,j , we can determine the feasible domain of the optimization variable

K∆, denoted as Bl ⪯ K∆ ⪯ Bu. In Stage II and the experimental sections, we will

continue to use the Gaussian kernel as an example. However, it is important to em-

phasize that our algorithm can be applied to various kernel functions, as long as their

computations can be decoupled for each feature. This decoupling can be expressed as

k(x,y) = f

(
d∑

p=1

g (xi, yi)

)
, (4)
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where the range of the binary function g(·, ·) needs to be bounded when both in-

puts in the range [0, 1], and f(·) needs to be a monotonic function on the range of∑d
p=1 g (xi, yi). Many commonly used kernels exhibit this property, including the poly-

nomial kernel, Laplacian kernel, sigmoid kernel, χ2 kernel, and more. For a detailed

derivation of the decoupling for these kernels, please refer to the attached Appendix.

By leveraging the supervision information of the labels and performing alternating

optimization between the kernel matrix and the classifier, we will obtain a kernel matrix

that yields better classification performance. Meanwhile, due to the flexibility of this

approach, we aim to ensure the robustness of the classifier concurrently, thus mitigating

the risk of overfitting. Therefore, based on the concept of robust optimization (Xu

et al., 2009; Takeda et al., 2013), we introduce a perturbation variable denoted as E in

the space of RN×N to guarantee that the classifier performs well not only on K̃ but also

on all possible outcomes within a norm sphere surrounding K̃. Finally, we formulate

the following optimization problem for Stage I:

min
K∆

max
α,E

1⊤α− 1

2
α⊤diag(y) (Ko ⊙K∆ ⊙ E) diag(y)α+ η∥K∆ − 11⊤∥2F

s.t. Bl ⪯ K∆ ⪯ Bu, K∆ ∈ S+,

∥E − 11⊤∥2F ≤ r2, E ∈ S+,

y⊤α = 0, 0 ≤ α ≤ C1,

(5)

where the regularization parameters η and r are introduced to control the range of mod-

ification for the observed kernel matrix Ko and the intensity of the perturbation, re-

spectively. By imposing PSD constraints on the variables K∆ and E , it is ensured that

the optimized kernel matrix remains PSD. As the value of η increases, K∆ tends to

14



approach the all-one matrix. In this scenario, the model approximates a state where the

missing values are filled with zeros. To solve the optimization problem outlined in (5),

we propose an alternating optimization algorithm consisting of three steps.

Step 1. Optimizing K∆ with fixed E and α. In this step, problem (5) with respect

to K∆ is equivalent to

min
K∆

− 1

2
α⊤diag(y) (Ko ⊙K∆ ⊙ E) diag(y)α+ η∥K∆ − 11⊤∥2F

s.t. Bl ⪯ K∆ ⪯ Bu, K∆ ∈ S+.

(6)

The problem mentioned above is a semi-definite program, with inequality constraints

imposed on each element of the matrix K∆, making it generally computationally ex-

pensive to solve. To alleviate the computational burden, we instead propose a strategy

for finding an approximate solution to the optimal solution of the problem (6). Firstly,

we disregard the inequality constraints and the PSD constraint and solve the problem

using the following formulation:

K̂∆ := argmin
K∆

{
−1

2
α⊤diag(y) (Ko ⊙K∆ ⊙ E) diag(y)α+ η∥K∆ − 11⊤∥2F

}
= 11⊤ +

1

4η
diag(α⊙ y) (Kk ⊙ E) diag(α⊙ y).

(7)

Since K̂∆ is a real symmetric matrix, we can perform eigenvalue decomposition on

the matrix as K̂∆ := UΣU⊤. Subsequently, within the feasible domain defined by

Bl ⪯ K∆ ⪯ Bu, K∆ ∈ S+, we adjust the eigenvalues of the matrix to find a solution
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that is closest to K̂∆, i.e.,

min
d∈RN

∥∥∥Udiag(d)U⊤ − K̂∆

∥∥∥2
F

s.t. Bl ⪯ Udiag(d)U⊤ ⪯ Bu, d ⪰ 0.

