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Abstract

The biomolecular networks underpinning cell function exhibit canalization, or the buffering of fluctuations

required to function in a noisy environment. One understudied putative mechanism for canalization is the

functional equivalence of a biomolecular entity’s regulators (e.g., among the transcription factors for a gene).

We use Boolean networks to study cell regulatory systems. In these discrete dynamical systems, activation

and inhibition of biomolecular entities (e.g., transcription of genes) are modeled as the activity of coupled

2-state automata, and thus the equivalence of regulators can be studied using the theory of symmetry in

discrete functions. To this end, we present a new exact algorithm for finding maximal symmetry groups among

the inputs to discrete functions. We implement this algorithm in Rust as a Python package, schematodes.

We include schematodes in the new CANA v1.0.0 release, an open source Python library for analyzing

canalization in Boolean networks, which we also present here. We compare our exact method implemented

in schematodes to the previously published inexact method used in earlier releases of CANA and find that

schematodes significantly outperforms the prior method both in speed and accuracy. We also apply CANA

v1.0.0 to study the symmetry properties of regulatory function from an ensemble of experimentally-supported

Boolean networks from the Cell Collective. Using CANA v1.0.0, we find that the distribution of a previously

reported symmetry parameter, ks/k, is statistically significantly different in the Cell Collective than in random

automata with the same in-degree and activation bias (Kolmogorov-Smirnov test, p < 0.001). In particular,

its spread is much wider than in our null model (IQR 0.31 vs IQR 0.20 with equal medians), demonstrating

that the Cell Collective is enriched in functions with extreme symmetry or asymmetry.
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Introduction

Boolean networks are discrete dynamical models used in social,

physical, and biological sciences, and are especially popular in

systems biology where threshold behaviors are common and data

required to fit detailed mechanistic models are rare. Here, we

discuss two software packages for their analysis. The first is

an updated software package, CANA version 1.0.0 (v1.0.0), a

Python library for Boolean network analysis with an emphasis

on understanding symmetry and redundancy. The second,

schematodes, is a new open source Python library written in

Rust that underlies the symmetry computations provided in CANA

v1.0.0. CANA v1.0.0 is a substantial upgrade to CANA version 0.1.2

(v0.1.2) (Correia et al., 2018; Gates et al., 2021). In addition to

large speed improvements, CANA v1.0.0 includes new functionality

for the computation of perturbation response, interaction graphs,

and symmetry properties (see Supporting Materials for a brief

overview of features). We optimized several CANA v0.1.2 functions

using Cython and Rust with PyO3 bindings, and in some cases,

have redesigned the underlying algorithms using novel approaches

with improved complexity, scaling, and accuracy. The largest

improvements, and our emphasis here, involve the symmetry

computations that describe the effect of permuting a Boolean

function’s non-redundant inputs.

In biomolecular regulatory systems, canalization (the buffering

of genetic, epigenetic, and environmental fluctuations) plays a key

role in establishing a robust mapping from genotype to phenotype

(Waddington, 1942). Canalization requires dynamical redundancy,
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which manifests in several ways, including: i) multiple pathways

along which a signal propagates, ii) multiple combinations of

transcription factors that bind a gene’s promoter region, and

iii) threshold behaviors that allow depletion of one signal to be

overcome by overabundance of another. To study canalization,

CANA provides routines that quantify various types of redundancy

using mathematically rigorous measures. The development of these

measures began in the 2000s by extending the theory of total

symmetry of Boolean functions (McCluskey, 1956) to compress

the prime implicants of a Boolean function into a set of schemata

where symmetry is described with symbols for groups of inputs

that can permute Marques-Pita and Rocha (2013). CANA was first

released in 2018 as v0.0.2-alpha by Correia et al. (2018) and

updated to v0.1.2 by Gates et al. (2021). Since then, we have made

significant improvements and additions to these tools, culminating

in the release of CANA v1.0.0.

Here, we provide a rigorous group-theoretic description and

justification for the symmetry schema redescription of Marques-

Pita and Rocha (2013). Using this, we develop a new algorithm,

schematodes, for prime implicant compression. The schematodes

algorithm is implemented as a Python library written in Rust

with PyO3 bindings. Notably, the CANA v0.1.2 permutation

symmetry calculations extrapolate from a sample subset of

possible permutations and can overestimate the permutability of

input signals. In contrast, the schematodes algorithm presented

here and used in the updated CANA v1.0.0 is exact. Despite its

exactness, the schematodes computation is dramatically faster

overall than the previous method. The schematodes algorithm

can be used to study symmetry in ensembles of biomolecular

network models, as we demonstrate with 74 experimentally-

supported models from the Cell Collective (Helikar et al., 2012) as

a test-bed. We discover that these real-world models exhibit more

extreme symmetry and asymmetry than random null models, with

moderately symmetric functions being underrepresented.

