
Noname manuscript No.
(will be inserted by the editor)

An Empirical Study on the Effectiveness of Large
Language Models for SATD Identification and
Classification

Mohammad Sadegh Sheikhaei · Yuan
Tian · Shaowei Wang · Bowen Xu

Received: date / Accepted: date

Abstract Self-Admitted Technical Debt (SATD), a concept highlighting sub-
optimal choices in software development documented in code comments or
other project resources, poses challenges in the maintainability and evolution
of software systems. Large language models (LLMs) have demonstrated signif-
icant effectiveness across a broad range of software tasks, especially in software
text generation tasks. Nonetheless, their effectiveness in tasks related to SATD
is still under-researched. In this paper, we investigate the efficacy of LLMs in
both identification and classification of SATD. For both tasks, we investigate
the performance gain from using more recent LLMs, specifically the Flan-T5
family, across different common usage settings.

Our results demonstrate that for SATD identification, all fine-tuned LLMs
outperform the best existing non-LLM baseline, i.e., the CNN model, with
a 4.4% to 7.2% improvement in F1 score. In the SATD classification task,
while our largest fine-tuned model, Flan-T5-XL, still led in performance, the
CNN model exhibited competitive results, even surpassing four of six LLMs.
We also found that the largest Flan-T5 model, i.e., Flan-T5-XXL, when used
with a zero-shot in-context learning (ICL) approach for SATD identification,
provides competitive results with traditional approaches but performs 6.4%
to 9.2% worse than fine-tuned LLMs. For SATD classification, few-shot ICL
approach, incorporating examples and category descriptions in prompts, out-
performs the zero-shot approach and even surpasses the fine-tuned smaller

Mohammad Sadegh Sheikhaei and Yuan Tian
School of Computing, Queen’s University, Kingston, ON, Canada
E-mail: sadegh.sheikhaei@gmail.com y.tian@queensu.ca

Shaowei Wang
Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
E-mail: Shaowei.Wang@umanitoba.ca

Bowen Xu
Department of Computer Science, North Carolina State University, Raleigh, NC, US
E-mail: bxu22@ncsu.edu

ar
X

iv
:2

40
5.

06
80

6v
1

 [
cs

.S
E

]
 1

0
M

ay
 2

02
4

2 Mohammad Sadegh Sheikhaei et al.

Flan-T5 models. Moreover, our experiments demonstrate that incorporating
contextual information, such as surrounding code, into the SATD classifica-
tion task enables larger fine-tuned LLMs to improve their performance. Our
study highlights the capabilities and limitations of LLMs for SATD tasks and
the role of contextual information in achieving higher performance with larger
LLMs, setting a foundation for future efforts to enhance these models for more
effective technical debt management.

Keywords Self-admitted technical debt (SATD) · SATD identification ·
SATD classification · Large language models · Fine tuning · In-context
learning

1 Introduction

Technical Debt (TD) refers to the deliberate adoption of less-than-ideal so-
lutions in software design or coding, typically to meet urgent deadlines or
address immediate resource constraints (Cunningham, 1992). This metaphor
portrays the trade-off between short-term expediency and long-term software
quality, likening it to incurring financial debt that accrues interest in the form
of increased maintenance effort over time (Buschmann, 2011). In literature,
large-scale analysis on TD is often facilitated through the study of one specific
type of TD, i.e., Self-Admitted Technical Debt (SATD) (Potdar and Shihab,
2014). SATDs are sub-optimal choices that developers consciously make and
primarily document in code comments (Maldonado and Shihab, 2015; Guo
et al., 2021; OBrien et al., 2022), though developers may also occasionally
record them in other software artifacts such as issue reports (Li et al., 2022).

Addressing SATD is crucial, as its accumulation can significantly impair
the long-term maintainability and evolution of software systems Li et al.
(2023b). A study by Wehaibi et al. (Wehaibi et al., 2016) indicates that source
code files with SATD experience a higher frequency of bug-fixing changes than
those without SATD. To tackle this challenge effectively, software development
teams must manage SATD by first pinpointing the locations of existing SATDs
within their software (SATD Identification) (Sheikhaei and Tian, 2023). Sub-
sequently, these SATDs could be categorized into various types based on their
specific impacts on software maintenance, such as design, requirement, de-
fect, documentation, and test debt (SATD Classification). This categorization
aids in prioritizing efforts and efficiently allocating developers to address and
resolve these SATDs (Maldonado et al., 2017). However, manually perform-
ing the above two tasks, i.e., SATD identification and SATD classification, is
challenging and time-consuming. For SATD identification, in large projects,
only approximately 0.5 to 4% of a project’s code comments are SATD (Guo
et al., 2021). While certain keywords like TODO and FIXME strongly suggest
a code comment as SATD (Rantala et al., 2020; Guo et al., 2021), developers
often mention technical debt without using these specific keywords. Conse-
quently, only about 20 to 90% of SATD in a project can be identified using
such keywords (Yu et al., 2022). For SATD classification, there exist no specific

LLM for SATD Identification and Classification 3

keyword sets that can be universally applied to effectively detect the various
types of SATDs. This limitation underlines the need to develop sophisticated
automated approaches to identify and categorize SATDs.

There have been numerous studies on automated SATD identification and
classification (Maldonado and Shihab, 2015; Maldonado et al., 2017; Ren et al.,
2019; Guo et al., 2021; Xiao et al., 2021; Cassee et al., 2022; Yu et al., 2022;
OBrien et al., 2022; Sridharan et al., 2023). These approaches are either rule-
based or machine learning-based. While these models show promise, their
performance on these two classification tasks could be further enhanced. Re-
cently, machine learning has seen the emergence of Large Language Models
(LLMs). LLMs have exhibited strong capabilities in text generation tasks,
such as text summarization and question answering (Naveed et al., 2023). In
the software engineering (SE) domain, researchers also found that LLMs can
achieve state-of-the-art (SOTA) performance on generative tasks such as code
generation (Wei et al., 2023), code summarization (Yuan et al., 2023), and pro-
gram repair (Jin et al., 2023). However, to the best of our knowledge, no prior
studies have investigated how to better use these complex models specifically
for SATD identification and classification. Furthermore, LLMs have shown im-
pressive capabilities in in-context learning (ICL) (Brown et al., 2020). With
the ICL ability, an LLM can adapt to new tasks or understand new information
by leveraging examples provided directly in its input (prompt) without fine-
tuning - a costly and time-consuming process that adapts pre-trained models
to specific tasks due to updating model parameters. This raises an intrigu-
ing question: can ICL with LLMs achieve competitive performance in SATD
identification and classification compared to fine-tuned LLMs?

In this paper, we aim to further tap into the potential of LLMs in two im-
portant SATD-related tasks, i.e., SATD identification and classification. We
explore the impact of various usage settings of LLMs in these tasks, encompass-
ing fine-tuning versus ICL, model size, prompt engineering, and adaptation in
model architecture. Additionally, we explore the potential of integrating con-
textual features beyond code comment into SATD classification. Our findings
can guide future research and advance the use of LLMs in managing SATD
and other classification tasks within the SE field.

To achieve our goal, we conduct an empirical study using two well-known
datasets: the Maldonado-62k dataset (Maldonado et al., 2017) (we use the
revised version by (Yu et al., 2022)), and the OBrien dataset (OBrien et al.,
2022). The Maldonado-62k dataset comprises 62,275 code comments from ten
popular open-source software projects across various application domains, of
which 7.2% (4,497 comments) are identified as SATD. The OBrien dataset in-
cludes 856 SATDs randomly sampled from 68,820 SATDs extracted from 2,641
popular machine-learning repositories on GitHub. These SATDs are catego-
rized into six general types: requirement, code, test, defect, design, and docu-
mentation. Our empirical study answers the following four research questions
(RQs):

4 Mohammad Sadegh Sheikhaei et al.

RQ1 How effective are fine-tuned LLMs in SATD identification and
classification? We evaluated the performance of six large language models:
BERT-base (Devlin et al., 2019), CodeBERT (Feng et al., 2020), and four vari-
ants of Flan-T5 (small, base, large, and XL) (Chung et al., 2022), comparing
them against existing baselines for the SATD identification and classification.
Our analysis revealed that for SATD identification, the selected LLMs out-
performed the best existing baseline, showing a 4.4% to 7.2% improvement in
F1 score. The larger model, Flan-T5-XL, achieved marginally better results,
with a 0.4% to 2.4% higher F1 score compared to its smaller counterparts.
In the SATD classification task, while the fine-tuned Flan-T5-XL still led in
performance, the CNN model exhibited competitive results, even surpassing
four of six LLMs.

RQ2 Does our proposed ICL with a larger model outperform smaller
models that have been fine-tuned in identifying and classifying SATD?
We propose an ICL approach for SATD identification and classification using
the largest Flan-T5 model, i.e., Flan-T5-XXL (Chung et al., 2022). We found
that a zero-shot approach with the Flan-T5-XXL model provides competitive
results for SATD identification with traditional approaches but performs 6.4%
to 9.2% worse than fine-tuned LLMs. For SATD classification, few-shot in-
corporating examples and category descriptions in prompts outperforms the
zero-shot approach and even surpasses the results of fine-tuning smaller Flan-
T5 models, i.e., the small and base versions.