(8)

We define U = [u1 u2 . . . uN ] and the (i, j)-th entry of uku
⊤
k ∈ RN×N as

(
uku

⊤
k

)
i,j

:=

uk
i,j (k ∈ [N ]). By doing so, we can reformulate the problem (8) as below,

min
d∈RN

∥∥∥V ⊤d− vec(K̂∆)
∥∥∥2
2

s.t. vec(Bl) ⪯ V ⊤d ⪯ vec(Bu), d ⪰ 0,

(9)

where V = [v1,1 v2,1 . . . vN,1 v1,2 v2,2 . . . vN,N ] ∈ RN×N2 and for each vi,j =[
u1
i,j; u

2
i,j; . . . ; u

N
i,j

]
∈ RN . To further simplify the optimization problem mentioned

above, we introduce an auxiliary matrix G := [V ; V ; -I] ∈ RN×(2N2+N) and an

auxiliary vector h := [vec(Bu); -vec(Bl); 0] ∈ R2N2+N , resulting in the following

problem:

min
d∈RN

d⊤V V ⊤d− 2
[
V vec(K̂∆)

]⊤
d

s.t. G⊤d ⪯ h.

(10)

Therefore, we need to solve a convex linear constrained quadratic programming prob-

lem, which can be efficiently accomplished using existing convex optimization tool-

boxes, such as the quadprog function in MATLAB. After obtaining the optimal solution

d∗, we can then derive the final approximate solution for the problem (6):

K∗
∆ = Udiag(d∗)U⊤. (11)
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Step 2. Optimizing E with fixed K∆ and α. In this step, we aim to perturb the op-

timization variables within a small range and maximize the objective function value in

the problem (5). For this problem, similarly, to avoid directly solving the semi-definite

program, we disregard the PSD constraint and propose an approximate optimization

approach for E as follows,

min
E

1

2
α⊤diag(y) (Kk ⊙K∆ ⊙ E) diag(y)α

s.t. ∥E − 11⊤∥2F ≤ r2.

(12)

Due to the linearity of the objective function with respect to E and the fact that the

constraint defines a compact convex set, it can be inferred that the optimal solution

will lie on the boundary of the constraint. Accordingly, we can relax the constrained

optimization problem stated in (12) to an unconstrained problem:

min
E

1

2
α⊤diag(y) (Kk ⊙K∆ ⊙ E) diag(y)α+ ρ∥E − 11⊤∥2F. (13)

After deriving the closed-form solution for this problem, we utilize a non-expansive

operator P+(·) : SN → SN
+ to project the solution onto the space of PSD matrices (Cai

et al., 2010; Ma et al., 2011; Liu et al., 2019). The operator P+(X) performs eigenvalue

decomposition on X = V ΣV ⊤ and sets any negative eigenvalues to 0, resulting in the

new matrix X̂ = V Σ+V
⊤. By defining Γ := diag(α⊙ y) (Kk ⊙K∆) diag(α⊙ y),

we obtain the optimal PSD approximation solution for the problem (12):

E∗ = P+

(
11⊤ − 1

4ρ
Γ

)
. (14)
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Step 3. Optimizing α with fixed K∆ and E . Given K∆ and E , the optimization

problem is reduced to the standard SVM problem, which can be solved using various

methods. In this case, we employ the gradient descent method to update α in each

iteration and utilize the Adam optimizer (Kingma & Ba., 2014) to adjust the learning

rate dynamically. After obtaining the updated variable α̂, we proceed to project it onto

the feasible set. This is done by first clipping it to the range [0, C] and then calculating

α∗ = α̂− y⊤α̂
N

y as the final solution for this step.

