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Abstract—The popularity and wide adoption of JavaScript
both at the client and server side makes its code analysis
more important than ever before. Most of the algorithms for
vulnerability analysis, coding issue detection, or type inference
rely on the call graph representation of the underlying program.
Despite some obvious advantages of dynamic analysis, static
algorithms should also be considered for call graph construction
as they do not require extensive test beds for programs and their
costly execution and tracing.

In this paper, we systematically compare five widely adopted
static algorithms – implemented by the npm call graph, IBM
WALA, Google Closure Compiler, Approximate Call Graph, and
Type Analyzer for JavaScript tools – for building JavaScript call
graphs on 26 WebKit SunSpider benchmark programs and 6
real-world Node.js modules. We provide a performance analysis
as well as a quantitative and qualitative evaluation of the results.

We found that there was a relatively large intersection of the
found call edges among the algorithms, which proved to be 100%
precise. However, most of the tools found edges that were missed
by all others. ACG had the highest precision followed immediately
by TAJS, but ACG found significantly more call edges. As for
the combination of tools, ACG and TAJS together covered 99%
of the found true edges by all algorithms, while maintaining a
precision as high as 98%. Only two of the tools were able to
analyze up-to-date multi-file Node.js modules due to incomplete
language features support. They agreed on almost 60% of the
call edges, but each of them found valid edges that the other
missed.

Keywords-JavaScript, call graph, static code analysis, compar-
ative study.

I. INTRODUCTION

According to GitHub statistics [1] JavaScript is one of
the most rising languages in years, and it seems that it will
continue to dominate in 2018. It had the most pull requests
in 2017 and 2016 (in GitHub projects). Each year, the TIOBE
Index selects the fastest growing programming language and
distinguishes it with the “Language of the Year” award. In
2014, JavaScript was the winner of this award.

Due to its increasing popularity, lots of projects use
JavaScript as their core programming language for both server
and client side modules. Therefore, static code analysis of
JavaScript programs became a very important topic as well.
Many of the code analysis tools rely on the call graph
representation of the program. A call graph contains nodes
that represent functions of the program and edges between
nodes if there exists at least one function call between the
corresponding functions. With the help of this program repre-
sentation various quality and security issues can be detected

in JavaScript programs, for example, it can be used to detect
functions that are never called or as a visual representation
which makes understanding the code easier. We can use call
graphs to examine whether the correct number of arguments
is passed to function calls or as a basis for further analysis, for
example, a full interprocedural control flow graph (ICFG) can
be built upon the call graph. With the help of the control flow
graphs, various type analysis algorithms can be performed [2]–
[5]. What is more, this program representation is useful in
other areas of research as well, for example, in mutation
testing [6], automated refactoring [7], or defect prediction [8].

Being such a fundamental data structure, the precision of
call graphs determines the precision of the code analysis
algorithms that rely on them. Creating precise call graphs
for JavaScript that is an inherently dynamic, type-free and
asynchronous language is quite a big challenge. Static ap-
proaches have the obvious disadvantage of missing dynamic
call edges coming from the non-trivial usages of eval(),
bind(), or apply() (i.e. reflection). Moreover, they might be
too conservative, meaning that they can recognize statically
valid edges, which are never realized for any inputs in practice.
However, they are fast and efficient compared to dynamic
analysis techniques and do not require any testbed for the
program under analysis.

Therefore, the state-of-the-art static call graph construction
algorithms for JavaScript should not be neglected and we need
deeper understanding about their performance, capabilities,
and limitations. In this paper we present and compare some
well-known and widely used static analysis based call graph
building approaches. We compare five different tools – npm
call graph, IBM WALA, Google Closure Compiler, ACG
(Approximate Call Graph), and TAJS (Type Analyzer for
JavaScript) – quantitatively, to find out how many different
calls are detected by the individual tools. We also compare
the results qualitatively, meaning that we match and validate
the found call edges and analyze the differences. Lastly, we
report runtime and memory usage data to be able to assess the
usability of the tools on real-world programs.

We found that there are variances in the number, precision
and type of call edges that individual tools report. However,
there were considerably large intersections of the reported
edges. Based on a manual evaluation of 348 call edges, we
found that ACG had the highest precision, above 99% of the
found edges were true calls. At the same time, ACG had the
highest recall on the union of all true edges found by the
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five tools, it found more than 90% of the edges. Nonetheless,
three other tools (WALA, Closure, npm call graph) found true
positive edges that were missed by all the other tools. TAJS
did not find any unique edges, however it achieved a precision
of 98% (i.e. comparable to ACG). We also examined the tools
in combination and saw that ACG, Closure, and TAJS together
found all the true edges, but they also introduced a lot of false
ones, their combined precision was only slightly above 83%.

In terms of running time performances, results heavily
depend on the size and complexity of the inputs, but Closure
and TAJS excel in this respect. From the perspective of mem-
ory consumption, for realistic input sizes ACG and Closure
overtopped all the other tools. For very large inputs (i.e. in
the range of a million lines of code), only Closure Compiler,
TAJS and ACG were able to perform practically efficient code
analysis.

To summarize, the main contributions of our paper are:
• The evaluation of capabilities and performances of five

widely adopted static JavaScript call graph extraction
tools.

• The quantitative and qualitative comparison of the tool
results on 26 benchmark programs and 6 real-world
Node.js modules.

• A manually validated dataset of call edges found by these
tools on the 26 benchmark programs.

The rest of the paper is organized as follows. In Sec-
tion II, we list the related literature and compare our work to
them. Section III describes the tool selection and comparison
methodology we applied. In Section IV, we present the results
of our quantitative, qualitative, and performance analysis of the
tools. We list the possible threats of the analysis in Section V
and conclude the paper in Section VI.

II. RELATED WORK

Using call graphs for program analysis is a well-established
and mature technique. The first papers dealing with call graphs
date back to the 1970’s [9], [10]. The literature is full with
different studies built upon the use of call graphs. Clustering
call graphs can have advantages in malware classification [11],
they can help localizing software faults [12], not to mention
the usefulness of call graphs in debugging [13].