RQ3 What is the impact of adding the classification layer in fine-
tuning LLMs? Different LLM architectures naturally lend themselves to
distinct fine-tuning strategies. We found that in the absence of sufficient train-
ing data, changing the architecture of the Flan-T5 models by substituting its
original text generation layer with a classification layer is beneficial, especially
when utilizing the smaller versions of the Flan-T5 models.

RQ4 What is the impact of additional contextual features on LLM-
based SATD classification? Existing SATD identification and classification
approaches only take code comments as input and overlook other contextual
information. We explore the potential of LLMs to leverage this additional con-
textual information for improving SATD classification performance. We found
that larger fine-tuned models such as Flan-T5-large and Flan-T5-XL can ef-
fectively utilize these contextual features to enhance performance. In contrast,
smaller models and those employing ICL exhibit a decrease in performance
when complex contextual information is included.

Our work makes the following main contributions:

– We design and perform a comprehensive evaluation to assess the perfor-
mance of six popular LLMs in automated SATD identification and classi-
fication. This evaluation encompasses various aspects, including different
model types, sizes, adaptation methods (fine-tuning vs. ICL), prompting
techniques, and model architectures (with or without a classification layer).

– We are the first to investigate the potential of including contextual features
beyond code comments in SATD classification task, leveraging LLM.

LLM for SATD Identification and Classification 5

– We demonstrate that LLMs can achieve state-of-the-art performance in
SATD identification and classification. Specifically, a fine-tuned Flan-T5-
XL model achieved an F1 score of 0.839 in SATD identification. In SATD
classification, the top-performing model was an ensemble fine-tuned Flan-
T5-XL, which integrated various combinations of contextual features and
code comments, achieving an overall accuracy of 0.668.

– The results and source code related to this study are available at https:
//github.com/RISElabQueens/SATD_LLM.

The rest of this paper is organized as follows. Section 2 summarizes research
background and related work. The experimental design and result analysis are
presented in Section 3 and 4, respectively. We discuss the impact of epoch
numbers in Section 5 and threats to validity in Section 6. Finally, the paper
concludes with the future work in Section 7.

2 Related Work

2.1 Self-Admitted Technical Debt Identification

The goal of SATD identification is to determine whether a given code comment
admitted that the corresponding code is a technical debt or not (Sheikhaei and
Tian, 2023). A few studies aim to detect SATD in other software artifacts, such
as issues (Li et al., 2022, 2023a), leveraging comment-based SATD approaches.
Existing SATD identification approaches can be classified into two categories:
1) rule-based approaches (Potdar and Shihab, 2014; Guo et al., 2021; Sridharan
et al., 2023) which search for certain keywords (e.g., TODO) or phrases (e.g.,
“probably a bug”) in the code comment, and 2) supervised learning based
approaches (Huang et al., 2017; Maldonado et al., 2017; Ren et al., 2019;
Prenner and Robbes, 2022) which train a model from labeled data and evaluate
it on unseen code comments.

One of the most decent rule-based approaches is Matches task Annotation
Tags (MAT) (Guo et al., 2021). In this approach, the authors showed that
just matching a set of popular task annotation tags, i.e., TODO, FIXME,
HACK, and XXX, provides similar or even superior performance for SATD
identification compared with traditional machine learning approaches such as
the natural language processing (NLP) approach (Maldonado et al., 2017)
which leverages maximum entropy classifier, and the text-mining based ap-
proach (Huang et al., 2017) that employs Näıve Bayes Multinomial classifier.
A more recent rule-based approach is PENTACET (Sridharan et al., 2023),
where the authors extend the 64 SATD identification patterns introduced by
Potdar and Shihab (Potdar and Shihab, 2014), to 1,041 patterns using a tool
named Sense2Vec (Trask et al., 2015). Sense2Vec captures contextually similar
words with its word embedding and the authors use these extrapolated features
(words) to evaluate the code comments for SATD. While it has shown that
simple rule-based approaches, e.g., MAT, have a high precision, though not
having a good recall, the performance of a complex rule-based approach such

https://github.com/RISElabQueens/SATD_LLM
https://github.com/RISElabQueens/SATD_LLM

6 Mohammad Sadegh Sheikhaei et al.

as PENTACET is not well studied. In this paper, we consider both MAT and
PENTACET approaches as rule-based baselines, and the NLP approach (Mal-
donado et al., 2017) as a traditional machine-learning-based baseline for the
SATD identification task.

More recently, supervised deep learning-based methods have emerged and
achieved more promising performance compared to rule-based and traditional
machine-learning approaches. Ren et al. (Ren et al., 2019) proposed a Con-
volutional Neural Network (CNN) based approach that outperforms tradi-
tional text-mining models. Yu et al. (Yu et al., 2021) proposed a Bidirectional
Long Short-Term Memory (BiLSTM) model with a balanced cross-entropy
loss function to overcome the class unbalance challenge. A more recent study
by Prenner and Robbes (Prenner and Robbes, 2022) showed that the BERT
base models provide state-of-the-art results in different software-related tasks,
including SATD identification. As the CNN and the BERT base models have
achieved the state-of-the-art results in this domain, we use CNN as a strong
non-LLM baseline, and BERT as a LLM baseline in our experiments for both
SATD identification and classification tasks.

2.2 Self-Admitted Technical Debt Classification

Maldonado and Shihab (Maldonado and Shihab, 2015) introduced the task of
SATD classification. They extracted 33,093 code comments from five Java
projects and manually classified them into six categories: non-SATD, De-
sign, Requirement, Defect, Test, and Documentation. Later, Maldonado et al.
(2017) extended the dataset by adding another five Java projects with the
same categories and proposed an NLP approach using the Java implementa-
tion of a maximum entropy classifier, Stanford Classifier (Manning and Klein,
2003), to identify and classify SATDs by the code comments. Later, other re-
searchers worked on that dataset and proposed another classification from a
different perspective. Fucci et al. (Fucci et al., 2021) and Cassee et al. (Cassee
et al., 2022) proposed a bottom-up strategy (i.e., what do SATD comments
mention?) rather than top-down (i.e., how do SATD comments map into a soft-
ware development life-cycle?) which was utlized in (Maldonado and Shihab,
2015). They manually classified 1,038 SATD instances fromMaldonado dataset
into 41 categories and subcategories, such as “poor implemented choices” and
“functional issues”. Chen et al. (Chen et al., 2022) leveraged chi-square to
select representative features from the textual features, and applied the XG-
Boost model for the SATD classification task on the Maldonado dataset.

In addition to SATD classification for general software systems, there are
studies that focus on identifying and classifying SATDs in specific domains
such as Blockchain projects (Pinna et al., 2023), machine learning (ML) soft-
ware (OBrien et al., 2022; Bhatia et al., 2023), and deep learning frame-
works (Liu et al., 2020). Pinna et al. (Pinna et al., 2023) employed the NLP
approach (Maldonado et al., 2017) to detect Design SATDs and Requirement
SATDs in Blockchain projects. OBrien et al. (OBrien et al., 2022) manu-

LLM for SATD Identification and Classification 7

ally classified the extracted SATDs into six general categories, which were
previously introduced by Bavota and Russo (Bavota and Russo, 2016): Re-
quirement, Code, Test, Defect, Design, and Documentation. Then, they de-
fined 23 specific categories for machine learning-related SATD and manually
applied them to their dataset. Bhatia et al. (Bhatia et al., 2023) employed
the text-mining tool (Liu et al., 2018) to identify SATDs in 318 ML and
318 non-ML open-source software projects. They then manually classified 611
randomly sampled SATDs based on the categories introduced by Bavota and
Russo (Bavota and Russo, 2016).

2.3 Large Language Models

LLMs are deep learning models (Goodfellow et al., 2016), typically based on
the Transformer architecture (Vaswani et al., 2017), and pre-trained on exten-
sive corpora. One of the early milestones in LLMs was BERT (Bidirectional
Encoder Representations from Transformers) (Devlin et al., 2019), which pio-
neered the use of bidirectional training to enhance the understanding of word
context within sentences, significantly advancing performance across a range
of natural language processing tasks. Following BERT’s encoder-only archi-
tecture, which excelled mainly in text classification, a new wave of LLMs
emerged. These newer models adopted encoder-decoder (Raffel et al., 2019)
or decoder-only architectures (Radford et al., 2019), catalyzing a revolution
in text generation tasks. Concurrently, variations of the BERT model were in-
troduced, such as CodeBERT (Feng et al., 2020), designed for understanding
and generating code by blending natural language and programming language
training, and RoBERTa (Liu et al., 2019), an optimized version of BERT with
improved training methodology and larger datasets.

