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ERGODICITY OF SKEW-PRODUCTS OVER TYPICAL IETS

F. ARGENTIERI, P. BERK, F. TRUJILLO

ABsTrRACT. We prove ergodicity of a class of infinite measure preserving systems, called skew-
products. More precisely, we consider systems of the form

Ty: [0,1) xR — [0,1) xR
(@,t) = (T(),t+ f(z))’
where T is an interval exchange transformation and f is a piece-wise constant function with a
finite number of discontinuities. We show that such system is ergodic with respect to Leb(g,1)xr
for a typical choice of parameters of 7" and f. This generalizes recent results Chaika and Robertson
[4] concerning an exceptional class of interval exchange transformations.

1. INTRODUCTION

The interval exchange transformations, or IETs, for short, appear naturally as the Poincaré
return maps to a transversal section for many classical surface flows such as translation flows or
locally Hamiltonian flows. As such, during the last century, they attracted a lot of attention from
a large number of mathematicians. In this article, we study infinite measure preserving systems
called skew-products built as extensions of said transformations. We focus on ergodic properties of
aforementioned systems.

To be more precise, given m > 1 and M > 0, define

Pt = {(p,q) e R™ x R™ | (p,q) = 0; [pl1 = 1; |qloc < M}.

We denote by Cy, as the space of mean zero step functions f : [0,1) — R of the form

J=ax0p) t -+ dmt1X[pr 4 +pmsr1)s
for some (p,q) € Py p. For f as above, we call
oi(f) = Gi+1 — (1)
the i-th jump of f, for any 1 < ¢ < m, and denote the set of all jumps of f by o(f).

We endow (), s with the Lebesgue measure and the [, metric inherited from P, ps. Given
feCp,m and an IET T', we associate the skew-product T given by

Tp: [0,1) xR — [0,1) xR @)
(1) = (T(2),t+ f(2))

We refer to T' as the base of Ty and to f as the cocycle associated with T'.

We also consider the space Sy x A4 of IETs of d > 2 intervals indexed by an alphabet A with
d elements. Here Sy denotes the set of irreducible permutations, that is, permutations that do not
divide an interval into two or more subintervals which are being exchanged independently, while
A4 stands for the unit simplex of real positive vectors indexed by A, namely,

A = {veRvah = 1}.

On the space Sy x A, we consider the product of counting and Lebesgue measure, and whenever
we are speaking about a "typical" or "almost every" IET, we mean almost every with respect to
this measure.

The following is the main result of our article.

Theorem 1.1. Let m = 2 and M > 0. For a.e. irreducible IET T on d = 2 intervals the associated
cocycle Ty is ergodic, with respect to Lebyg 1)xwr, for a.e. f € Cpy pr-
1
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Remark 1.1. The set of IETs considered in Theorem [L1 are the ones satisfying the conclusions
of Theorem[L.2. The set of cocycles for which the result holds depends on T'.

Before Chaika and Robertson, most of the existing results concerned rotations as the base in the
definition of the skew product. Here it is worth to recall that rotations can be seen as IETs of two
intervals. The ergodicity of skew-products with rotations in their base was shown for many classes
of cocycles, we mention here Oren [I3], Hellekalek and Larcher [10], Pask [14], as well as Conze and
Piekniewska [6]. The IETS of higher number of intervals were much less explored. Conze and Fraczek
[5] proved ergodicity of skew products with self-similar IETS in the base (which form a countable set
of IETs) and piecewise constant functions, constant over exchanged intervals. Surprisingly, Fraczek
and Ulcigrai [8], during their study of Ehrenfest wind-tree model, found examples of skew products
over IETs with piece-wise constant cocycles, again constant over exchanged intervals, which are
not ergodic.

Although much of our arguments seem similar to the ones used in [4], the different approach
that we exhibit allows us to obtain a more general result. The biggest similarity is that we also
exploit the jumps to obtain ergodicity (although in a slightly different manner, since we do not
utilize directly the essential value criterion).

We would like now to highlight major differences. There are typically two obstacles that occur
when trying to prove ergodicity of a skew product. First is the required control over close return
times (rigid times) of the base transformation. The second is difficulty to get bounded Birkhoff sums
of the cocycle along the close return times. In [4], the authors solved both problem by introducing
the so-called quantitative version of Atkinson’s Lemma and greater control over the return times
for the bounded type IETs than the for typical IETs. We, on the other hand, utilize the properties
of the Konsevich-Zorich cocycle (see Subsection 23]). More precisely we used its ergodicity and
that fact that the first Lyapunov exponent of said cocycle is strictly bigger than the second one (it
exhibits a spectral gap). Then the Rokhlin towers obtained by this algorithm can be balanced in
heigth and width, while their heights grow much faster than the Birkhoff sums of the cocycle. This
forces many of the Birkhoff sums to be bounded. This approach allows us to provide sufficient
conditions on the pairs (7 f) in terms of recurrence properties of 7' and the Birkhoff sums S, f for
Theorem [Tl to hold (see Properties (-] below). We then check that for a.e. irreducible IET,
there exists a full-measure set of cocycles for which these conditions are satisfied.

Theorem 1.2. For a.e. irreducible IET T on d = 2 intervals there exist C;o > 0 such that the
following holds.

Given m > 2 and M > 0 there exists a full-measure set F < Cp, p such that, for any f € Cpy o,
for any positive measure set E < [0,1), any D > mM and any N > 0, there existz € E andn > N
satisfying:

(1) , T"(z) € E.

(2) |Snf(x)| < D.

(3) The set {T%(x)}!'~ is S-dense in [0,1).

(4) FEither [z - %,x] or [x,:c + %] is a continuity interval for T™.

Remark 1.2. It follows from the proof of Theorem[L.2 that the constants C,c > 0 in the statement
can be taken uniform for a full-measure set of irreducible IETs on d intervals.

Let us point out that, for any IET T ergodic w.r.t. to Lebjg 1), and any f € Cp m, by the
recurrence of T it is easy to find times n where conditions (I) and (2)) are verified. Also, by
exploiting the ergodicity of the (accelerated) Rauzy-Veech renormalization, is not difficult to find,
for a.e. T and for some constants C,o > 0 not depending on T, times n where Conditions (3]
and (@) hold. However, these times do not necessarily coincide. The importance of Theorem [[2] is
that it guarantees that these times can be made to coincide, infinitely many times, under generic
conditions on 1" and f.

Remark 1.3. The conclusions of Theorem 1.2 are satisfied by the set of linearly recurrent IETS
introduced in [{|] (as the last two conditions are trivially verified, for any n = 1, for some constants
C, o depending only on T ). In particular, Theorem [l also applies for this class of IETs.
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Theorem [[.2]is proven in the last section of this work and relies heavily on recurrence properties
of the accelerated Rauzy-Veech renormalization as well is in well-known results due to Zorich [20]
concerning the deviation of certain ergodic averages over IETs (see Theorems [.T] [12)).

Before describing more in detail the proof strategy of Theorem [IT] let us point out that, as a
direct corollary of this theorem, we obtain the following.

Theorem 1.3. Let m > 2, M > 0 and d = 2. For a.e. (T, f) € Sp x AA x Cm,m the associated
skew product Ty is ergodic with respect to Lebyg 1)xr-

In particular, for a.e. f € Cp ar there exists a full measure set of IETs for which the associated
skew product Ty is ergodic with respect to Lebyg 1)xr-

Proof. In view of Theorem [ILT] it is enough to show that the set
Z = {(T,f) € So x AA % Con M | Ty is ergodic}

is measurable.

For any N € N, let T}V :[0,1] x [-N,N] — [0,1] x [-N, N] denote the first return map of T
to [0,1] x [-N, N]. Recall that, due to a classical result by Atkinson [2], if T is ergodic then the
associated skew product T is recurrent (see Appendix [A] for a precise definition). In particular the
first return transformation TJ{V is well-defined on a full-measure subset of [0, 1] x [-N, N].

Note that T is ergodic if and only if TJ{V is ergodic, for every N € N. Indeed, an induced map
of an ergodic transformation is also ergodic. On the other hand, if there was a Ty-invariant subset
of positive measure whose complement has positive measure, then, for N € N sufficiently large, the
set [0,1] x [-N, N] would contain a T;v -invariant subset of positive measure whose complement
also has positive measure.

Thus,

0
Z = ﬂ Zy, where Zy := {(T, f) € So x A x Cyar | T;V is ergodic}.
N=1

It is not difficult to show that the assignment (T, f) — f;v is measurable (see Lemma [A4] in
Appendix [A)). Due to the fact that the set of ergodic transformations of any standard probability
space is measurable (see [9]), it follows that the set Zy is measurable for every N € N. Therefore
Z is measurable, which concludes the proof of the theorem. ([l

1.1. Scheme of the proof of Theorem [I.Il We suppose T is an IET ergodic with respect to
the Lebesgue measure and satisfying the conclusions of Theorem

Suppose, for the sake of contradiction, that for a positive measure set of functions f in Cy, ar,
the associated skew-products Ty are not ergodic. Call this set W < C};, ar. Since a typical function
in Cy i has at least two rationally independent jumps (see (), we can assume WLOG that for
any f € W the group generated by o(f) is dense in R.

For any f in an appropriate subset V' < W, we will define a T¢-invariant measure ¢, depending
measurably on f, that is not a multiple of Leb[g 1)xr, nor singular to it.

We then decompose the measure py along the fibers {x} x R as a family of measures on R
which we denote {if }zer. Since py is not a multiple of Lebpg 1)xr, it is possible to show that
for a.e. x € R, the measure pf, is not a multiple of Lebg. So we may assume that the set U of
(f,z) e V x [0,1) for which py . is not a multiple of Lebg has full measure.

We will derive a contradiction by showing the existence of (f,z) € U such that pf , is a multiple
of the Lebesgue measure.

To show this, we first consider cutoffs ¢, p of the measures pf, to compact intervals of the
form [—D, D], and define an appropriate continuity set B for the family of maps (f,x) — Wb,
for any D € Qso. We then fix (f,z) € B and construct sequences (fi,k,ac,f) in B, converging to
(f,x), such that for any open interval J such that J, J + o;(f) < [-D, D], we have

MfiykyxzyD(J) - Mfi,k,r;D(J +0i(f)) — 0.
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Using the continuity of these measures on the set B, we conclude that uy . is invariant by the
translation by o;(f). Since the set of jumps of f generates a dense subgroup in R, this implies that
ftf. is a multiple of the Lebesgue measure, which contradicts our assumptions on the set U.