3.3 Stage II: Data Imputation with The Given Matrix

In the previous stage, we obtained the optimized kernel matrix K̃ = Ko ⊙ K∆ by

incorporating supervised information of the data during SVM training. In this stage,

we will utilize the matrix K̃ to perform data imputation. We redefine the incomplete

data set D = {xi
oi
, yi}Ni=1 as D = {Xo,Y ,O}, where Xo := [x1

o1
x2
o2

. . . xN
oN

] ∈

Rd×N , Y ∈ RN and O ∈ {0, 1}d×N is used to indicate which features are missing

(represented by 0) and which features are observed (represented by 1). Next, we will

compute ∆X := [∆x1 ∆x2 . . . ∆xN ] ∈ Rd×N by using the entries of the trained

kernel matrix K̃i,j as supervisory information. The goal is to minimize the discrepancy

between the optimized kernel matrix calculated from the imputed data X̃ = Xo+∆X

and the original kernel matrix K̃ through regression, i.e,

min
{∆xi}Ni=1

∑
i

∑
j

[
exp

(
−γ
∥∥∥xi

oi
− xj

oj
+∆xi −∆xj

∥∥∥2
2

)
− K̃i,j

]2
. (15)
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By equivalently replacing the objective function and imposing location and range con-

straints on the imputation results, we obtain the following optimization problem for

Stage II:

min
∆X

∑
i

∑
j

[∥∥∥xi
oi
− xj

oj
+∆xi −∆xj

∥∥∥2
2
+

1

γ
ln
(
K̃i,j

)]2
s.t. ∆X ⊙O = 0,

0 ⪯ Xo +∆X ⪯ 1.

(16)

The essence of this task involves solving a nonlinear system of equations. Additionally,

by defining the missing ratio of data features as m, the aforementioned system con-

sists of N(N − 1)/2 equations and Ndm variables. Although the objective function in

(16) is non-convex with respect to ∆X , the entries {Ki,j}Ni,j=1 still provide abundant

supervision information for the data imputation process in scenarios where the number

of observed features (d) is significantly smaller than the total number of data (N) and

the missing ratio (m) ranges between 0 and 1. To address this, we employ the BCD

method to solve the optimization problem mentioned above. In each iteration, we se-

lect a specific column from ∆X as a variable while keeping the remaining columns

constant. We update the variable iteratively until the maximum number of iterations is

reached or the change in the objective function is smaller than the predefined threshold.

The accuracy of this solution is further validated by the experimental results presented

later in this paper. The complete two-stage data imputation framework is summarized

in Algorithm 1.
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Algorithm 1 Two-Stage Data Imputation Based on Support Vector Machine
Input: the incomplete data set D = {Xo,Y ,O}, the parameters C, γ, η, and ρ.
Output: the imputed data X̃ and the combination coefficient α.

1: Stage I:
2: Compute Ko, Bl, and Bu. Initialize K

(0)
∆ = E (0) = 11⊤, α(0) = C

2
1, and t1 =

t2 = 0.
3: repeat
4: Solve problem (10) to obtain d∗ and update K

(t1)
∆ by (11).

5: Update E (t1) by (14).
6: Update α using gradient descent and project it onto the feasible set.
7: t1 = t1 + 1.
8: until the stop criterion is satisfied.
9: Compute K̃ = Ko ⊙K∆.

10: Stage II:
11: Initialize ∆x

(0)
i = 1

2
1.

12: repeat
13: for i = 1 to N do
14: Fix {∆x

(t2−1)
j : j ̸= i} and update ∆x

(t2)
i in (16).

15: end for
16: t2 = t2 + 1.
17: until the stop criterion is satisfied.