T5 (Text-to-Text Transfer Transformer) (Raffel et al., 2019) and Flan-
T5 (Chung et al., 2022) are notable examples of LLMs utilizing the encoder-
decoder architecture. T5, developed by Google, treats every language task
as a text-to-text problem, converting tasks like translation, summarization,
and question-answering into a unified framework. Flan-T5, an extension of
T5, further enhances its capabilities through fine-tuning with a mixture of
instruction-based tasks, improving its performance on various benchmarks.
Both models are available in five different sizes, ranging from the small size
with 77M parameters to the XXL size with 11.1B parameters. This variety
enables researchers to study the effect of model size on their applications.
Flan-T5 has been employed in various applications such as text summariza-
tion (Tam et al., 2023) and log parsing (Jiang et al., 2023) tasks and has
demonstrated impressive performance, even when compared to some newer
models like LLaMA (Touvron et al., 2023).

There are two general approaches for applying LLMs on downstream tasks:
1) fine-tuning : continuously train the LLM on the downstream task for a few
more epochs, and 2) in-context learning (ICL): instructing the model on what
it is expected to do, and if necessary, adding a few examples in the instruction

8 Mohammad Sadegh Sheikhaei et al.

to make the task clearer. The process of finding a good instruction to achieve
good results is called prompt engineering. The main advantage of ICL over
fine-tuning is that it doesn’t require investing time and processing resources to
update model parameters for the downstream task. In this study, we consider
both approaches for the identification and classification of SATDs.

LLMs have been successfully employed in different Software Engineering
(SE) tasks. Prenner and Robbes (Prenner and Robbes, 2022) applied BERT-
based models on a selection of 13 smaller datasets from the SE literature, and
achieved superior performance for tasks involving natural language. Gao et
al. (Gao et al., 2023) leveraged the OpenAI’s Codex and GPT-3.5 models using
the ICL approach for code intelligence tasks including code summarization,
bug fixing, and program synthesis. These are just two examples in LLM4SE
(Large Language Models for Software Engineering) domain. Hou et al. (Hou
et al., 2023) conducted a systematic literature review on LLM4SE by studying
229 research papers from 2017 to 2023. The success of LLMs in various SE-
related tasks motivated us to investigate their effectiveness in SATD tasks.

3 Study Setup

3.1 Research Questions

RQ1: How effective are fine-tuned LLMs in SATD identification and
classification? Previous studies have explored rule-based methods, as well
as machine learning and deep learning approaches, for identifying and clas-
sifying SATD. A notable recent study by Prenner and Robbes (Prenner and
Robbes, 2022) employed the BERT model for several classification tasks in
software engineering, including SATD identification, and achieved significant
improvements over traditional methods. The success of BERT in this domain,
combined with the advent of more sophisticated, larger, open-source language
models like T5 and LLaMA, has inspired our investigation of their effective-
ness for SATD identification and classification. Therefore, our first research
question explores whether these newer and more advanced language models,
known for their proficiency in text generation tasks such as summarization
and translation, can also outperform BERT in the efficient identification and
classification of SATD. In our experiments for RQ1, we employed the Flan-T5
models, BERT, and CodeBERT as the chosen LLMs for fine-tuning and com-
pared their results with non-LLM baselines. The rationale for selecting these
models is presented in Section 3.3.

RQ2: Does our proposed ICL with a larger model outperform smaller
models that have been fine-tuned in identifying and classifying SATD?
While RQ1 focuses on fine-tuning pre-trained models, this research question
explores whether ICL using a larger LLM can surpass the performance of
smaller models that have been fine-tuned for SATD identification and classifi-
cation. ICL is notably cost-effective during the learning phase, just requiring

LLM for SATD Identification and Classification 9

prompt engineering, making it an appealing approach, especially when training
data is limited. To assess the efficacy of the ICL approach, we utilize Flan-T5-
XXL with 11.1B parameters, which is approximately four times larger than
the biggest model fine-tuned in this study, namely, Flan-T5-XL with 2.85B
parameters.

RQ3: What is the impact of adding the classification layer in fine-
tuning LLMs? In order to employ the Flan-T5 models for SATD identifi-
cation and classification, as a common practice we refine their architecture
by substituting the original text generation layer with a classification layer
to better adapt the model for classification tasks (see Section 3.6). However,
the impact of this modification is unclear. Furthermore, some studies utilize
the original LLM architecture and treat the classification task as a text-to-
text problem (Raffel et al., 2019), or perform the classification through infer-
ence (Zhang et al., 2023), specifically by predicting the next token (which is
expected to be a class name) when provided with input data as a prompt. To
assess the impact of this architectural modification, we conduct fine-tuning
experiments using the original Flan-T5 models, in contrast to RQ1 and RQ4,
for which we use the modified architecture.

RQ4: What is the impact of additional contextual features on LLM-
based SATD classification? In RQ1-RQ3, the models are given only the
code comments - the default setting for existing SATD identification and clas-
sification approaches. RQ4 aims to explore whether including additional con-
texts, such as the file path, the containing method’s signature, and the body of
the containing method, enhances the performance of large language models in
the SATD classification task. A key aspect of this investigation is determining
the optimal size of the LLM required to utilize this contextual data for im-
proved results effectively. Specifically, we want to assess whether smaller LLMs
can discern patterns and relationships between the code comments and the
contextual features to enhance SATD classification performance. We investi-
gate this question solely for SATD classification because the largest benchmark
for SATD identification, the Maldonado dataset (Maldonado et al., 2017), does
not provide the location and contextual information for each entry.

3.2 Datasets

In this study, we employ two datasets: Maldonado-62k and OBrien. The usage
of these datasets is as follows: for RQ1, RQ2, and RQ3, we utilize both datasets.
For RQ4, we only use the OBrien dataset, because, unlike the Maldonado-62k
dataset, which only provides the comment text for each entry, the OBrien
dataset includes additional features such as the file path that can be utilized
by LLMs to achieve better performance. More details for these two datasets
are provided below.

10 Mohammad Sadegh Sheikhaei et al.

Table 1 Maldonado-62k dataset statistics

Project #Comments #SATD (original) #SATD (Jitterbug)

ApacheAnt 4,098 131 135
ArgoUML 9,452 1,413 1,630
Columba 6,468 204 220
EMF 4,390 104 119
Hibernate 2,968 472 493
JEdit 10,322 256 259
JFreeChart 4,408 209 247
JMeter 8,057 374 416
JRuby 4,897 622 665
SQuirrel 7,215 286 313

Total 62,275 4,071 4,497

Maldonado-62k: Initially, Maldonado et al. (Maldonado and Shihab, 2015)
compiled a SATD dataset by manually labeling 33,093 source code comments
from five well-documented open-source projects across various application do-
mains, specifically Apache Ant, Apache JMeter, ArgoUML, Columba, and
JFreeChart. This dataset was later expanded in (Maldonado et al., 2017) to in-
clude 62,275 labeled code comments from 10 projects, among which 4,071 were
identified as instances of SATD. Subsequently, Yu et al. (Yu et al., 2022) con-
ducted a meticulous review of all comments initially classified as non-SATD,
particularly those containing strong SATD indicators, i.e., todo, fixme, hack,
and workaround. They discovered that 426 of the 434 comments, previously
labeled as non-SATD, were indeed SATD. As a result, the revised Maldon-
ado dataset comprises 4,497 SATD and 57,778 non-SATD code comments. In
our study, we utilize this modified version of the Maldonado dataset, which
we refer to as the Maldonado-62k dataset. The dataset comprises three fields:
“project”, “comment”, and “label”. However, it lacks contextual details like
the surrounding code, commit history, or file path, as these were not included
by the dataset creators. Table 1 shows the statistics of this dataset.

OBrien: OBrien et al. (OBrien et al., 2022) compiled a dataset from popular
machine learning (ML) repositories written in Python, including scikit-learn
and IntelPython. This dataset comprises 856 labeled instances of SATD iden-
tified within these repositories. The labeling process introduced various layers,
such as “Software TD Type”, “ML TD Type”, and “ML Pipeline Stage”. How-
ever, our study focuses on the general classification of SATD, so we selected
only the ‘Software TD Type’ column as our target label, omitting the others.
We refined this dataset by eliminating entries with null values in the “Software
TD Type” column, resulting in a total of 789 entries. The labels’ descriptions
and frequencies are detailed in Table 2. A notable feature of this dataset is
the inclusion of contextual information for each entry, such as the file path
and the commit introducing the SATD. Leveraging this data, we added two
contextual columns: “containing method signature” and “containing method
body”. Among 789 entries in this dataset, 447 SATD instances are located

LLM for SATD Identification and Classification 11

Table 2 Definitions and examples of the six SATD types identified in OBrien
dataset (OBrien et al., 2022)

SATD Types Description Example Comment #of Occ.
Requirement Requirement debts can be functional

or non-functional. In the functional
case, implementations are left unfin-
ished or in need of future feature sup-
port. In the non-functional case, the
corresponding code does not meet
the requirement standards (speed,
memory usage, ecurity, etc...).

TODO: handle channel modal-
ities later, TODO: make effi-
cient, TODO: Implement Conv
Transpose.