Remark 1.4. The proof of the existence of the measures iy described above follows many well-
known techniques but is rather technical. For this reason, we provide a detailed proof of this in
Appendiz Al

1.2. Outline of the article. First, in Section 2] we introduce the notations used throughout the
article as well as the main tool in the proof of Theorem [[L2] namely, Rauzy-Veech renormalization.
In Section [l assuming Theorem which describes the set of pairs of IETs and cocycles to
be considered, we follow the scheme described in Section [[LI] to prove our main result, namely,
Theorem [I.11
In Section [, we prove Theorem Finally, in Appendix [A]l we provide some of the technical
details required in the proof of Theorem [I11
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2. NOTATIONS

2.1. Interval exchange transformations. We now present main notions and facts used in this
article. Let I = [0, ]I]) be an interval of length |I|, where |-| denotes the Lebesgue measure of a set.
Let also A be an alphabet of d > 2 elements. We say that T is an interval exchange transformation
(IET) of d elements if there exists a finite partition {I,}aeca of I into d subintervals such that
T : 1 — I is a bijection and T|;, is a translation for every « € A. In particular, T preserves
Lebesgue measure. Roughly speaking, T is a permutation of intervals. Since we will be considering
T as a measure-preserving system, we will sometimes, when it is more convenient consider 7" as a
Lebesgue measure-preserving automorphism of [0, 1]. Then T is described by two parameters. First
is a permutation m = (m, m1), where 7o, 71 : A — {1,...,d} are bijections and my(a) indicates the
position of an interval I, before the exchange, while 71 («) the position of I, after the exchange.
The second parameter is the length vector A € R, where A\, = |I,|. We denote T = (7, \).

We will often assume some restrictions on 7 and A. First, we will only consider 7 to be irreducible,
that is there is no k € {1,...,d — 1}, such that m; o 7y *{1,...,k} = {1,...,k}. We denote the set
of such permutations as 8’64. Moreover, we frequently assume that |I| = 1 and then A € AA, where
Ac R;‘_‘ is a positive unit simplex.

2.2. Rauzy-Veech induction. On the space 864 X Rfo we consider an operator R called Rauzy-
Veech induction, defined as R(m, \) = (7(0, A1), where (7)), () is the first return map of (7, \)
to the interval I =10, |A] = min{A -1y, A1y }), where [Al = Yo q Aa IEX 1y > A i)
we say that R is of "top" type and we say that it is of "bottom" type if )\F(;l(d) < )\ﬂ_l—l(d).

The map R(w, A) is properly defined as an interval exchange transformation of d intervals if
and only if )\ﬂ_o—l( 0 * )\ﬂ_l—l( - Keane [11] gave an equivalent condition on (7, A), for the iterations
of Rauzy-Veech induction to be defined indefinitely. More precisely, we say that IET T satisfies
Keane’s condition if for every two discontinuities a and b of T' equality 7™ (a) = b for some n € N
implies n = 1, a = T71(0) and b = 0. In particular, if the vector X is rationally independent, that
is for every choice of ¢, € Z, o € A we have

Z Cara =0 = ¢, =0 for every a € A,
acA
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then (m, A) satisfies Keane’s condition. When it is well-defined, we denote
(7", A") := R™(m, \)

for every n € N and we denote its domain by I™ and the exchanged intervals by {I}}aca.
Note that A! = A(m, A\))\, where a matrix A (7, \) is defined in the following way

1 if a = f;
App(m,A) =< -1 ifa=wand B=1;
0 otherwise.

Denoting A (7, \) = Id, we define, inductively,
A (m A) = AL A H AR (1)),

for any n > 1. Then
A" = A (7 AN (3)

We will refer to A™ (m,A) as Rauzy-Veech matrices. Note that for every n € N, the matrix
(AM™ (7, X))t is non-negative. One of the many reasons why Rauzy-Veech matrices are impor-
tant is the fact, that the number A,g indicates the number of visits of interval I]} to Iz before its
first return to I™ via T. It also gives that for any n € N the interval I can be represented as a
union of d = #.A disjoint Rokhlin towers of intervals as

aq—1
=] | rm,
acA i=0
where we refer to the numbers g} as heigths and to intervals I} as bases of the towers. The numbers

g7 are the return times of any x € I7 to I"™ via T'. One can show that if [¢7]aec4 is an n-th vector
of heigths, then

(A(n))*[la ) 1] = [qZ]OLGAv
where (-)* denotes inverse transpose matrix.

Any invariant subset R < 5’64 under the (projected) action of R is called a Rauzy graph. Note
that the value of A can be derived only from 7 and 7(), not the exact value of X\. Any finite
sequence of permutations [7!,...,7%] in M such that for every 2 < i < k the permutation 7i*!
is attainable as a permutation in R(7%, \?) for some X\’ € Rf, is called a Rauzy path. We have
the following useful result, which allows to control the heights of towers, while knowing the last
path obtained by Rauzy-Veech induction. We denote the inverse Rauzy-Veech matrix (which is
non-negative) associated to v by A,. One can show, by considering the set A, (Rf), that any
Rauzy path is realizable as a sequence of permutations obtained by consecutive action of R on
some (7, ) € R x R4

2.3. Normalized induction - renormalization process. The Rauzy-Veech induction allows
to construct Rokhlin towers with very useful properties. However, to use it as a renormalization
scheme, we need to consider a normalized Rauzy-Veech induction R : R x A4, where R is a Rauzy
graph and

R(m, \) := (#,&—1') :

In [I2] and [I6] Masur and Veech independently proved that there exists a measure p = um on
M x A4, which is equivalent to the product of counting measure on 9% and Lebesgue measure on
AA, such that (R, usz) is an ergodic, recurrent, measure-preserving system. However, the measure
pm is known to be infinite. For this reason, Zorich in [19] introduced an acceleration Rz of R on
the set of infinitely renormalizable IETs as

Ricz(m,\) := RETN (7, X),
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where k(m, A) := max{n € N | R(m, \),...,R"(w, \) are of the same type}. We sometimes refer to
the operator Rz as the Zorich acceleration. Similarly, we can define a not normalized version of
this acceleration, namely

Ricz(m,A) == REEN (7, X).
For any n € N, we denote
(Tr(n)a /\(n)) = 7Il(Z (7T, A)

and denote by 1™ the domain of definition of é’}( 4 (7, A) and the associated exchanged intervals

by {I&n)}ae 4. As before, we can express the interval [0,1) as can be represented as a union of

disjoint Rokhlin towers with heights ¢(") = (q&"))ae 4 and bases {Ién)}ae A

am -1
=] | 7.
acA =0

We will also consider an associated cocycle of matrices, called Kontsevich-Zorich cocycle, defined
as B(m, \) := A(™2) We will also use the notation for intermediate matrices

B(n,n + 1)(m,A) := B(x™,\™), (4)
and the cocycle notation
BO@m, A)=1d,  B™(x,A) = Bnr" Y Xe=BO=D(z \), n>1. (5)
Denoting
Q(m, A) := B¥(m, ),
we can express the lengths and heights of these iterates using cocycle notation

A = B (7 M)\, ¢™ = QM (m, N[1,...,1], (6)

where Q™) (7, \) is defined in a manner analogous to ().

W define the intermediate steps Q(n,n + 1)(7, A) in a manner similar to (4). Moreover, if there
is no risk of confusion, we will sometimes omit the IET being considered in the notations for
intermediate steps of the cocycles B and ) and denote, for example, Q(n,n + 1)(m, \) simply by
Q(n,n +1).

The crucial difference between Rz and R is that the former preserves a finite measure p = pg,
as proven by Zorich in [19]. In the same article, Zorich proved that Ry z is actually integrable.
More precisely, he proved that

[ ot [ ol o< oe @
RxAA R AA

The above fact is one of the crucial tools used in this article since this allow us to consider the
Lyapunov exponents associated with these cocycles. Notice that since B and @) are dual to each
other (we refer the interested reader to [20] for a precise definition of dual cocycle) they have the
same Lyapunov spectrum when restricted to any ergodic component of R z.

Let us recall that, as a consequence of several classical works [3[7)T6L19], for any Rauzy class %R,
the Zorich acceleration is ergodic when restricted to S8 x A and that, for some g > 1 depending
only on R, the cocycles B and Q restricted to SR x A possess 2g non-zero Lyapunov exponents of
the form

-0 < <=0, <0<, << by,
while the remaining d — 2¢g Lyapunov exponents are equal to 0.

For more information on interval exchange tranformations and associated renormalizations, we
refer the reader to [17] and [I§].
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2.4. Path-induced domains. We prove now a series of simple results concerning the the Rauzy-
Veech (and Zorich-Kontsevich) cocycle. Their main purpose is to pick a proper domain of the first
return of Zorich-Kontsevich cocycle in the proof of Proposition {11

Let R be a Rauzy graph and let v be a path of length L := || in . Let

A, = Taa AL (RY) = {(m,\) € B x AA | (7, ) follows  via R},

where mpa : Rf — A4 is the projection v — ﬁ onto the simplex A#. It turns out that by
extending the path v we may guarantee that we do not see path « as an initial Rauzy path for the
first L iteration of R.

Lemma 2.1. There exists a path ¥ of length 2L such that A; < A, and
RY(A)NA, = for i=1,...,L—1.

Proof. WLOG suppose that the last arrow in the path v was of the "bottom" type, the prove in
the opposite case is analogous. Take the path 7 := %~} where 7% is a path of length L, starting
at the final vertex of 7, such that all its arrows are of "top" type. Since 4 starts with «, we have
A5 < A.,. Moreover, for any (m,\) € A5) and i = 1,..., L — 1, we have that R**Z is of the "top"
type. Since the last arrow in «y is of "bottom" type, this finishes the proof of the lemma. O

We will from now on assume that the matrix A, is positive. It is a classical fact that as long as
(7, A) is infinitely renormalizable (i.e. the infinite orbit of (w, A) via R is well defined), then there
exists m € N such that the path obtained by following m steps of R on (m, \) is positive (see e.g.
Corollary 5.3 in [17]). We have the following well known fact, which we prove for completeness.