4 Numerical Experiments

4.1 Experimental Settings

Data sets and preprocessing. We chose six real-world data sets from libsvm (Chang &

Lin., 2011) and UCI (Kelly et al., 2023), namely australian, german, heart, pima (a.k.a.

diabetes), cylinder, and horse. The details of these data sets are shown in Table 1. The

data sets were then divided into three subsets: a training set, a complete holdout set

for parameter selection, and a complete test set for evaluating and comparing the final

results of the algorithms. The split was performed in a 4:3:3 ratio. Additionally, for

the training set of the first four complete data sets, we constructed the missing data by

randomly removing a given percentage of the features to evaluate the performance of

various algorithms under different levels of missingness. The missing ratio of a data set
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was defined as

m :=
# The missing features

# The total features
.

For the last two data sets that have missing values, we directly utilized their inherent

missing patterns to test the performance of algorithms in the absence of prior knowledge

about the distribution of missing values. For preprocessing, we scaled xi to [0, 1] using

the observed features and scaled yi to {−1, 1}.

Table 1: Details of the six libsvm and UCI data sets.

Data Sets # Features (d) # Instances (N )

Australian 14 690
German 21 1000
Heart 13 270
Pima 8 768

Cylinder 35 512
Horse 25 368

Compared methods and parameters settings. We selected a basic method along

with three advanced methods for comparison with our proposed framework. To quan-

tify the performance of the individual methods, we compared their classification ac-

curacy on the test data set. All experiments were repeated 10 times, and the aver-

age accuracy of each method was reported. The implementation was carried out us-

ing MATLAB on a machine with an Intel® CoreTM i7-11700KF CPU (3.60 GHz) and

32GB RAM. The source code is available in https://github.com/Yruikk/

TwoStageDataImputation.

• MI: The missing values are imputed by replacing them with the mean value of

the corresponding features in the training set. We chose the penalty parame-

ter C ∈ {2−5, 2−4, . . . , 25} and the bandwidth in the Gaussian kernel γ ∈
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{2−5, 2−4, . . . , 25} using the holdout set.

• GEOM (Chechik et al., 2008): An iterative framework for optimizing a non-

convex problem was introduced in this work. The main objective is to maximize

the margin within the relevant subspace of the observed data. The parameters C

and γ are chosen the same as in MI, and the iteration round t is chosen from the

set {2, 3, 4, 5}.

• KARMA (Hazan et al., 2015): This method proposed a new kernel function for

the missing data kβ(·, ·) : (R ∪ {∗})d × (R ∪ {∗})d → R. We chose C ∈

{2−5, 2−4, . . . , 25} and β ∈ {1, 2, 3, 4} using the holdout set.

• genRBF (Śmieja et al., 2019): It derived an analytical formula for the expected

value of the radial basis function kernel over all possible imputations. The pa-

rameters C and γ were chosen the same as in MI.

• Ours: To avoid excessive parameter tuning, we utilized the parameters CMI and

γMI from MI and further selected C ∈ {CMI · 2i, i = −1, 0, 1} and γ ∈ {γMI ·

2i, i = −1, 0, 1}. Additionally, we empirically set η = ∥αMI∥2 and ρ = 5C/m

during each iteration.

4.2 Experimental Results

4.1 Results of Data Imputation from Given Kernel Matrix

In order to ensure the operation of the entire framework, we first evaluated the perfor-

mance of Stage II. We conducted experiments on the heart data set, considering various
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bandwidths of the Gaussian kernel and different missing ratios. We computed the com-

plete kernel matrix Kgt based on the complete data Xgt and the chosen bandwidth γ.

Subsequently, we randomly removed Ndm features from the complete data, resulting

in Xmiss. Next, utilizing the algorithm from Stage II in our framework, we performed

data imputation on Xmiss using the complete kernel matrix Kgt, which yielded X̃ . In

addition to caring about the quality of data imputation, we also focus on the quality of

the kernel matrix used in predicting the class of new data. Therefore, we defined four

evaluation metrics to assess the error between X̃ and Xgt, as well as the error between

K̃ and Kgt: (eX)max, (eX)mean, (eK)max, and (eK)mean. We then conducted tests on

our data imputation algorithm using different bandwidths of the Gaussian kernel and

missing ratios. The results of these tests were reported in Table 2. We observed that

at a low missing ratio (m = 10%), both the imputed data and kernel matrix closely

matched the ground truth. Even at a high missing ratio (m = 90%), although there

were some imputed features that deviated significantly from the true values, the overall

performance of the algorithm in terms of average imputation remained highly accurate.