Two-symbol schemata theory

In this section, we briefly discuss the two-symbol schemata

of Marques-Pita and Rocha (2013) and give a more formal,

comprehensive treatment in Supporting Materials. Computation

of two-symbol symmetry in CANA identifies conditions when a

function’s inputs can permute without altering its output. A first

set of symbols indicates input values and “don’t care” inputs,

while a second indicates literals in a prime implicant that permute

to obtain another prime implicant. Biologically, the amount of

compression achievable (by reducing redundancy) is related to the

extent of regulatory functional equivalence, which is relevant in

phenomena such as genome duplication, compensatory mutation,

and drug resistance Marques-Pita and Rocha (2013); Gates et al.

(2021).

Some Boolean functions exhibit total symmetry, where all

inputs may permute without altering the output; simple examples

include the 2-input OR and AND functions (denoted by the ∨
and ∧ operators respectively). As the number of inputs grows,

however, such functions become relatively rare. For k > 2 inputs,

a function is more likely to be only partially symmetric, meaning

a subset of its inputs permute, subject to certain constraints on

their values. For example, in the function (x1∧x2)∨x3, the inputs

do not all permute except when all inputs are equal (trivially)

or exactly two inputs equal 1. In addition, the first two inputs

permute when x3 = 0 and at least one of x1 or x2 is 0. Additional

trivial permutations of equal-value inputs are possible.

Formalizing these observations, consider a set of input

configurations, represented as tuples (e.g., 010 representing x1 =

0, x2 = 1, x3 = 0), that all result in the same output of a regulatory

function (e.g., the elements of {010, 100, 000} result in (x1 ∧ x2)∨
x3 = 0). If the set is invariant under all permutations of a subset of

tuple positions, the set exhibits partial symmetry in those input

positions. For example, the set {010, 100} 7→ 0 exhibits partial

symmetry in the first two input positions. Sometimes, inputs

within non-overlapping subsets can be independently permuted.

For example, the arbitrary permutations of inputs x1 and x2

as well as arbitrary permutations of inputs x3 and x4 might

independently conserve the output of the function (e.g., as in

(x1 ∧ x2) ∨ ¬x3 ∨ ¬x4). Such cases also fall under the umbrella

of partial symmetry (e.g., {0101, 1010, 0110, 1001} 7→ 0 exhibits

partial symmetry in the first two inputs and in the last two inputs).

We are particularly interested in the case when a permutations

is not just a trivial reordering of inputs with the same value.

That is, we seek permutation groups for which only the identify

permutation maps every input configuration to itself; these are

called faithful group actions (see Supporting Materials for a formal

definition). We identify the maximal sets of input configurations

that are invariant under such a partial symmetry group using a

new exact algorithm implemented in Rust as a Python package

schematodes that is integrated into CANA v1.0.0 (see Supporting

Materials for full details of the algorithm used).

Following Marques-Pita and Rocha (2013), we annotate the

identified maximal sets using the two-symbol schema notation

in which the permuting input subsets of a representative input

configuration are annotated with symbols above the input values.

For example, 1̊1̊00̂1̂ indicates that the set of interest contains the

5-tuple 11001 as well as those obtained by permuting the first and

third entries and/or the fourth and fifth entries, resulting in the

set {01101, 01110, 11001, 11010}. In other words, this set of input

configurations can be compressed into the annotated schema. The

ability to compress input configurations this way denotes that

the underlying function possesses partial symmetry redundancy

among subsets of inputs (e.g. function will behave the same way

as long as one of the last two inputs is ON and the other is OFF,

no matter which). Maximality requires that there are no larger

partial symmetries that contain 1̊1̊00̂1̂ as a subset, meaning for

example, that 1̊̊1̊00̂1̂ contains an input configuration that results

in a different function output. Note that this procedure, illustrated

here for the alphabet {0, 1}, generalizes in a straightforward

way to arbitrary finite alphabets. In this way, the approach of

Marques-Pita and Rocha (2013) is given a formal group-theoretic

grounding.