Lemma 2.2. There erists a constant C., > 0 such that for any (7, \) e Rx A and any K > L >0
satisfying RE=L(m, \) € A,
¢

max —% < C.

«a,BeA qﬁ
Proof. Note that

[Qf]aeA = [qg_L]ozeA Ay
and since v is positive, we also have minae4 ¢& > maxae4 ¢¥ L. Hence
qg maXgeA qgiL . Za,ﬂeA(A'Y)aﬁ

max —= < —
aBed gff maXaed ¢o -

Thus, to conclude the proof, it is enough to take C, := >} BeA(A’Y)aﬁ' O

For convenience, in the proof of Proposition [l we consider a path that is a concatenation
v # v * v of 3 copies of the path . It is easy to check that A,y 4y = A% (Rf) However, we will
require more from our path. In the next lemma we will construct a path ~, which depends on the
starting point and is coherent with the Zorich-Kontsevich acceleration.

Lemma 2.3. For a.e. (m,\) € R x A, there exists an arbitrarily large £ € N such that path
v = (m, A) of length £, which appears as a path followed by the orbit of (w,\) via R satisfies:

o A, is a positive matriz,

e 7 is the final vertex of -,

e the first and last arrow of v are of opposite types.
In particular, if (71, X') € Aysysyze, where @ is a path of length one consisting of the initial arrow
of v, then

R¥(m, N) = Rk, (m, X) fori=1,2,3,

where L is the number of type changes in the path .

Proof. Since R is ergodic, we may assume that (m, \)R x A4 is a generic point for R. W.l.o.g
we may also assume that R(w,\) is of "top" type, the "bottom" case is symmetric. As in the
proof of Lemma 2] by iterating R long enough, we obtain a path of some length m € N, whose
associated matrix is positive. This applies also to any path obtained afterwards, since the product of
non-negative matrix with positive diagonal entries with a positive matrix yields a positive matrix.
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Consider an arrow which ends at 7 that is of "bottom" type. Let ' be the initial vertex of
this arrow. Then for a positive measure of ;\, we have that R(r’, ;\) is of "bottom" type. Hence by
ergodicity of R, there exists m > m such that the path v obtained as a path followed by the orbit
of (m, ) of length m via R, which satisfies the desired conditions. If the path + is not already long
enough, then it suffices to consider a long enough concatenation of paths ~.

The last assertion of the Lemma follows from the definition of the Zorich-Kontsevich acceleration
and the fact that the first and the last arrow of v are of opposite types. Il

Finally, we state a result that we use directly later in the proof of Proposition .11

Proposition 2.1. For a.e (7, :\) e R x A4 and for any open neighbourhood (7, 5\) eU SR x A4,
there exists a path v in R of length || such that A, < U and there exists a path 7 with Ay < A,
such that for a.e. (w,\) € A5 the following conditions are satisfied

(m, A) is infinitely renormalizable.

The next 3¢ Rauzy- Veech renormalizations of (w, \) follow the concatenated path ~y %~ # 7.
R¥(m,\) = RE, (7, \), forie{1,2,3}.

R (m,N) ¢ A, forie{l,...,3L—1}.

AURE,(A) URYE,(A) SR x {Ae A | |Aa — Ag| < v} . In particular,

A (7, 0)

)

max —- <l+4vw (8)
a,BeA, (<L)
ie{g,el,2} )‘ﬂ (W’
[ ]
(Z'L)(7r
max ———12> < (C,. 9)
a,BeA, (¢L) v
z‘e{f,eQ,B} dg (m, )

o The entries of Ay are all > 2.

Proof. Recall that v can be chosen so that all entries of A, are positive. It is a well known
fact that positive matrices act as contractions on A (see e.g. Proposition 26.3 in [17]). Hence, by
concatenating the path v multiple times if necessary, we obtain that A, < U. Also by concatenating
if necessary we have that all entries of A, are bigger than 2. The remaining conditions follow from
Lemmas 2.1], applied to the path « * ~ * v and Lemma O

2.5. Nudging of discontinuities. We now present one of the main tools, which is nudging of
the cocycles. This notion was first introduced and is directly inspired by the work of Chaika and
Robertson [4]. Given f € Cp,ar of the form pixjo.q) + -+ + Pm+1X[qi+-+qn,1) fOr some some
(¢,p) € RTH x R™+1 we can move the location of its i-th discontinuity by ¢ € R provided
that |¢]| < g, where I' := min{q1,...,¢m+1}, by considering the function nudge(f,%,¢) € Cp.m
associated to the vector

 Pi+19i+1 — Gpi

(qla---v%—la%’ + ¢ qir1 — G Givls -y Gmt1, P15 - - -5 Di ,Pi+2,---7pm+1> .
Giv1 — €

Notice that the location of other discontinuities, as well as m — 1 of the possible values taken by

f, remain unchanged. Moreover, we have

Pi+1Gi+1 — CPi
gi+1 — ¢

_ |SPiv1 —Cpi
gi+1 — ¢

2l _amid _ avigl
|gi+1 — ¢ Qi+1 r

) _pi+1‘
which implies the following.

Lemma 2.4 (Lemma 4.3 in []). For any f = piX[0,q1) + - + Pm+1X[q1++am,1) € Cm,mr and any
¢ € R werifying |(] < %min{ql, ey Qmt1}

aM }
’ min{qlv"'vqurl} -

¢] < | — nudge(f, 3, 0)] < |<|max{1
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3. PrROOF OF THEOREM [I.1]

We will follow the strategy described in Section [[Il Let T' be an IET ergodic with respect to
the Lebesgue measure, satisfying the conclusions of Theorem [[.2] for some C,§ > 0. Notice that
by Theorem [[L2] this is satisfied by a full-measure set of IETs.

Suppose, for the sake of contradiction, that for a positive measure set W of functions f in Cy, wm,
the associated skew-products Tt are not ergodic. We assume WLOG that, for any f € W, the group
generated by o(f) is dense in R and that the conclusions of Theorem hold for f.

Step 1 - Construction and decomposition of a family of Ty-invariant measures. For any
f in an appropriate positive measure subset V' < W, we will define a measure py on [0,1) x R,
depending in a measurable way on f, such that

e (i is invariant by T';

e py # cLebpg 1)xr, for any c € R\{0};

o uy & Lebjo 1)xr-

Our construction relies on many well known techniques and schemes, but is rather technical.

For the sake of clarity and completeness, we provide a full proof of the existence of the measures
described above in Proposition [A.1] of Appendix [Al

Step 2 - Decompose the measures ;. on the fibers. For each f € V, we decompose pif
with respect to the partition of [0,1) x R in vertical lines, and denote this family of measures by
{1f 2} wef0,1], Where ps . is supported on {z} x R. Notice that the map (f,z) ~— py,. is measurable
with respect to f and x. Indeed, it is formed by gluing the pieces obtained from standard disinte-
gration over the first coordinate on the sets of the form [0, 1] x [N, N + 1], N € Z. Moreover, since
pr is Ty invariant and by the uniqueness of this decomposition,

k
tgrey = (T5)x (bpa), (10)
for a.e. z and any k € Z. As an abuse of notation, in the following, we will treat the measures
{17.2}ve[0,1] @s measures on R. With this convention, equation (I0) becomes

tg, 0@y = (Vs p(a))«(f.2), (11)
where S f(x) denotes the k-th Birkhoff sum of f with respect to T and

V.,: R — R
t — t+r’ (12)
for any r € R.

We will assume WLOG that, for any f €V,

e /if is not a multiple of Lebg, for a.e. z € [0, 1).

Indeed, if there exists a positive measure set of points in [0, 1] for which pf, = ¢;Lebg, for some
constants ¢, € R, then, by (I0) and the ergodicity of T with respect to the Lebesgue measure, it
follows that a.e. z € [0,1) is of the form puy , = ¢;Lebg. Since the function = — ¢, is T-invariant,
by the ergodicity of T with respect to the Lebesgue measure, there exists ¢ € R such that ¢, = ¢,
for a.e. x € [0,1). Therefore, j1y = cLebyg 1)xr, Which contradicts our initial assumption on .

Note that, since the map (f,z) — ps, is measurable, the set U = {(f,z) € V x [0,1) | s p #
cLebg, Ve € R} is measurable as well.

Step 3 - Consider an appropriate continuity set for the (cutoffs of) the map (f,z) —
pyze For L >0, let py, 1 be the normalized cut-off of the measure of ys, to [—L, L]. By Lusin’s
Theorem, there exists a compact set K < U of positive measure such that, for any D € Qn (0, +00),

bp: KU — Mg . .
° 1s continuous,
(fa :E) = Hfz,L
where M p denotes the space of probability measures on [—L, L].
Moreover, there exists a positive measure subset B € K so that the following holds.
e The sets E; = {y € [0,1) | (f,y) € B} and P, = {g € Cp,m | (g,2) € B} have positive
Lebesgue measure, for any (f,z) € B.
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e z (resp. f) is a density point of E; (resp. Py), for any (f,z) € B.
e For any 0 < £ < 1, there exists N € N such that
Lebe,, . {9 € P | d(f,9) < 3} Lebjo{y € By ||z —yl < 7}
Lebcm,l\/f{g € Cm,M | d(fag) < %} , %
for any n > N and any (f,x) € B.

> £, (13)

Indeed, we may define a map = : K x [0,1] — [0, 1]? given by the following formula

(2. €) = (Lebcm’M{g €Cmu | (9.2) € K, d(f,g) <€} Lebpu{ye Er|(f,y) e K, |z —y| < e})
SR Lebc,, y19 € Cmr | d(f.g) < €} ’ Ze -

Note that, if (f,z) € B is a density point of K, then by Lebesgue Density Theorem applied to the
set K lime_0Z((f,z),e) = (1,1). Since a.e. point in K is a density point, we can find a subset
B’ € K of density points of positive Lebesgue measure, such that for any 0 < ¢ < 1, there exists
N¢ such that for any (f,x) € B’ we have

E((f,2)6) < (6117

for any € > 0 small enough. It is now enough to take B to be the set of density points of B’,
and notice that for every (f,z) € B, vanishing in measure of either of the sets Ey and P, would
contradict the definition of a density point.