Call graphs can be divided into two subgroups based on
the used method to construct them. These two groups are
dynamic [14] and static call graphs [15]. Dynamic call graphs
are obtained by running the program and collecting runtime
information about the interprocedural flow [16]. Techniques
such as instrumenting the source code can be used for dynamic
call graph creation [17]. In contrast, in case of static call graphs
there is no need to run the program, it is produced as a result of
static analysis of a program. Different analysis techniques are
often combined to obtain a hybrid solution which guarantees
a more precise call graph, thus a more precise analysis [18].

With the spread of scripting languages such as Python and
JavaScript the need for analyzing programs written in these
languages also increased [3]. However, constructing precise
static call graphs for dynamic scripting languages is a very
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Figure 1. Methodology overview

hard task which is not fully solved yet. The eval(), apply()
and bind() constructions of the language make it especially
hard to analyze the code statically. However, there are several
approaches to construct such static call graphs for JavaScript
with varying success [3], [19], [20]. Constructed call graphs
are often limited, and none of the studies deal fully with
EcmaScript 6 since the standard was released in 2015.

Feldthaus et al. presented an approximation method to
construct a call graph [3] by which a scalable JavaScript IDE
support could be guaranteed. Madsen et al. focused on the
problems induced by libraries used in the project [4]. They
used pointer analysis and a novel use analysis to enhance
scalability and precision. In our study, we only deal with static
call graphs for JavaScript and do not propose a new algorithm,
but rather evaluate and compare existing approaches.

In his thesis [21], Dijkstra evaluates various static JavaScript
call graph building algorithms. This work is very similar to our
comparative study, however, it was published in 2014 and a lot
has happened since then in this research area. Moreover, while
Dijkstra focused on the evaluation of the various conceptual
algorithms implemented by himself in Rascal, our focus is on
comparing mature and state-of-the-art tool implementations on
these algorithms ready to be applied in practice.

There are also works with a goal to create a framework
for comparing call graph construction algorithms [22], [23].
However, these are done for algorithms written in Java and C.
Call graphs are often used for preliminary analysis to deter-
mine whether an optimization can be done on the code or not.
Unfortunately, as they are specific to Java and C languages, we
could not use these frameworks as is for comparing JavaScript
call graphs.

III. METHODOLOGY

A. Overview of the study process

Figure 1 displays the high-level overview of the applied
external and self-developed software components we used in
our comparative study. We run each of the selected tools
(Section III-B) on the test input files (Section III-C). As can be
seen, we needed to patch some of the tools (marked with \) for
various reasons (see Section III-B), but mainly to extract and



dump the call graphs built in the memory of the programs (all
the modification patches are available in the online appendix
package1). Next, we collected the produced outputs of the tools
and ran our data conversion scripts to transform each call graph
to a unified, JSON based format we defined (Section III-D).
The only exception was Closure, where we implemented the
call graph extraction to the JSON format right into the patch
extracting the inner-built call graph, because there was no
public option for outputting it, thus it was easier to dump
the data right into the unified JSON format. In all other cases
we built a custom data parser script that was able to read
the output of the tools and produce an equivalent of it in our
JSON format. From the individual JSON outputs of the tool
results, we created a merged JSON with the same structure
using our graph comparison tool (Section III-E). This merged
JSON contains all the nodes and edges found by either of
the tools, with an added attribute listing all the tool ids that
found that particular node or edge. We ran our analysis and
calculated all the statistics on these individual and merged
JSON files (all the produced JSON outputs are part of the
online appendix package).
B. Call graph extraction tools

In this section, we present the tools we took into account
in our comparative study. We examined tools that: i) are able
to create a function call graph from a JavaScript program, ii)
are free and open-source, and iii) are adopted in practice.

It is important to note that in this study we work with call
graphs, where:

• Each node represents a function in the program (identified
by the file name, line and column number of the function
declaration),

• An edge between two nodes is directed and represents a
statically possible call from one function to another (i.e.
function f() may call function g()),

• There might be only zero or one edge between two nodes,
so we track only if a call is possible from one function to
another, but omit its multiplicity (i.e. we do not count at
how many call sites calls may happen). This is because
not all of the tools are able to find multiple calls and we
wanted to stick to the most basic definition of the static
call graph anyway.

Based on these criteria, we selected the following five tools
for our comparative study (see Table I for an overview).

1) WALA: WALA [20] is a complete framework for both
static and dynamic program analysis for Java. It also has a
JavaScript front-end, which is built on Mozilla’s Rhino [24]
parser. In this study, we used only one of its main features,
which is static analysis, call graph construction in particular.

In order to have the output that suits our needs, we
had to create a driver which serializes the built call graph.
For this, we used an already existing version of the call
graph serializer found in the official WALA repository (Call-
Graph2JSON.java), As a first step, we converted the ac-
tual call graph to a simple DOT format then we used our

1http://www.inf.u-szeged.hu/~ferenc/papers/StaticJSCallGraphs/

converter script to transform this into the final JSON file.
WALA produced multiple edges between two functions if
there were multiple call sites within the caller function. Since
our definition of call graph allows at most one edge between
two functions in one direction, we modified the serializer to
filter the edges and merge them if necessary. We had to handle
the special case when the call site was in the global scope as
in this case there was no explicit caller method. In such cases
we applied the common practice followed by other tools as
well and introduced an artificial “toplevel” node as the source
of these edges.

WALA itself is written entirely in Java, its main repository
is under active development, mostly by the IBM T.J. Watson
Research Center. WALA was used in over 60 publications [25]
since 2003.

2) Closure Compiler: The Closure Compiler [19] is a real
JavaScript compiler, which works as other compilers. But in
the case of Closure Compiler it compiles JavaScript to a
better JavaScript: it parses and analyzes JavaScript programs,
removes dead code, rewrites and compresses the code. It also
checks common JavaScript mistakes.

