
Towards Metric DBSCAN: Exact, Approximate, and Streaming
Algorithms

GUANLIN MO∗ and SHIHONG SONG∗, University of Science and Technology of China, China

HU DING†, University of Science and Technology of China, China

DBSCAN is a popular density-based clustering algorithm that has many different applications in practice.

However, the running time of DBSCAN in high-dimensional space or general metric space (e.g., clustering a

set of texts by using edit distance) can be as large as quadratic in the input size. Moreover, most of existing

accelerating techniques for DBSCAN are only available for low-dimensional Euclidean space. In this paper,

we study the DBSCAN problem under the assumption that the inliers (the core points and border points) have

a low intrinsic dimension (which is a realistic assumption for many high-dimensional applications), where the

outliers can locate anywhere in the space without any assumption. First, we propose a 𝑘-center clustering

based algorithm that can reduce the time-consuming labeling and merging tasks of DBSCAN to be linear.

Further, we propose a linear time approximate DBSCAN algorithm, where the key idea is building a novel

small-size summary for the core points. Also, our algorithm can be efficiently implemented for streaming data

and the required memory is independent of the input size. Finally, we conduct our experiments and compare

our algorithms with several popular DBSCAN algorithms. The experimental results suggest that our proposed

approach can significantly reduce the computational complexity in practice.

CCS Concepts: • Theory of computation→ Theory and algorithms for application domains.

Additional Key Words and Phrases: Density-based Clustering, Outliers, Approximation, Doubling dimension,

Streaming, 𝑘-center Clustering

ACM Reference Format:

Guanlin Mo, Shihong Song, and Hu Ding. 2024. Towards Metric DBSCAN: Exact, Approximate, and Streaming

Algorithms. Proc. ACM Manag. Data 2, 3 (SIGMOD), Article 178 (June 2024), 25 pages. https://doi.org/10.1145/

3654981

1 INTRODUCTION
Density-based clustering is an important clustering model for many real-world applications [44].

Roughly speaking, the goal of density-based clustering is to identify the dense subsets from a given

data set in some metric space. Unlike other clustering algorithms (e.g., the center-based clustering

algorithms like 𝑘-means clustering [63]), the density-based clustering algorithms are particularly

useful to extract clusters of arbitrary shapes with outliers. So they also can be applied to solve outlier

recognition problems [10]. In the past decades, a number of density-based clustering algorithms

have been proposed [2, 5, 23, 51]. DBSCAN (Density Based Spatial Clustering of Applications

with Noise), which was proposed by Ester et al. [23], is one of the most popular density-based

∗
Both authors contributed equally to this research.

†
Corresponding author.

Authors’ addresses: Guanlin Mo, moguanlin@mail.ustc.edu.cn; Shihong Song, shihongsong@mail.ustc.edu.cn, University of

Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, Anhui, China, 230026; Hu Ding, University of

Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, Anhui, China, huding@ustc.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/6-ART178

https://doi.org/10.1145/3654981

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

ar
X

iv
:2

40
5.

06
89

9v
1

 [
cs

.D
S]

 1
1

M
ay

 2
02

4

https://doi.org/10.1145/3654981
https://doi.org/10.1145/3654981
https://doi.org/10.1145/3654981

178:2 Guanlin Mo, Shihong Song, and Hu Ding

clustering algorithms and has been extensively applied to various practical areas [26, 33, 59]. Due

to its substantial contributions in practice, the original DBSCAN paper was awarded the test of time
award in ACM KDD 2014.

Though the DBSCAN method often achieves promising clustering performance in practice, the

high computational complexity can be prohibitive for applications in large-scale data. Suppose

the input data size is 𝑛. The worst-case time complexity of DBSCAN is Θ(𝑛2). Obviously this

quadratic complexity is far from satisfying for large 𝑛 in practice, and thus it motivated several

faster implementations of DBSCAN in the past years. Gunawan and de Berg [28] proposed a grid-

based DBSCAN algorithm, which can reduce the time complexity to 𝑂 (𝑛 log𝑛) in 2𝐷 . For general

low-dimensional Euclidean space R𝑑 (assume 𝑑 is small), Chen et al. [11] and Gan and Tao [26]

independently proposed similar sub-quadratic complexity algorithms by using some computational

geometry techniques. For example, the time complexity of [26] is 𝑂 (𝑛2− 2

⌈𝑑/2⌉+1+𝛿) with 𝛿 being any

arbitrarily small non-negative constant. However, as 𝑑 increases, the time complexities of [11, 26]

approach to 𝑂 (𝑛2). Furthermore, Gan and Tao [26] proved that the DBSCAN problem is at least as

hard as the unit-spherical emptiness checking (USEC) problem [1], where it is widely believed that

the time complexity for solving the USEC problem is Ω(𝑛 4

3) for any 𝑑 ≥ 3 [21, 22]. Therefore, most

recent works mainly focus on the low-dimensional DBSCAN problem [15, 58, 61, 66].

Due to the hardness of the exact DBSCAN problem, another line of research on approximate

DBSCAN attracts more attentions recently. For example, the aforementioned works [11] and [26]

also proposed approximate DBSCAN algorithms with theoretical guarantees. The connectivity

between points within each cluster, which is the most time-consuming step in exact DBSCAN, is

relaxed in their algorithms. Their algorithms both achieve the 𝑂 (𝑛/𝜌𝑑−1) time complexity, where

𝜌 > 0 is the given parameter that measures the approximation quality (we provide the formal

definition in Section 1.1). Other variants of approximate DBSCAN methods include sampling based

DBSCAN++ [40], LSH based DBSCAN [70], and KNN based NG-DBSCAN [49].

However, the research on DBSCAN for abstract metric space and high-dimensional space is

still quite limited, to the best of our knowledge. In this big data era, we often confront with high-

dimensional data [24] and even non-Euclidean data [6]. For example, the input data can be texts,

images, or biological sequences, which cannot be embedded into a low-dimensional Euclidean

space; and moreover, the distance between different data items can be more complicated than

Euclidean distance (e.g., edit distance [52]). We should emphasize that one can always run the

original DBSCAN algorithm [23] for solving DBSCAN in abstract metric space or high-dimensional

space, but the previously developed accelerating techniques cannot be directly applied to reduce the

complexity for these cases. Ding et al. [17] proposed a fast exact DBSCAN algorithm for abstract

metric space by using the 𝑘-center clustering heuristic [16]; but their result lacks strict theoretical

analysis. Lulli et al. [49] and Yang et al. [72] considered distributed DBSCAN for metric space, but

their methods mainly focus on the communication cost and load balance for distributed system

rather than the time complexity (e.g., the approach of [72] just directly uses the orginal DBSCAN

algorithm in each local machine).

Our main results and the key ideas. In this paper, we systematically study the DBSCAN

problem in abstract metric space (we call it “metric DBSCAN” problem for short). Our results

can be also extended to the case in high-dimensional Euclidean space, if the intrinsic dimension

of the input data (except for the outliers) is low, which is a reasonable assumption for a range of

applications in real world (e.g., image datasets [56]). We use the “doubling dimension” 𝐷 to measure

the intrinsic dimension (the formal definition is shown in Section 1.1). Also note that we do not

require the value of 𝐷 to be explicitly given in our algorithms. We do not add any constraint to

the outliers, because in practice they can locate anywhere in the space. For example, in the area of

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

Towards Metric DBSCAN: Exact, Approximate, and Streaming Algorithms 178:3

AI security, an attacker may add some carefully crafted outliers to mislead the machine learning

model, where some recent works showed that the outliers often have significantly higher intrinsic

dimension than normal data [35, 68]. We consider both the exact and approximate metric DBSCAN

problems. Our main contributions are twofold (the results can be easily extended to the case that

both inliers and outliers have low doubling dimensions).

(1) The exact DBSCAN problem involves two major tasks: identify the core points and merge

the core points to form the clusters. Both of these two tasks take 𝑂 (𝑛2) time in the worst case if

using the original DBSCAN algorithm. First, we show that the first task can be completed with the

runtime linear in 𝑛. The key idea is inspired by a novel insight that relates the task to a radius-guided
𝑘-center clustering method in metric space, which can reduce the search range for identifying the

core points. After labeling the core points, we then build a set of cover trees [4] for the local regions,

and solve the second task for merging the core points with the time linear in 𝑛 as well.

(2) We also consider the 𝜌-approximate DBSCAN problem proposed in [26]. Our idea is to

construct a “summary” for the set of core points. The summary should be much smaller than the

core points set (which can be as large as 𝑛); also the summary should be able to approximately

represent the core points, so that we can efficiently recover the 𝜌-approximate DBSCAN clusters

without dealing with all the core points. The approximate algorithm also has the time linear in 𝑛;

but comparing with our proposed exact DBSCAN algorithm, it compresses the data into a small-size

summary, so the method can be easily extended for developing streaming algorithm where the

required memory is independent of 𝑛. To the best of our knowledge, the current research for

streaming DBSCAN (exact or approximate DBSCAN with theoretical quality guarantee) are still

quite limited, though several other types of density-based streaming clustering algorithms were

proposed before [8, 12, 25, 31].

We also take a comprehensive set of experiments to evaluate the performance of our proposed

algorithms. Our algorithms can achieve significant speedups over several existing DBSCAN algo-

rithms. Another advantage of our method is that it is friendly for parameter tuning. For example,

one usually needs to try different values for the parameters (e.g, the ball radius and density thresh-

old) to achieve a satisfied DBSCAN solution; the radius-guided 𝑘-center clustering, which is a key

part in our algorithms, do not need to be performed repeatedly during the parameter tuning, and

therefore our overall running time can be further reduced in practice.

1.1 Preliminaries
Notations. We denote the metric space by (𝑋, dis), where 𝑋 is the set of 𝑛 input data items

and dis(·, ·) is the distance function on 𝑋 . For any 𝑝 ∈ 𝑋 and 𝑌 ⊆ 𝑋 , we define dis(𝑝,𝑌) =
min𝑦∈𝑌 dis(𝑝,𝑦). Let B(𝑝, 𝑟) be the ball centered at a point 𝑝 ∈ 𝑋 with radius 𝑟 ≥ 0 in the space.

For any𝑌 ⊆ 𝑋 , we use |𝑌 | to denote the number of data items in𝑌 . We assume that it takes 𝑡dis time

to compute the distance dis(𝑝1, 𝑝2) between any two points 𝑝1, 𝑝2 ∈ 𝑋 . For example, 𝑡dis = 𝑂 (𝑑)
for 𝑑-dimensional Euclidean space.

1.1.1 Overview for DBSCAN. For the sake of completeness, we briefly overview the DBSCAN

algorithm [23] and the 𝜌- approximation [26]. DBSCAN has two input parameters: 𝜖 ∈ R+ and
𝑀𝑖𝑛𝑃𝑡𝑠 ∈ Z+. All the input data points of 𝑋 are divided into three categories (see Figure 1 for an

illustration): for any 𝑝 ∈ 𝑋 ,

(1) 𝑝 is a core point if it has at least𝑀𝑖𝑛𝑃𝑡𝑠 neighbors within the distance 𝜖 , i.e., |B(𝑝, 𝜖) ∩𝑋 | ≥
𝑀𝑖𝑛𝑃𝑡𝑠;

(2) 𝑝 is a border point if 𝑝 is not a core point, but there exists at least one core point 𝑞 satisfying

𝑝 ∈ B(𝑞, 𝜖);
(3) 𝑝 is an outlier, if it does not satisfy neither (1) nor (2).

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

178:4 Guanlin Mo, Shihong Song, and Hu Ding

Fig. 1. An example for DBSCAN with𝑀𝑖𝑛𝑃𝑡𝑠 = 4: the solid points are core points, the point 𝑝1 is a border
point, and the point 𝑝2 is an outlier.

We also need to consider the “reachability” to define DBSCAN clusters. Let 𝑞 be a core point. A

point 𝑝 ∈ 𝑋 is density-reachable from 𝑞 if we can find a sequence of points 𝑝1, 𝑝2, · · · , 𝑝𝑡 ∈ 𝑋
satisfying: all of them (with the possible exception of 𝑝𝑡) are core points, and

• 𝑝𝑖+1 ∈ B(𝑝𝑖 , 𝜖) for each 𝑖 ∈ [1, 𝑡 − 1];
• 𝑝1 = 𝑞 and 𝑝𝑡 = 𝑝 .