Step 4 - Find good returns to the set Ey. Fix (f,z) € B and D > mM. We can define
sequences ()k=1 S Ef, (r)e=1 € N, with r, " +00, such that:
(1) xp, T (z1) € Ef N (z - %,:ch %),
) ’Smf SCk)’ < D
(3) {Ti(x )};;01 is £ -dense in 1,
(4)

where C' := C' + 1, 0’ := § and C,0 > 0 are the constants for which the conclusions of Theorem
hold.
Indeed7 let Ny > 1. For any k > 1, Theorem [[.2 applied to Ey, = Ef n (m — %,x + %) with
= 2k + Ny yields a point y; € Ef n ( - %,:I: + i) and a natural number 7, > N such
that Yk, T"*(yi) € Ek, |Srkf yk)| < D, {T%(yr)}iky Uis %—dense in I, and either [yk — %,yk] or
[yk, Yi + m-] is a continuity interval of T7*. Let Jj denote this continuity interval.

/ ’
o o\ e -
( T Tk m) is a continuity interval for T7*,

By ([@3)), up to consider Ny sufficiently large, we have
[T 0 B |, [T (Jy) By > 22l (14)
Notice that, since Ji, T (Ji) < (m — %,x + %), we have

JenEf=Jy,nEfn (zf%,z+%) T™(Jy) " Ep =T (Jx) n Ef N (xf%,z+%),

and thus equation (I4) yields
[k Efn(z—f,2+5)nT ™(Efn(z— 1,2+ 1)) > Ukl

Therefore, there exists xj € %Jk, where %Jk denotes the centered interval inside Ji of length %|Jk|,
satisfying the first two assertions above.

Since {T%(zy)}i%y" is simply a translation of {T%(yx)}/%," by at most = ~, ay, verifies the third
assertion. Finally, noticing that (zk — 4Tk , Tk + H) c Ji, it follows that xy, also verifies the fourth
assertion.

Step 5 - Construct appropriate perturbations of f. We will define §; > & > 0 and sequences
(9ik)k=1 € Cm oy of perturbations of f, for ¢ = 1,...,m, such that, for any £ > 1 and any
t=1,...,m,

(1) lgik — fI < £
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(2) For any g € Cpy ar verifying |g — gkl < £ the i-th discontinuity of g belongs to the

Tk 3

Rokhlin tower |_]T" Lpi (xk —Z rp+ —) Moreover, no other discontinuity of h belongs

to |_|;k=01 Tz — m’xk + 4nk)'
We will do it by nudging, as defined in Lemma [Z4l It allows to control a relative position of the
discontinuities inside the chosen Rokhlin towers.
Fix 1 < ¢ < m. By nudging f using Lemma [Z4] let us construct a function g; € Cp ar such

that its ¢-th dlscontmulty belongs to |_|T’“ ! Tl( %, TE+ %) and no other of its discontinuities
rr—1
belong to |_]j’“:0 T? (zk — 5T , Tk + 57‘k)
Recall that any f € Cy, a is identified with a vector (¢,p) € R™™! x R™F1. Let us denote
t 40’

I := min{qi,...,¢m+1}. By nudging f at most m times by a distance of at mos e (which we

assume WLOG to be smaller than %), we can define a function g,, € Cy, »s having no discontinuities

in [ [ ! T (2, T + 5T,) and such that |f —g,| < 4;’;:, AMEL Tndeed, we can move the

locat1on of any discontinuity of f in an interval of the form T (zk - ?)T”;,:ck + gTU;) to 17 (xk —
2Tk t+ 7 )\Tj(zkf‘li Tk +—)

5ry? 57

Slnce {Tz(xk)}” Lis T—-dense in [0,1], it follows that [0, 1]\ L[}, L (z1 — 4‘1/ T + 4"/ )is a

finite union of closed intervals of length at most & et Hence we can define a function g; x € Cy M

whose i-th discontinuity belongs to |_|T’“ Li (zh— & ok + 2 ) and verifies g, — gix| < C 4”{1“

5Tk

by moving the location of the i-th discontinuity of T by a dlstance of at most T%/ (which we again
assume WLOG to be smaller than %) to the closest interval in the Rokhlin tower |_|;’“=_01 T (), —

!
ag
T Tk m). Moreover, we have

If = gikl <|f =Tkl + 19k — gik| < GRRE
Tk

where &, = 2(ma/+C£‘)(4I\/[+1)

Finally, setting & = g5, for any h € Cy, s verifying |h — g; x| < f—i and any 1 < j < m, the
distance between the j-th discontinuities of h and g; j, is at most o . Hence, for any such h, only
the i-th discontinuity of A belongs to the set |_|j’“:0 Tz(zk — m, Tk + %)

Step 6 - Define sequences (fi,k,z,f) € B converging to (f,z) for which Srkfiyk(z;f) are
bounded and differ by o}(f; ). We now find two points z;, and z;, to the left and to the
right of xy, respectively, such that, roughly speaking, the fiber measures corresponding to x;: and
x,, are close to the fiber measure corresponding to z; and yet differ via shift given by the jump
discontinuity.

By ([@3)), for k sufficiently large,

min {u{ye Ef ||k —yl < £}, n{y € Bp [|T7 (z1) — y| < f—k}} > 122,

Hence

u{ye( iT, 2Tk)‘yeEfandT’€()eEf}>0,

u{ye (xk+ 30 T 4Tk)‘y€Ef and T”(y)eEf} > 0.

’
g

y Tk — ﬂ) and xk (wk + 2 , Tk + 4 ) such that
(foz). (F, T (x7)) € B.
Similarly, by (I3) and for k sufficiently large,
min{“{gepﬁ“gfﬂ <t hi{g € Proos o — fl < f_i}} e
> T
H{QECmMHg f|<51} 8v/m+1

Thus, there exist z; € (xk 4Tk
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Hence, noticing that & < %1 and recalling that |f — g; x| < 7, there exists f; x € Cp,,ar such
that
fik =gkl <22, (firszi), (fise, T (2)) € B.

Notice that by the second assertion in Step 5, we have
Srifige(@y ) = Sy fi(z)) = oi(fik)-
Moreover, by the second assertion in Step 4 and since |f;  — f] < %,

|Sr fie(@E)| < D+ &+M.

Step 7 - Use the measures 1, ot to conclude that (V,, ())«(ptf2) = pty.- In the following,

let i € {1,...,m} be fixed. Notice that to prove (Vy,(f))x (Mf, ) = |if 2, Where V(¢ is as in (12,
it is sufficient to show that

(Vai(f))*(:uf,z)(‘]) = Mf,ac(*])a (15)

for any open bounded interval J.
Recall that by definition of the set B and by the constructions of the sequences in the previous
sections, we have, for any L > 0,

Pofe ot no Pf o T (2,1 —’ Ife,L- (16)

Let J = (a,b) be an open bounded interval and let L > 2max{|a|, o]} + D+ & + M + 1. By
taking a subsequence, if necessary, we may assume that S, f; x(x, ) converges, as k — 0. Let us
denote its limit by ¢. Denote,

Je = (a—¢,b+e),

for any — (b;a)

<e< (bg“). Notice that for any e as before, we have

Je+t< [-L,L].

By (), for 0 < e < (b;a) sufficiently small,

Mfi,k,Trk(z;—f),L(‘]_*G —1) =y, o (mg) L(Joe—1)

= Wpypwt  (Jme =t Se fin(ai)

> 11y 0t s+ P & 20
By Portmanteau’s Theorem and (I6), taking the limit as & — o0 in the previous expression yields

(T =1) = ppan(Jac+ 257 £ 250),
By taking the limit as € N\ 0, we obtain
ppan(J —t) = (] + 20 4 2y,

Similarly, by (II) and for 0 < e < @ sufficiently small,

Ufi,k,Trk(zg),L(J*% —t) = Fi oz, (J 2e¢ — t+Smfi,k(zlJ€r))

(J, Uiéf) + Ui(f)).

uflkﬂwkﬂ - 2

As before, taking limits first as k — oo and then as € N\ 0, we obtain
Hpan (T =) < prap(]+ 20 £ 20,
Therefore,

(S —t) = pga (] + 240

=+
)
o
-
N
—

In particular,
pfa(J +0i(f) = pran(J +0i(f)) = ppan()) = pra(J),
which shows (I3).
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Step 8 - Conclude the proof. Since the set of jumps of f generates a dense group in R and, by
the previous step, we have

(Va'i(f))*(/'[/fam) = Hfx;
for any i = 1,...,m, it follows that py ., is a multiple of the Lebesgue measure on R, which
contradicts our initial assumption on the measure py .

4. PROOF OF THEOREM

Throughout this section, we fix d,m > 2, M > 0, and a Rauzy class 8. We denote by 6; the
largest Lyapunov exponent of Ry, when restricted to % x AA. If d > 2, we denote by 6 the
second largest Lyapunov exponent of Mg, when restricted to & x A, Otherwise, we let 65 = 0.
Notice that in both cases 0 < 64 < 0.

First, it will be crucial for us to have control over the maximum possible growth of Birkhoff
sums of a given piecewise constant cocycle over a given IET. This will be a direct consequence of
the following well-known result due to Zorich [20, Theorem 1].

Theorem 4.1. For a.e. IETT = (1,)\) € R x AA

log |Xa (z,n)=Aan| _ 9_2

max lim sup Tog 1 o,

z€[0,1) n—ow
where xq(x,n) is the number of visits to I, of the first n iterates of x by T. Moreover, given ¢ > 0
there exists N(T,<) € N such that for any n = N,
6.
max |Xao(z,n) — Agn| < no e
z€[0,1)
By considering TETs with m marked points in the theorem above, one can easily deduce the
following.

Theorem 4.2 (Deviation of ergodic averages). For a.e. IET T = (7, \) € R x A there exists a
full-measure set F < Cy, pr such that, for any f € F and any s > 0, there exists C = C(T, f,s) >0
satisfying
92
ST < C H‘FC,
Jmax. |5, /()] < On
for any n = 1.