It builds a call graph data structure for internal use only by
other algorithms. Therefore, we had to modify the available
source code and provide a call graph JSON dump function.
Closure Compiler contains the inclusion of the artificial root
node by default to represent calls realized from the global
scope. The JSON writer filters any duplicate edges (Closure
keeps track of various call sites) to provide an appropriate
JSON output used for comparison (see Section III-D).

The Closure Compiler itself is written entirely in Java and
is actively developed by Google.

3) ACG: ACG (Approximate Call Graph) implements
a field-based call graph construction algorithm [3] for
JavaScript. The call graph constructor can be run in two basic
modes, pessimistic and optimistic, which differ in how inter-
procedural flows are handled. In our study, we used the default
ONESHOT pessimistic strategy for call graph construction.

For ACG, we had to implement the introduction of an
artificial root edge (i.e. “toplevel”) and filtering of multiple
edges as ACG also tracks and reports edges connected to
individual call sites. Moreover, ACG reported only the line
numbers of functions in its output, which we had to extend
with the column information. All these modifications are
available in one single patch.

As there are several forks of the original repository available
currently, we had to check all of them and select the one which
is the most mature among these forks. The selected one was
created by the CWI group from Amsterdam.

4) The npm callgraph module: Npm callgraph is a small
npm module to create call graphs from JavaScript code de-
veloped by Gunar C. Gessner. It uses UglifyJS2 [26] to parse
JavaScript code. Despite its small size and few commits, quite
a lot of people use it, it has more than 1300 downloads.

5) TAJS: Type Analyzer for JavaScript [27] is a dataflow
analysis tool for JavaScript that infers type information and
call graphs. It is copyrighted to Aarhus University.

http://www.inf.u-szeged.hu/~ferenc/papers/StaticJSCallGraphs/


Table I
COMPARISON OF THE USED TOOLS (AS OF 16TH JULY, 2018)

Tool name Repository Lang. Size Commits Last commit Contri- Issues ECMAScript
(SLOC) butors (open/closed) compatibility

WALA https://github.com/wala/WALA Java 232,594 5,845 06/11/2018 25 151 (74/77) ES5
Closure compiler https://github.com/google/closure-compiler Java 398,959 12,525 06/16/2018 373 2163 (796/1367) ES6 (partial)
ACG https://github.com/cwi-swat/javascript-call-graph JS 120,531 193 10/28/2014 3 7 (1/6) ES5
npm callgraph https://github.com/gunar/callgraph JS 207 30 03/14/2017 2 16 (6/10) ES6 (partial)
TAJS https://github.com/cs-au-dk/TAJS Java 53,228 16 01/04/2018 1 10 (6/4) ES5 (partial)

The proposed algorithm is implemented as a Java system
that is actively maintained since the publication of the original
concept. However, we suspect that this is only an external mir-
ror of an internal repository that is synchronized periodically.
It was not necessary to modify the source code of TAJS as it
provides a command line option for dumping call graphs into
a DOT format that we were able to parse and convert into our
unified JSON format.

Other considered tools. There are of course other candidate
tools which could have been involved in this study. We found
lots of commercial and/or closed-source programs, like SAP
HANA. However, we focused on open-source programs, which
are easy to access and even modify or customize to fit our
needs. They are also widely adopted by research and industry.

In our evaluation study we only dealt with tools directly
supporting call graph building either internally or as a public
feature. Thus, we were forced to left out some great JavaScript
static analysis tools that do not support call graph extraction di-
rectly. One such tool was the open-source Flow [28] developed
by Facebook, a very popular static code analysis tool for type
checking JavaScript. Unfortunately, Flow does not provide a
public API for obtaining the built call graph or a control flow
graph. As such, we would have been required to implement our
own algorithms above the internal control flow data structure,
which would introduce a threat to the validity of this study.
Our primary goal in this work was to empirically compare
existing call graph extraction algorithms, not to upgrade all
tools to achieve call graph extraction.

Other relevant tools we examined were JSAI (JavaScript
Abstract Interpreter) [29] and SAFE (Scalable Analysis
Framework for EcmaScript) [30], both build an intermediate
abstract representation from JavaScript to further perform an
analysis on. It is true that they calculate control and data flow
structures, but they specifically utilize them for type inference.
None of them support the extraction/export of call graphs,
hence we were unable to include them in our evaluation study.

The tool code2flow [31] also looked like a great choice,
but since it is abandoned officially without any follow-up
forks, we excluded it from our list. We note that the original
repository of ACG was also abandoned, however it has several
active forks on GitHub.

Another reason we dropped possible tools from comparison
was immaturity, which means that the given project had one
contributor and there was only a very short development
period before the project was left abandoned. These tools
also lacked documentation, thus their usability was poor.
We did not take into account JavaScript Explorer
Callgraph [32] due to this reason. Furthermore, we also

left out callgraphjs [33] since this project contains only
supporting material for ACG.
C. Comparison subjects

To perform a deep comparison of the tools, we identified
three test input groups.

1) Real-world, single file examples: The first group consists
of real-world, single file, “bare” JavaScript examples. For this,
we chose the SunSpider benchmark of the WebKit browser
engine [34], which is extensively used in other works as well.
The benchmark programs are created to test the JavaScript
engine built into WebKit. Therefore, these programs contain
varying complexity code with many different types of func-
tions and calls, but all in one single JavaScript source file.
These properties make them excellent choice for our real-
world, single-file test subjects. Moreover, all the programs are
of manageable size, thus we could easily check and analyze
the calls manually.

2) Real-world, multi-file Node.js examples: To test the
handling of modern, EcmaScript 6 and Node.js features (like
module exports or external dependencies, i.e. the require
keyword) and inter-file dependencies, we collected six popular
Node.js modules from GitHub. Our selection criteria included
the following: the module should contain multiple js source
files, it should have an extensive test suite with at least 75%
code coverage and be used by at least 100 other Node.js
modules. The requirements for test coverage comes from
our mid-term research goal. We would like to repeat the
presented comparative study extended with dynamic call graph
extraction algorithms that typically require an existing test
suite for programs under analysis. The details of the chosen
Node.js modules are summarized in Table II.