Definition 1 (DBSCAN [23]). We say a non-empty set of points𝐶 ⊆ 𝑋 is a cluster, if𝐶 satisfies
the following two conditions: (1) maximality: ∀𝑝, 𝑞, if 𝑞 ∈ 𝐶 and 𝑝 is density-reachable from 𝑞, then
𝑝 ∈ 𝐶 ; (2) connectivity: for any pair of points 𝑝, 𝑞 ∈ 𝐶 , there is a point 𝑜 ∈ 𝐶 such that both 𝑝 and 𝑝
are density-reachable from 𝑜 . The DBSCAN problem is to find the set of DBSCAN clusters of 𝑋 1

Let 𝜌 > 0. We say a point 𝑝 ∈ 𝑋 is 𝜌-approximate density-reachable from a core point 𝑞 if

the third condition of density-reachable “𝑝𝑖+1 ∈ B(𝑝𝑖 , 𝜖)” is relaxed to be “𝑝𝑖+1 ∈ B(𝑝𝑖 , (1 + 𝜌)𝜖)”
for each 𝑖 = 1, 2, · · · , 𝑡 − 1.

Definition 2 (𝜌-approximate DBSCAN [26]). By using “𝜌- approximate density-reachable”
instead of “density-reachable” in the connectivity condition, one can define 𝜌-approximate cluster
via the similar manner of Definition 1. The 𝜌-approximate DBSCAN problem is to find a set of
𝜌-approximate clusters such that every core point of 𝑋 belongs to exactly one cluster.

It is easy to see that 𝜌-approximate DBSCAN is equivalent to the exact DBSCAN problem if

𝜌 = 0. Also, Gan and Tao [26] proved a “Sandwich Theorem” for it. Namely, the 𝜌-approximate

DBSCAN solution 𝑆 with (𝜖,𝑀𝑖𝑛𝑃𝑡𝑠) is sandwiched by the exact DBSCAN solutions 𝑆1 and 𝑆2 with

(𝜖,𝑀𝑖𝑛𝑃𝑡𝑠) and ((1 + 𝜌)𝜖,𝑀𝑖𝑛𝑃𝑡𝑠) respectively: for any two points 𝑝, 𝑞 ∈ 𝑋 , if they fall into the

same cluster of 𝑆1, they must also fall into the same cluster of 𝑆 ; if they fall into the same cluster of

𝑆 , they must also fall into the same cluster of 𝑆2.

Remark 1. The parameter𝑀𝑖𝑛𝑃𝑡𝑠 is usually set to be a constant (say, less than 10) as recommended
in previous articles like [15, 23, 28]. So we assume that 𝑀𝑖𝑛𝑃𝑡𝑠 is a small number throughout this
paper.

1.1.2 Doubling Dimension. We take “doubling dimension”, which is a natural and robust measure

that has been widely used in machine learning and data analysis [29, 54], to indicate the intrinsic

dimension of data. Intuitively, the doubling dimension measures how fast the data volume is

growing in the space.

Definition 3 (Doubling dimension [29]). Given a metric space (𝑋, dis), let Λ be the smallest
positive integer such that for any 𝑝 ∈ 𝑋 and any 𝑟 ≥ 0, 𝑋 ∩ B(𝑝, 2𝑟) can always be covered by the
union of at most Λ balls with radius 𝑟 . Then the doubling dimension of (𝑋, dis) is 𝐷 = ⌈log

2
Λ⌉.

We also have the following proposition for doubling dimension that is used in our following

analysis.

1
In this definition, a border point may be assigned to multiple clusters.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

Towards Metric DBSCAN: Exact, Approximate, and Streaming Algorithms 178:5

Proposition 1 ([43, 62]). Suppose the doubling dimension of a metric space (𝑋, dis) is𝐷 . For any
point set 𝑌 ⊆ 𝑋 , we have |𝑌 | ≤ 2

𝐷 ⌈log𝛼 ⌉ , where 𝛼 is the aspect ratio of 𝑌 , i.e., 𝛼 =
max𝑦,𝑦′ ∈𝑌 dis(𝑦,𝑦′)
min𝑦,𝑦′ ∈𝑌 dis(𝑦,𝑦′) .

We let 𝑋out be the set of DBSCAN outliers and 𝑋in = 𝑋 \ 𝑋out. For convenience, we let 𝑧 =

|𝑋out |. We have Assumption 1 following the previous articles on algorithms design in doubling

metric [9, 17, 36].

Assumption 1. We assume that the doubling dimension 𝐷 of the sub-metric space (𝑋in, dis) is
constant.

For the outliers 𝑋out, we do not make any assumption for their doubling dimension. In other

words, the outliers can scatter arbitrarily without any constraint in the space (e.g., the outliers may

be manipulated by an attacker [35, 68]).

1.1.3 Cover Tree. We also introduce a spatial query structure “cover tree” which was proposed

by Beygelzimer et al. [4] for data with low intrinsic dimension. To state the definition, we need to

introduce “𝑟 -net” first [13].

Definition 4 (𝑟 -net). Given a number 𝑟 > 0 and a set 𝑃 in some metric space, a subset 𝑄 ⊆ 𝑃 is
an 𝑟 -net of 𝑃 if it satisfies two requirements:

(1) 𝑟 -packing: dis(𝑞,𝑄 \ {𝑞}) ≥ 𝑟 for all 𝑞 ∈ 𝑄 .
(2) 𝑟 -covering: dis(𝑝,𝑄) ≤ 𝑟 for all 𝑝 ∈ 𝑃 .

A Cover Tree is a hierarchical tree structure 𝑇 for storing a given data set 𝑃 , where each node

corresponds to a point of 𝑃 . The set of nodes at the 𝑖-th level is denoted by 𝑇𝑖 for 𝑙bottom ≤ 𝑖 ≤ 𝑙top,

where 𝑙bottom and 𝑙top indicate the lowest and highest levels of 𝑇 , respectively; 𝑇𝑙top is the root node,

and 𝑇𝑖 ⊂ 𝑇𝑖−1 for each 𝑖 > 𝑙bottom. Also, we require that each 𝑇𝑖 is a 2
𝑖
-net of 𝑇𝑖−1.

For convenience, let Δ𝑃 and 𝛿𝑃 denote the maximum and minimum pairwise distances of 𝑃 ,

respectively. From the above definition of the cover tree, we can derive that 𝑙top ≤ ⌈logΔ𝑃 ⌉ and
𝑙bottom ≥ ⌊log𝛿𝑃 ⌋ (so 𝑙bottom can be negative if 𝛿𝑃 < 1).

Claim 1 (complexities of cover tree). Let the aspect ratio of 𝑃 be Φ𝑃 = Δ𝑃/𝛿𝑃 . Suppose the
dataset 𝑃 has a doubling dimension𝐷 . The construction time of the cover tree of 𝑃 is𝑂 (2𝑂 (𝐷) |𝑃 | logΦ𝑃 ·
𝑡dis). For any query point 𝑝 , finding its nearest neighbor in 𝑃 takes 𝑂 (2𝑂 (𝐷) logΦ𝑃 · 𝑡dis) time.

Remark 2. In the original article [4], the authors assumed that the input data has a constant
“expansion rate”, which is a similar but more stringent intrinsic dimension measure than the doubling
dimension [29, Proposition 1.2]. For example, a data set has a constant expansion rate must also have a
constant doubling dimension, but not vice versa; in other words, doubling dimension is a more general
measure than the expansion rate. The complexities in terms of the dobuling dimension of Claim 1 can
be obtained by using the Nevigating net idea [20, 43].

In recent years, several new variants of the cover tree, such as the simplified cover tree [39] and

the compressed cover tree [20], were also proposed. In this paper, we only use the vanilla cover

tree for simplicity in our analysis, and one can also replace it by those variants in practice.

The rest of this paper is organized as follows. In Section 2, we propose the radius-guided

𝑘-center clustering algorithm that is the key technique for our algorithms. In Section 3, we show

our algorithm for exact metric DBSCAN problem. In Section 4, we show our algorithm and its

streaming version for 𝜌-approximate DBSCAN. Finally, we illustrate our experimental results in

Section 5.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

178:6 Guanlin Mo, Shihong Song, and Hu Ding

2 RADIUS-GUIDED GONZALEZ’S ALGORITHM
In this section, we revisit the Gonzalez’s algorithm [27] which is a popular method for solving the

𝑘-center clustering problem. The goal of 𝑘-center clustering is to find 𝑘 balls to cover the whole data

with minimizing the maximum radius. The Gonzalez’s algorithm is a standard greedy procedure. It

iteratively selects 𝑘 points, where each point has the largest distance to the set of the points that

were selected in the previous rounds. The algorithm yields a 2-approximate solution, that is, the

obtained radius is no larger than two times the optimal one. It was also shown that designing a

(2 − 𝛾)-approximate algorithm for any 𝛾 > 0 is NP hard [34].

In this section, we propose a radius-guided version of the Gonzalez’s algorithm (Algorithm 1).

The key difference between our algorithm and the vanilla Gonzalez’s algorithm is that the former

one needs an upper bound 𝑟 of the radius instead of the number of centers 𝑘 .

Algorithm 1: Radius-guided Gonzalez

Input: The dataset 𝑋 and an upper bound 𝑟 > 0

1 Take an arbitrary point 𝑝0 ∈ 𝑋 and set 𝐸 = {𝑝0} ; // 𝐸 stores the center points.

2 Set 𝑑max = max𝑝∈𝑋 dis(𝑝, 𝐸).
3 For any 𝑝 ∈ 𝑋 , define its closest center 𝑐𝑝 = arg min𝑒∈𝐸 dis(𝑝, 𝑒) (if there is a tie, we

arbitrarily pick one as 𝑐𝑝). ; // We call 𝑐𝑝 as the center of 𝑝.

4 while 𝑑max > 𝑟 do

5 Let 𝑞 = arg max𝑝∈𝑋 dis(𝑝, 𝐸), and add 𝑞 to 𝐸.

6 Update 𝑑max, 𝑐𝑝 and dis(𝑝, 𝐸) for each 𝑝 ∈ 𝑋 , and the set C𝑒 = {𝑝 | 𝑝 ∈ 𝑋 & 𝑐𝑝 = 𝑒} for
each 𝑒 ∈ 𝐸. ; // We call the set C𝑒 as the cover set of 𝑒, and it is used

in our following DBSCAN algorithms.

7 end

8 return E

Below we analyze the complexity of Algorithm 1 under Assumption 1 introduced in Section 1.1.2.

Lemma 1. Suppose Δ is the maximum pairwise distance of 𝑋in and 𝑧 = |𝑋out |. Algorithm 1 runs at
most 𝑂

(
(Δ
𝑟
)𝐷

)
+ 𝑧 iterations, and each iteration takes 𝑂 (𝑛𝑡dis) time.

Proof. The time complexity for each iteration is easy to obtain. When a new point 𝑞 is added to

𝐸, we can update dis(𝑝, 𝐸) = min{dis(𝑝, 𝐸 \ {𝑞}), dis(𝑝, 𝑞)} in 𝑂 (𝑡dis) time for each 𝑝 ∈ 𝑋 ; the
value 𝑑max then can be updated in 𝑂 (𝑛) time. Similarly, we can update all the centers 𝑐𝑝s and cover

sets C𝑒s in 𝑂 (𝑛) time. So the overall time complexity for each iteration is 𝑂 (𝑛𝑡dis).
Now we focus on the maximum number of iterations. We first consider the inliers𝑋in. According

to Algorithm 1, for any 𝑒1, 𝑒2 ∈ 𝐸, we claim that dis(𝑒1, 𝑒2) ≥ 𝑟 ; otherwise, Algorithm 1 should

terminate earlier, and 𝑒1 or 𝑒2 cannot be added to 𝐸. Thusmin𝑒1,𝑒2∈𝐸 dis(𝑒1, 𝑒2) ≥ 𝑟 . The upper bound

of the distance between two points in 𝐸∩𝑋in isΔ. So, according to Proposition 1, |𝐸∩𝑋in | ≤ 2
𝐷 ⌈log

Δ
𝑟
⌉
.