321

Code Bad coding practices leading to poor
legibility of code, making it difficult
to understand and maintain.

TODO: This next code is dense
and confusing. Clean up at
some point.

207

Test Problems found in implementations
involving testing or monitoring sub-
components.

XXX: should we rather test if
instance of estimator?

84

Defect Identified defects in the system that
should be addressed.

TODO this will fail if a param-
eter cant handle size=(N;)

82

Design Areas which violate good software
design practices, causing poor flexi-
bility to evolving business needs.

TODO maybe improve this so
it doesn’t use a global

80

Documentation Inadequate documentation that ex-
ists within the software system.

TODO update doc above 15

either within a method or on the very first line preceding a method, allowing
us to associate each with its corresponding method.

There are two primary reasons for selecting the OBrien dataset for the
SATD classification task. First, we required a dataset comprising self-admitted
technical debts introduced in code comments. This is to access more advanced
data, such as the surrounding code, which is crucial for delivering more ac-
curate predictions of SATD types. Therefore, we are not considering datasets
focused on other sources like issue trackers (Xavier et al., 2020) or build sys-
tems (Xiao et al., 2021). Second, among the datasets that categorize SATD in
code comments, only the OBrien dataset (OBrien et al., 2022) offers additional
information, namely the file path and commit hash. This information is essen-
tial for accessing the contextual details for each code comment. In contrast, the
Maldonado datasets (Maldonado and Shihab, 2015; Maldonado et al., 2017)
and other datasets, such as (Fucci et al., 2021; Cassee et al., 2022), which are
derived from the Maldonado dataset, lack such data, making it challenging to
extract the surrounding code for each code comment.

Both datasets present challenges. In the Maldonado-62k dataset, out of
62,275 code comments, only 4,497 items (7.2%) are classified as SATD. In the
OBrien dataset, there are only 789 items. Therefore, these two datasets also
challenge the effectiveness of large language models in dealing with imbalanced
data (for SATD identification) and the scarcity of labeled data (for SATD
classification).

3.3 Selected Large Language Models

For RQ1 and RQ4, we consider the following models:

12 Mohammad Sadegh Sheikhaei et al.

– BERT-base-uncased (110 million parameters) (Devlin et al., 2019): This
model has demonstrated superior performance in the SATD identification
task (Prenner and Robbes, 2022), establishing a strong baseline for other
LLMs in SATD identification and classification tasks.

– CodeBERT (125 million parameters) (Feng et al., 2020): Differing from
BERT, which primarily focuses on natural language, CodeBERT is a bi-
modal extension that utilizes both natural language and source codes. This
makes it particularly suited for processing code comment SATD.

– Flan-T5 (Chung et al., 2022): This is an enhanced version of T5 (Raf-
fel et al., 2019), fine-tuned on over 1000 tasks. Available in various sizes,
Flan-T5 allows for an exploration of the impact of model size on SATD
tasks. Our infrastructure supports full fine-tuning of all Flan-T5 variants
except the XXL version (11.1 billion parameters). Therefore, we will in-
clude Flan-T5 Small (77 million parameters), Base (248 million parame-
ters), Large (783 million parameters), and XL (2.85 billion parameters) in
our experiments.

For RQ2, we will utilize Flan-T5-XXL, the largest variant with 11.1 billion
parameters. This model does not require fine-tuning for our purposes, as we
will employ the ICL approach for the SATD identification and classification
tasks. For RQ3, we evaluate the performance of the original Flan-T5 architec-
ture against their altered version utilized in RQ1 and RQ4.

3.4 Baselines

For the task of SATD identification, we employ four baseline methods: the
NLP approach by (Maldonado et al., 2017), the MAT method (Guo et al.,
2021), the technique introduced in the PENTACET study (Sridharan et al.,
2023), and the convolutional neural networks (CNN) model proposed by (Ren
et al., 2019). For the SATD classification task, we utilize two baselines: the
NLP approach (Maldonado et al., 2017) and the CNN model (Ren et al., 2019).

3.5 Evaluation metrics

Following the previous studies (Prenner and Robbes, 2022; Ren et al., 2019;
Maldonado et al., 2017), we report the F1 score for the SATD class in the
SATD identification task. For the SATD classification task, we report overall
performance using accuracy, and per class performance using the F1 score.

3.6 Updating Flan-T5 architecture for the classification task

In this study, we propose an adaptation of the Flan-T5 architecture to address
the classification task (see Figure 1). The original Flan-T5 model is inherently
designed for text generation tasks, where the goal is to predict the probability

LLM for SATD Identification and Classification 13

Fig. 1 Updating Flan-T5 architecture by replacing the last layer with a classification layer

distribution of subsequent words in a given text sequence. This is achieved
through the model’s final layer, which is a text generation layer that outputs
probabilities for each word in the vocabulary.

To tailor this architecture to classification objectives, we replace the text
generation layer with a classification head, which consists of a dropout layer
followed by a linear neural network layer with the size of number of classes.
This new layer interprets the semantic representation of the input sequence
from the last hidden state and produces a probability distribution over the
predefined classes. For the loss function, we use cross-entropy which is a com-
mon choice for classification tasks. This modification leverages the pre-existing
language understanding capabilities of the Flan-T5 model while aligning the
output structure with the requirements of classification tasks. The updated
architecture now effectively assigns input sequences to categories. We use this
architecture in RQ1 and RQ4. For RQ2, we use the original architecture be-
cause for ICL approaches, there is no need to update the model parameters.
In RQ3, we evaluate the effectiveness of the modified architecture against the
original one.

3.7 Implementation

We begin by downloading the official checkpoints for all evaluated models
from Hugging Face. Subsequently, the Torch and Transformers packages are
employed to conduct fine-tuning and ICL on a single Nvidia RTX 6000 GPU
with 48 GB VRAM. In all models, we use the default 32-bit precision mode,
and all experiments are done in Python 3.10.

For all baseline models, we employed their default settings. For selected
LLMs, we adjusted the batch size to the highest power-of-two value that our
VRAM could support. Additionally, since the learning rate significantly in-
fluences LLM performance, we conducted a few experiments to determine a
near-optimal learning rate for each LLM. In the CNN and all LLMs, we config-
ured the maximum length of input data for the Maldonado-62k dataset at 128
tokens. For the OBrien dataset, we set it at 512 tokens. The rationale for the
higher token limit in the OBrien dataset is related to RQ4, where we explore
the impact of incorporating contextual data into the input. This necessitates
additional space to include this information for the models. All large language
models are trained for eight epochs using the AdamW (Loshchilov and Hut-

14 Mohammad Sadegh Sheikhaei et al.

Table 3 The key training parameter settings for each LLM applied to each dataset. All
models are trained for 8 epochs.

Model Dataset Maxlen Batch Learning
size rate

BERT-base-uncased (110M) Maldonado-62k 128 32 0.00001
CodeBERT-base (125M) Maldonado-62k 128 32 0.00001
Flan-T5-small (77M) Maldonado-62k 128 32 0.0001
Flan-T5-base (248M) Maldonado-62k 128 32 0.0001
Flan-T5-large (783M) Maldonado-62k 128 16 0.0001
Flan-T5-XL (2.85B) Maldonado-62k 128 4 0.00002

BERT-base-uncased (110M) OBrien 512 32 0.00005
CodeBERT-base (125M) OBrien 512 32 0.00005
Flan-T5-small (77M) OBrien 512 32 0.001
Flan-T5-base (248M) OBrien 512 16 0.0005
Flan-T5-large (783M) OBrien 512 4 0.0002
Flan-T5-XL (2.85B) OBrien 512 1 0.00005

ter, 2019) optimizer with a linear learning rate decay schedule. As there is no
validation set to choose the best model across training epochs, we take the
resulting model of the last epoch and report its performance on the test data.
Table 3 presents the key parameter settings for each model applied to each
dataset.

4 Results and Analysis

4.1 How effective are fine-tuned LLMs in SATD identification and
classification?

4.1.1 Approach

SATD Identification. The rule-based baselines, MAT and PENTACET, do
not require training data. Therefore, they are run on the entire dataset at once.
In contrast, other baselines and the LLMs necessitate training data. In line
with previous studies (Prenner and Robbes, 2022; Ren et al., 2019), a cross-
project approach is employed to evaluate these models. As the Maldonado
dataset contains 10 projects, each round involves selecting one project as the
test project and using the remaining nine for model training.

SATD Classification. A similar method is applied to the OBrien dataset,
but with 10 randomly assigned folds instead of cross-project validation. In
each round, one fold is used for testing, and the remaining nine for training.
The data is split into 10 folds only once, and this division is used across all
experiments on this dataset. Each fold comprises 79 data items, except the last
one, which contains 78. Given the relatively small size of the OBrien dataset,
LLM models may show varying performance in different runs. Therefore, each

LLM for SATD Identification and Classification 15

experiment is conducted three times with different seeds, and the average
accuracy or F1 score is reported.