Table II
SELECTED NODE.JS MODULES FOR TEST

Program Repository Size (SLOC)
debug https://github.com/visionmedia/debug 442
doctrine https://github.com/eslint/doctrine 5,109
express https://github.com/expressjs/express 11,673
jshint https://github.com/jshint/jshint 68,411
passport https://github.com/jaredhanson/passport 6,173
request https://github.com/request/request 9,469

3) Generated large examples: In order to stress test the
selected tools and measure their performances, we needed
some really large programs. However, we were unable to
find large enough open-source programs, which would use
only those language features that all of the tools recognize.
Therefore, we decided to generate JavaScript programs that
conform to the ECMAScript 5 standard as it is the highest
standard all the selected tools support.

We defined two categories of such generated inputs. The
programs in the simple category contain simple function calls

https://github.com/wala/WALA
https://github.com/google/closure-compiler
https://github.com/cwi-swat/javascript-call-graph
https://github.com/gunar/callgraph
https://github.com/cs-au-dk/TAJS
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https://github.com/jaredhanson/passport
https://github.com/request/request


with some random statements (variable declarations, object
creation and object property access, for loops, while loops or
return statements). They are pretty straightforward without any
complex control flows, but their sizes range from moderate to
very large. The programs in the complex category also contain
numerous function calls but extended with functions with
parameters, callback functions, function expressions, loops,
and simple logging statements. These programs meant to
test the performances of tools when parsing complex control
flows. The code generation was performed automatically, with
custom made Python scripts.

We generated three files in the simple and two in the
complex category (the exact properties of these programs are
shown in Table III). After the generation, we used the Esprima
Syntax Validator2 to validate our files thus they are valid
JavaScript programs and can be parsed with any ECMAScript
5 compatible JavaScript front-end.

Table III
PROPERTIES OF THE RANDOM GENERATED JAVASCRIPT FILES

Type File Code lines Nodes Edges

Simple
s_small.js 68,741 1000 49,286
s_medium.js 382,536 2,600 331,267
s_large.js 1,321,088 5,000 1,224,251

Complex c_medium.js 28,544 400 3,000
c_large.js 413,099 1,000 50,000

D. Output format

The different selected tools produce their outputs in different
formats by default. To solve this problem, we had to process
their outputs and convert them into a unified format that can
be used for further analysis. We chose a simple JSON format
that contains the list of nodes and edges of a call graph.

Each node has a unique identifier (id), a label, and source
code position information. The position information clearly
identifies a function (i.e. node). Each edge connects exactly
two of the nodes by their unique ids.
E. Graph comparison

The quantitative analysis of the call graphs focuses on
the comparison of the number of nodes and edges. For the
qualitative analysis – inspired by the work of Lhoták et. al [22]
–, we created a call graph comparison script written in Python.
The script is available in our online appendix package. The
aim of the script is to detect the common edges found by
different tools. The script decorates each node and edge JSON
entry with a list of tool identifiers that found the particular
node or edge. The identification of nodes and edges are done
by precise path, line, and column information as JavaScript
functions have no names and it would be cumbersome to rely
on a unified unique naming scheme anyway.

To ensure the proper comparison, we manually checked the
produced path and line information of the evaluated tools.
TAJS reported precise line and column information in its
standard DOT output. In cases of Closure Compiler, WALA,
and ACG, we implemented or modified the line information
extraction. Unfortunately, WALA was able to report only line
numbers, but no column information, thus we manually refined
the JSON outputs it produced. In case of npm callgraph,

2http://esprima.org/demo/validate.html

the reported line information was not precise (neither line,
nor column information), thus we went through all the cases
manually and added them to the produced JSON files.

F. Manual evaluation
As part of the qualitative analysis of the results, we evalu-

ated all the 348 call edges found by the five tools on the 26
SunSpider benchmark programs. The manual evaluation was
performed by two of the authors by going through all the edges
in the merged JSON files and looking at the JavaScript sources
to identify the validity of those edges. As an output, each edge
of the JSON has been extended with a “valid” flag that is
either true or false. After both authors evaluated the edges,
they compared their validation results and resolved those two
cases where they disagreed initially. Upon consensus, the final
validated JSON has been created.

As for the Node.js modules, the large number of edges
made it impossible to validate all of them. In this case
we selected a statistically significant representative random
sample of edges (see Section IV-B for the numbers) to achieve
a 95% confidence level with a 5% margin of error. One of the
authors of the paper manually checked all these selected edges
in the Node.js sources.
G. Performance measurement

We ran the tools on an average personal computer with
Windows 7. The main hardware characteristics were Intel Core
i7-3770 processor (at 3.90 GHz), 16 Gb RAM, and 1 Tb
HDD (7200 rpm). We note that besides TAJS (which can
measure the time of its analysis phases), neither of the tools
can measure their own running time and/or memory usage.

To measure the memory usage of the tools uniformly,
we implemented a small tool which queries the operating
system’s memory usage at regular intervals and stores the
acquired data for each process. In order to acquire running
time data, we modified each tool’s source code. For the
two Node.js tools (ACG and npm callgraph), we used the
process.hrtime() method to calculate running time. We
also had to set the maximum heap size to 6 Gb.

For the three Java-based tools (WALA, Closure Compiler,
and TAJS), we set the maximum heap size to 11 Gb. For
running time measurement, we used timestamps from the
System.nanoTime() method.