Also, we have |𝐸∩𝑋out | ≤ 𝑧, where 𝑧 = |𝑋out |. Therefore, |𝐸 | = |𝐸∩𝑋in |+ |𝐸∩𝑋out | ≤ 2
𝐷 ⌈log

Δ
𝑟
⌉+𝑧 =

𝑂
(
(Δ
𝑟
)𝐷

)
+ 𝑧, and Algorithm 1 runs for |𝐸 | iterations. □

Remark 3. We would like to emphasize that the number of iterations of Algorithm 1 usually is much
lower than the theoretical bound in Lemma 1, especially when applying it to the DBSCAN problem. For
example, a DBSCAN cluster can have any shape (e.g., a “banana” shape as shown in Figure 5) rather
than a ball shape, i.e., does not fill an entire ball; so the size upper bound “2𝐷 ⌈log𝛼 ⌉” in Proposition 1
can be much higher than the real size, which also implies a lower number of iterations in Algorithm 1.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

Towards Metric DBSCAN: Exact, Approximate, and Streaming Algorithms 178:7

We also introduce two other lemmas relevant to Algorithm 1, which are used in our following

analysis. For any 𝑝 ∈ 𝑋 , its neighbor ball center set is:

A𝑝 = {𝑒 |𝑒 ∈ 𝐸, dis(𝑒, 𝑐𝑝) ≤ 2𝑟 + 𝜖}, (1)

where 𝜖 is the parameter of DBSCAN described in Section 1.1. Note that for each 𝑝 ∈ 𝑋 , the set
A𝑝 can be simultaneously obtained without increasing the complexity of Algorithm 1. For each

𝑞 ∈ 𝐸, we just keep a set {𝑒 | 𝑒 ∈ 𝐸, dis(𝑒, 𝑞) ≤ 2𝑟 + 𝜖}. Note that the center set 𝐸 is generated

incrementally in Algorithm 1. When a new point 𝑒 is added to 𝐸, we just update the set for each

𝑞 ∈ 𝐸. Then the set A𝑝 is also obtained for each 𝑝 ∈ 𝑋 when the algorithm terminates. The

approach of [17] also defines the neighbor region for each point 𝑝 in a similar way as (1). But a

major difference is that their approach needs an estimated upper bound “𝑧” for the number of

outliers in their definition, which could be hard to obtain; moreover, it also needs to manually set

the termination condition (please see Section 3.3 for the detailed discussion).

Lemma 2. For any 𝑝 ∈ 𝑋 , we have 𝑋 ∩ B(𝑝, 𝜖) ⊆ ∪𝑒∈A𝑝
C𝑒 .

Lemma 2 can be proved by using the triangle inequality. Fix a point 𝑝 ∈ 𝑋 , and we suppose

𝑞 ∈ 𝑋 with dis(𝑐𝑝 , 𝑐𝑞) > 2𝑟 + 𝜖 (i.e., 𝑞 ∈ ∪𝑒∉A𝑝
C𝑒). Then we have dis(𝑝, 𝑞) ≥ dis(𝑐𝑝 , 𝑐𝑞) −

dis(𝑝, 𝑐𝑝) − dis(𝑞, 𝑐𝑞) > 2𝑟 + 𝜖 − 2𝑟 = 𝜖 . Therefore, we know 𝑞 ∉ 𝑋 ∩ B(𝑝, 𝜖), and consequently

𝑋 ∩ B(𝑝, 𝜖) ⊆ 𝑋 \ ∪𝑒∉A𝑝
C𝑒 = ∪𝑒∈A𝑝

C𝑒 . From Lemma 2, we know that it is sufficient to only

consider the set ∪𝑒∈A𝑝
C𝑒 for determining that whether 𝑝 is a core point. This is particularly useful

to reduce the neighborhood query complexity for DBSCAN.

Lemma 3. For each point 𝑝 ∈ 𝑋 , we have |A𝑝 | = 𝑂
(
(𝜖
𝑟
)𝐷 + 𝑧

)
.

Proof. Note that |A𝑝 | = |A𝑝 ∩ 𝑋in | + |A𝑝 ∩ 𝑋out |. Since 𝑧 = |𝑋out |, we have |A𝑝 ∩ 𝑋out | ≤ 𝑧.

So we only need to consider the size |A𝑝 ∩ 𝑋in |.
Similar to the proof of Lemma 1, we have min𝑒1,𝑒2∈𝐸 dis(𝑒1, 𝑒2) ≥ 𝑟 . For any 𝑝1, 𝑝2 ∈ A𝑝 , we have

dis(𝑝1, 𝑝2) ≤ dis(𝑝1, 𝑝) + dis(𝑝, 𝑝2) ≤ 4𝑟 + 2𝜖 , where the first inequality comes from the triangle

inequality and the second inequality comes from the definition of A𝑝 . According to Proposition 1,

we have |A𝑝 ∩ 𝑋in | ≤ 2
𝐷 ⌈log𝛼 ⌉

, where

𝛼 =
max𝑒1,𝑒2∈A𝑝∩𝑋𝑖𝑛

dis(𝑒1, 𝑒2)
min𝑒1,𝑒2∈A𝑝∩𝑋𝑖𝑛

dis(𝑒1, 𝑒2)

≤
max𝑒1,𝑒2∈A𝑝∩𝑋𝑖𝑛

dis(𝑒1, 𝑒2)
min𝑒1,𝑒2∈𝐸 dis(𝑒1, 𝑒2)

≤ 4𝑟 + 2𝜖

𝑟
.

(2)

So we have |A𝑝 ∩ 𝑋in | ≤ 2
⌈log

4𝑟+2𝜖
𝑟
⌉𝐷 = 𝑂

(
(𝜖
𝑟
)𝐷

)
. Therefore, |A𝑝 | = 𝑂

(
(𝜖
𝑟
)𝐷 + 𝑧

)
. □

Remark 4. In the proof of Lemma 3, we directly count all the 𝑧 points of 𝑋out to A𝑝 . Actually,
this is overly conservative in practice since the outliers usually are scattered and far away from the
inliers. So |A𝑝 ∩𝑋out | usually is much less than 𝑧, and thus |A𝑝 | is also less than the theoretical bound
𝑂
(
(𝜖
𝑟
)𝐷 + 𝑧

)
.

3 A FASTER EXACT METRIC DBSCAN ALGORITHM
From Section 1.1.1, we know that the DBSCAN algorithm contains three key steps: (1) label all

the core points; (2) merge the core points to form the clusters; (3) identify the border points

and outliers. In this section, we analyze these three steps separately and show that our proposed

radius-guided Gonzalez’s algorithm can help us to significantly reduce the overall complexity. First,

we consider the problem under Assumption 1, and then show that the algorithm can be simplified

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

178:8 Guanlin Mo, Shihong Song, and Hu Ding

if Assumption 1 is replaced by a stronger assumption that the whole input data (including inliers

and outliers) has a low doubling dimension.

3.1 Our Algorithm under Assumption 1
As the pre-processing, we run Algorithm 1 with 𝑟 = 𝜖/2 on the given instance 𝑋 . We also obtain

the setA𝑝 for each 𝑝 ∈ 𝑋 . According to Lemma 3 and the assumption that 𝐷 is a constant, we have

|A𝑝 | = 𝑂 (𝑧). (3)

Step (1): label the core points. First, for any point 𝑝 ∈ 𝑋 , from the triangle inequality we know

that

C𝑐𝑝 ⊆ B(𝑝, 𝜖) ∩ 𝑋, (4)

where C𝑐𝑝 is the cover set of 𝑐𝑝 stored in Algorithm 1 and the size |C𝑐𝑝 | can be obtained immediately

in 𝑂 (1) time. So if |C𝑐𝑝 | ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 , we know |B(𝑝, 𝜖) ∩ 𝑋 | ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 as well; then we can safely

label 𝑝 as a core point. For the remaining points, we check their local regions based on A𝑝 . Let 𝑝

be an unlabeled point. According to Lemma 2, we only need to count the size���B(𝑝, 𝜖) ∩ (
∪𝑒∈A𝑝

C𝑒
) ���. (5)

The point 𝑝 is a core point if and only if the size is ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 . Thus a natural idea for bounding the

complexity of step (1) is to prove an upper bound for the size | ∪𝑒∈A𝑝
C𝑒 |. Unfortunately, this size

can be large in reality (e.g., one 𝐶𝑒 can be very dense and contain a large number of points). To

resolve this issue, a cute idea here is to consider the amortized query complexity over all the points

of 𝑋 ; we show that the time for labeling the core points is linear in 𝑛.

Lemma 4. The time complexity of Step (1) is 𝑂 (𝑛𝑧𝑡dis).
Proof. Define 𝐸1 = {𝑒 ∈ 𝐸 | |C𝑒 | ≥ 𝑀𝑖𝑛𝑃𝑡𝑠} and 𝐸2 = 𝐸 \ 𝐸1, where 𝐸 is the set returned by

Algorithm 1. According to the previous analysis, the time complexity of step (1) is∑︁
𝑒∈𝐸1

𝑂 (|C𝑒 |) +
∑︁
𝑒∈𝐸2

∑︁
𝑒′∈A𝑒

𝑂 (|C𝑒 | |C𝑒′ | · 𝑡dis)

= 𝑂 (𝑛) +𝑂 (𝑀𝑖𝑛𝑃𝑡𝑠) ·
∑︁
𝑒∈𝐸2

∑︁
𝑒′∈A𝑒

𝑂 (|C𝑒′ | · 𝑡dis),
(6)

where the second equality comes from the facts

∑
𝑒∈𝐸1

𝑂 (|C𝑒 |) ≤ 𝑛 and |C𝑒 | < 𝑀𝑖𝑛𝑃𝑡𝑠 for any

𝑒 ∈ 𝐸2. We focus on the term “

∑
𝑒∈𝐸2

∑
𝑒′∈A𝑒

𝑂 (|C𝑒′ | · 𝑡dis)” of (6). A key observation is that 𝑒′ ∈ A𝑒

if and only if 𝑒 ∈ A𝑒′ . Using this property, we can exchange the order of summation for 𝑒 and 𝑒′,
i.e., ∑︁

𝑒∈𝐸2

∑︁
𝑒′∈A𝑒

𝑂 (|C𝑒′ | · 𝑡dis) =
∑︁

𝑒′∈𝐸1∪𝐸2

∑︁
𝑒∈A𝑒′∩𝐸2

𝑂 (|C𝑒′ | · 𝑡dis).
(7)

Note that 𝑂 (|C𝑒′ | · 𝑡dis) is independent with 𝑒 , so we have

(7) =
∑︁

𝑒′∈𝐸1∪𝐸2

𝑂 (|C𝑒′ | · 𝑡dis) ·𝑂 (|A𝑒′ |).

= 𝑂 (𝑛 · 𝑡dis) ·𝑂 (𝑧),
(8)

where the last equality comes from

∑
𝑒′∈𝐸1∪𝐸2

𝑂 (|C𝑒′ |) = 𝑂 (𝑛) and |A𝑒′ | = 𝑂 (𝑧) in (3). Therefore,

through combining (6) and (8), we have the total complexity of Step (1)

= 𝑂 (𝑛) +𝑂 (𝑀𝑖𝑛𝑃𝑡𝑠) ·𝑂 (𝑛 · 𝑡dis) ·𝑂 (𝑧)
= 𝑂 (𝑀𝑖𝑛𝑃𝑡𝑠 · 𝑛 · 𝑧 · 𝑡dis)
= 𝑂 (𝑛𝑧𝑡dis),

(9)

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

Towards Metric DBSCAN: Exact, Approximate, and Streaming Algorithms 178:9

if assuming𝑀𝑖𝑛𝑃𝑡𝑠 is a constant as discussed in Remark 1. □

Step (2): merge the core points to form the DBSCAN clusters.We consider the set 𝐸 obtained

in Algorithm 1. For each 𝑒 ∈ 𝐸, denote by ˜C𝑒 the set of core points in C𝑒 which are labeled in Step

(1) (if
˜C𝑒 = ∅, we just simply ignore C𝑒). First, all the core points of ˜C𝑒 should be merged into the

same cluster; then through the triangle inequality, we only need to consider the core points of
˜C𝑒′

with 𝑒′ ∈ A𝑒 . The core points of
˜C𝑒 and ˜C𝑒′ should be merged into the same cluster, if and only if

their smallest pairwise distance dis(˜C𝑒 , ˜C𝑒′) = min
𝑝∈ ˜C𝑒 ,𝑞∈ ˜C𝑒′ dis(𝑝, 𝑞) ≤ 𝜖 . Please see Figure 2 for

an illustration.