This type of symmetry redundancy is distinct from, but related

to, the redundancy captured by the number and size of a function’s

prime implicants. In its latest release, CANA can calculate two-

symbol schemata using either the uncompressed activating input

configurations or the set of prime implicants (also called one-

symbol schemata in this context). In this latter case, two-symbol

schemata are calculated for tuples of 0s, 1s, and #s, where the

# symbol denotes a “wildcard”, or unspecified input value. This

reveals how much redundancy exists due to permutation symmetry

within the prime implicants, separating the effects of irrelevant

inputs from the effects of input symmetry (Manicka, 2017).

From two-symbol schemata, CANA can calculate various

quantities and representations. For instance, the dynamic
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canalization map (DCM), introduced by Marques-Pita and Rocha

(2013), represents a Boolean network as a threshold network

with the necessary and sufficient control logic revealed after

redundancy removal. By leveraging permutation symmetry, the

DCM is generally more compact than other representations such

as logic hypergraphs or parity-expanded networks (Wang and

Albert, 2011; Klarner et al., 2015; Rozum et al., 2021). CANA

can also use the two-symbol schemata to quantify the extent of

partial symmetry in a function. By default, CANA v.1.0.0 computes

the average number of nontrivially permuting inputs for each

prime implicant associated with a given input configuration, and

then averages over all input configurations to obtain the input

symmetry, denoted ks, but alternative aggregations, such as

maximum rather than average, are available.

Symmetry in random and Cell Collective models

We computed two-symbol schemata and input symmetry ks for

an ensemble of randomly generated functions with five inputs

to estimate symmetry redundancy in random automata (1,943

functions generated with biases, or fraction of activating input

configurations, ranging from 0 to 1)—input redundancy and its

dual effective connectivity has been studied in the systems biology

models and random ensembles elsewhere Gates et al. (2021);

Manicka et al. (2022); Costa et al. (2023). We also computed

ks for the regulatory functions of 74 experimentally-supported

Boolean networks from the Cell Collective (Helikar et al., 2012).

The left panel of Figure 1 compares the accuracy and speed of CANA

v1.0.0 with that of CANA v0.1.2 in random automata. We assessed

accuracy by comparing exhaustive function evaluation to the input

configurations obtained by expanding the two-symbol schemata

that correspond to the 1 (or 0) output. The CANA v0.1.2 heuristic

algorithm produces incorrect two-symbol schemata in 58 of the

unique Cell Collective functions (12%) and in 53% of the randomly

generated test ensemble. As an exact algorithm, the schematodes

in CANA v1.0.0 achieves 100% accuracy in completed computations

(it completed all computations in the random ensemble in under

10 seconds). Moreover, it dramatically improves the calculation

speed for the majority of functions (10x faster or better in 87.4%

and 100x or better in 44.0% of random 5-input functions tested).

Functions without large speed improvements generally have larger

symmetry groups (more tuple elements permute).

Most functions in the Cell Collective are invariant under

permutation of only a single 0 or 1 with wildcards, #. Such

patterns arise from nesting conjunctions or disjunctions (variables

connected only by AND or OR operators, respectively), which can

be viewed as threshold functions with the largest (k) or smallest

(1) threshold, respectively. For example, x1∨x2∨x3 is a threshold

function with threshold 1 and two-symbol schema 1̊#̊#̊ 7→ 1

and 000 7→ 0. Notably, threshold functions with intermediate

thresholds permute more than just a single 0 or 1 with wildcards

(e.g., x1 ∧ x2 ∨ x2 ∧ x3 ∨ x1 ∧ x3 has two-symbol schemata

1̊̊1#̊ 7→ 1 and 0̊̊0#̊ 7→ 0). Only 11 unique functions in the Cell

Collective (2% of the unique functions) have partial symmetry

groups that allow a 0 to be permuted with a 1 (or vice versa),

as opposed to with only wildcards; in contrast, two thirds of our

randomly generated benchmark ensemble have this property. This

is consistent with the over-representation of monotonic (unate)

functions in the Cell Collective. Monotonic functions are those

functions with the property that every input is unambiguously an

activator or an inhibitor. Using CANA v1.0.0, we discovered that

more than 90% of Cell Collective models contain only monotonic

functions.