4.1.2 Results

SATD Identification. Table 4 shows the F1 score of all selected large lan-
guage models for each of the 10 Java projects against the four baselines,
NLP (Maldonado et al., 2017), CNN (Ren et al., 2019), MAT (Guo et al., 2021),
and PENTACET (Sridharan et al., 2023). The final row, which presents the av-
erage F1 score across the 10 projects, demonstrates that all six large language
models significantly outperform the four baselines, with margins ranging from
4.4% to 11.3%. Moreover, in terms of F1 score per project, the top-performing
model is an LLM for all projects except Ruby, where MAT achieves an F1
score of 95.1%, marginally higher (by 0.1%) than the scores of Flan-T5 small
and large models. Among all models, Flan-T5-XL delivers the highest average
score, despite not achieving the best score in every project. The results from
the large language models further suggest that larger models generally surpass
their smaller counterparts, supporting the notion that larger models tend to
yield better results.

The Flan-T5-XL model is 37 times larger than the smallest model, Flan-T5-
small, but only slightly outperforms it, with an F1 score improvement of just
2.1% (83.9% vs 81.8%). This modest improvement is surprising considering
the model’s size. One significant challenge in model performance is the quality
of annotations. To delve deeper, we analyzed Cohen’s Kappa coefficient, com-
paring Flan-T5-XL’s predictions with the ground truth. The coefficient is 0.89,
higher than the 0.81 inter-rater agreement reported in the study, indicating
that our Flan-T5-XL model is more accurate than human annotators. This
outcome may appear counter-intuitive, as the model was trained on imperfect
human labels. However, Flan-T5-XL is not a simple model; it’s extensively
pre-trained on a large text corpus, enabling it to understand the meaning of
words and phrases. The capability, obtained by combining its pre-training and
fine-tuning, likely helps it to identify and ignore obvious mislabeling and make
more accurate predictions. Indeed, improving the quality of annotated data is
a prerequisite for further performance improvement.

SATD Classification. Table 5 presents the per-category F1 scores and over-
all accuracy for six LLMs and two baselines, NLP and CNN, for the SATD clas-
sification task. In contrast to the SATD identification task, where smaller mod-
els like Flan-T5-small and BERT-base performed competitively with larger
models, a more pronounced difference is observed in this table. Here, the larger
models significantly outperform the smaller ones. The Flan-T5-XL achieves the
highest accuracy at 0.62, while the Flan-T5-small registers the lowest at 0.537.
This disparity in performance can be attributed to two main factors. Firstly,
the training dataset for SATD identification task consists of approximately
50,000 to 60,000 items, varying based on the selected project as the test data.
In comparison, the training dataset for SATD classification is considerably

16 Mohammad Sadegh Sheikhaei et al.

Table 4 Comparative F1 scores of six large language models and baselines in SATD iden-
tification on Maldonado-62k dataset. The “cross-project” row indicates if we employ cross-
project prediction, i.e., using 9 projects for training and the remaining 1 for testing.

NLP MAT PENT- CNN BERT CodeBERT Flan-T5 Flan-T5 Flan-T5 Flan-T5
ACET base base small base large XL

Cross-project yes no no yes yes yes yes yes yes yes

ApacheAnt 0.532 0.654 0.505 0.625 0.629 0.691 0.643 0.679 0.689 0.710
ArgoUML 0.936 0.934 0.894 0.946 0.954 0.954 0.956 0.951 0.958 0.939
Columba 0.833 0.928 0.892 0.88 0.857 0.941 0.923 0.919 0.944 0.933
EMF 0.527 0.434 0.574 0.420 0.746 0.651 0.660 0.693 0.707 0.733
Hibernate 0.852 0.851 0.859 0.892 0.902 0.893 0.895 0.901 0.913 0.922
JEdit 0.470 0.321 0.654 0.605 0.631 0.668 0.688 0.698 0.727 0.717
JFreeChart 0.705 0.707 0.704 0.739 0.734 0.738 0.746 0.735 0.741 0.734
JMeter 0.819 0.870 0.795 0.868 0.879 0.878 0.874 0.883 0.883 0.882
JRuby 0.896 0.951 0.928 0.919 0.947 0.940 0.950 0.948 0.950 0.945
SQuirrel 0.689 0.731 0.776 0.777 0.826 0.842 0.846 0.834 0.834 0.869

Average 0.726 0.738 0.758 0.767 0.811 0.820 0.818 0.824 0.835 0.839

smaller, with only 710 items. Secondly, the nature of the tasks differs: SATD
identification is just a binary classification, whereas SATD classification re-
quires a more complex 6-class classification. This additional complexity poses
a greater challenge, particularly for smaller models. Consequently, the larger
pre-trained models, which exhibit a more profound understanding of textual
data, demonstrate superior efficacy in learning and performing the classifica-
tion task compared to their smaller counterparts.

Table 5 also shows that the performance of NLP is lower than even the
smallest LLM, while CNN achieves a commendable overall accuracy of 0.602,
close to the best-performing LLM, Flan-T5-XL, which has an accuracy of
0.620. This effectiveness of CNN led to its selection as a strong baseline for
our last research question.

Among six categories in the OBrien dataset, Flan-T5-XL scores the highest
F1 in three categories and the second-highest in two of the remaining three
categories. A noteworthy observation is the “Document” class, containing only
15 items, where all LLMs show low F1 scores, ranging between 0.0 and 0.23.
However, Flan-T5-XL distinguishes itself with a relatively high F1 score of
0.488 in this class, indicative of its consistent performance across varied class
sizes. While CNN performs best in the “Document” class, its performance is
not uniformly high across all categories. For instance, it scored second-worst
in the “Defect” category.

Summary: In SATD identification, the selected LLMs outperformed all ex-
isting baselines, with Flan-T5-XL achieving the highest F1 score, a 7.2% im-
provement compared to the best-performing baseline. In the SATD classifica-
tion task, while the fine-tuned Flan-T5-XL still led in performance, the CNN
model exhibited competitive results, even surpassing four of six LLMs. In both
tasks, the larger models outperformed their smaller counterparts.

LLM for SATD Identification and Classification 17

Table 5 Average F1 score for each category and the overall accuracy (Dataset: OBrien,
Approach: 10-fold cross validation, number of runs: 3)

Class label Code Defect Design Doc. M&T Requirement All
Count 207 82 80 15 84 321 789

NLP 0.512 0.290 0.256 0.300 0.549 0.632 0.527
CNN 0.627 0.247 0.357 0.545 0.611 0.692 0.602
BERT-base-uncased (110M) 0.585 0.367 0.312 0.170 0.634 0.662 0.576
CodeBERT-base (125M) 0.636 0.398 0.423 0.176 0.610 0.687 0.611
Flan-T5-small (77M) 0.533 0.120 0.074 0.0 0.600 0.659 0.537
Flan-T5-base (248M) 0.600 0.378 0.299 0.0 0.593 0.654 0.565
Flan-T5-large (783M) 0.586 0.418 0.329 0.230 0.598 0.662 0.575
Flan-T5-XL (2.85B) 0.651 0.433 0.475 0.488 0.618 0.684 0.620

4.2 Does our proposed ICL with a larger model outperform smaller models
that have been fine-tuned in identifying and classifying SATD?

4.2.1 Approach

In both tasks, we apply the ICL method to the largest model in the Flan-
T5 family, Flan-T5-XXL, and compare its performance with that of the fine-
tuned smaller versions from the same family. To perform the inference, we
set max new tokens = 5 and temperature = 0.0. If none of the class names
appear in the model’s response (indicating unknown labels), the majority class,
i.e., “non-SATD” for Maldonado-62k dataset and “Requirement” for OBrien
dataset, is assumed to be the predicted class.

SATD Identification. For SATD identification, we start with employing
four distinct zero-shot prompts, each providing a definition of SATD and in-
corporating various keywords indicative of SATD, such as TODO and FIXME.
This approach is based on findings by Guo et al. (2021) and Yu et al. (2022),
which highlight the significance of these keywords in classifying a code com-
ment as SATD. The prompt for each selected group of keywords is shown in
Table 6. Once we find the best performing zero-shot prompt, we investigate
the effect of incorporating different numbers of examples (1, 2, 3, 5, 10, 15,
20) in that prompt. Two methods are used to select samples for prompts: 1)
Randomly choosing n examples from the training projects for each item in
the test project, and 2) Using SentenceTransformer (with all-MiniLM-L6-v2
model) to embed the input data and applying cosine similarity to select the
most relevant items from the training projects for each item in the test project.

SATD Classification. For SATD classification, we explore the impact of
varying the number of examples (0, 1, 2, 3, 5, 10, 15, 20) in the prompt on
ICL performance. Same as the SATD identification approach, two methods are
used to select samples for prompts: 1) Randomly choosing n examples from the
training folds for each item in the test fold, and 2) Using SentenceTransformer
(with all-MiniLM-L6-v2 model) to embed the input data and applying cosine
similarity to select the most relevant items from the training folds for each test

18 Mohammad Sadegh Sheikhaei et al.

Table 6 The prompts applied in ICL approach on Maldonado-62k dataset

Approach Prompt
No keywords Self-admitted technical debt (SATD) is technical debt admitted

by the developer through source code comments. Assign the

label of SATD or Not-SATD for each given source code comment.