Fig. 2. The sets 𝐶𝑒1
(yellow points), 𝐶𝑒2

(blue points), and 𝐶𝑒3
(green points) are shown in the figure. 𝐶𝑒1

and
𝐶𝑒2

should be merged into the same cluster, because their closest pair distance is less than 𝜖 ; on the other
hand, 𝐶𝑒3

should be merged to a different cluster

Actually this is the classical bichromatic closest pair (BCP) problem in computational geometry [1].

Directly solving the BCP problem in a general metric space or a high-dimensional space can be quite

challenging, e.g., recently Rubinstein [57] showed that it requires at least nearly quadratic time to

compute even only an approximate solution. A good news is that we have already distinguished

the core points from other points in Step (1); that is, we can apply the indexing structure cover tree

(Section 1.1.3) to solve the BCP problem efficiently under Assumption 1. Specifically, we build a

cover tee for
˜C𝑒 , and traverse all the elements in

˜C𝑒′ and search for their nearest neighbors in
˜C𝑒 ;

we return the smallest distance among all these nearest neighbor queries over
˜C𝑒′ as the solution

of the BCP problem for the couple (˜C𝑒 , ˜C𝑒′).

Lemma 5. The time complexity of Step (2) is 𝑂 (𝑛𝑧 log
𝜖
𝛿
· 𝑡dis), where 𝛿 is the smallest pairwise

distance of 𝑋in.

Proof. First, we need to build a cover tree for each
˜C𝑒 , 𝑒 ∈ 𝐸. According to Claim 1, we know

that it takes 𝑂 (| ˜C𝑒 | logΦ𝑒 · 𝑡dis) time to build a cover tree on
˜C𝑒 , where Φ𝑒 is the aspect ratio of

˜C𝑒 .
Obviously, Φ𝑒 ≤ 𝜖

2𝛿
. Therefore, the total time complexity to build the cover trees for all

˜C𝑒s is:∑︁
𝑒∈𝐸

𝑂 (| ˜C𝑒 | logΦ𝑒𝑡dis) = 𝑂 (𝑛 log

𝜖

𝛿
· 𝑡dis). (10)

Next, for each
˜C𝑒 and its each neighbor 𝑒′ ∈ A𝑒 , we solve the BCP problem of

˜C𝑒 and ˜C𝑒′ . According
to Claim 1, the overall time complexity of this procedure is∑︁

𝑒∈𝐸

∑︁
𝑒′∈A𝑒

| ˜C𝑒 |𝑂 (logΦ𝑒′ · 𝑡dis)

=
∑︁
𝑒∈𝐸
| ˜C𝑒 | |A𝑒 |𝑂 (log

𝜖

𝛿
· 𝑡dis)

= 𝑂 (𝑛𝑧 log

𝜖

𝛿
· 𝑡dis).

(11)

It is easy to see the complexity (11) dominates the complexity (10). So we obtain the complexity of

Step (2) that is 𝑂 (𝑛𝑧 log
𝜖
𝛿
· 𝑡dis). □

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

178:10 Guanlin Mo, Shihong Song, and Hu Ding

Step (3): identify the border points and outliers. We can apply the similar idea used in Step

(1). For a non-core point 𝑝 , just find its nearest core point 𝑐 in ∪𝑒∈A𝑝
𝐶𝑒 . If dis(𝑝, 𝑐) ≤ 𝜖 , we put 𝑝

to the same cluster as 𝑐 and label it as a border point; otherwise, label 𝑝 as an outlier.

Lemma 6. The time complexity of Step (3) is 𝑂 (𝑛𝑧𝑡dis).

Proof. Similar to the proof of lemma 4, we define 𝐸1 = {𝑒 ∈ 𝐸 | |C𝑒 | ≥ 𝑀𝑖𝑛𝑃𝑡𝑠} and 𝐸2 = 𝐸 \ 𝐸1.

According to the definitions of border point and outlier, we know that a non-core point cannot

locate inside some C𝑒 with 𝑒 ∈ 𝐸1. Therefore, the time complexity of Step (3) is∑︁
𝑒∈𝐸2

∑︁
𝑒′∈A𝑒

𝑂 (|C𝑒 | |C𝑒′ | · 𝑡dis), (12)

which is as same as the second term of equation (6). So by using the similar idea of Lemma 4, we

know the time complexity of step (3) is also 𝑂 (𝑛𝑧𝑡dis). □

The overall time complexity. From the above Lemma 4, Lemma 5, and Lemma 6, together

with the complexity of Algorithm 1, we know the overall time complexity for solving the DBSCAN

problem under Assumption 1 is 𝑂

(
𝑛
(
(Δ
𝜖
)𝐷 + 𝑧 log

𝜖
𝛿

)
𝑡dis

)
which is linear in the input size 𝑛. Also

note that usually 𝑧 ≪ 𝑛. For example, in most of the test instances in our experiments and the

previous articles (e.g., [26][40][59]), 𝑧 is less than 1% 𝑛.

Remark 5 (the setting for 𝑟). In our proposed method, we set 𝑟 = 𝜖/2 for simplicity when
running Algorithm 1. Actually, we can prove that any 𝑟 ≤ 𝜖/2 works for our algorithm. We also would
like to emphasize that the pre-processing step (i.e., Algorithm 1) only needs to be performed once, if
we have an estimated lower bound 𝜖0 for 𝜖 and set 𝑟 = 𝜖0/2. When we magnify the parameter 𝜖 or
adjust the parameter𝑀𝑖𝑛𝑃𝑡𝑠 , we only need to re-compute the A𝑝 sets and run the above Step (1)-(3)
without running Algorithm 1 again. So our method is quite efficient for parameter tuning, which is a
significant advantage for practical implementation. We also discuss this advantage in Section 5.5.

3.2 When Outliers Also Have Low Doubling Dimension
In this section, we consider the scenario that the whole input data 𝑋 has a low doubling dimension

𝐷 , which is a more stringent version of Assumption 1. We show that the algorithm of the exact

DBSCAN in Section 3.1 can be further simplified.

Our main idea. With a slightly abuse of notations, we still use Δ and 𝛿 to denote the maximum

and minimum pairwise distances of 𝑋 , respectively. So the aspect ratio of 𝑋 is Φ = Δ/𝛿 . The main

idea is to build a cover tree 𝑇 for the whole input data 𝑋 since we assume it has a low doubling

dimension 𝐷 . Then, we can directly obtain the ball center set 𝐸 without running Algorithm 1. Let

𝑖0 = ⌊log 𝜖/2⌋. The set of nodes at the 𝑖0-th level of 𝑇 , which is denoted as 𝑇𝑖0 , is an 𝑟 -net with

𝑟 = 2
⌊log𝜖/2⌋

for 𝑋 . So we can simply let 𝐸 = 𝑇𝑖0 . For each 𝑝 ∈ 𝑋 , we also define the neighbor ball

center set A𝑝 as (1). A key point here is that we can prove a much lower bound for |A𝑝 |.

Lemma 7. If (𝑋, dis) is a metric space with constant doubling dimension 𝐷 , then for any 𝑝 ∈ 𝑋 ,
we have |A𝑝 | = 𝑂 (1).

Proof. Since 𝐸 is an 𝑟 − 𝑛𝑒𝑡 , then min𝑒1,𝑒2∈𝐸 dis(𝑒1, 𝑒2) ≥ 𝑟 . For any 𝑝1, 𝑝2 ∈ A𝑝 , we have

dis(𝑝1, 𝑝2) ≤ dis(𝑝1, 𝑝) + dis(𝑝, 𝑝2) ≤ 4𝑟 + 2𝜖 , where the first inequality comes from the triangle

inequality and the second inequality comes from the definition of A𝑝 . According to Proposition 1

and using the same manner of the equality (2), we have |A𝑝 | ≤ 2
𝐷 ⌈log𝛼 ⌉

, where 𝛼 ≤ 4𝑟+2𝜖
𝑟

. So

we have |A𝑝 | ≤ 2
⌈log

4𝑟+2𝜖
𝑟
⌉𝐷 = 𝑂

(
(𝜖
𝑟
)𝐷

)
. By substituting 𝑟 = 2

⌊log𝜖/2⌋ ≥ 2
log𝜖/2−1 = 𝜖/4, we

immediately have |A𝑝 | = 𝑂 (4𝐷) = 𝑂 (1). □

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

Towards Metric DBSCAN: Exact, Approximate, and Streaming Algorithms 178:11

Then we can prove the time complexity of the exact DBSCAN algorithm with the new 𝑂 (1)
bound of |A𝑝 |. In particular, we replace the previous 𝑂 (𝑧) bound by 𝑂 (1) in Lemma 4, Lemma 5,

and Lemma 6, respectively. Finally, we obtain the following theorem.

Theorem 1. If the metric space (𝑋, dis) has constant doubling dimension, our exact DBSCAN
algorithm can be completed in 𝑂 (𝑛 logΦ 𝑡dis) time.

3.3 Remark on The Comparison with [17]
As mentioned in Section 1, Ding et al. [17] proposed a randomized k-center clustering based

DBSCAN algorithm. Here, we elaborate on the differences between our proposed method and their

algorithm.

The first major difference comes from the way for pre-processing input data. In [17], they use a

k-center with outliers algorithm to partition the data into 𝑘 balls. But their algorithm needs to set

the parameter “𝑧” as an estimated upper bound for the number of outliers, and the termination

condition has to be manually set in practice. Thus a drawback of this method is that any improper

parameter setting (e.g., underestimate the number of outliers) may lead to high computational

complexity or even returning an incorrect DBSCAN result. In contrast, our pre-processing method,

the Radius-guided Gonzalez algorithm proposed in Section 2, does not need to set those parameters

and only constructs an 𝜖/2 -net in the data space. Moreover, our method is a deterministic approach

while the method of [17] is based on a “randomized” k-center with outliers algorithm that always

has a failure probability.

Secondly, we have fundamentally different ways for constructing the DBSCAN clusters. Recall

the three steps of DBSCAN as described in Section 3.1. Comparing with the original DBSCAN

algorithm [23], the only improvement proposed by [17] is using the aforementioned randomized

k-center with outliers algorithm to reduce the search range when performing brute force search for

𝜖-neighborhoods of each point. This is a heuristic improvement for Step (1), and its time complexity

remains 𝑂 (𝑛2) in the worst case. In contrast, our proposed algorithm attempts to establish an

𝜖/2-net data structure and convert the DBSCAN problem to a connectivity problem among the

𝜖/2-net spheres. Specifically, in Step (1), we divide the 𝜖/2-net spheres into two categories: dense

and sparse spheres (corresponding to 𝐸1 and 𝐸2 in the proof of Lemma 4). Each point in dense

spheres can be immediately marked as a core point, and then the complexity of Step (1) is reduced

to be linear. In Step (2), instead of considering the connection between individual core points, we

consider the connection between 𝜖/2-net spheres. Together with the cover tree technique, the time

complexity of Step (2) is also improved to be linear. Consequently, our overall time complexity is

linear in 𝑛.

Furthermore, another advantage of our techniques is that they can be extended to solve the

approximate and streaming DBSCAN problems, as shown in the following Section 4.

4 𝜌-APPROXIMATE METRIC DBSCAN
In this section, we present a linear time 𝜌-approximate DBSCAN algorithm that can be applied

to arbitrary metric space. The original 𝜌-approximate DBSCAN algorithm in [26] is based on the

grid method in Euclidean space R𝑑 . However, their method cannot be directly extended to general

metric space; moreover, it takes an 𝑂 (𝑛 · (1/𝜌)𝑑−1) running time that is unaffordable in practice

for large 𝑑 .