To assess whether the symmetry distribution observed in the

Cell Collective merely reflects the expected distributions of the

number of regulators and activation bias in random automata,

we shuffled the output column of the truth tables of each Cell

Collective function to produce twelve random rules. The resulting

set of random functions have the same number of inputs, in-

degree denoted by k , and the same number of input configurations

resulting in an output of 1. For each of those, we computed the

ks symmetry measure, normalized by k and compared to the

value of ks/k for the original, unshuffled function (right panels

of Figure 1). We note that for low in-degree (k ≤ 6), shuffling

tends to decrease symmetry (see percentages in the lower right of

the right-hand panels of Figure 1), whereas the opposite occurs

for higher in-degree. Furthermore, we observe a higher spread in

ks/k values for the Cell Collective functions (IQR 0.31 vs IQR

0.20 for 3 ≤ k ≤ 8 with median value 0.375 for both; distributions

are statistically significantly different by the Kolmogorov-Smirnov

test at p < 0.001) and, for lower in-degree, an over-representation

of highly symmetric functions (e.g., 75th percentile of 0.88 vs

0.42 for k = 3). Notably, some values of ks appear much less

frequently in the Cell Collective than observed in the shuffled

models (vertical light bands in Fig. 1), possibly because these

values are incompatible with monotonicity.

Discussion

We have presented the open-source Python package CANA v1.0.0

and its novel component schematodes and applied them to

study partial symmetry in biomolecular networks. Various

theoretical mechanical and evolutionary models suggest that

partial symmetry is over-represented in regulatory mechanisms.

For example, Grefenstette et al. (2006) show how increasing

rates of symmetry arise from the mechanical interactions

between biological signaling components and the duplication and

modification of binding domains. Models of genome duplication

in yeast (Anholt and Mackay, 2023; Conant and Wolfe, 2006)

suggest that exact symmetry among duplicated elements is only

lost over very long timescales, with functional partitioning.

Partial symmetry may provide a fruitful avenue for studying the

gradual loss of symmetry following genome duplication. Symmetry

in regulatory functions may also help to explain the observed

robustness of cell systems to perturbations observed by Park et al.

(2023).

Measures of canalization have provided valuable insight into

the interplay between redundancy and robustness in biological

networks. Previous research has focused on measures derived

from prime implicants (Marques-Pita and Rocha, 2013; Gates

et al., 2021), monotone functions (Grefenstette et al., 2006), or

single node perturbations (Shmulevich and Kauffman, 2004). CANA

v1.0.0 and schematodes allow for fast and accurate computation

of symmetry-based canalization measures.

Our analysis of partial symmetry in the Cell Collective aligns

with the frequently observed tendency toward monotonicity in

regulatory functions and suggests a preference for nesting very

stringent or lenient threshold functions over intermediate ones.

At intermediate numbers of inputs (k = 5, k = 6, and k =

7), the distribution of the symmetry measure ks suggests that

experimentally-supported regulatory functions have a broader

distribution of permutation symmetry than is expected in random
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Fig. 1: Benchmark timings for random automata (left) and symmetry analysis for random and Cell Collective automata (right). In the

left panel, the axes show the computation time using CANA v1.0.0 with schematodes (vertical) and CANA v0.1.2 (horizontal). All outputs

from CANA v1.0.0 with schematodes were verified to be correct. Correct (incorrect) outputs generated using the heuristic method of CANA

v0.1.2 are shown in blue (red). Benchmarks were run on a Dell XPS 13 9380 with a 3.9GHz quad core Intel core i5 and 8GB RAM.

The right panels show comparisons of symmetry measures (ks) for Cell Collective functions before (horizontal axes) and after (vertical

axes) shuffling, organized and normalized by in-degree (k). Each automaton in the Cell Collective is represented 12 times and is used

to produce a random “shuffled” function with the same number of input configurations resulting in the ON state. Percentages in the

top left, top right, and bottom right of each panel indicate how many shuffles result in increased, the same, or decreased symmetry,

respectively.

models that control for input number and bias. Taken together,

these results show how regulatory functions in the Cell Collective

are enriched in logical extremes.

CANA v1.0.0 and schematodes rely on our development of a

strong formal foundation for previously used symmetry measures,

as an additional dimension of the canalization phenomenon in

automata networks. The new code has also enabled generalization

of symmetry measurement beyond Boolean networks to multi-

state automata, which we will apply in future work. The partial

symmetry computations our new tools enable are essential for a

full characterization of canalization in biological networks, using

discrete dynamical models of regulation and signalling. Thus,

CANA v1.0.0 and schematodes present an opportunity to study and

provide new explanations for the robust function of biomolecular

systems.
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