In addition to this, we want appropriate collections of Rokhlin towers. The main requirements
to define these Rokhlin towers are the following: First, for any subtower whose height is a fixed
proportion of the total height, say %, this subtower remains almost as dense in [0,1) (up to a
constant depending on 7)) as the full tower. Second, the heights of the full Rokhlin towers grow at
a rate only slightly larger than n'*¢, for some € > 0 sufficiently small.

Proposition 4.1. Given € > 0, there exist C,no,c > 0 and a positive measure set A = R x A4,
depending only on R and €, such that for a.e. IET T = (m,\) € B x A and any n > 1o there
exists a sequence of recurrence times (ng)reny S N (to A with respect to R) for which the sequence

By, 1= minq&"k), k=1,
acA

satisfies the following:
i) For any x € I and any k > 1, either |_|?;L(’§71 T ([x — 72,2]) or |_|?;(’§71 T ([z,z + 7=])

R
"k k
consists of hy, disjoint intervals.

it) For any x € I and any k = 1, the set {Ti(x)}y!a’“/njil is %i—dense in .
nk
1
i) limsupy,_, ., (hn, )% < Onlte.

As we shall see in Proposition 2] the collections of Rokhlin towers given by Proposition 1]
together with Theorem will allow us to combine, for some point = in a given positive measure
subset E, the recurrence times of = to E with the times where the Birkhoff sums S, f (x) is uniformly
bounded.
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Proof of Proposition[{.1} Fix 0 < € < 1. Our construction will depend on two (small) positive
constants

0 < v, < min{e, Wld}
whose exact value, which depends only on R and ¢, we specify at the end on the proof (see (26])).
Let (7, ) € % x A be an IET, generic w.r.t. R such that

o maxy g |Aa — 5\g| <v/2,

e ISi<jsd= A1 <A1 < A

Let

U:={n} x {AeA?] rg%xp\a —Mgl<v and 1<i<j<d= A=ty < Arciy < )\ﬂ_o—l(j)}.

Consider the v = v(m, A) of length £ := || and the path 4, both given by Proposition 21l applied
to (m,A) and U.

Since for any (m,A) € As the intervals before exchange are ordered increasingly, for any « €
A\ {7y (1)} there exist exactly two distinct symbols oy, o, € A such that I, and I, are adjacent
intervals (more precisely, the right endpoint of I,,, and the left endpoint of I, coincide) satisfying

T(I) A I # 3B #TU) " 1s,, TS Iy, UL,

Moreover,

T(Ley1 (1) < Lopray

By taking a subset A < Ay of positive measure, increasing the constant C,, if necessary, we have
that

e For any (m,A) € A URE,(A) U R, (A) with exchanged intervals {I,}aea
T(la) nlg# &= |T(la) n1gl = C". (17)

Indeed, it is enough to consider a finite number of subsets of A5 with connections given by single
iterations of T' and remove their small enough neighbourhood. This last property will be useful
later in the proof when considering Condition ().

Let us fix an infinitely renormalizable IET (7, A) returning to A infinitely often under the action
of R (recall that a.e. IET verifies this by the ergodicity of R) and denote by (my)ren the associated
sequence of first returns. Notice that, by Birkhoff’s ergodic theorem,

mk_ 1

lim — =

k—owo Kk p(A)7
where p denotes the RV g z-invariant probability measure described in Section 2 Moreover, since
this measure is equivalent to the Lebesgue measure in any compactly contained subset of R x A4
(in particular, in R x {)\ e AA | [Aa — Ag| < ﬁ} which contains A), there exists Cy > 0, depending
only on d, such that p(A) < Cyv. Therefore,

k
limsup — < Cyv. (18)

k—oo TNk
The desired sequence of return times (ng)reny will be a subsequence of (my + 2L)gen. This choice
is made so that, for any k¥ > 0 and any z € [0, 1), in addition to the length and height vectors

satisfying (8) and (@), the orbit {Ti(x)}?:""(j_l goes through all the floors of the every tower in the
Rokhlin tower decomposition associated to the renormalization time my. This will be useful only
later in the proof of Proposition and so, for the sake of clarity, we discuss this (and prove it)
in detail in Claim 411

By the integrability of the Zorich cocycle (when induced to A) and the dominated convergence
theorem, we have

N N
. . 1 1
tim Jim | S log [QUm1,mi)] = 1 D Xi@tma 1 mayi<ar 08 [QUmu 1, ma)| | =0, (19)

M—o0 N—
k=1 k=1
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By (I9), there exists ny = exp(%), depending only on A and §, such that for any 1 = no,

N

1

= 2 XiQ0mema= 108 [ Qi1 mi)| <. (20)
k=1

In the following, we will always assume n = 7.
Let (my, )ken be the subsequence of return times such that

|Q(mr,—1,mr )| > 1. (21)

By ergodicity of the Zorich-Kontsevich cocycle, this sequence is infinite for a typical IET. Notice
that this subsequence verifies

1
lim sup K < L& < min {(5, —} . (22)
koo Tk logm logn
Indeed, by (20),
klog(n®) 1 &
T S ;X\\Q(miﬂ,mi)umé log [ Q(mi—1,m;)| < 6.
Denote
Ca 1= dC2| A,
and define (ng)ren := (my, + 2L)gen inductively by setting o = 0 and, for any k > 0,
s , |1Q(m;, mu)| = nCa,
lp11 := min {l > [l < j < st 1Q(ma, masn)| <. for j<i<l | (23)

Let us point out that the condition above gives rise to a well-defined infinite sequence (Ij)xen-
Indeed, if only K > 0 elements of this sequence can be defined, for any N such that ry > [ and
any M > N, by 20),

M M
1Q(mry,mr )l < [T 1Qmr—1,me)| [ [ 1Qmr,,mr 1)
i=N+1 i=N

< exp(6rar)(nCa) N

Hence, by 22)), if M is sufficiently large then

1 M
log HQ(mTN ) mTM)H <0+ (10g77 + log CA)
M M
<d+1+6logCh.

Assuming that ¢ is sufficiently small so that the RHS in the previous equation is smaller than log 2,

this contradicts the fact that |Q(my.y, My, )| = [A4™ ™ = 2" ~"N for any M > N > 1.
Therefore, using ([23)), we can define sequences (Ix)ken, (Sk)ren S N such that

nCa < HQ(mlk_sk’mlk)H < HQ(mlk_sk’mlk_l)H HQ(mlk_l’mlk)H < 771+60Aa le <lps+1 — Sk+1,

for any k£ > 0.
Denote (Tig)gen = (M, —s, )ken- The equation above implies that

nCal A7t < 1Q(k + Lyni — L)| = [Q(mu—s, + Ly, + L)| < 7' °Call Ay (24)

We now check that this sequence satisfies all the properties in the statement of the proposition.

Condition (i): Define o := ﬁ. Fixze[0,1])and k> 1. Let e € Aand 0 < i < g™ such

that x € T* (Ié"k)). Let oy, € A be two symbols such that qunk)(lén’“)) c 10 O 18 and

I&?’“), Ig:k) are adjacent intervals. Notice that, since (7(™*) A("*)) e A, by (), two such symbols
always exist. By (I, either

[ 2] S TH(I¢),  and 7% ([o——2s, a]) € I8 or T% =i ([o— =2, a]) < 1),
do do qo
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or
. (ng) . k)
[z, 2+-Z5] = T’(I&”k)), and T " [z 2+ =E5]) = I(”’“) or T4~ [z, 2+ o —Z51) < Ié’:’“).
o o
Let us point out that both sets of conditions can hold simultaneously.
Assume without loss of generality that
(ng)

[x7x+q&gk)]gTi(Ig"k>) and T '([:c,:c+q<”k>])€fé7”’

a

the other cases being analogous.
. . oy — i . . C e
Then, since h,, = min, q,(l ’“), it follows that  J, "% ! TZ([:c T + %m]) is a union of disjoint

k) )
intervals contained in the union of the Rokhlin towers | ) TZ( ) and Uqal ~lop (Ig:k))

associated to the nj step of renormalization.
Condition (f): Notice that for any z € [0,1), any k¥ > 0 and any « € A, the orbit {T%(x) ;?(;";’“ i
is maxg )\ékarL)-dense in [0,1).
Indeed, since the first L Zorich renormalizations of (7("++L) A(mx+L)) follow the path v and
k

. (my,+2L)
A, is a positive matrix, the orbit {T%(z)}{=, ~! goes through all Rokhlin towers associated to

(m(matL) A(mitL)) at least once.
Fix z € [0,1) and k > 1. We have

hny 2 78 1a")| =

2| Q (M, i) g ™|
= ﬁ‘A'yQ(ﬁk + L,ng — L)A’Yq(ﬁk)‘

\%

ﬁ”@(ﬁk + Lyng — L)[|q™]
> )™,

where, in the third inequality, we use the fact that the matrix A, is positive and the matrix @ is
non-negative, and, in the fourth inequality, we apply (24)).

Hence, the orbit {T"(x )}lh”’“/ " goes fully along at least one of the Rokhlin towers associated
with (7)) X)), Tt follows from the remark above that this orbit is maxg )\glrL)—dense in [0,1).

Since X5 4 )\(ﬁﬁrL)qéﬁrL) =1, by () and (@),

max/\( D) Oy
B d|q("k L)|

Hence, noticing that
ho < Cylg™], ") = Q(my, — Lynk)g™ ", Qi — Lyny)| < n'H0CalA, |7,
it follows that

max G < Cin”;hcniumuz.
Therefore, denoting
[ C2Cs]A
4 5
and since 0 < § < ¢, it follows that the orbit {Tl(x)}zligk M= s C}?Tl:e—dense in [0,1).