Comparing with our exact DBSCAN algorithm in Section 3.1, though both of the two algorithms

have the time complexities linear in 𝑛, the approximate algorithm compresses the data into a

small-size summary and thus it can be easily implemented for streaming data. Also in practice (as

shown in our experiments), the approximate algorithm usually is faster than the exact algorithm.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

178:12 Guanlin Mo, Shihong Song, and Hu Ding

The main reason is that for exact DBSCAN, we need to solve a number of BCP problems when

merging the core points (Step (2) in Section 3.1). Although this step can be accelerated by using the

cover tree, it is still relatively time-consuming in practice. In our approximate DBSCAN algorithm

we can avoid this step by using the “summary” idea as shown below.

4.1 Linear Time Algorithm via Core Points Summary
Our main idea. As shown in Section 3, we can apply our proposed radius-guided Gonzalez’s

algorithm to efficiently reduce the complexity for labeling core points, border points, and outliers.

To merge the core points to form the DBSCAN clusters, we consider to build a “summary” S∗ for
the set of core points ∪𝑒∈𝐸𝐶𝑒 , which is different to the cover tree idea. The summary set should

satisfy two conditions: (1) |S∗ | ≪ | ∪𝑒∈𝐸 𝐶𝑒 | and (2) we can correctly generate the 𝜌-approximate

clusters (as Definition 2) through S∗. Our idea for constructing S∗ is as follows. We check each

point 𝑒 ∈ 𝐸 and its corresponding set C𝑒 (obtained in Algorithm 1 with an appropriate 𝑟). If 𝑒 is

a core point, we add it to S∗ and ignore all the other points of C𝑒 ; otherwise, we add all the core

points
˜C𝑒 to S∗. The details are shown in Algorithm 2.

Though the above construction method for S∗ is simple, it is challenging to prove that it satisfies

the two conditions. Below, we first show its correctness, that is, we can generate the 𝜌-approximate

clusters through S∗. Here we slightly modify the previous definition of the neighbor ball center

set A𝑝 in (1). Recall that for any 𝑝 ∈ 𝑋 , we define A𝑝 = {𝑒 |𝑒 ∈ 𝐸, dis(𝑒, 𝑐𝑝) ≤ 2𝑟 + 𝜖}. Now we

change it to

A𝑝 = {𝑒 |𝑒 ∈ 𝐸, dis(𝑒, 𝑐𝑝) ≤ 4𝑟 + 𝜖}. (13)

Since we enlarge the set A𝑝 in this modification, the result of Lemma 2 is still true. Also, this

modification does not change the asymptotic upper bound 𝑂
(
(𝜖
𝑟
)𝐷 + 𝑧

)
of |A𝑝 | in Lemma 3. We

set 𝑟 =
𝜌𝜖

2
in Algorithm 2, and then the equation (3) is replaced by:

|A𝑝 | = 𝑂 ((1
𝜌
)𝐷 + 𝑧). (14)

Theorem 2 (Correctness). Algorithm 2 can correctly return a 𝜌-approximate DBSCAN solution.

Proof. We prove the correctness following Definition 2. The connectivity is easy to verify,

since any two points are connected only when their distance is no larger than (1 + 𝜌)𝜖 in the

algorithm. So we only need to prove themaximality of the obtained clusters. Namely, ∀𝑝, 𝑞, if 𝑞 is

a core point and 𝑝 is density-reachable from 𝑞, then 𝑝 should have the same cluster ID with 𝑞.

To prove the maximality, we need to guarantee the uniqueness of the cluster ID for each core

point 𝑞. If 𝑞 ∈ S∗, the uniqueness is satisfied when we merge inside S∗; else, 𝑞 has the same cluster

ID with 𝑐𝑞 . So the uniqueness is guaranteed for all the core points, which implies that every core

point belongs to exactly one cluster. Then we consider any two points 𝑝, 𝑞 ∈ 𝑋 with dis(𝑝, 𝑞) ≤ 𝜖 .

Let 𝑞 be a core point and 𝑠𝑞 be the “representative” of 𝑞 in S∗ (according to the construction of S∗,
we let 𝑠𝑞 = 𝑐𝑞 if 𝑐𝑞 is a core point; otherwise, 𝑠𝑞 = 𝑞).

Case 1: If 𝑝 is also a core point (its representative in S∗ is denoted by 𝑠𝑝), then from the triangle

inequality we know

dis(𝑠𝑝 , 𝑠𝑞) ≤ dis(𝑠𝑝 , 𝑝) + dis(𝑝, 𝑞) + dis(𝑞, 𝑠𝑞) ≤ (1 + 𝜌)𝜖. (15)

It implies that 𝑠𝑝 and 𝑠𝑞 should have the same cluster ID; together with the ID uniqueness, we know

𝑝 and 𝑞 should have the same ID as well.

Case 2: If 𝑝 is not a core point, actually 𝑝 should be a border point for this case. If 𝑐𝑝 ∈ S∗ , from
the similar manner of (15) we know dis(𝑐𝑝 , 𝑠𝑞) ≤ (1 + 𝜌)𝜖 . So 𝑐𝑝 and 𝑠𝑞 should be merged when

we merge inside S∗. Hence, 𝑝 and 𝑞 have the same cluster ID. If 𝑐𝑝 ∉ S∗, we have dis(𝑝, 𝑠𝑞) ≤

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

Towards Metric DBSCAN: Exact, Approximate, and Streaming Algorithms 178:13

Algorithm 2:Metric 𝜌-approximate DBSCAN via Core points Summary

Input: 𝜖 ,𝑀𝑖𝑛𝑃𝑡𝑠 , 𝜌 , 𝑋

1 Run Algorithm 1 with 𝑟 =
𝜌𝜖

2
and 𝑋 , let 𝐸 be the output set. We can also identify the core

points of 𝐸 after running Algorithm 1 (see our explanation in the proof of Lemma 10).

Initialize S∗ ← ∅. ; // the summary for core points

2 for each 𝑒 ∈ 𝐸 do

3 if 𝑒 is a core point then
4 Add 𝑒 to S∗.
5 else

6 Add all the core points in C𝑒 to S∗.
7 end

8 end

9 Merge inside S∗: for any pair of 𝑐1, 𝑐2 ∈ S∗, label them with the same cluster ID if

dis(𝑐1, 𝑐2) ≤ (1 + 𝜌)𝜖 .
10 Label other points: for 𝑝 ∈ 𝑋 \ S∗ do
11 if 𝑐𝑝 ∈ S∗ then
12 Label 𝑝 with the same cluster ID of 𝑐𝑝 .

13 else

14 if there exists some 𝑠 ∈ S∗ such that dis(𝑝, 𝑠) ≤ (𝜌
2
+ 1)𝜖 then

15 Label 𝑝 with the same cluster ID of 𝑠 .

16 else

17 Label 𝑝 as an outlier.

18 end

19 end

20 end

dis(𝑝, 𝑞) + dis(𝑞, 𝑠𝑞) ≤ (𝜌
2
+ 1)𝜖 . So we label 𝑝 with the same cluster ID with 𝑠𝑞 . Also, 𝑠𝑞 and 𝑞

have same cluster ID, and thus 𝑝 and 𝑞 have the same cluster ID.

Overall, we know that the maximality is guaranteed from the above two cases. So algorithm 2

returns a qualified 𝜌-approximate DBSCAN solution. □

Now, we analyze the complexity of Algorithm 2, where the key is to prove the upper bounds for

the complexity of constructing the summary S∗ and the induced query complexity in the labeling

procedure. The idea is similar with the proof of Lemma 4, which considers the amortized complexity

over the whole input instance.

Theorem 3 (Complexity). Let 𝜌 ≤ 2. Algorithm 2 runs in 𝑂
(
𝑛
(
(Δ
𝜌𝜖
)𝐷 + 𝑧

)
· 𝑡dis

)
time.

Usually 𝜌 is a small pre-specified number, since it measures the approximation degree and we do

not want the result to be far away from the exact DBSCAN. So we suppose 𝜌 ≤ 2 here (actually our

analysis also works for the case 𝜌 > 2 with slight modification). To prove Theorem 3, we need to

introduce some key lemmas first.

Lemma 8. For each 𝑒 ∈ 𝐸, |C𝑒 ∩ S∗ | ≤ 𝑀𝑖𝑛𝑃𝑡𝑠 .

Proof. If 𝑒 is a core point, then C𝑒 ∩ S∗ = {𝑒} and obviously the size is no more than𝑀𝑖𝑛𝑃𝑡𝑠 .

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

178:14 Guanlin Mo, Shihong Song, and Hu Ding

If 𝑒 is not a core point, it implies |B(𝑒, 𝜖) | ≤ 𝑀𝑖𝑛𝑃𝑡𝑠 . Since we let 𝜌 ≤ 2, then
𝜌𝜖

2
≤ 𝜖 and

C𝑒 ⊆ B(𝑒, 𝜖). Therefore,
|C𝑒 ∩ S∗ | ≤ |C𝑒 | ≤ |B(𝑒, 𝜖) | ≤ 𝑀𝑖𝑛𝑃𝑡𝑠. (16)

□

Lemma 9. The size of S∗ is 𝑂
(
(Δ
𝜌𝜖
)𝐷 + 𝑧

)
.

Proof. The size of S∗ is

|S∗ | =
∑︁

𝑒 is core point

1 +
∑︁

𝑒 is not core point

𝑂 (|C𝑒 |).
(17)

According to the inequality (16), we have |C𝑒 | ≤ 𝑀𝑖𝑛𝑃𝑡𝑠 if 𝑒 is not a core point, and thus

|S∗ | = 𝑂 (|𝐸 |) +
∑︁

𝑒 is not core point

𝑂 (𝑀𝑖𝑛𝑃𝑡𝑠)

= 𝑂 (𝑀𝑖𝑛𝑃𝑡𝑠 · |𝐸 |)

= 𝑂 (|𝐸 |) = 𝑂
(
(Δ
𝜌𝜖
)𝐷 + 𝑧

)
,

(18)

where the last equality follows from Lemma 1. □

Lemma 10. The construction of S∗ can be completed in 𝑂 (((1

𝜌
)𝐷 + 𝑧)𝑛𝑡dis) time.

Proof. For each 𝑒 ∈ 𝐸, we can determine whether 𝑒 is core point or not when running Algorithm

1 without introducing additional time complexity, since we have the distance between any pair of

𝑒 ∈ 𝐸 and 𝑝 ∈ 𝑋 . Hence, in the step of constructing S∗, if 𝑒 is a core point, it takes𝑂 (1) time to add

𝑒 to S∗.
If 𝑒 is not core point, we need to compute |B(𝑝, 𝜖) | for every 𝑝 ∈ C𝑒 . Based on Lemma 2, we

only need to consider the set ∪𝑒′∈A𝑒
C𝑒′ . In this case, determining whether 𝑝 is a core point takes

𝑂 (∑𝑒′∈A𝑒
|C𝑒′ |𝑡dis) time.

So the time complexity of constructing S∗ (denoted by 𝑡𝑐) is

𝑡𝑐 =
∑︁

𝑒 is core point

𝑂 (1) +
∑︁

𝑒 is not core point

∑︁
𝑝∈C𝑒

∑︁
𝑒′∈A𝑒

|C𝑒′ |𝑡dis
(19)

Similar with the idea for proving lemma 8, we know for a non-core point 𝑒 ∈ 𝐸, |C𝑒 | ≤ 𝑀𝑖𝑛𝑃𝑡𝑠 . As

a consequence,

𝑡𝑐 = 𝑂 (|𝐸 |) +𝑂 (𝑀𝑖𝑛𝑃𝑡𝑠) ·
∑︁

𝑒 is not core point

∑︁
𝑒′∈A𝑒

|C𝑒′ |𝑡dis .
(20)

We then exchange the summation order in terms of 𝑒 and 𝑒′ (as the equation (7)) to have∑︁
𝑒 is not core point

∑︁
𝑒′∈A𝑒

|C𝑒′ |𝑡dis =
∑︁
𝑒′∈𝐸

∑︁
𝑒∈A𝑒′

𝑒 is not core point

|C𝑒′ |𝑡dis.
(21)

Note that |C𝑒′ |𝑡dis is independent with 𝑒 , so we have

𝑡𝑐 = 𝑂 (|𝐸 |) +𝑂 (𝑀𝑖𝑛𝑃𝑡𝑠) ·
∑︁
𝑒′

𝑂 (|A𝑒′ |) |C𝑒′ |𝑡dis

= 𝑂 (𝑛) +𝑂 (𝑀𝑖𝑛𝑃𝑡𝑠 · ((1
𝜌
)𝐷 + 𝑧))

∑︁
𝑒′
|C𝑒′ |𝑡dis

= 𝑂 (((1
𝜌
)𝐷 + 𝑧)𝑛𝑡dis),

(22)

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

Towards Metric DBSCAN: Exact, Approximate, and Streaming Algorithms 178:15

from the facts

∑
𝑒′ |C𝑒′ | = 𝑂 (𝑛) and |A𝑒′ | = 𝑂 ((1

𝜌
)𝐷 + 𝑧) in (14). □

Lemma 11. The step of merging inside S∗ needs 𝑂
((
(Δ
𝜌𝜖
)𝐷 + 𝑧

)
((1

𝜌
)𝐷 + 𝑧)𝑡dis

)
time.