IV. RESULTS

A. Quantitative analysis

SunSpider benchmark results. To evaluate the basic capa-
bilities of the selected tools, we used the SunSpider benchmark
for the WebKit browser engine (i.e. the first test program
group). This package contains 26 files which we analyzed
one at a time with each tool. After the analysis, we collected
the different outputs and we converted them to our previously
defined JSON format (see Section III-A). We calculated some
basic statistics from the gathered data that can be seen in
Table IV. The table shows the number of nodes (functions)
and edges (possible calls between two functions) found by
each tool for every benchmark program. As can be seen, there
are programs for which the number of nodes and edges are

http://esprima.org/demo/validate.html


Table IV
SUNSPIDER RESULTS

npm callgraph ACG WALA Closure Compiler TAJS
file nodes edges nodes edges nodes edges nodes edges nodes edges
3d-cube 15 23 15 22 17 24 15 23 15 23
3d-morph 2 1 2 1 0 0 2 1 2 1
3d-raytrace 22 29 28 40 21 22 27 40 28 39
access-binary-trees 3 3 4 3 4 5 4 5 4 5
access-fannkuch 2 1 2 1 3 2 2 1 2 1
access-nbody 8 11 12 15 8 11 11 14 12 15
access-nsieve 3 2 3 2 2 1 3 2 3 2
bitops-3bit-bits-in-byte 2 1 2 1 3 2 2 1 3 2
bitops-bits-in-byte 2 1 2 1 3 2 2 1 3 2
bitops-bitwise-and 0 0 0 0 0 0 0 0 0 0
bitops-nsieve-bits 3 2 3 2 3 2 3 2 3 2
controlflow-recursive 4 6 4 3 4 6 4 6 4 6
crypto-aes 17 16 17 16 13 16 17 16 13 14
crypto-md5 21 30 21 30 3 2 21 30 12 15
crypto-sha1 18 23 18 23 3 2 18 23 9 8
date-format-tofte 18 18 19 20 2 1 3 2 3 2
date-format-xparb 0 0 14 14 13 17 14 14 5 5
math-cordic 5 5 5 5 5 5 5 5 5 5
math-partial-sums 2 1 2 1 2 1 2 1 2 1
math-spectral-norm 6 6 6 6 6 6 6 6 6 6
regexp-dna 0 0 0 0 0 0 0 0 0 0
string-base64 3 2 3 2 3 2 3 2 3 2
string-fasta 5 4 5 4 5 4 5 4 5 4
string-tagcloud 4 4 12 15 2 1 11 17 3 2
string-unpack-code 0 0 5 4 5 8 12 64 5 20
string-validate-input 4 3 5 4 5 4 5 4 5 4∑

169 192 209 235 135 146 197 284 155 186

the same for all tools (e.g. bitops-bitwise-and.js, math-partial-
sums.js). There are also programs for which the results are
very close, but not exactly the same (e.g. bitops-3bit-bits-in-
byte.js, string-validate-input.js) and consensus could be made
easily. We should note, however, that tools produce similar call
graphs typically for small programs with only a few functions,
where there is only a small room for disagreement. Finally,
there are programs where the numbers show a relatively large
variance across the call graph tools (e.g. 3d-raytrace.js, date-
format-tofte.js).

Node.js module results. To evaluate the practical capabil-
ities of the selected tools, we chose six real-world, popular
open-source Node.js modules. Details about the subject pro-
grams can be found in Section III-C2.

Unfortunately, npm callgraph and WALA were unable to
analyze whole, multi-file projects because they cannot resolve
calls among different files (e.g., requiring a module). TAJS
supports the require command, nonetheless it was still unable
to detect call edges in multi-file Node.js projects. On the other
hand, Closure Compiler and ACG were able to recognize these
kind of calls. Thus, we used only these two tools to perform
the analysis on the selected Node.js modules.

Table V
NODE.JS RESULTS

ACG Closure Compiler
file nodes edges nodes edges
debug 19 15 12 8
doctrine 85 175 53 174
express 82 186 118 239
jshint 349 1001 320 1236
passport 41 40 39 49
request 122 223 123 239∑

698 1640 665 1945

We calculated some basic statistics from the gathered data
that is shown in Table V. The table displays the number
of nodes (functions) and edges (possible calls between two

functions) found by the tools. As can be seen, the results
show resemblance, the correlation between nodes and edges
found by the two tools is high. However, not surprisingly,
there are no exact matches in the number of nodes and edges
for such complex input programs. It is interesting though, that
for doctrine the number of edges found by ACG and Closure
Compiler is very close (175 and 174, respectively), but there is
a large difference in the number of nodes found by the tools.
B. Qualitative analysis

For qualitatively comparing the results, we applied our exact
line information based call graph comparison tool described
in Section III-E. With this, we could identify which call edges
were found by the various tools and compare the amount of
common edges by all tools, or the edges found by only a
sub-set of the tools.

SunSpider benchmark results. First, we present the qual-
itative analysis on the single file SunSpider JavaScript bench-
mark programs. All the Venn diagrams are available in an
interactive version as well in the online appendix package,
where one can query the list of edges belonging to each area.

Figure 2 presents the Venn diagram of the found call edges
in the total of 26 benchmark programs by the five tools. The
first numbers show the true edges according to our manual
evaluation (see Section III-F), while the second numbers are
the amount of total edges. The percentages below the two
numbers display the ratio of true edges in that area compared
to the total number of true edges found by the tools (which is
257 out of 348). This representation highlights the number of
edges found by all possible sub-sets of the five tools.