Condition (l): Fix k > 1. Notice that
|Q(ni—1,n)| < (P Cal AP Ca)™ [T 1Qmr—1,my),

€N
Ng—1 <My, SN|
where py 1= #{i € N | n_; < m,, < ng}. Indeed, recalling that ny = my, + 2L (see (23)), the
times m,, (see (1)) satisfying ng_1 < m,, < ny divide the return times between m;, _, = ny_1—2L
and my, = ni — 2L into at most pr + 1 blocks so that, on each block, the return times satisfy
|Q(ms, miy1)| < n°. By @3), the norm of the first p;, blocks is smaller or equal than nCa while
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the norm of the last block is smaller or equal than n'T°Cj. More precisely, if we denote these py
return times by

N1 <My, <My, < ooy, < Ny < Ny,

Pk

then,

HQ(mtl_l,mt )H , for i = 1,...,pk—1’

|‘Q(mtz’mtw+1 1)“ § nCAa for i = 1 s Pk — 1;

1Q (=1, me,—1)| < [mu,_, e, —1)|| < 1Ca.
|Q(me,, )| < 1Q (e, muy ) 1Q (M, —1, mu, )| |Q (1, 1ty 2n) | < ' HOCA[ AL
Hence,

|Q(no, )| < (' Call A mC)™ TT  1Q(mr,—1,mi)l, (25)

mo<mpr; émlk

k .
where Py := >}, p;. Notice that by @0), P < lolgn.
By ([I8), for k sufficiently large, 7—%; < Cyv. Hence, using (20) to bound the product along the
return times m,, in ([28)), for & sufficiently large, we obtain

1
7 log[Q@(no, )| < log(n' °CallA, ) +

log(nCA) + 5—

k:l
l log(C
<log(n'**Cal A, %) + 7 (1 + ﬁ + 6)

n
< log(n'*Ca Ay |%) + 75 Car(1 +20),

assuming 7 is sufficiently large so that log(cA) < 4.

Since limg_, o M]\(ION)H = 0, then, for k: sufficiently large, the previous equation yields,

e _ Nk log |Q(no, n.) |
k log|Q(no, )l k
; 146 2 ng
<o 5 (1og(77 CalAy]?*) + 2= Car(1 + 25)) .

Thus

E 01— 9 01— 9
Finally, for k sufficiently large,

(hn )" < 1QO,ni)[1L,... ]|V

exp ((91 + 5)%)
01+9 v(14+25)\ 1
< (H0CalA, 20 ()
< (CallAy[?)1*e,

where we assume that v and ¢ are sufficiently small, so that

nie _ log(n'*°CalA4,]?) (1 _ Cav(1 + 25))_

N

01 +0 Cav(1 +26)\
146 1- 22T <l 26
(1+ )91—25< R e (26)
where Cy is the constant in (8], which depends only on d. O

Using the previous ‘balanced times’ given by Proposition LTl we can prove the following.

Proposition 4.2. Fiz € > 0 satisfying
0
(1+e)= <1, (27)
61

and let A,v,L,C,Cy,v,n0,0 as in Proposition [{.]]
There exists n = 1o, depending only on R and €, such that for any IET T = (7,\) € R x A4 as
in Proposition [{-1] and Theorem [{-2, and for a.e f € Cy, m, the following holds.
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Let (ng)k=1, (hn,)k=1 S N be the sequences given by Proposition [[.1] associated to T and 1. Let
D > mM and E < [0,1) with positive Lebesgue measure. Then, for any P € N there exist y € E,

and natural numbers p = P and e <n < hy,, such that:
(1) T"(y) € E,
(2) 1Snf(y)l < D.

Proof of Proposition[{.2 Fix ¢ > 0 satisfying

0
(1+e)<—2+<><1—<. (28)
2
Notice that such a value exists since, by assumption, € verifies [27)). Fix n € 2N satisfying
n > max {, (4C) 1<}, (29)

and let (ng)k=1, (hn, )k>1 S N be the sequences given by Proposition ] associated to T' and 1.
Assume, for the sake of contradiction, that the conclusions of Proposition do not hold for
some D, P > 0 and some E < [0,1) with § := |E| > 0.
Up to considering a positive measure subset of E, we may assume, without loss of generality,

1nf (mf{z 1| T'(z) € E}) = hn,. (30)

Fix ¥ > 0 satisfying
1
Y < oA e ey (31)
and let x € E be a density point of E. Fix k > P and define

k) i= {0 <i < by, [|FR(T'(2)) 0 B| > (1= 9)|F(T ()|},

where F(T%(z)) denotes the unique floor containing 7%(z) in the Rokhlin towers decomposition
associated to the renormalization time ny — 2L.

Claim 4.1. There eists kg > 0 and 0 < § < § such that |Lo(k)| = Shn,, for any k = ko.

Proof of Claim [f-1} Notice that by the choice of A in Proposition T}, the orbit {z, ..., T"~1(z)}
intersects all floors in the Rokhlin towers decomposition associated to the renormalization time
ng — 2L. In particular,
Binj —1
[0,1)= (] Fu(T()). (32)
i=0
Indeed, as ¢(™) = A.Yq("k_L) and all the entries of A, are larger or equal to 2, it follows that
B, = 2|q™=1)|. In particular, the orbit {z, ..., T"~1(z)} goes through at least one full Rokhlin
tower associated with the renormalization time nj — L. Moreover, since ¢("*—L) = A.Yq(”k‘*QL) and
A, is positive, this orbit goes through all the Rokhlin towers associated with the renormalization
time ng — 2L at least once.
Since a.e. x € F is a density point of F, there exists ¢y > 0 such that the set

— Leb eFE -yl <t
E:={er‘V0<t<to, oty 2t||x d }>1_g}
satisfies B
E| > 3.
Let kp > 0 sufficiently large so that, for any k > ko,
I;leéa( /\gﬂk72L) < tp.

Fix k > ko and let us denote
L={0<i<hy, |EnFE(T(x))# T}

Notice that, by definition of E,
Lc Lo(k)
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By B2) we have E < | J!"s " Fi.(T%(x)). Thus,

d(1 +v)C,
oy

N | >l

B < | Fe(T(2)) < [T max AG 20 < |Lo (k)| max AL < |Lo (k)|
- aeA aeA
S
where in the last inequality we use Y acA A ge) — 1 together with @) and (@).
The result holds by setting 0 := 0 W

In the following, we assume that k > max{P, ko}, where kg is given by the previous claim.

Claim 4.2. There exists L(k) < Lo(k) such that |L(k)| = ¢ (g)kfp and, for any a,b € L(k), if
a # b then there exists P < p < <la—bl <

b,

Proof of the Claim. Starting from Lg(k), we define a nested sequence of sets

L(/{Z) = Lk_p(k) - Lk_p_l(k/’) c---C Lo(k/’) o= {0, .. .,hnk},

as follows. First, we split {0, ..., hy,} in n disjoint pieces with at most V;’“J consecutive elements

Jo,z'(k)={ilh%J,...,i[h%J—l}, i=0,...n—1,

hTL o
Jon(k) = {n | "= |- e}
Denote Lo i(k) := Lo(k) n Jo,i(k), for i = 0,...,n. It follows from Claim [L1] that

|| Loa(k)| = max{ || Loa(®)|,| | | Losk) } > [Lolk)l 5h’2”“, (33)

1€2N+p (k) i odd i even 2

by setting

and

where (k) = 1 if the maximum in the equation above is attained for ¢ odd, and ¢ (k) = 0 otherwise.

Since by assumption h,, , < [h—n&J for each 1 < i < 7 there exists a subset Jo; S Jo (k) of
Ry, _, consecutive elements such that Lo ;(k) := Lo(kz) N Joi(k) verifies

Ny

Loi(k)| =
Toalk)] = 5=

|L0(k) M Joﬁz(k”

We define
Lik):= || Toulk),
1€2N+¢(k)

which by (B3)) verifies
My [Lo (k)] U

2h,, 2 > Ohnsr g
Notice that by construction, L; (k) is the disjoint union of 7 disjoint sets, and each of these sets is
contained in a subset of h,,, _, consecutive natural numbers. Moreover, if a and b belong to different
pieces of this union, then |b — a| > Ay, .

Repeating the process described above to each of these sets in the disjoint union we can define,

recursively, sets Ly_p(k) € Lp_p_1(k) € --- < Lo(k) < {0,..., hn,}, such that, for any 0 < i <
k — P, the set L;(k) verifies |L;(k)| = dhn,_, (%11)1 and it is the disjoint union of (possibly empty)

(121)1 sets, each of these contained in a subset of A

and b belong to different pieces of this union, there exists k—i <

|L1(k)| =

consecutive natural numbers. Moreover, if a
< la—b| < hy,

Finally, the claim follows by noticing that by @B0) the (—) d15301nt sets defining L(k) =
Li—_p(k) consist of at most one element. Indeed, if this was not the case, there exist a,be L(k) <
Lo(k) such that 0 < b—a < hy,. In particular,

|FR(T%(2)) 0 Bl > (1= 9)|Fu(T*(2))],  [Fe(T(2)) 0 E| > (1 = 0)|Fu(T°(2))].  (34)

MNk—i
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If T7%(x) and T?(z) belong to the same tower in the decomposition associated with the renor-
malization time ny — 2L, then, by (1) and 34), T°~%(E) n E # &, which contradicts (30).
Otherwise, if T%(x) and T°(z) belong to a different tower in this decomposition, by (8) and (7)),

1
ka(Tb(m))L

and thus, by (1) and (34), 7°~%(E) n E # & which again contradicts (30). O

|70 (F(T% (2)) 0 Fi(T*(x))] >

Recall that either [:c — 2=, z] or [z, T+ hL] is a continuity interval of T"~«. Let us denote by
Tk Tk

. T . . . . By =1 s
J. this continuity interval. Notice that, since f € Ci, as is piece-wise constant and | |, ~ T"(Jq)
is a disjoint union of intervals, we have

1S:f(y) — Sif(y')] < mM, for any y,y’ € J, and 0 <i < hy, . (35)

Moreover, for any 4, j € L(k) with i < j, there exists y € T*(J,) n E such that 77~!(y) € E. Indeed,

by the definition of L(k), we have
|T7"(T"(Jo " E)) n E| = |T"(Js n E)| = [TV (T"(J. n E))\E|

Ty 0 B)| — |Fp(T7(x))\E|

Jo 0 B)| = 9| Fi (T (2))]

Jo)| = 9| (T (2))| = 9| Fi(T7 ()|

(nk72L)
-2 .
P~ 2

Since X5 4 )\gnrQL)qé"kﬁL) =1 and ¢(™) = A%q("k—ﬂ), by &),

T’L

|
|
r
|

\%

\%

T’L
o

\%

e N e e

A\

(1404,

max /\(B"’“_M) <
B Tk

Hence, by &1,
—29(1 +v)| 4,2 - 30

j—i (i g
|T7"(T"(J. " E)) n E| > - >

and thus there exists y € T%(J,) n En T (E).
Therefore, if we assume that the conclusions of Proposition are false, it follows that
|S]—Zf(y)| > Da
for any i,j € L(k) with i < j and any y € T*(J,) nE n T (E). In view of (35)), this implies that
1Sj-if(y)| > D —mM,
for any i, j € L(k) with i < j and any y € T%(J,). In particular, letting i) := min(L(k)),
151, (T (2)) = Si—iy FT(2))] = 1854/ (T(2))| > D — mM.

for any ¢,j € L(k) with i, <i < j and any z € J,.
Denote D’ := D — mM. The previous equation implies

L (S (T (@) = B Sii ST (@) + B1)| = DU(L(K)| - 1),
€L (k)\{ir}
In particular, there exists ¢ € L\{i;} such that
D/

Sica @) = 20w -0 > 2 (517 1)

Hence o
k—P
max {[S:, £ ()], 1S:f @)} = 5 (6 ()7 =1).
On the other hand, it follows from Theorem that

02
72+

max {| Sy, f(2)], [Sif (2)[} < Cohny,
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where C is a positive constant depending only on 7', f, <. The last two equations imply that
Cohi ™ > % (5(n*"-1).
Since the construction above can be done for any k& > P, taking k-th root and making k& go to
infinity, Proposition 1] yields
(Cn)(1+e)(%+<) > g
Thus, by [25),
Cn'= =

)

1S

which contradicts (29)). O

Theorem now follows easily from Propositions 4] and

APPENDIX A.