Proof. In Algorithm 2, we set 𝑟 =
𝜌𝜖

2
for Algorithm 1. Hence, for any pair of 𝑠1, 𝑠2 ∈ S∗

whose pairwise distance dis(𝑠1, 𝑠2) ≤ (1 + 𝜌)𝜖 , we have dis(𝑐𝑠1
, 𝑐𝑠2
) ≤ dis(𝑠1, 𝑠2) + dis(𝑐𝑠1

, 𝑠1) +
dis(𝑐𝑠2

, 𝑠2) ≤ (1 + 2𝜌)𝜖 . According to (13), we have 𝑠1 ∈ ∪𝑒∈A𝑠
2

C𝑒 and vise versa. Therefore, when

we merge inside S∗, for every 𝑠 ∈ S∗, we only need to search inside

(
∪𝑒∈A𝑠

C𝑒
)
∩S∗ for the points

who have the distance to 𝑠 no larger than (1 + 𝜌)𝜖 . Hence, the time complexity for merging insider

𝑆∗ is

𝑡𝑚 =
∑︁
𝑠∈S∗

∑︁
𝑒∈A𝑠

|C𝑒 ∩ S∗ |𝑡dis.
(23)

According to Lemma 8, |C𝑒 ∩ S∗ | ≤ 𝑀𝑖𝑛𝑃𝑡𝑠 and thus

𝑡𝑚 =
∑︁
𝑠∈S∗

∑︁
𝑒∈A𝑠

𝑂 (𝑀𝑖𝑛𝑃𝑡𝑠)𝑡dis =
∑︁
𝑠∈S∗

𝑂 (|A𝑠 | ·𝑀𝑖𝑛𝑃𝑡𝑠)𝑡dis .
(24)

Based on (14) we have

𝑡𝑚 =
∑︁
𝑠∈S∗

𝑂
(
((1
𝜌
)𝐷 + 𝑧) ·𝑀𝑖𝑛𝑃𝑡𝑠

)
𝑡dis

= 𝑂 (|S∗ |) ·𝑂 (((
1

𝜌
)𝐷 + 𝑧) ·𝑀𝑖𝑛𝑃𝑡𝑠)𝑡dis

= 𝑂

((
(Δ
𝜌𝜖
)𝐷 + 𝑧

)
((1
𝜌
)𝐷 + 𝑧)𝑡dis

)
,

(25)

where the last equality follows from Lemma 9. □

Lemma 12. The step of labeling other points (borders and outliers) needs 𝑛((1

𝜌
)𝐷 + 𝑧)𝑡dis time.

Lemma 12 can be simply obtained from the proof of Lemma 6 by substituting |A𝑝 | = 𝑂 (𝑧) with
|A𝑝 | = ((1

𝜌
)𝐷 + 𝑧).

Recall the time complexity of Algorithm 1 with 𝑟 =
𝜌𝜖

2
is 𝑂

(
𝑛
(
(Δ
𝜌𝜖
)𝐷 + 𝑧

)
𝑡dis

)
. Overall, through

combining Lemma 10 - Lemma 12, we obtain the complexity of Theorem 3.

Remark 6. Similar with the discussion in Remark 5, we do not need to run Algorithm 1 repeatedly
for 𝜌-approximate DBSCAN when tuning the parameters in practice.

4.2 Implementation for Streaming Data
We further consider designing streaming algorithm for 𝜌-approximate DBSCAN with the space

complexity being independent of the size of 𝑋 . The major challenge for designing a streaming

algorithm is that the number of core points can be as large as 𝑂 (𝑛), which may result in large

memory usage. Fortunately, we show that our proposed core point summary technique in Section 4.1

can help us to neatly circumvent this issue.

Sketch of our algorithm. We implement Algorithm 2 in a “streaming” fashion. Our algorithm

contains three stages. Stage 1: we apply a streaming incremental technique instead of directly

running the radius-guided Gonzalez’s algorithm. Our main idea is trying to assign every point in the

data stream into existing balls within radius 𝑟 ; if fail, we just build a new ball centered at this point. In

this stage, we aim to obtain the ball centers 𝐸. At the same time, we construct part of the summaryS∗
by adding the core points in 𝐸 into it. We also need to keep a setM = {𝑝 ∈ 𝑋 | 𝑐𝑝 is not core point}.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

178:16 Guanlin Mo, Shihong Song, and Hu Ding

Intuitively, the purpose of keeping this set is to identify the potential core points in next stage.

Stage 2: we identify the other necessary core points that should be added to 𝑆∗. Namely, we add

𝑝 ∈ M to S∗ if 𝑝 is a core point. This ensures the completeness of the constructed summary 𝑆∗.
Then, we can perform the merge on S∗ offline in our memory. Stage 3: we scan 𝑋 in the final pass

to assign other points (as line 10-20 in Algorithm 2). Overall, we have the following Theorem 4.

Algorithm 3: Streaming 𝜌 -Approximate DBSCAN

Input: 𝜖 ,𝑀𝑖𝑛𝑃𝑡𝑠 , 𝑋 , 𝜌

1 Initialize 𝐸 = ∅,M = ∅ and S∗ = ∅.
2 The first pass: Scan 𝑋 , for every 𝑝 ∈ 𝑋 do

3 if there is no 𝑒 ∈ 𝐸 such that dis(𝑝, 𝑒) ≤ 𝑟 =
𝜌𝜖

2
then

4 Add 𝑝 to 𝐸.

5 end

6 for every 𝑒 ∈ 𝐸 do

7 if B(𝑒, 𝜖) has detected at least𝑀𝑖𝑛𝑃𝑡𝑠 points then
8 S∗ ← S∗ ∪ {𝑒}.
9 else if dis(𝑝, 𝑒) ≤ 𝑟 =

𝜌𝜖

2
then

10 M ←M ∪ {𝑝}.
11 end

12 end

13 end

14 The second pass: While scanning 𝑋 , identify the core points fromM and add them to S∗.
15 Merge inside S∗ offline as line 9 of Algorithm 2.

16 The third pass: Label the border points and outliers as line 10-20 of Algorithm 2.

Theorem 4. Let 𝜌 ≤ 2, our streaming algorithm takes an 𝑂
(
(Δ
𝜌𝜖
)𝐷 + 𝑧

)
memory usage (which is

independent of 𝑛) and an 𝑂
(
𝑛
(
(Δ
𝜌𝜖
)𝐷 + 𝑧

)
· 𝑡dis

)
overall running time.

Sketch of the proof. By using the similar idea of Lemma 1, we can conclude that 𝑂 (|𝐸 |) =
𝑂
(
(Δ
𝜌𝜖
)𝐷 + 𝑧

)
. And from the process of buildingM, we know that |M| = 𝑂 (𝑀𝑖𝑛𝑃𝑡𝑠 · |𝐸 |) = 𝑂 (|𝐸 |).

The elements in the setS∗ are selected from 𝐸 andM, soS∗ does not occupy any extra space. Hence
the overall memory usage is 𝑂 (|𝐸 | + |M|) = 𝑂

(
(Δ
𝜌𝜖
)𝐷 + 𝑧

)
. Further, we can show that Algorithm 3

can be completed in 𝑂 (𝑛 |𝐸 |𝑡dis) time, i.e., its time complexity is 𝑂

(
𝑛
(
(Δ
𝜌𝜖
)𝐷 + 𝑧

)
· 𝑡dis

)
.

5 EXPERIMENTS
5.1 Experimental environment and datasets
Our experiments were conducted on a server equipped with Intel(R) Xeon(R) Gold 6154 CPU @

3.00GHz CPU and 512GB memory. We implement our algorithms in C++.

The datasets are shown in Table 1 that includes both low dimensional and high dimensional

datasets. In particular, to demonstrate the performance of our algorithm on general metric space, we

also consider some non-Euclidean datasets, which include 4 real-world text datasets:AGNews [74],

COLA [67], MNLI [69], MRPC[18]. We use edit distance[48] to measure the distance between

2
To enhance the density of high dimensional data in the space, we uniformly sampled 1000 data points from the original

dataset and then duplicated them 10 times with adding random noise in the range of [−5, 5] for each dimension. We perform

the same operation to process CIFAR 10, USPS HW, and Fashion MNIST.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

Towards Metric DBSCAN: Exact, Approximate, and Streaming Algorithms 178:17

Table 1. Datasets

Dataset Dimension n

Moons [60] 2 10,000

Cancer[19] 32 569

Arrhythmia[30] 262 452

Biodeg[50] 41 1,055

MNIST
2
[47] 784 10000

Fashion MNIST [71] 784 10,000

USPS HW[38] 256 10,000

CIFAR 10[45] 3072 10,000

DEEP1B [3] 96 9,990,000

GIST [42] 960 1.000.000

GloVe25 [53] 25 1,183,514

SIFT[42] 128 1,000,000

PCAM[64] 1024 2,493,440

Spotify_Session[7] 21 2,072,002,577

LSUN[73] 1024 2,943,300

COLA [67] n/a 515

AG News [74] n/a 7,600

MRPC [18] n/a 1,725

MNLI [69] n/a 9,815

texts. As shown in the table, we also take several million-scale datasets to evaluate the performance.

In our experiments, each test instance is repeated 5 times and we report the average result.

5.2 Comparison on Running time
We compare the running time with several existing DBSCAN algorithms. In this section, we fix

the parameters𝑀𝑖𝑛𝑃𝑡𝑠 = 10 and 𝜌 = 0.5, and adjust 𝜖 within a reasonable range for each dataset

(more detailed discussion on 𝜌 is shown in Section 5.3).

We compare the running time of our exact metric DBSCAN (denoted by Our_Exact) and approxi-

mate DBSCAN (denoted by Our_Approx) with the following algorithms: the original DBSCAN [23]

(denoted by DBSCAN), DBSCAN++[40], the metric DBSCAN [17] (denoted by DYW_DBSCAN),

the exact and approximate DBSCAN [26] (denoted by GT_Exact and GT_Approx, respectively).

Note that the clustering performance of the DBSCAN++ algorithm depends on the sampling ratio;

we choose the ratio to be 30% as suggested in their paper for achieving promising clustering results.

We show the running time curves in Figure 3. The datasets given in Table 1 can be categorized

into four classes corresponding to the four rows of Figure 3 from top to bottom: 4 low/medium-

dimensional datasets, 4 high-dimensional datasets , 4 text datasets, and 4 million-scale datasets.

Overall, our exact and approximate algorithms can achieve much lower running time comparing

with the baselines, especially for large high-dimensional and non-Euclidean datasets. For example,

for the largest two datasets GIST and DEEP1B, only our algorithms can complete within 10
6
s (about

12 days) on our workstation; for the dataset CIFAR 10, our algorithm runs in almost half the time

of the original DBSCAN, and about 1/10 of GT_Exact and GT_Approx; for the text dataset AG

News, our algorithm takes less than 1% of the time of the original DBSCAN. Also, our proposed

approximate DBSCAN algorithm is comparable or faster than our exact DBSCAN algorithm in the

experiments.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

178:18 Guanlin Mo, Shihong Song, and Hu Ding

Fig. 3. Running time with varying 𝜖 . Some baseline algorithms are not tested in some figures, because either
they run too slowly (> 10

6s) on the high-dimensional data, or they cannot run on the non-Euclidean data.