In total, 93 edges were found by all the five subject tools,
all of them being true positive calls. However, four of the tools
found edges that the others missed. Although WALA, Closure
Compiler and npm callgraph (npm-cg) reported a significant



Figure 2. Venn diagram of the true/total number of edges found by the tools

amount of edges that no other tools recognized, most of them
turned out to be false positives during their manual evaluation.

a) Edges found by npm-cg only: The manual analysis of
the 18 unique edges found only by the npm-cg tool showed
that all of these are false positive edges. Every edge represents
a call from the global scope of the program to a function.
Even though the reported calls exist, all of the call sites
are within another function and not in the global scope.
Listing 1 shows a concrete example3 from the access-nbody.js
benchmark program. The tool reports a call of Sun() (line 1)
from the global scope, but it is called within an anonymous
function (line 8) from line 10. This call is properly recognized
by all the other tools, however.
1 f u n c t i o n Sun ( ) {
2 r e t u r n new Body ( 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

SOLAR_MASS) ;
3 }
4 . . .
5 v a r r e t = 0 ;
6
7 f o r ( v a r n = 3 ; n <= 24 ; n *= 2 ) {
8 ( f u n c t i o n ( ) {
9 v a r b o d i e s = new NBodySystem ( Array (

10 Sun ( ) , J u p i t e r ( ) , S a t u r n ( ) , Uranus ( ) , Neptune ( )
11 ) ) ;
12 . . .
13 }
14 }

Listing 1. A false call edge found by npm-cg

b) Edge found by ACG only: There is only one edge
found by ACG and no one else, which is true positive. It is
a call4 to a function added to the built-in Date object via its
prototype property in date-format-tofte.js. Listing 2 shows the
excerpt of this call.

c) Edges found by WALA only: In case of WALA, all
the 19 unique edges are false, but for different reasons.

5 of the 19 edges have a target function of “unknown”, thus
WALA was not able to retrieve the target node of the call
edge. We checked these instances manually and found that all
these unknown nodes are implied by Array() calls. As all the

3toplevel:1:1->access-nbody.js:74:1
4date-format-tofte.js:186:5->date-format-tofte.js:8:29

built-ins and external calls are omitted from the analysis, these
edges are clearly false ones.

1 Date . p r o t o t y p e . f o r m a t D a t e = f u n c t i o n ( i n p u t , t ime ) {
2 . . .
3 f u n c t i o n W( ) {
4 . . .
5 v a r prevNY = new Date ( " December 31 " + (Y( ) −1 ) + " 00

: 00 : 00 " ) ;
6 r e t u r n prevNY . f o r m a t D a t e ( "W" ) ;
7 }
8 . . .
9 }

Listing 2. A true call edge found by ACG

Another group of ten false edges come from the date-
format-xparb.js program. This program contains a large
switch-case statement that builds up calls to various func-
tions as strings. These dynamically created strings are then
executed using the eval() command to extend the prototype
of Date object with generated formatting functions. These
formatting functions are then called from a function named
dateFormat. WALA recognizes direct edges from dateFormat
to the functions generated into the body of the formatting
functions, which is invalid, as the functions are called from
the dynamically created formatting functions that are called
by dateFormat.

The last four false edges are due to invalid recursive call
edges reported in the string-unpack-code.js program. There
are several functions identified by the same name in different
scopes, but WALA was unable to differentiate them.

d) Edges found by Closure only: Closure found a couple
of recursive edges that no other tool did. For example, List-
ing 3 shows an edge5 in the string-tagcloud.js program, where
the toJSONString function is called from its body (line 8).

1 O b j e c t . p r o t o t y p e . to JSONSt r ing = f u n c t i o n (w) {
2 . . .
3 s w i t c h ( t y p e o f v ) {
4 c a s e ’ o b j e c t ’ :
5 i f ( v ) {
6 i f ( t y p e o f v . to JSONSt r ing === ’ f u n c t i o n ’ ) {
7 a . push ( k . to JSONSt r ing ( ) + ’ : ’ +
8 v . to JSONSt r ing (w) ) ;
9 }

Listing 3. A true recursive call edge found by Closure

48 out of the 50 unique edges by Closure is in the string-
unpack-code.js program. All of them are false positive edges.
The reason is that Closure seems to ignore the visibility of
identifiers within scopes (similarly to that observed in case of
WALA). Listing 4 shows a sketch of the problematic calls.

1 v a r decompressedMochiKi t = f u n c t i o n ( p , a , c
2 , k , e , d ) { e= f u n c t i o n ( c ) { r e t u r n ( c<a ? " " :
3 e ( p a r s e I n t ( c / a ) ) ) + ( ( c=c%a ) >35 ? S t r i n g .
4 fromCharCode ( c+29 ) : c . t o S t r i n g ( 36 ) ) }
5 . . .
6 } ( . . . ) ;
7 v a r decompressedDojo = f u n c t i o n ( p , a , c
8 , k , e , d ) { e= f u n c t i o n ( c ) { r e t u r n ( c<a ? " " :
9 e ( p a r s e I n t ( c / a ) ) ) + ( ( c=c%a ) >35 ? S t r i n g .

10 fromCharCode ( c+29 ) : c . t o S t r i n g ( 36 ) ) }
11 . . .
12 } ( . . . ) ;

Listing 4. A confusing code part from string-unpack-code.js

5string-tagcloud.js:99:37->string-tagcloud.js:99:37



The inner function redefining parameter e of the outer
function (line 2) is called within itself (line 3), which is
correctly identified by Closure and TAJS, but no other tools.
However, Closure reports edges from the same location to all
the other places where a function e is called (e.g. line 9),
which is false, because that e is not the same e as it is already
in another body block referring to another locally created
function denoted by e. The string-unpack-code.js defines four
deeply embedded functions with the same parameter names,
hence most of the found edges are false.

e) Interesting edges found by TAJS: TAJS did not find
any edges that were missed by all the other tools. However,
it did find some interesting edges detected only by one other
tool. One such call edge is through a complex control flow
that was missed by the tools except for TAJS and ACG.

Moreover, TAJS was the only tool besides WALA that de-
tected edges coming from higher-order function calls. Listing
5 shows such a call6 in bitops-3bit-bits-in-byte.js.
1 f u n c t i o n f a s t 3 b i t l o o k u p ( b ) {
2 . . .
3 }
4 . . .
5 f u n c t i o n TimeFunc ( func ) {
6 . . .
7 f o r ( v a r y=0 ; y<256 ; y ++) sum += func ( y ) ;
8 . . .
9 }

10 sum = TimeFunc ( f a s t 3 b i t l o o k u p ) ;

Listing 5. A true call edge found by WALA and TAJS
As we systematically evaluated all the 348 found call edges,

we could also calculate the well-known information retrieval
metrics (precision and recall) for each tool and their arbitrary
combinations. We would like to note, however, that evaluation
and comparison was done for simple call edges; paths along
these edges were not taken into consideration. Missing or extra
edges might have different impact depending on the number
of paths that go through them, thus precision and recall values
might be different for the found call chain paths.