This section gives a detailed proof of the first step in the proof of Theorem [[LI] namely, the
following.

Proposition A.1. Let M >0, m e N and d = 2 be fived. Given a minimal IET T on d intervals
and a positive measure set W < Ci, ar such that for any f € W the associated skew-product T’y
given by @) is not ergodic w.r.t. to the Lebesque measure, there exists a positive measure subset
V € W and a measurable function f — uy from V to the space of Radon measures on [0,1) x R
such that

o iy ts tnvariant by Ty;

e py # cLebpg 1)xr, for any c € R\{0};

o py £ Lebg 1)xr-

Given T" and f as above we will construct the measure py by using the ergodic decomposition
of the measure Lebyg 17x[—1/2,1/2] With respect to the first return map of T} to the set [0,1) x
[~1/2,1/2]. Let us denote the first return map by T. Recall first, that due to Atkinson [2] we
know that if T is ergodic, almost every point is recurrent, that is, for every € > 0, there exists
arbitrarily large N > 0 such that |S, f(z)| < . In particular, the map T} : [0,1] x [~1/2,1/2] —
[0,1] x [~1/2,1/2] is well-defined and preserves Lebo 1]x[—1/2,1/2]-

For any f € V, let us consider the ergodic decomposition of Lebg 1]x[-1/2,1/2] With respect to
Tf:

Lebo,1)x[-1/2,1/2) = f _ pedps(), (36)
[0,1]x[—1/2,1/2]\Inv(T)
where p; is a probability measure on the space of ergodic components [—1/2,1/2] x R\Inv(T;) and
pz is an ergodic measure with respect to Ty (see [15]).

If Tf is ergodic then the space of invariant components is trivial and hence it is one point, while
if it is not ergodic, then the space is expected to be uncountable. Thus, to get a decomposition of
Lebpo,1]x[—1/2,1/2] that will allow us to measurably assign a measure to a point and a cocycle, we
need to consider a different decomposition.

Since (T}, pz) is ergodic for almost every Z € [—1/2,1/2] x R\Inv(T}), in view of Birkhoff Ergodic
Theorem, pz-almost every point is generic, that is the set of points x € [-1/2,1/2] x R such that

in the weak-* topology. In particular, almost every point with respect to Lebo 17x[—1/2,1/2] is generic

for the measure p; for some unique 7 € [0,1] x [~1/2,1/2]\Inv(T}). Let us denote this measure by
Dz, f- We have the following result.
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Lemma A.1. We have the following decomposition:
Lebpo,11x[~1/2,1/2] = J Pa,f dx.
[0,1]1x[—1/2,1/2]
Proof. By (B6]) we have

Lebpo17x[—1/2,1/2] = J _ pzdps(T)
[0,1]x [—1/2,1/2]\Inv (T} )

f - J- Dz dpz dﬂf@)
[0,1]x[=1/2,1/2]\Inv(T}) J[0,1]x[—1/2,1/2]

= J _ J Pz dpz dpy(T)
[0,1]x[=1/2,1/2N\Inv(Tf) J[z|pe, r =pz]

Since the set [z|pgs, s = pz| coincides with the invariant component Z (up to the measure p;), we
get

Leb[O,l]x[fl/Q,l/Q] = J-

| ps st dos (@)
[0,1]x [~ 1/2,1/2]\Inv(Ty) Jz

J Pz, f dLeb(z).
[0,1]x[—-1/2,1/2]

O
Remark A.1. By the Birkhoff Ergodic Theorem, the decomposition in the above lemma is trivial,

that is every measure in the decomposition is Lebesgue, if and only if Tf 1s ergodic, which, by
recurrence, is equivalent to the ergodicity of Ty.

We need the following, simple lemma on the properties of the set of point convergence.

Lemma A.2. Let {f,}nen be a sequence of continuous functions on a topological space X to the
complete metric space (Y,d). Then the set

C:={zxeX| lim f,(z) exists}
n—o0
is Borel.

Proof. Since the space (Y,d) is complete, we have
C = {zx e X |{fn(z)}nen is a Cauchy sequence}.
Then
o8] o0 o8] [oe]
= U N NizeX|Iflz) = filx)] < 1/m},
m=1N=1k=N (=N

which, together with the assumption on the continuity, finishes the proof.
O

We now turn into one of the main measurability results, which is going to be used to construct
proper measure assignments. First we introduce some auxilliary sets. Take

D:={(z,f) e ([0,1] x [-1/2,1/2]) x W | S, f(x) # £1/2 for n € Z}
and

k— . . .
B {(z, £e([0,1] x [=1/2,1/2]) x W TF(z) does not belong to the vertical line given }

by the discontinuity of f or T for any k € Z

Note that the complements of these sets are of 0 measure. Indeed, the points that do not belong
to one of those sets, satisfy one of countably many linear equations. Note also, that E and F sets
are defined topologically, not just up zero-measure sets.

Proposition A.2. The assignment (x, ) — pg f, as in LemmalA 1], is measurable with respect to
the product topology in the domain and the weak-* topology in the image.
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Proof. Consider the function G, : ([0,1] x [-1/2,1/2]) x W — M, where M is the space of
probability measures on [0,1] x [—1/2,1/2], given by the formula

1 n—1
G2, f) = = D S
=0

On ([0,1] x [—1/2,1/2]) x W we consider the product of Lebesgue measures. We will show that
G, is continuous on a full measure set.

Take (z,f) € D n E and let (2, frn) — (z,f) and let py,...,p, be discontinuities of f.
Moreover, let s1,...,s4 be the discontinuities of T. We will prove that

Pick any € > 0 such that

€< %min{kz min  (|Skf(x) —1/2|) min  (|Skf(z) +1/2|),

0,...,N(z) " k=0,...,N(z) (38)
. Tk . . Tk .
oy, L@ = pels o T (@) = sil},

where N(z) is n — 1-th return time of = to [0,1] x [-1/2,1/2] via Ty. Note that by definition of D
and F, such e exists. Take M € N such that for every m > M we have

=OI,I.1.E-1:)J§/(1){|Skf($) = Stfm(@m)|, I T*(x) = TH(zm)[} < e.

Such M exists due to (B8)). In particular, the return times up to N(z) of iterations of Ty to
[0,1] x [-1/2,1/2] are identical as those of z. Hence, the distance of 6T~}I and 5T;’xm in Levy-
Prokhorov metric is less than €, for every m > M. This finishes the proof of continuity of G,, on
D n E. Tt follows, by Lemma [A2] that the set  of points (z, f) € D n E such that z is generic
for some T-invariant measure is measurable. Since for any f € W, the set of points = which are
generic for Tt is of full measure, the set 2 is of full product measure.

To conclude the proof of the proposition, it suffices to notice that lim, o Gy (z, f) = pa, s for
every (z, f) € Q. In other words (z, f) — py 5 on Q is a point-wise limit of continuous maps, thus
it is well-defined and measurable on a full measure set. O

The decomposition obtained in the above proposition is not done on the whole space but rather
on a subset of [0,1] x R. We now show how to obtain a measure which is absolutely continuous
with respect to the Lebesgue measure, using the aforementioned decomposition.

For every f € W, consider a dynamical system TJ{V : [0,1] x [=N, N], which is the first return
map of Ty to [0,1] x [~N, N]. Note that the map Ty : [0,1] x [~1/2,1/2] can be viewed as the
first return map of TJ{V to [0,1] x [~1/2,1/2]. Denote by M?¥ the set of finite Radon measures on
[0,1] x [N, N]. We have the following corollary of Proposition

Lemma A.3. There exists a measurable assignment
([0, 1] x [N, N]) x W = (x, f) — py/; € MY,

where

P J p s dz << Lebyo 1)x [ n.x]
[0.1]%[~ N, N]

the integrated measures are invariant and ergodic. In particular, for every N = 1 we have

Pi\{f|[0,1]x[71/2,1/2] = Pz,f
and if N1 < Na, then

Ns M
pz,f|[0,1]x[7N1,N1] = Dy

)

Proof. Let N € N and for every m € N let
Un = {xe€[0,1] x [-1/2,1/2] | m is the first return time of = via T;V to [0,1] x [—1/2,1/2]}.
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Note that the first return map to [0,1] x [-1/2,1/2] via T;V is equal T. Consider the measure on
[0,1] x [-1/2,1/2] given by

o m-—1
= Z Z « (Lebpo 1)x[=1/2,12]) |0, -

m=1 j=0

Since each of the summands is absolutely continuous w.r.t. Lebesgue measure, then so is ,u}v . By
1

Lemma [A.1] we have
o m-—

m 1]:0

py = f
[0,1]x[—-1/2,1/2]

Take
1

o m-—
prsi= ), Z (TN)pe.flo,. -
1 =0

Since the restriction of measures and taking images of measures are measurable operations, by
Proposition [A:2] we obtain the measurabilty of the assignment (z, f) — p2 - The invariance and

ergodicity of p& s follows directly from invariance and ergodicity of p;, r, while the last two equations
follow from the constructlon O

Remark A.2. With the notation of the above proof, we actually have that ;chv is a restriction of

the Lebesgque measure on the strip to the disjoint union | J;._, U] 0 Tf Y (Up). This does mot
have to be the whole measure Lebjo 1]x[—N,N]-

In the following result we pass from the decomposition on the bounded subsets to the decom-
position on the whole strip.