Suggested
keywords by
MAT

Self-admitted technical debt (SATD) are technical debt

admitted by the developer through source code comments. SATD

comments usually contain specific keywords: TODO, FIXME, HACK,

and XXX. Assign the label of SATD or Not-SATD for each given

source code comment.

Suggested
keywords by
Jitterbug

Self-admitted technical debt (SATD) is technical debt admitted

by the developer through source code comments. SATD comments

usually contain specific keywords: TODO, FIXME, HACK, and

Workaround. Assign the label of SATD or Not-SATD for each

given source code comment.

Suggested
keywords by
GPT4

Self-admitted technical debt (SATD) is technical debt admitted

by the developer through source code comments. SATD comments

usually contain specific keywords: TODO, FIXME, HACK, XXX,

NOTE, DEBT, REFACTOR, OPTIMIZE, TEMP, WORKAROUND, KLUDGE,

REVIEW, NOFIX, PENDING, and BUG. Assign the label of SATD or

Not-SATD for each given source code comment.

fold item. Additionally, we explore whether including category descriptions in
the prompt enhances classification performance. Table 7 presents a sample
one-shot prompt for each prompting approach.

4.2.2 Results

SATD Identification. The result for each zero-shot prompting approach is
shown in Table 8. The highest precision and F1 score were achieved by the
prompt incorporating keywords from the MAT approach (Guo et al., 2021),
while the best recall was obtained without including any keywords. The MAT
keyword-based prompt attained an F1 score of 0.747, exceeding the results
of the NLP and MAT approaches, but falling short of the CNN approach
and significantly lagging behind all fine-tuned LLMs (see Table 4). Table 9
presents the F1 scores for the few-shot approach when the MAT keywords
are incorporated into the prompt. The table also shows the count of unknown
labels (instances where the model’s generated tokens do not correspond to
any label), noted in parentheses beneath each F1 score. Notably, the few-shot
method, whether using random samples or relevant examples by Sentence-
Transformer, performs worse than the zero-shot approach. This is likely due
to data imbalance and the inadequacy of methods in selecting suitable exam-
ples for the prompt in this task. According to these results, in the context
of SATD identification, the most effective ICL method, which is the zero-shot
prompt with MAT keywords, does not outperform even the smallest fine-tuned
Flan-T5 model, despite utilizing the largest Flan-T5 model.

SATD Classification. Table 10 displays the accuracy along with the count
of unknown labels noted in parentheses beneath each accuracy value. Accord-

LLM for SATD Identification and Classification 19

Table 7 Sample one-shot prompts for SATD classification task

Prompt approach Sample one-shot prompt
Describing categories There are six types of software technical debts:

+
The most relevant
examples using Sen-
tenceTransformer

Requirement: Requirement debts can be functional or

non-functional. In the functional case, implementations are

left unfinished or in need of future feature support. In the

non-functional case, the corresponding code does not meet

the requirement standards (speed, memory usage, security,

etc...).

Code: Bad coding practices lead to poor legibility of code,

making it difficult to understand and maintain.

M&T: Problems found in implementations involving testing or

monitoring subcomponents.

Defect: Identified defects in the system that should be

addressed.

Design: Areas which violate good software design practices,

causing poor flexibility to evolving business needs.

Documentation: Inadequate documentation that exists within

the software system.

Here are some examples:

Technical debt comment: """ TODO normalize to make sum up

to 1? """

Label: Requirement

Technical debt comment: """ self.mpc sum(3; -5) TODO:

Future work: how to handle gracefully minus numbers """

Label:

Describing categories There are six types of software technical debts:

+
Some random exam-
ples

[describing categories the same as in the above prompt]

Here are some examples:

Technical debt comment: """ TODO: delete this method when

no longer needed """

Label: Code

Technical debt comment: """ self.mpc sum(3; -5) TODO:

Future work: how to handle gracefully minus numbers """

Label:

relevant examples
using

Technical debt comment: """ TODO normalize to make sum up

to 1? """

SentenceTransformer ### Label: Requirement

Technical debt comment: """ self.mpc sum(3; -5) TODO:

Future work: how to handle gracefully minus numbers """

Label:

Table 8 Average precision, recall, and F1 score over 10 projects, obtained by the zero-shot
ICL approach using Flan-T5-XXL (11.1B) on Maldonado-62k dataset

Prompt approach P R F1

Zero-shot prompt with no keywords 0.212 0.889 0.329
Zero-shot prompt with suggested keywords by MAT 0.741 0.762 0.747
Zero-shot prompt with suggested keywords by Jitterbug 0.678 0.76 0.712
Zero-shot prompt with suggested keywords by GPT4 0.585 0.791 0.664

20 Mohammad Sadegh Sheikhaei et al.

Table 9 Average F1 score over 10 projects, obtained by the few-shot ICL approach using
Flan-T5-XXL (11.1B) on Maldonado-62k dataset. Note: Counts of unknown labels (instances
where generated tokens do not match any label) are shown in parentheses below each F1
score.

Prompt approach Number of examples in the prompt
0 1 2 3 5 10 15 20

Mentioning MAT keywords + 0.747 0.687 0.673 0.661 0.662 0.653 0.650 0.648
Some examples by (0) (0) (0) (0) (0) (0) (0) (0)

SentenceTransformer

Mentioning MAT keywords + 0.747 0.707 0.679 0.665 0.660 0.649 0.651 0.649
Some random examples (0) (0) (0) (6) (6) (6) (6) (6)

Table 10 Average accuracy over 10 folds, obtained by the ICL approach using Flan-T5-
XXL (11.1B) on the OBrien dataset. Note: Counts of unknown labels (instances where
generated tokens do not match any label) are shown in parentheses below each F1 score.

Prompt approach Number of examples in the prompt
0 1 2 3 5 10 15 20

Describing categories + 0.506 0.530 0.560 0.556 0.567 0.572 0.561 0.536
Some examples by (12) (0) (0) (0) (0) (0) (0) (0)

SentenceTransformer

Describing categories + 0.506 0.511 0.513 0.521 0.518 0.510 0.493 0.450
Some random examples (12) (0) (0) (0) (0) (0) (0) (0)

Just use SentenceTransformer - 0.456 0.502 0.520 0.516 0.477 0.496 0.470
to mention some examples (168) (93) (45) (9) (0) (1) (0)

ing to the table, unknown labels tend to occur when no examples or category
definitions are provided in the prompt.

Key findings from Table 10 include:

– Providing relevant examples consistently yields better performance com-
pared to random examples.

– Including category descriptions before examples in the prompt leads to
significantly improved performance, regardless of the number of examples
provided in the prompt.

– Flan-T5-XXL’s ICL approach does not outperform fine-tuning Flan-T5-
XL or Flan-T5-large, though it does surpass the performance of fine-tuned
Flan-T5-base and Flan-T5-small.

Summary: In the ICL approach using the Flan-T5-XXL model for the SATD
identification task, the zero-shot approach provides competitive results with
traditional approaches, but performs 6.4% to 9.2% worse than fine-tuned
LLMs. In contrast, for the SATD classification task, incorporating relevant
examples and category descriptions into the prompts enhances performance,
surpassing the results achieved by fine-tuning the Flan-T5 small and base mod-
els. However, it falls behind the results obtained by fine-tuning the Flan-T5
large and XL models.

LLM for SATD Identification and Classification 21

Table 11 Comparison of average F1 score: original vs. modified Flan-T5 architecture on
the Maldonado-62k dataset using comment text as input

Model Original architecture Adding the classification layer

Flan-T5-small 0.820 0.818
Flan-T5-base 0.820 0.824
Flan-T5-large 0.835 0.835
Flan-T5-XL 0.831 0.839

4.3 What is the impact of adding the classification layer in fine-tuning LLMs?

4.3.1 Approach

SATD Identification. As described in Section 3.6, we have refined the ar-
chitecture of the Flan-T5 model by substituting its original text generation
layer with a classification layer to better adapt the model for classification
tasks. To assess the impact of this architectural modification, we conducted
some experiments using the original Flan-T5 model, and inputting only the
comment text. To perform the inference, similar to RQ2 approach, we set
max new tokens = 5 and temperature = 0.0. If none of the class names ap-
pear in the model’s response, the majority class is assumed to be the predicted
class.

SATD Classification. Same as above.

4.3.2 Results

SATD Identification. Table 11 presents the comparison between the orig-
inal model and the modified version with the added classification layer. We
observe that the two architectures achieve nearly identical performance.

SATD Classification. Table 12 presents the comparison between the orig-
inal model and the modified version for the classification task. In contrast to
the outcomes observed for the identification task, the modified architecture
demonstrates significant improvement over the original in the classification
task, particularly when employing the smaller versions of the Flan-T5 models.
We believe this enhancement can be attributed to the lesser amount of avail-
able training data for the classification task, compared to the identification
task.