5.3 Discussion on clustering quality with 𝜌

In this section, we discuss the impact of 𝜌 on the clustering quality. We run our approximation

algorithmwith a fixed 𝜖 and different values of 𝜌 and compare their clustering performance with the

exact algorithm. We choose four datasets (MNIST, USPS HW, Fashion MNIST, and CIFAR 10), and

we take the widely used measures Adjusted Rand Index (ARI) [37] and Adjusted Mutual Information
(AMI) [65] to evaluate their performances (higher values for ARI and AMI indicate better clustering

quality).

From Figure 4 we can observe that when 𝜌 is set to 0.5, our approximate algorithm can achieve

similar clustering qualities with the exact algorithm for most instances. As an illustration, Figure 5

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

Towards Metric DBSCAN: Exact, Approximate, and Streaming Algorithms 178:19

(a)-(d) show two examples of the clustering results of exact DBSCAN and our approximate algorithm

with 𝜌 = 0.5; we can see that the results are very close.

Remark 7. In a few cases of Figure 4, we observe that the ARI or AMI score is slightly improved from
𝜌 = 0.1 to 𝜌 = 0.5. One possible explanation is that the goal of DBSCAN may not be exactly consistent
with the best ARI and AMI values. The change of the clustering performance with the varying of 𝜌 can
be complex. So when 𝜌 becomes

Fig. 4. The ARI and AMI with fixed 𝜖 and different 𝜌 .

Fig. 5. Clustering results of exact DBSCAN, our approximate algorithm with 𝜌 = 0.5 and DP-means. The
points with same color belong to the same cluster, and the red points are outliers.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

178:20 Guanlin Mo, Shihong Song, and Hu Ding

smaller, though the clustering result is closer to the exact DBSCAN, it does not always have increased
ARI or AMI. The experiments in [40] also show that DBSCAN may not yield perfect ARI and AMI.

5.4 Comparison with non-DBSCAN Algorithms
For completeness, we also consider the comparison with some non-DBSCAN clustering algorithms.

Specifically, we consider the following baselines: “Dirichlet process (DP)-means” [46] (a non-

parametric 𝑘-means clustering algorithm that does not require to input the number of clusters 𝑘),

the streaming 𝑘-means algorithm “BICO” [25], and two density clustering algorithms “Density-

peak” [55] and “Meanshift” [14]
3
. For fairness in the comparison, we try our best to tune the

parameters for each baseline. It is also worth noting that BICO requires to manually specify the

number of clusters 𝑘 . In other words, the performance of BICO is likely to have downgrade in

practical applications, if the number of clusters is not given. As for DP-means, the cluster penalty

parameter 𝜆 is set by taking the maximum distance of the k-center initialization, following the

suggested setting in their original paper.

To evaluate their performances on high-dimensional dense datasets, we particularly construct the

“MNIST_noisy” and “Fashion_noisy” datasets: we duplicate each point in the MNIST and Fashion

MNIST datasets 10 times and add a random perturbation in the range of [−5, 5] to each dimension

of each duplicated point, and then randomly generate 1% noisy points within [0, 255]𝑑 where 𝑑 is

the dimensionality of the image space. From Table 3, we can see that our exact and approximate

DBSCAN outperform the baselines in terms of the ARI and AMI scores on most of the datasets.

As for the runtime, we observe that BICO has similar speed with our algorithms (for example,

the average difference on dataset MNIST is less than 20%), and the two baseline density clustering

algorithms (Density-peak and Meanshift) are much slower (at least 5 times on average, and Density-

peak even encounters memory overflow issue on some large datasets.). The baseline DP-means,

though usually has worse clustering performance than our algorithms as shown in Table 3 (two

examples are also given in Figure 5 (e)-(f)), is always the fastest one, which is about 12 times faster

on average than our algorithms and BICO. We attribute this to the inherent algorithmic simplicity

of DP-means than other testing algorithms (especially the density-based algorithms often need to

conduct more complicated operations towards spatial neighborhood).

Table 2. The runtime proportions of Algorithm 1 in our exact DBSCAN algorithm

Dataset

Radius-guided

Gonzalez (ms)

Total time

(ms)

Proportion

Moons 4.16 4.44 94%

Cancer 5.10 5.75 89%

USPS HW 6090 7994 76%

Biodeg 35.1 38.8 90%

MNIST 40474 43597 93%

Fashion MNIST 5113 5136 99%

Arrhythmia 35.1 38.8 90%

CIFAR 10 155966 156611 99%

COLA 702 779 90%

AG News 73131 114830 64%

MRPC 67148 67158 99%

3
We are aware of the recent improved algorithm Meanshift++ [41], but Meanshift++ is only applicable to low-dimensional

data, and thus is not suitable for most of our experimental datasets.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

Towards Metric DBSCAN: Exact, Approximate, and Streaming Algorithms 178:21

Table 3. Comparison of ARI and AMI scores with the non-DBSCAN algorithms.
The symbol "-" denotes values less than 0.01 and "*" denotes memory overflow (>500GB)

Dataset

DBSCAN

0.5-approx

DBSCAN

DP-means BICO Density-peak Meanshift

ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI

Moons 1.0 1.0 0.99 0.96 0.26 0.30 0.19 0.19 0.51 0.67 0.39 0.30

Cluto 0.94 0.91 0.95 0.92 0.28 0.40 0.59 0.50 0.41 0.62 0.19 0.33

MNIST 0.25 0.48 0.28 0.51 - - 0.31 0.41 0.01 0.06 0.02 0.43

MNIST_Noisy 0.28 0.57 0.28 0.51 - 0.05 0.17 0.22 * * 0.02 0.49

Fashion 0.14 0.46 0.25 0.50 - - 0.23 0.39 0.02 0.06 0.02 0.43

Fashion_Noisy 0.15 0.52 0.24 0.52 - 0.05 0.14 0.38 * * 0.02 0.49

PCAM 0.02 0.13 0.02 0.13 0.05 0.04 0.01 0.02 * * - -

LSUN 0.03 0.13 0.02 0.12 0.04 0.02 0.01 0.02 * * - -

5.5 Time Taken by the Radius-guided Gonzalez
As discussed in Remark 5 and Remark 6, we do not need to repeatedly run Algorithm 1 when tuning

the parameters 𝜖 or𝑀𝑖𝑛𝑃𝑡𝑠 . This property is quite useful in practical implementation because the

time of Algorithm 1 often takes a large part of the whole DBSCAN procedure. To verify this, we

illustrate the runtime proportions taken by Algorithm 1 in our exact DBSCAN algorithm in Table 2.

Table 4. Results of the streaming algorithms, the symbol "-" denotes values less than 0.01

Dataset

Our algorithm DBStream D-Stream evoStream BICO

ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI

Moons 0.97 0.90 0.42 0.38 0.19 0.19 0.23 0.30 0.21 0.24

Cancer 0.70 0.58 0.13 0.13 0.59 0.50 0.44 0.40 0.53 0.40

Arrhythmia 0.23 0.13 0.16 0.13 0.01 0.01 0.18 0.12 0.05 0.10

Biodeg 0.09 0.06 - 0.03 0.01 0.02 0.01 0.05 0.01 0.04

MNIST 0.28 0.51 0.04 0.12 - - 0.01 0.07 0.31 0.41

CIFAR 10 0.02 0.43 0.04 0.07 0.01 0.02 - 0.01 0.03 0.13

Fashion MNIST 0.26 0.50 - - - - - - 0.23 0.39

USPS HW 0.19 0.53 - - 0.01 0.10 0.22 0.40 0.37 0.49

PCAM 0.02 0.03 - - - - - - 0.01 0.02

LSUN - 0.04 - - - - - - 0.01 -

Spotify_Session 1% 0.02 0.14 0.02 - - - - - 0.01 -

Spotify_Session 10% 0.02 0.15 0.02 - - - - - 0.01 -

Spotify_Session 50% 0.02 0.15 0.02 - - - - - 0.01 -

Spotify_Session 100% 0.02 0.09 0.02 - - - - - 0.01 -

From Table 2 below, we can see that the runtime of Algorithm 1 takes more than 60% of the

total DBSCAN procedure; it indicates that when we increase 𝜖 or adjust𝑀𝑖𝑛𝑃𝑡𝑠 during parameter

tuning, a large amount of of runtime can be saved without repeatedly running Algorithm 1. In our

approximate algorithm, this ratio is even higher, e.g., in our approximate algorithm on the MNIST

dataset, the Radius-Gonzalez procedure takes almost 98% of the total time. We leave the detailed

results to our full version.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

178:22 Guanlin Mo, Shihong Song, and Hu Ding

Fig. 6. Memory usage of our streaming algorithm; the green diamond in each figure corresponds to the
parameter that we use in Table 4

5.6 Streaming DBSCAN Algorithm
We compare the clustering result of our streaming algorithm (i.e., Algorithm 3) with several popular

streaming density clustering algorithms such as DBStream [31], D-Stream [12], evoStream [8], and

BICO [25]. We set 𝜌 = 0.5 for our algorithm. For each baseline algorithm, we show its performance

under the properly tuned parameters. We also take some real stream data with large scales: the

billion-scale dataset Spotify_Session, and the two million-scale datasets PCAM and LSUN (please

refer to Table 1 for details). Additionally, we divide the Spotify_session dataset into four datasets by

date, namely the earliest 1%, 10%, 50%, and the full set; since the recorded data in Spotify_Session

may have changing trend over time, we can view them as four different datasets. We also use ARI

and AMI to evaluate their performances. The results are shown in Table 4. We can see that for most

of the test instances, our streaming algorithm achieves better quality over other baselines.

We also consider the memory usage of our streaming algorithm. Recall that in Algorithm 3,

we need to store the set 𝐸 andM (S∗ ⊆ 𝐸 ∪M, so that we do not need extra memory for S∗) in
memory. So we evaluate the memory usage by the ratio

|𝐸 |+|M|
𝑛

. For each dataset, we conducted

the experiments with different values of 𝜌 ∈ {0.5, 1, 2}, and the results are shown in Figure 6. We

can see that our algorithm can greatly save the memory usage, e.g., for the Fashion MNIST dataset,

our algorithm only needs to store about 1% of the data points (see the green diamond in the curve).

6 CONCLUSION AND FUTUREWORK
In this paper, we study the metric DBSCAN problem and present its exact, approximate, and

streaming algorithms. We first study their quality guarantees in theory, and then conduct a set of

experiments to compare with other DBSCAN algorithms. Following this work, there are several

opportunities to further improve our methods from both theoretical and practical perspectives. For

example, is it possible to design a faster Gonzalez’s algorithm under Assumption 1? We are aware

that a fast Gonzalez’s algorithm was proposed by Har-Peled and Mendel [32] in doubling metric,

but they assume that the whole input data (including both inliers and outliers) has a low doubling

dimension. As discussed in Section 5.4, we will also consider to reduce the overall time complexity

by designing new algorithmic techniques, such as new 𝑟 -net method with lower complexity. In

particular, the improvement on efficiency may lead to real-world applications for database systems

research (e.g., preprocessing large-scale NLP database to support training machine learning model

more efficiently). As for streaming DBSCAN, we may consider to reduce the number of passes for

our streaming algorithm via developing some more succinct data structure in memory; it also has

certain practical significance to deal with other operations and issues, like data deletion and drift.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

Towards Metric DBSCAN: Exact, Approximate, and Streaming Algorithms 178:23

7 ACKNOWLEDGEMENT
The research of this work was supported in part by the National Natural Science Foundation of

China 62272432, the National Key Research and Development Program of China 2021YFA1000900,

and the Natural Science Foundation of Anhui Province 2208085MF163. We want to thank the

anonymous reviewers for their helpful comments. We are grateful to Qingyuan Yang for his help

on refining our code and for inspiring discussions.

REFERENCES
[1] Pankaj K Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl. Euclidean minimum spanning trees

and bichromatic closest pairs. In Proceedings of the sixth annual symposium on Computational geometry, pages 203–210,
1990.

[2] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics: Ordering points to identify the

clustering structure. ACM Sigmod record, 28(2):49–60, 1999.
[3] Artem Babenko and Victor Lempitsky. Efficient indexing of billion-scale datasets of deep descriptors. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 2055–2063, 2016.
[4] Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor. In Proceedings of the 23rd

international conference on Machine learning, pages 97–104, 2006.
[5] Panthadeep Bhattacharjee and Pinaki Mitra. A survey of density based clustering algorithms. Frontiers of Computer

Science, 15:1–27, 2021.
[6] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep learning:

going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.
[7] Brian Brost, Rishabh Mehrotra, and Tristan Jehan. The music streaming sessions dataset. In Proceedings of the 2019

Web Conference. ACM, 2019.