Additionally, we found that when the Gaussian kernel parameter was particularly small

(γ = 1/32) or large (γ = 32), the true kernel matrix tended to be a matrix of all ones

or an identity matrix. In these scenarios, although there may be larger errors in the im-

puted data compared to when γ = 1, the kernel matrix used for actual predictions still

maintained a good level of accuracy.
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Table 2: Results of data imputation performance using a given kernel matrix with dif-
ferent Gaussian kernel bandwidths and missing ratios.

Parameter m (eX)max (eX)mean (eK)max (eK)mean

γ = 1
10% 3.46e−4 3.00e−7 5.95e−5 8.85e−8
90% 1.27e−1 6.71e−4 5.57e−2 8.28e−5

γ = 1
32

10% 2.75e−4 2.88e−7 1.32e−5 4.52e−8
90% 1.52e−1 1.56e−3 3.70e−3 5.83e−5

γ = 32
10% 7.30e−4 4.74e−7 3.08e−5 6.81e−9
90% 3.81e−1 3.75e−3 1.03e−1 2.44e−5

4.2 Classification Results on Real-world Data Sets

In this section, we compared different data imputation approaches using six real-world

data sets. Since all imputation algorithms ultimately serve subsequent tasks, we eval-

uated their performance by calculating the mean and variance of their classification

accuracy on the test data.

We first mimicked the missing completely at random (MCAR) mechanism by ran-

domly removing some values on the four complete data sets, and the results were

presented in Table 3. For situations with a relatively low missing data ratio, such as

m = 20%, the differences between the methods are not significant. Even using a sim-

ple method like MI can achieve decent predictive performance. When m = 40%, our

proposed method achieves the highest average accuracy and the lowest standard devi-

ation on the australian, heart, and pima data sets, demonstrating the superior stability

of our method. On the german data set, our algorithm’s performance is second only

to genRBF. When dealing with high missing data ratios, the prediction accuracy of the

GEOM, KARMA, and genRBF methods fluctuates across different data sets. However,

our method demonstrates even more significant advancements in such scenarios. For
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Table 3: Comparison of classification accuracy (mean ± std) with a baseline and three
state-of-the-art methods on four real data sets. We conducted testing on the scenarios
with different missing ratios of the data. The best performance is highlighted in bold
and the “•” indicates its statistical significance compared to other methods via paired
t-test at the 5% significance level.

Data Sets Methods m

20% 40% 60% 80%

Australian

MI 0.864 ± 0.021 0.851 ± 0.028 0.807 ± 0.047 0.678 ± 0.049
GEOM 0.849 ± 0.025 0.831 ± 0.037 0.754 ± 0.050 0.632 ± 0.043

KARMA 0.861 ± 0.020 0.848 ± 0.022 0.831 ± 0.045 0.712 ± 0.046
genRBF 0.867 ± 0.016 0.864 ± 0.023 0.796 ± 0.041 0.704 ± 0.058

Ours 0.867 ± 0.023 0.867 ± 0.021 0.849 ± 0.024 • 0.857 ± 0.025 •

German

MI 0.716 ± 0.014 0.719 ± 0.025 0.693 ± 0.044 0.635 ± 0.060
GEOM 0.723 ± 0.028 0.704 ± 0.031 0.695 ± 0.024 0.679 ± 0.029

KARMA 0.731 ± 0.019 0.723 ± 0.019 0.706 ± 0.036 0.714 ± 0.025
genRBF 0.747 ± 0.011 0.743 ± 0.021 0.705 ± 0.026 0.687 ± 0.045