Proposition A.3. There exists a measurable assignment
([0,1] x [-1/2,1/2]) x W 3 (z, f) — Dax,f € MR,

where Mg is the space of Radon measures on [0,1] x R such that

o for a.e every (z, f) € ([0,1] x [—1/2,1/2]) x W with respect to the product Lebesgue mea-
sure, the measure py,¢ is Ty-invariant and pe f|[0,1]x[-1/2,1/2] = Pa.f>
o [if = S[O,l]x[fl/Q,l/Q] Do, dx is well defined and iy << Lebpo 1)xr

Proof. For every z € [0,1] x [-1/2,1/2] and f € W consider the sequence of measures {pi\{f} given
by the Lemma [A.3] here seen as measures on [0,1] x R. Define the measure p, ; by putting for
every compact subset K < [0,1] x R

Pa.g(K) = Y% (K), where Nk := min{N € N| K < [0,1] x [N, N1}

Note that in view of Lemma[A.3] we can replace in the above definition Nx by any N bigger than
Ng. Hence the above equation really defines a measure.
We claim that

A}iinoopi\ff = Da.f (39)

exists. Indeed, if ¢ is a continuous function on [0, 1] x R with a compact support K, then there
exists N, € N, such that K, < [0,1] x [-Ng, Ng]. Then, by Lemma [A3] we get

lim gdpy —f gdpl”, =f g dpx, =f gdpz g
N—wo Jio,1]xR wf [0,1]x[—Ng,N,] o [0,1]x[—Ng,N,] ! [0,1] xR 4

Note that the assignment P(z, f) := Py, s is measurable. Indeed, recall that the topology of M is
generated by the sets of the form C(v, fi1,..., fu,€1,....€,) = {pe Mg | | fidp = fi dv| < €},
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wherene N, v e Mp, e1,...,6, > 0and fi,..., fn € Cc([0,1] x R). Then, there exists N € N such
that the supports of functions fi, ..., f, are included in [0,1] x [N, N]. Thus

{(z, f) e ([0,1] x [-1/2,1/2]) x W | Ufi dpy. f — ffi dv

<€i}:

((w.9) e (01 x 11722 < W | futy [ 1] <
Since the assignment (z, f) — pi\{ 7 is measurable, so is the above set. By the fact that all parameters
v, f; and €; are arbitrary, it follows that P is measurable.

In a similar fashion, if A < [0,1] x R is a bounded set, then since f is bounded, there exists
N € N such that A, Ty A < [0,1] x [N, N]. Since p) ; is TV -invariant, then p,, ;(A) = pa, (Tt (A)).
Hence the measure p,, ¢ is Ty invariant.

Finally, it remains to notice that by Lemma [A 3] we have for every N € N that

piv,f dr < J- pi\{f dx = Lebyo 11x[-N,N]- (40)
[0,1]x[—-N,N]

N

Ky =J-
[0,1]x[—1/2,1/2]

Then by (BY) we get that fif :=limy_,e0 szv is well defined, fif|[0,1]x[—N,N] = ,u}v and by {0), we

have that iy << Lebyo 1]xr- ([

Remark A.3. It is worth to mention that the measure jiy obtained in the above proposition does
not need to be the whole Lebesque measure on the strip [0,1] x R. Indeed if the function f is a
bounded coboundary then the support of fiy is contained in the set [0,1] x [—|flo — 1, [ floo + 1]
(see also Remark[A3).

One can observe that until now we did not use the assumption on non-ergodicity of considered
tranformations. Indeed, this assumption is only used in the following proof of the Proposition [A Tl

Proof of Proposition[A]l. Consider the assignment (z, f) +— pg s given by Proposition [A3] and
denote it by P : ([0,1]x[—1/2,1/2]) x W — M g. Since it is a measurable map, by Lusin’s Theorem,
there exists a compact subset K < ([0, 1] x [—1/2,1/2]) x W of positive measure such that P|g is
continuous. Fix (x, fo) € K, a point of density. Since fo € W, we have that pu,, fol[0,17x[-1/2,1/2] #
Lebjo,11x[—1/2,1/2]- In particular, if dzp denotes the Levy-Prokhorov metric on M (not MRg!), we
have that there exists € > 0 such that Lebjo 1]x[=1/2,1/2] ¢ BLP (Pzo,fol[0,1]x[=1/2,1/2]; €). Since P|x
is continuous, there exists § > 0 such that for every (z, f) € K n D((zo, fo),6) =: K, we have
de(ﬁmh|[071]X[,11211/2],ﬁmyf|[011]x[,1/271/2]) < 6/2. Since (:Co, fo) is a density pOlIlt of K, we have
Lebpo,17x[-1/2,1/2] (K) > 0.

Let V € W be the set of those elements f for which sets Ky := {z € [0,1] x [-1/2,1/2]|(x, f) €
K } have positive measure. Since K is of positive measure, then so is V. Consider the map

Vafejy:= J Da, pd.
Ky

Note that it is actually the integration of P|g, a continuous function, with respect to the z-
coordinate. In particular, it is continuous. Let iy := Leb(K Ten(icy o - Note that Leb(Ky) = fig([0,1] x
[—1/2,1/2]). Since the map M 5 v — v([0,1] x [—1/2,1/2]) is measurable, then so is V' 3 f —
ﬂf e M. B

Moreover, since K < D((xo, fo),9), by the choice of 6 we have that measure fif is a convex
combination of measures from the set Brp(pa,f,,€/2) and as such, uy € Brp(Pzo,fo,€/2). In
particular

rlioa)x-1/2.1/2) # Lebjoa)x(—1/2,1/2]
hence
fg # Lebo,1)xr-

Moreover,

ﬁ=7f Da, dx<<J- Dz 5 dx = jiy << Lebpq, ,
! Leb(Kf) Ky d [0,1]x[-1/2,1/2] ! d (011
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where ji is given by Proposition [A.3] This finishes the proof.
O

We will now show Lemma [A.4] which in turn was used earlier to show that Theorem [[3] follows
from Theorem [Tl First, we recall some classical facts from the general ergodic theory. Let (X, B, v)
be a standard probability space. We denote by Aut(X) the space of all v-measure preserving
automorphisms on X. Let {By}72, be a countable family of subsets generating 5. It is a classical
fact (see, e.g., [1]), that this space endowed with the metric

daue(x)(S1, S2) = 22’“ (S1(Br)AS2(Br)) + v(ST (Br)ASy H (Br))) (41)

is a Polish space. Let also Erg(X ) < Aut(X) be a subset of ergodic automorphism. It is a classical
fact that it is measurable (see ex. [9]).

We now show that by twitching both the IET and the cocycle, the first return maps to the
cylinder in [0,1) x R obtained in this way are close in an appropriate space of automorphisms.

Lemma A.4. With the notation as in Lemmal4A.3, the map

((So x A*) A Erg([0,1))) x Cpons 3 (T, f) = T;V € Aut ([0,1) x [-N, N], B, Lebjg 1) [~ n,~1)
is continuous for every N € R.g.
Proof. We will prove the lemma for N = 1/2, for other cases the proof differs only by proper
rescaling of measures. Let (By)7, be a family of rectangles generating the Borel o-algebra on
[0,1) x [=N, N]. We consider the metric d := das([0,1)x[-~,~]) as in (@).

Fix € Sp and let (T}, fn)%_, be a sequence converging to (T, f) in {r} x AA x C,,, asr with respect
to the product metric (on A we consider standard Euclidean metric), with T},, T being ergodic.
Denote by T, s, the skew product given by (T}, f»). Note that due to ergodicity assumption, the

first return transformations under consideration are all well defined due to recurrence. Let € > 0
and let K be such that

[e¢]
Z 27" Lebpo 1) x[—1/2,1/2] (Bi) < /2.
i=K+1
It is enough to show that there exist L € N such that for every n > L we have

Z 27 (Leb[o D i=1/2.12) (T, £, (B ATy (By)) + Lebo 1y x—172,1/21 (T 1, (B)ATF( i)) <e/2.

On the other hand, to show the above inequality, it is enough to find L; for every i € {1,..., K}
such that for every n > L;

Lebpo,1)x[-1/2,1/2) (Tn,fn( ATy (B )) + Lebjo,1)x[1/2,1/2] ( o (B)AT (B i)) <e/2K
and take L := max;—1,..
Fixie{l,...,K}andlet B:= B;n[0,1)x[-1/24+¢/16K,1/2—¢/16K]. By picking sufficiently
large L;, we obtain a subset B < B with Leb(B\B ) < ¢/16K, consisting of finitely many rectangles,
such that for every € B the first return times to [0,1) x [—1/2,1/2] via T, ;, and T} as well as
by T~ fn and T, are identical, for any n > L;. By increasing L; further if necessary, we get that

these rectangles are shifted via T+1 for every n = L;, and via T+1 by an arbitrary small amount.
In particular, for L; large enough We get

Lebpo,1)x[-1/2,1/2) (Tn,fn (B)Aff(é)) + Lebo,1)x[-1/2,1/2] <~n i ( A)ATf_l(B)) <¢e/8K.
Hence
Lebpo,1)x[-1/2, 1/2]( T, 1, (B) ATy (B )) + Lebyo,1)x[—1/2, 1/2]( b (B)AT (B ))
< Lebpo,1)x[-1/2,1/2] ( Tn.s,(B )Aff(B)) + Lebjo,1)x[-1/2,1/2] ( nf (B )ATf YB )) + /4K

< (Tnﬁfn(B)ATf(B)) + Leb[071)x[_1/271/2] (Tnf ( )AT ( )) + 35/8K < E/QK,



ERGODICITY OF SKEW-PRODUCTS OVER TYPICAL IETS 27

which finishes the proof. (I
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