[8] Matthias Carnein and Heike Trautmann. evostream–evolutionary stream clustering utilizing idle times. Big data
research, 14:101–111, 2018.

[9] Matteo Ceccarello, Andrea Pietracaprina, and Geppino Pucci. Solving k-center clustering (with outliers) in mapreduce

and streaming, almost as accurately as sequentially. Proceedings of the VLDB Endowment, 12, 2019.
[10] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM computing surveys (CSUR),

41(3):1–58, 2009.

[11] Danny Z Chen, Michiel Smid, and Bin Xu. Geometric algorithms for density-based data clustering. International
Journal of Computational Geometry & Applications, 15(03):239–260, 2005.

[12] Yixin Chen and Li Tu. Density-based clustering for real-time stream data. In Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 133–142, 2007.

[13] Kenneth L Clarkson. Building triangulations using 𝜀-nets. In Proceedings of the thirty-eighth annual ACM symposium
on Theory of computing, pages 326–335, 2006.

[14] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space analysis. IEEE Transactions on
pattern analysis and machine intelligence, 24(5):603–619, 2002.

[15] Mark de Berg, Ade Gunawan, and Marcel Roeloffzen. Faster dbscan and hdbscan in low-dimensional euclidean spaces.

International Journal of Computational Geometry & Applications, 29(01):21–47, 2019.
[16] Hu Ding, Haikuo Yu, and Zixiu Wang. Greedy strategy works for k-center clustering with outliers and coreset

construction. In 27th Annual European Symposium on Algorithms (ESA 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik, 2019.

[17] Hu Ding, Fan Yang, and Mingyue Wang. On metric dbscan with low doubling dimension. In Proceedings of the
Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pages 3080–3086,
2021.

[18] William B Dolan, Chris Quirk, and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In

Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005.
[19] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/ml.

[20] Yury Elkin and Vitaliy Kurlin. A new near-linear time algorithm for k-nearest neighbor search using a compressed

cover tree. In International Conference on Machine Learning, pages 9267–9311. PMLR, 2023.

[21] Jeff Erickson. New lower bounds for hopcroft’s problem. In Proceedings of the eleventh annual symposium on
Computational geometry, pages 127–137, 1995.

[22] Jeff Erickson. On the relative complexities of some geometric problems. In CCCG, volume 95, pages 85–90, 1995.

[23] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for discovering clusters in

large spatial databases with noise. In kdd, volume 96, pages 226–231, 1996.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

http://archive.ics.uci.edu/ml

178:24 Guanlin Mo, Shihong Song, and Hu Ding

[24] Jianqing Fan, Fang Han, and Han Liu. Challenges of big data analysis. National science review, 1(2):293–314, 2014.
[25] Hendrik Fichtenberger, Marc Gillé, Melanie Schmidt, Chris Schwiegelshohn, and Christian Sohler. Bico: Birch meets

coresets for k-means clustering. In Algorithms–ESA 2013: 21st Annual European Symposium, Sophia Antipolis, France,
September 2-4, 2013. Proceedings 21, pages 481–492. Springer, 2013.

[26] Junhao Gan and Yufei Tao. Dbscan revisited: Mis-claim, un-fixability, and approximation. In Proceedings of the 2015
ACM SIGMOD international conference on management of data, pages 519–530, 2015.

[27] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical computer science, 38:
293–306, 1985.

[28] A Gunawan and M de Berg. A faster algorithm for dbscan, master’ s thesis. Technical University of Eindhoven, 2013.
[29] Anupam Gupta, Robert Krauthgamer, and James R Lee. Bounded geometries, fractals, and low-distortion embeddings.

In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pages 534–543. IEEE, 2003.
[30] H Altay Guvenir, Burak Acar, Gulsen Demiroz, and Ayhan Cekin. A supervised machine learning algorithm for

arrhythmia analysis. In Computers in Cardiology 1997, pages 433–436. IEEE, 1997.
[31] Michael Hahsler and Matthew Bolaños. Clustering data streams based on shared density between micro-clusters. IEEE

Transactions on Knowledge and Data Engineering, 28(6):1449–1461, 2016.
[32] Sariel Har-Peled and Manor Mendel. Fast construction of nets in low-dimensional metrics and their applications. SIAM

J. Comput., 35(5):1148–1184, 2006.
[33] Yaobin He, Haoyu Tan, Wuman Luo, Shengzhong Feng, and Jianping Fan. Mr-dbscan: a scalable mapreduce-based

dbscan algorithm for heavily skewed data. Frontiers of Computer Science, 8:83–99, 2014.
[34] Dorit S Hochbaum and David B Shmoys. A unified approach to approximation algorithms for bottleneck problems.

Journal of the ACM (JACM), 33(3):533–550, 1986.
[35] Michael E Houle. Characterizing adversarial subspaces using local intrinsic dimensionality. In 6th International

Conference on Learning Representations (ICLR 2018), CoRR abs/1801.02613, volume 6, pages 1–15, 2018.

[36] Lingxiao Huang, Shaofeng H.-C. Jiang, Jian Li, and XuanWu. Epsilon-coresets for clustering (with outliers) in doubling

metrics. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,
France, October 7-9, 2018, pages 814–825. IEEE Computer Society, 2018.

[37] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classification, 2:193–218, 1985.
[38] Jonathan J. Hull. A database for handwritten text recognition research. IEEE Transactions on pattern analysis and

machine intelligence, 16(5):550–554, 1994.
[39] Mike Izbicki and Christian Shelton. Faster cover trees. In International Conference on Machine Learning, pages

1162–1170. PMLR, 2015.

[40] Jennifer Jang and Heinrich Jiang. Dbscan++: Towards fast and scalable density clustering. In International conference
on machine learning, pages 3019–3029. PMLR, 2019.

[41] Jennifer Jang and Heinrich Jiang. Meanshift++: Extremely fast mode-seeking with applications to segmentation and

object tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4102–4113,
2021.

[42] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search. IEEE transactions
on pattern analysis and machine intelligence, 33(1):117–128, 2010.

[43] Robert Krauthgamer and James R Lee. Navigating nets: Simple algorithms for proximity search. In Proceedings of the
fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 798–807. Citeseer, 2004.

[44] Hans-Peter Kriegel, Peer Kröger, Jörg Sander, and Arthur Zimek. Density-based clustering. Wiley interdisciplinary
reviews: data mining and knowledge discovery, 1(3):231–240, 2011.

[45] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical report, 2009.

[46] Brian Kulis and Michael I Jordan. Revisiting k-means: New algorithms via bayesian nonparametrics. arXiv preprint
arXiv:1111.0352, 2011.

[47] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recogni-

tion. Proceedings of the IEEE, 86(11):2278–2324, 1998.
[48] Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics

doklady, volume 10, pages 707–710. Soviet Union, 1966.

[49] Alessandro Lulli, Matteo Dell’Amico, Pietro Michiardi, and Laura Ricci. Ng-dbscan: scalable density-based clustering

for arbitrary data. Proceedings of the VLDB Endowment, 10(3):157–168, 2016.
[50] Kamel Mansouri, Tine Ringsted, Davide Ballabio, Roberto Todeschini, and Viviana Consonni. Quantitative structure–

activity relationship models for ready biodegradability of chemicals. Journal of chemical information and modeling, 53
(4):867–878, 2013.

[51] Leland McInnes, John Healy, and Steve Astels. hdbscan: Hierarchical density based clustering. J. Open Source Softw., 2
(11):205, 2017.

[52] Gonzalo Navarro. A guided tour to approximate string matching. ACM computing surveys (CSUR), 33(1):31–88, 2001.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

Towards Metric DBSCAN: Exact, Approximate, and Streaming Algorithms 178:25

[53] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word representation. In

Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532–1543, 2014.
[54] James C Robinson. Dimensions, embeddings, and attractors, volume 186. Cambridge University Press, 2010.

[55] Alex Rodriguez and Alessandro Laio. Clustering by fast search and find of density peaks. science, 344(6191):1492–1496,
2014.

[56] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding. science, 290
(5500):2323–2326, 2000.

[57] Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings of the 50th annual ACM SIGACT
symposium on theory of computing, pages 1260–1268, 2018.

[58] Aditya Sarma, Poonam Goyal, Sonal Kumari, Anand Wani, Jagat Sesh Challa, Saiyedul Islam, and Navneet Goyal.

𝜇dbscan: an exact scalable dbscan algorithm for big data exploiting spatial locality. In 2019 IEEE International Conference
on Cluster Computing (CLUSTER), pages 1–11. IEEE, 2019.

[59] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. Dbscan revisited, revisited: why and

how you should (still) use dbscan. ACM Transactions on Database Systems (TODS), 42(3):1–21, 2017.
[60] scikit-learn developers. scikit learn. https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.

html#sklearn.datasets.make_moons, 2007-2023.

[61] Hwanjun Song and Jae-Gil Lee. Rp-dbscan: A superfast parallel dbscan algorithm based on random partitioning. In

Proceedings of the 2018 International Conference on Management of Data, pages 1173–1187, 2018.
[62] Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In Proceedings of the thirty-sixth

annual ACM symposium on Theory of computing, pages 281–290, 2004.
[63] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining. Pearson Education India, 2016.

[64] Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation equivariant cnns for digital

pathology. InMedical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference,
Granada, Spain, September 16-20, 2018, Proceedings, Part II 11, pages 210–218. Springer, 2018.

[65] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for clusterings comparison: is a

correction for chance necessary? In Proceedings of the 26th annual international conference on machine learning, pages
1073–1080, 2009.

[66] Yiqiu Wang, Yan Gu, and Julian Shun. Theoretically-efficient and practical parallel dbscan. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, pages 2555–2571, 2020.

[67] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments. Transactions of
the Association for Computational Linguistics, 7:625–641, 2019.

[68] Sandamal Weerasinghe, Tansu Alpcan, Sarah M Erfani, and Christopher Leckie. Defending support vector machines

against data poisoning attacks. IEEE Transactions on Information Forensics and Security, 16:2566–2578, 2021.
[69] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence understand-

ing through inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112–1122. Association for

Computational Linguistics, 2018. URL http://aclweb.org/anthology/N18-1101.

[70] Yi-Pu Wu, Jin-Jiang Guo, and Xue-Jie Zhang. A linear dbscan algorithm based on lsh. In 2007 International Conference
on Machine Learning and Cybernetics, volume 5, pages 2608–2614. IEEE, 2007.

[71] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning

algorithms, 2017.

[72] Keyu Yang, Yunjun Gao, Rui Ma, Lu Chen, Sai Wu, and Gang Chen. Dbscan-ms: distributed density-based clustering

in metric spaces. In 2019 IEEE 35th International Conference on Data Engineering (ICDE), pages 1346–1357. IEEE, 2019.
[73] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of a large-scale image dataset

using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365, 2015.
[74] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification. Advances

in neural information processing systems, 28, 2015.

Received October 2023; revised January 2024; accepted February 2024

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 178. Publication date: June 2024.

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html#sklearn.datasets.make_moons
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html#sklearn.datasets.make_moons
http://aclweb.org/anthology/N18-1101

	Abstract
	1 INTRODUCTION
	1.1 Preliminaries

	2 Radius-guided Gonzalez's algorithm
	3 A Faster Exact Metric DBSCAN Algorithm
	3.1 Our Algorithm under Assumption 1
	3.2 When Outliers Also Have Low Doubling Dimension
	3.3 Remark on The Comparison with

	4 -approximate Metric DBSCAN
	4.1 Linear Time Algorithm via Core Points Summary
	4.2 Implementation for Streaming Data

	5 Experiments
	5.1 Experimental environment and datasets
	5.2 Comparison on Running time
	5.3 Discussion on clustering quality with
	5.4 Comparison with non-DBSCAN Algorithms
	5.5 Time Taken by the Radius-guided Gonzalez
	5.6 Streaming DBSCAN Algorithm

	6 Conclusion and Future work
	7 Acknowledgement
	References