Table VI contains the detailed statistics of the tools. The
first column (Tool) is the name of the tool or combination
of tools. The second column (TP) shows the total number
of true positive instances found by the appropriate tool or
tool combination. In the third column (All), we display the
total number of edges found by the appropriate tool or tool
combination. Fourth column (TP∗) shows the total number
of true edges as per our manual evaluation (i.e. it is 257 in
each row). The fifth (Prec.), sixth (Rec.∗), and seventh (F)
columns contain the precision (TP / All), recall (TP∗ / TP)
and F-measure values, respectively.

We must note that Rec.∗ is not the classical recall measure.
We did not strive to discover all possible call edges during
manual validation, rather simply checked whether an edge
reported by a tool is true or not. Thus we used the union of
all true edges found by the five tools as our golden standard.
This is just a heuristic but it provides a good insight into the
actual performances of the tools compared to each other.

From the individual tools, ACG stands out with its almost
perfect (99%) precision and quite high recall (91%) values.

6bitops-3bit-bits-in-byte.js:28:1->bitops-3bit-bits-in-byte.js:7:1

Table VI
PRECISION AND RECALL MEASURES FOR TOOLS AND COMBINATIONS

Tool TP All TP∗ Prec. Rec.∗ F
npm-cg 174 192 257 91% 68% 77%
ACG 233 235 257 99% 91% 95%
WALA 127 146 257 87% 49% 63%
Closure 230 284 257 81% 89% 85%
TAJS 182 186 257 98% 71% 82%
npm-cg+ACG 239 259 257 92% 93% 93%
npm-cg+WALA 203 219 257 93% 79% 85%
npm-cg+Closure 247 319 257 77% 96% 86%
npm-cg+TAJS 233 255 257 91% 91% 91%
ACG+WALA 241 262 257 92% 94% 93%
ACG+Closure 255 309 257 83% 99% 90%
ACG+TAJS 254 260 257 98% 99% 98%
WALA+Closure 238 311 257 77% 93% 84%
WALA+TAJS 187 210 257 89% 73% 80%
Closure+TAJS 239 293 257 82% 93% 87%
npm-cg+ACG+WALA 242 281 257 86% 94% 90%
npm-cg+ACG+Closure 255 327 257 78% 99% 87%
npm-cg+ACG+TAJS 255 279 257 91% 99% 95%
npm-cg+WALA+Closure 255 346 257 74% 99% 85%
npm-cg+WALA+TAJS 238 258 257 92% 93% 92%
npm-cg+Closure+TAJS 256 328 257 78% 99% 88%
ACG+WALA+Closure 257 330 257 78% 100% 88%
ACG+WALA+TAJS 254 279 257 91% 99% 95%
ACG+Closure+TAJS 257 311 257 83% 100% 90%
WALA+Closure+TAJS 239 312 257 77% 93% 84%
npm-cg+ACG+WALA+Closure 257 348 257 74% 100% 85%
npm-cg+ACG+WALA+TAJS 255 298 257 86% 99% 92%
npm-cg+ACG+TAJS+Closure 257 329 257 78% 100% 88%
npm-cg+TAJS+WALA+Closure 256 347 257 74% 99% 85%
TAJS+ACG+WALA+Closure 257 330 257 78% 100% 88%
ALL 257 348 257 74% 100% 85%

While TAJS and npm-cg maintain similarly high precision
(98% and 91%, respectively), their recall (71% and 68%) are
far below ACG’s. Closure’s recall (89%) is very close to that
of ACG, but it has significantly lower precision (81%). WALA
has a moderate precision (87%), but the worst recall (49%) in
our benchmark test.

Looking at the two tool combinations, ACG+TAJS stand out
based on F-measure, together they perform almost perfectly
(98% precision and 99% recall). It looks like they complement
each other quite well. In fact, they seem to be a perfect
combination as there are no other three, four or five tool
combinations that would even come close to this F-measure
score. ACG, TAJS, and Closure reach the maximum recall
together, while maintaining a precision of 83%. Taking all the
tools into consideration, the combined precision decreases to
74% with a perfect recall.

Node.js module results. As we already described, only
ACG and Closure were able to analyze the state-of-the-art
Node.js modules listed in Table II. From the 2281 edges
found together by the two tools in the six modules, 1304
are common, which is almost 60%. It is quite a high number
considering the complexity of Node modules coming from
structures, like event callbacks, module exports, requires, etc.
There were 336 edges (14.7%) found only by ACG and 641
(28.1%) found only by Closure.

As the amount of edges here is an order of magnitude larger
than in the case of SunSpider benchmarks, we were not able
to entirely validate the found calls manually. However, we
evaluated a statistically significant amount of random samples.
To achieve a 95% confidence level with a 5% margin of error,
we evaluated 179 edges that were uniquely found by ACG,



240 edges from those found only by Closure, and 297 from
the common edges. We found that 149 out of 179 (83.24%)
edges were true for ACG, 40 out of 240 (16.66%) edges were
true for Closure, and 248 out of 297 (83.5%) were true for
the common edges.

C. Performance analysis
In this section, we present the results of the performance

testing. We would like to note that the measurement results
contain every step of call graph building, including reading the
input files and writing the output. That was necessary because
different tools implement call graph building in different ways,
but reading input and writing output is a common point. We
ran the tools ten times on each of the generated inputs and
used the averages as a result (see Table VII). We highlighted
the best runtime and memory consumption in each line.