Ours 0.743 ± 0.024 0.733 ± 0.021 0.723 ± 0.024 • 0.710 ± 0.019

Heart

MI 0.813 ± 0.029 0.801 ± 0.033 0.762 ± 0.046 0.724 ± 0.040
GEOM 0.806 ± 0.021 0.752 ± 0.073 0.758 ± 0.053 0.679 ± 0.077

KARMA 0.784 ± 0.040 0.755 ± 0.038 0.756 ± 0.031 0.687 ± 0.083
genRBF 0.813 ± 0.031 0.779 ± 0.087 0.737 ± 0.032 0.732 ± 0.037

Ours 0.821 ± 0.033 0.816 ± 0.026 • 0.813 ± 0.027 • 0.806 ± 0.020 •

Pima

MI 0.751 ± 0.021 0.735 ± 0.027 0.710 ± 0.023 0.642 ± 0.046
GEOM 0.721 ± 0.031 0.695 ± 0.028 0.680 ± 0.058 0.666 ± 0.042

KARMA 0.747 ± 0.034 0.693 ± 0.026 0.668 ± 0.034 0.648 ± 0.036
genRBF 0.781 ± 0.011 0.755 ± 0.017 0.725 ± 0.022 0.659 ± 0.029

Ours 0.756 ± 0.026 0.759 ± 0.022 0.744 ± 0.027 • 0.709 ± 0.037 •

instance, at m = 60%, our approach outperforms the second-ranking method by an ad-

ditional accuracy improvement of approximately 2.6%. This significant improvement

has also been confirmed through a paired t-test conducted at the 5% significance level.

This performance is further reflected in the case of m = 80%, where our algorithm

achieves precise and stable classification tasks.

Next, we evaluated the performance of each method on two data sets with missing

values. In these two data sets, the missing values are not manually removed and the

data collection process is not known to the user, so the missing mechanism may not
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Table 4: Comparison of classification accuracy (mean ± std) with a baseline and three
state-of-the-art methods on two real data sets with missing values. The best perfor-
mance is highlighted in bold.

Data Sets m Methods Accuracy

Cylinder ≈ 10%

MI 0.648 ± 0.014
GEOM 0.620 ± 0.021

KARMA 0.678 ± 0.018
genRBF 0.620 ± 0.021

Ours 0.672 ± 0.020

Horse ≈ 30%

MI 0.844 ± 0.027
GEOM 0.848 ± 0.021

KARMA 0.842 ± 0.020
genRBF 0.836 ± 0.028

Ours 0.862 ± 0.029

be MCAR. Moreover, roughly speaking, the missing values tend to be more concen-

trated in a few features. The results are presented in Table 4. For the cylinder data

set, predicting for this data set is challenging for all algorithms. However, our algo-

rithm demonstrates comparable performance to KARMA and significantly outperforms

other methods. For the horse data set, the proportion of missing values is even higher,

which provides our algorithm with greater freedom to learn the relationships between

the samples. According to the paired t-test at the 5% significance level, our algorithm

statistically performs better than other methods in multiple experiments.

Conclusion

This paper proposed a novel two-stage data imputation framework, aiming to optimize

the similarity relationships between data in order to guide the completion of missing

features by pursuing better classification accuracy. In the first stage, we unify the tasks
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of kernel matrix imputation and classification within a single framework, enabling mu-

tual guidance between the two tasks in an alternating optimization process to improve

similarity relationships. The introduction of a perturbation variable enhances the ro-

bustness of the algorithm’s predictions. In the second stage, we achieve, for the first

time, the recovery of data features from a given kernel matrix, effectively utilizing

the optimized information obtained in the first stage. By leveraging the supervision

information through two stages, we have obtained a more flexible approach for data

imputation, which provides significant advantages when dealing with high missing data

rates. Numerical experiments have validated that our algorithm achieves higher predic-

tion accuracy and demonstrates more stable performance compared to other methods

on the test data. In future research, extending the ideas of this study to neural networks

would be a fascinating endeavor. This expansion would provide us with a way to handle

even larger-scale data. It is important to note that neural networks typically operate in

over-parameterized regimes, leveraging their high model complexity to estimate labels

effectively. However, this also makes it challenging to control the impact of supervised

information on the results of data imputation in the absence of appropriate regulariza-

tion terms.
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Appendix

Below, we have provided a list of commonly used kernel functions that are decoupled.