Summary: Substituting the word generation layer with a classification layer
in Flan-T5 models, although it has no benefits for the SATD identification
task, does increase their performance for the SATD classification task, espe-
cially when utilizing the smaller versions of the Flan-T5 models. This im-
provement is likely due to the limited available training data for the SATD
classification task.

22 Mohammad Sadegh Sheikhaei et al.

Table 12 Comparison of average accuracy: original vs. modified Flan-T5 architecture on
the OBrien dataset using comment text as input

Model Original architecture Adding the classification layer

Flan-T5-small 0.447 0.537
Flan-T5-base 0.505 0.565
Flan-T5-large 0.561 0.575
Flan-T5-XL 0.602 0.620

4.4 What is the impact of additional contextual features on LLM-based
SATD classification?

4.4.1 Approach

SATD Classification. In RQ1 to RQ3, we evaluated large language models
on SATD identification and classification tasks, using code comments as in-
put. While the Maldonado-62k dataset lacks additional features, the OBrien
dataset includes informative features that can enhance model accuracy in pre-
dicting SATD categories. Undoubtedly, the code comment itself is the most
significant feature in determining the category of an SATD. However, contex-
tual features like file path or surrounding code can aid in a more comprehensive
understanding of a code comment. For instance, the presence of the word ‘test’
in the file name or path may increase the likelihood of a code comment being
related to a test SATD. Therefore, in this research question, we aim to inves-
tigate how effectively LLMs leverage additional contextual features for SATD
classification. More specifically, RQ4 compares models using four distinct com-
binations of input data: 1) just the comment text (with results adopted from
RQ1 and RQ2); 2) the file path along with the comment text; 3) the file
path, the containing method’s signature, and the comment text; 4) the file
path, comment text, and the entire containing method, which includes both
the signature and body. Given that the containing method can be extensive,
it is positioned at the end of the context. This arrangement ensures that in
instances of long input data leading to truncation, the critical comment text
is preserved. Table 13 provides an example for each input data combination.

4.4.2 Results

SATD Classification. Table 14 presents the results for the SATD classifica-
tion task using three different approaches: ICL with Flan-T5-XXL1, training
the CNN and fine-running the selected six LLMs, and an ensemble approach
by the fine-tuned Flan-T5-XL. For the fine-tune approach, when the input
data includes the file path or the file path along with the method’s signature,
the two largest models, Flan-T5-large and Flan-T5-XL, significantly improve

1 To create the prompt for the ICL approach, we followed the same method as presented
in RQ2 approach. We selected the best result, which was obtained when we included the
category descriptions and the five most relevant examples using the SentenceTransformer.

LLM for SATD Identification and Classification 23

Table 13 A sample for each combination of input data in OBrien dataset

Input data Example
Comment text TODO: Future work: how to handle gracefully minus

numbers

File path + file path: test/torch test.py

Comment text Technical debt comment: TODO: Future work: how to

handle gracefully minus numbers

File path + file path: test/torch test.py

Containing method’s signature + Containing method signature: “““ test mpc sum(self) ”””
Comment text Technical debt comment: TODO: Future work: how to

handle gracefully minus numbers

File path + file path: test/torch test.py
Comment text + Technical debt comment: “““ TODO: Future work: how to

handle gracefully minus numbers ”””
Containing method Containing method body: “““

def test mpc sum(self):

self.mpc sum(3, 5)

self.mpc sum(4, 0)

self.mpc sum(5, -5)

self.mpc sum(3, -5) TODO: Future work: how to

handle gracefully minus numbers

self.mpc sum(2 ** 24, 2 ** 12) ”””

their performance compared to when we only provide the comment text. In
contrast, the ICL approach and the four fine-tuned smaller LLMs and the
CNN model show minimal improvement or even deteriorate. Notably, the last
column demonstrates how adding both the file path and the entire containing
method to the input data complicates the task for all models except Flan-
T5-XL. While this input worsens the performance of all models, Flan-T5-XL
utilizes it to achieve better results than when using only the comment text.
This finding highlights the superior capability of fine-tuning larger models in
processing and leveraging complex data for the SATD classification task. The
consistent high performance of the Flan-T5-XL model (with scores ranging
from 0.62 to 0.648 across different input combinations) led us to explore an
ensemble approach. This method assigns the most frequent label across 12 pre-
dictions (4 different input data types × 3 runs = 12). The ensemble approach
attained an accuracy of 0.668, the highest among all experiments.

Summary: Larger models like Flan-T5-large and Flan-T5-XL significantly
outperform other smaller models when contextual information are included
in the input data for the SATD classification task, with Flan-T5-XL showing
superior capability by utilizing complex data effectively. An ensemble approach
using the Flan-T5-XL model yielded the highest accuracy, demonstrating the
benefits of larger models and varied inputs.

24 Mohammad Sadegh Sheikhaei et al.

Table 14 Average accuracy obtained by different data as input (Dataset: OBrien, Ap-
proach: 10-fold cross validation, number of runs: 3) CT: Comment Text, FP: File Path,
CMS: Containing Method’s Signature, CM: Containing Method

Input data
Approach Model CT FP+CT FP+CMS+CT FP+CT+CM

ICL Flan-T5-XXL (11.1B) 0.572 0.572 0.529 0.459

Training CNN 0.602 0.580 0.572 0.533

Fine- BERT-base-uncased (110M) 0.576 0.578 0.567 0.496
Tuning CodeBERT-base (125M) 0.611 0.606 0.571 0.492

Flan-T5-small (77M) 0.537 0.520 0.506 0.436
Flan-T5-base (248M) 0.565 0.560 0.546 0.468
Flan-T5-large (783M) 0.575 0.599 0.590 0.545
Flan-T5-XL (2.85B) 0.620 0.648 0.628 0.635

Ensemble fine-tuned Flan-T5-XL 0.668

5 Discussion

5.1 Impact of epoch number

To train the selected large language models, we set the number of training
epochs to eight. After training, we used the model from the final epoch to test
its performance, because there was no validation set available to select the
best-performing model. In this subsection, we present the performance of the
trained model on the test set across epochs for RQ1.

Figure 2 illustrates the trend of the average F1 score across Maldonado-
62k projects from epochs 1 to 8. The figure reveals that all six large language
models start with a high performance (approximately 0.81 F1 score) in the
first epoch, with subsequent epochs showing only minor fluctuations around
this score. This consistency is likely due to the binary classification nature of
the SATD identification task and the substantial volume of training data in
the Maldonado-62k dataset, allowing these pre-trained models to reach near-
optimal performance from the first epoch.

Figure 3 presents the results for the SATD classification task using the
OBrien dataset. In contrast to Figure 2, where smaller models performed com-
petitively with larger models, a more pronounced difference is observable in
this figure. Additionally, the performance of all LLMs sharply increases from
epoch 1 to epoch 5. Beyond epoch 5, the performance either stabilizes with
minor fluctuations or gently continues to increase, suggesting that epoch 8 is
an optimal point to stop training.

6 Threats to Validity

External validity. Creating a large dataset with completely error-free labels
by human effort is impractical, and the Maldonado dataset is no exception.
Although some incorrect labels are not entirely wrong but rather due to dif-

LLM for SATD Identification and Classification 25

Fig. 2 Average F1 score across 10 projects in the Maldonado-62k dataset over epochs

Fig. 3 Average accuracy across 10 folds over epochs (Dataset: OBrien, Approach: 10-fold
cross validation, number of runs: 3)

ferent interpretations of the SATD definition, there are numerous instances
in this dataset where annotators would choose the opposite label with high
agreement. We attempted to mitigate this problem by applying the label modi-
fications proposed in Yu et al. (2022), as we found their suggestions reasonable.
However, all these proposed modifications address false negative cases. There
are also false positives in the dataset, a few of which are reported in Cassee
et al. (2022). Therefore, we could expect better performance if we had access
to a more accurate dataset.

26 Mohammad Sadegh Sheikhaei et al.

Internal validity. In our experiments, we used only two datasets for SATD
identification/classification. There are additional datasets for this purpose, but
as previously mentioned, they are either created from other software sources
such as issue tracking systems Li et al. (2022) and build systems Xiao et al.
(2021), which are beyond the scope of this study, or they are derivatives of the
Maldonado dataset Fucci et al. (2021); Cassee et al. (2022), which we have al-
ready utilized. However, due to the lack of available contextual features in this
dataset, we were unable to analyze the impact of additional features on this
dataset. Another concern regarding internal validity is the challenge of find-
ing optimal parameters for fine-tuning large language models. We employed a
manual investigation approach; however, considering the substantial compu-
tational resources required by larger LLMs, thoroughly exploring a wide range
of parameter settings is time-consuming. Therefore, we primarily focused on
identifying an effective learning rate through manual trials.