In general, Closure, ACG and TAJS performed best in all
cases. The npm callgraph module was generally faster than
WALA. But when it comes to large inputs, WALA was 30%
faster than npm callgraph. On the other hand, it used more
than one and a half times as much memory. The differences
may vary with the sizes of the inputs, in some cases a tool
was ~28 times faster (npm callgraph vs. Closure, s_large), and
for another input only ~3% better than the other tool (npm
callgraph vs. WALA, s_medium).

On the medium-sized test set in the complex category, ACG
performed the best closely followed by TAJS. On the large
set, Closure used the least memory, however TAJS produced
the call graph in the shortest time. It is clearly visible that
the more complex problems are considered (more similar to
real-world applications) the more variance is present in the
runtimes and memory consumptions. We suppose it is due to
the different inner representations the tools have to build up in
order to obtain a call graph. We conjecture that Closure and
ACG keep their inner representations as simple as possible,
consequently call edges are easily located by them in case of
simple programs. For complex cases, this behavior could be
less effective and the more complex inner representations will
pay off.

We would like to stress that these results do not say anything
about the correctness and accuracy of the produced output,
they are simply approximate measurement data of the memory
usage and running time performances.

Discussion of the results. Each approach and tool has its
pros and cons. During this comparative study, we distilled the
following statements.

• Recursive calls are not handled in every tool; Closure
Compiler seems to be the most mature in this respect.

• Edges pointing to inner functions (function in a function)
declarations are not handled by every tool, e.g. WALA
produces a lot of false edges because of this.

• Only WALA and TAJS can detect calls of function
arguments (i.e., higher-order functions).7

7We should note, however, that according to its documentation ACG
might be able to identify higher-order functions in the optimistic configuration,
at the cost of lower precision.

• ACG and TAJS are able to track complex control flows
and detect non-trivial call edges.

• Closure often relies only on name-matching, which can
cause false or missing edges.

• It seems that WALA can analyze eval() constructions and
dynamically built calls from strings to some extent.

• The calls from anonymous functions defined in the global
scope are mistreated by npm-cg, which detects a call edge
directly coming from the global scope in such cases.

• Closure has a superior runtime performance for very large
inputs with high recall at the expense of a lower precision.

• ACG consumes the least memory and runs the fastest
among all the tools on small to medium sized inputs.

• WALA and npm-cg are practically unusable for analyzing
code at the scale of millions of code lines.

V. THREATS TO VALIDITY

A lot of factors might have affected our measurements.
Some of the tools might perform additional tasks during call
graph construction, which we could not omit from the mea-
surement. Nonetheless, we treat our performance measurement
with proper care; they are only used to assess the orders of
magnitudes for memory consumption and running times.

Our modifications in the tools for call graph extraction
mechanism may have introduced some inconsistencies. How-
ever, we made only slight changes and most of them affected
only the reporting of edges, thus this threat has a limited effect.

We ran all the tools with default configurations. Various
parameters might have affected the performance and precision
of the tools. Nonetheless, we do not expect the main results
to be much affected by these parameters.

We might have missed some good candidate tools from the
comparison. However, the presented evaluation strategy and
insights are useful regardless of this. Nevertheless, it is always
possible to replicate and extend a comparative study like this.

Regarding the manual evaluation of the call edges, the
subjectivity of evaluators is also a threat. We tried to mitigate
this by having two authors validate all the edges for the 26
SunSpider benchmark test cases. There were preliminary dis-
agreements in only 2 out of 348 cases between the evaluators
that they could resolve in the end. Thus, we think the possible
bias due to evaluation errors is negligible.

VI. CONCLUSIONS

Code analysis of JavaScript programs has gained a large
momentum during the past years. Many algorithms for vulner-
ability analysis, coding issue detection, or type inference rely
on the call graph representation of the underlying program.

In this paper, we presented a comparative study of five state-
of-the-art static algorithms for building JavaScript call graphs
on 26 WebKit SunSpider benchmark programs and 6 real-
world Node.js modules. Our purpose was not to declare a
winner, rather to get empirical insights to the capabilities and
effectiveness of the state-of-the-art static call graph extractors.

Each tool had its strengths and weaknesses. For example,
Closure recognized recursive calls and had an overall good per-
formance both in terms of running time and memory consump-



Table VII
PERFORMANCE MEASUREMENTS (MEMORY IN MEGABYTES, RUNTIME IN SECONDS)

npm callgraph ACG WALA Closure Compiler TAJS
Category File Memory Runtime Memory Runtime Memory Runtime Memory Runtime Memory Runtime

Simple
s_small.js 404 13.33 237 3.11 1151 16.55 519 6.41 718 5.18
s_medium.js 2234 175.76 1168 49.35 2537 181.62 1338 17.28 1671 23.83
s_large.js 5702 1401.88 3338 636.49 8784.22 1085 3277 50.16 3132 102.91

Complex c_medium.js 281 4.76 239 2.56 826 8.27 411 4.92 370 2.74
c_large.js 3283 76.49 1452 39.63 4010 210.45 1388 27.29 2067 23.79

tion, but it introduced errors due to shallow name-matching
and had a relatively low recall. ACG tracked complex control
flows to find call edges and had high precision and recall at the
same time with great memory consumption and runtime, but
missed higher-order function calls. WALA had the capability
to detect higher-order function calls (callbacks), but produced
some edges with unknown nodes and had the lowest recall and
highest memory consumption of all tools. The npm callgraph
tool had very high precision, but poor performance and found
no unique true call edges. TAJS provided very conservative
results, meaning that it had almost perfect precision, but very
low recall, while having a very good overall performance.

It is also evident from the results that the combined power
of various tools is superior to those of individual call graph
extractors. Thus, we would encourage the development of
algorithms that combine these state-of-the-art approaches.

Our future plan is to extend and replicate the presented study
by adding more static tools (e.g. taking commercial tools and
IDEs into consideration) as well as including some dynamic
call graph extraction approaches.
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