By separating the observed and unknown components, we compute the observed kernel

matrix and establish an upper limit for the adjustment matrix. This approach allows us

to fully leverage all the observed features in the data (assuming x ∈ [0, 1]d). Recall

that an incomplete data set is defined as D = {xi
oi
, yi}Ni=1, where oi represents the set

of observable features, xi
oi

∈ (R ∪ {∗})d, and ∗ represents an unknown real number

within the range [0, 1]. For the following kernel functions, the computation formula for

the (i, j)-th element of the kernel matrix K can be represented as:

1. Linear Kernel: k(x,y) = x⊤y,

Ki,j =
(
xi
oi

)⊤
xj
oj

=
∑

p∈oi∩oj

(
xi
p · xj

p

)
+
∑

p∈oi\oj

(
xi
p · ∗

)
+
∑

p∈oj\oi

(
∗ · xj

p

)
+

∑
p/∈oi∪oj

(∗ · ∗) .

2. Polynomial Kernel: k(x,y) =
(
x⊤y + r

)d
(r ≥ 0 and d ≥ 1),

Ki,j = (Di,j + r)d where

Di,j =
(
xi
oi

)⊤
xj
oj

=
∑

p∈oi∩oj

(
xi
p · xj

p

)
+
∑

p∈oi\oj

(
xi
p · ∗

)
+
∑

p∈oj\oi

(
∗ · xj

p

)
+

∑
p/∈oi∪oj

(∗ · ∗) .
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3. Gaussian Kernel: k(x,y) = exp (−γ∥x− y∥22),

Ki,j = exp (−γDi,j) where

Di,j = ∥xi
oi
− xj

oj
∥22

=
∑

p∈oi∩oj

(
xi
p − xj

p

)2
+
∑

p∈oi\oj

(
xi
p − ∗

)2
+
∑

p∈oj\oi

(
∗ − xj

p

)2
+

∑
p/∈oi∪oj

(∗ − ∗)2 .

4. Laplacian Kernel: k(x,y) = exp (−γ∥x− y∥1),

Ki,j = exp (−γDi,j) where

Di,j = ∥xi
oi
− xj

oj
∥1

=
∑

p∈oi∩oj

|xi
p − xj

p|+
∑

p∈oi\oj

|xi
p − ∗|+

∑
p∈oj\oi

| ∗ −xj
p|+

∑
p/∈oi∪oj

| ∗ − ∗ |.

5. Sigmoid Kernel: k(x,y) = tanh
(
γx⊤y + r

)
(γ > 0 and r ≥ 0),

Ki,j = tanh (γDi,j + r) where

Di,j =
(
xi
oi

)⊤
xj
oj

=
∑

p∈oi∩oj

(
xi
p · xj

p

)
+
∑

p∈oi\oj

(
xi
p · ∗

)
+
∑

p∈oj\oi

(
∗ · xj

p

)
+

∑
p/∈oi∪oj

(∗ · ∗) .

6. χ2 Kernel: k(x,y) =
∑d

p=1
2xpyp
xp+yp

,

Ki,j =
d∑

p=1

2xi
px

j
p

xi
p + xj

p

=
∑

p∈oi∩oj

2xi
px

j
p

xi
p + xj

p

+
∑

p∈oi\oj

2(xi
p · ∗)

xi
p + ∗

+
∑

p∈oj\oi

2(∗ · xj
p)

∗+ xj
p

+
∑

p/∈oi∪oj

2(∗ · ∗)
∗+ ∗

.
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The range of the second term depends on xi
p, while the range of the third term depends

on xj
p. The range of the fourth term is [0, d−|oi∪oj|]. Moreover, these kernel functions

can all be adapted to the algorithm utilized in Stage II of our framework.
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