Construct validity. Regarding SATD identification with the ICL approach
(RQ2), we did not find an effective method that improves performance by in-
corporating examples in prompts compared to simply including SATD-related
keywords. There may be approaches that can efficiently select relevant exam-
ples from the training set for the specific task of SATD identification. An-
other potential threat to the construct validity of our study is the selection of
BERT, CodeBERT, and Flan-T5 models for our experiments. There are many
more open-source large language models that could have been chosen for this
study. The rationale behind selecting Flan-T5 was to investigate the impact
of model size on our tasks. Additionally, we faced infrastructure limitations
in fine-tuning other models such as LLaMA. Although LLaMA is available in
various sizes, its parameter range is significantly larger than that of Flan-T5,
spanning from 7 billion to 70 billion parameters.

7 Conclusion and Future Work

In this study we investigated the effectiveness of large language models for
SATD identification and classification. Our results showed that the fine-tuned
selected LLMs outperform all SATD identification baselines. For the SATD
classification task, while the largest fine-tuned LLM, Flan-T5-XL, still led in
performance, the CNN model exhibited competitive performance, even sur-
passing some LLMs. In both tasks, larger LLMs outperformed smaller coun-
terparts, particularly in SATD classification task that limited training data
is available. We also applied the ICL approach on the largest Flan-T5 model,
Flan-T5-XXL. For SATD identification, by including different groups of SATD
related keywords in the prompts, it provided competitive results with tradi-
tional approaches, but couldn’t surpass even the smallest fine-tuned LLM. In
SATD classification task, incorporating examples and category descriptions in
prompts outperforms the zero-shot approach and even surpasses the fine-tuned
smaller Flan-T5 models.

LLM for SATD Identification and Classification 27

Our experiments also showed that substituting the word generation layer
with a classification layer in Flan-T5 models increases their performance for
the SATD classification task likely due to the limited available training data,
especially when utilizing the smaller versions of the Flan-T5 models. Finally,
we discovered that large fine-tuned models, particularly Flan-T5-XL, effec-
tively utilize additional contextual features, such as surrounding code, to en-
hance performance. In contrast, smaller fine-tuned models exhibit a decrease
in performance when provided with complex contextual information.

One of the notable findings from this study is that the fine-tuned Flan-
T5-XL model, despite being trained with human-generated labels from the
Maldonado-62k dataset, managed to outperform human annotators in SATD
identification, thanks to its pre-trained knowledge. We believe that the primary
obstacle to achieving higher performance in large LLMs lies in the quality
of the labeled data. Therefore, future research in this domain should focus
on preparing data of higher quality, which includes essential details such as
commit hashes and file paths. These details provides the location of code
comments within repositories and facilitate access to additional information,
thereby enhancing the performance of future models.

Acknowledgements We acknowledge the support of the Natural Sciences and Engineering
Research Council of Canada (NSERC), [funding reference number: RGPIN-2019-05071].

Conflict of Interest

The authors declare that they have no conflict of interest.

Data Availability Statements

The results, source code, and data related to this study are available at https:
//github.com/RISElabQueens/SATD_LLM

References

Bavota, G. and Russo, B. (2016). A large-scale empirical study on self-
admitted technical debt. In 2016 IEEE/ACM 13th Working Conference
on Mining Software Repositories (MSR), pages 315–326.

Bhatia, A., Khomh, F., Adams, B., and Hassan, A. E. (2023). An empirical
study of self-admitted technical debt in machine learning software.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-
Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess,
B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and
Amodei, D. (2020). Language models are few-shot learners. In Larochelle,

https://github.com/RISElabQueens/SATD_LLM
https://github.com/RISElabQueens/SATD_LLM

28 Mohammad Sadegh Sheikhaei et al.

H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances
in Neural Information Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc.

Buschmann, F. (2011). To pay or not to pay technical debt. IEEE Software,
28(6):29–31.

Cassee, N., Zampetti, F., Novielli, N., Serebrenik, A., and Di Penta, M. (2022).
Self-admitted technical debt and comments’ polarity: An empirical study.
Empirical Softw. Engg., 27(6).

Chen, X., Yu, D., Fan, X., Wang, L., and Chen, J. (2022). Multiclass classifica-
tion for self-admitted technical debt based on xgboost. IEEE Transactions
on Reliability, 71(3):1309–1324.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, Y.,
Wang, X., Dehghani, M., Brahma, S., Webson, A., Gu, S. S., Dai, Z., Suzgun,
M., Chen, X., Chowdhery, A., Castro-Ros, A., Pellat, M., Robinson, K.,
Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V., Huang, Y., Dai, A.,
Yu, H., Petrov, S., Chi, E. H., Dean, J., Devlin, J., Roberts, A., Zhou, D., Le,
Q. V., and Wei, J. (2022). Scaling instruction-finetuned language models.

Cunningham, W. (1992). The wycash portfolio management system. In Ad-
dendum to the Proceedings on Object-Oriented Programming Systems, Lan-
guages, and Applications (Addendum), OOPSLA ’92, page 29–30, New York,
NY, USA. Association for Computing Machinery.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-
training of deep bidirectional transformers for language understanding. In
North American Chapter of the Association for Computational Linguistics.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B.,
Liu, T., Jiang, D., and Zhou, M. (2020). CodeBERT: A pre-trained model
for programming and natural languages. In Cohn, T., He, Y., and Liu, Y.,
editors, Findings of the Association for Computational Linguistics: EMNLP
2020, pages 1536–1547, Online. Association for Computational Linguistics.

Fucci, G., Cassee, N., Zampetti, F., Novielli, N., Serebrenik, A., and Di Penta,
M. (2021). Waiting around or job half-done? sentiment in self-admitted tech-
nical debt. In 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR), pages 403–414.

Gao, S., Wen, X., Gao, C., Wang, W., Zhang, H., and Lyu, M. R. (2023).
What makes good in-context demonstrations for code intelligence tasks with
llms? In 2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 761–773, Los Alamitos, CA, USA. IEEE
Computer Society.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT
Press.

Guo, Z., Liu, S., Liu, J., Li, Y., Chen, L., Lu, H., and Zhou, Y. (2021). How
far have we progressed in identifying self-admitted technical debts? a com-
prehensive empirical study. ACM Trans. Softw. Eng. Methodol., 30(4).

Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo, X., Lo, D., Grundy,
J. C., and Wang, H. (2023). Large language models for software engineering:
A systematic literature review. ArXiv, abs/2308.10620.

LLM for SATD Identification and Classification 29

Huang, Q., Shihab, E., Xia, X., Lo, D., and Li, S. (2017). Identifying self-
admitted technical debt in open source projects using text mining. Empirical
Software Engineering, 23:418 – 451.

Jiang, Z., Liu, J., Chen, Z., Li, Y., Huang, J., Huo, Y., He, P., Gu, J., and
Lyu, M. R. (2023). Llmparser: A llm-based log parsing framework.

Jin, M., Shahriar, S., Tufano, M., Shi, X., Lu, S., Sundaresan, N., and Svy-
atkovskiy, A. (2023). Inferfix: End-to-end program repair with llms. arXiv
preprint arXiv:2303.07263.

Li, Y., Soliman, M., and Avgeriou, P. (2022). Identifying self-admitted techni-
cal debt in issue tracking systems using machine learning. Empirical Softw.
Engg., 27(6).

Li, Y., Soliman, M., and Avgeriou, P. (2023a). Automatic identification of
self-admitted technical debt from four different sources. Empirical Softw.
Engg., 28(65).

Li, Y., Soliman, M., and Avgeriou, P. (2023b). Automatically estimating the
effort required to repay self-admitted technical debt.

Liu, J., Huang, Q., Xia, X., Shihab, E., Lo, D., and Li, S. (2020). Is using
deep learning frameworks free? characterizing technical debt in deep learn-
ing frameworks. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering: Software Engineering in Society (ICSE-SEIS), pages
1–10.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized
bert pretraining approach.

Liu, Z., Huang, Q., Xia, X., Shihab, E., Lo, D., and Li, S. (2018). Satd
detector: A text-mining-based self-admitted technical debt detection tool. In
2018 IEEE/ACM 40th International Conference on Software Engineering:
Companion (ICSE-Companion), pages 9–12.

Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay regularization.
In International Conference on Learning Representations.

Maldonado, E. d. S. and Shihab, E. (2015). Detecting and quantifying differ-
ent types of self-admitted technical debt. In 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD), pages 9–15.

Maldonado, E. d. S., Shihab, E., and Tsantalis, N. (2017). Using natural
language processing to automatically detect self-admitted technical debt.
IEEE Transactions on Software Engineering, 43(11):1044–1062.

Manning, C. and Klein, D. (2003). Optimization, maxent models, and condi-
tional estimation without magic. In Companion Volume of the Proceedings
of HLT-NAACL 2003 - Tutorial Abstracts, pages 8–8.

Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Barnes,
N., and Mian, A. S. (2023). A comprehensive overview of large language
models. ArXiv, abs/2307.06435.

OBrien, D., Biswas, S., Imtiaz, S., Abdalkareem, R., Shihab, E., and Rajan,
H. (2022). 23 shades of self-admitted technical debt: An empirical study on
machine learning software. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of

30 Mohammad Sadegh Sheikhaei et al.

Software Engineering, ESEC/FSE 2022, page 734–746, New York, NY, USA.
Association for Computing Machinery.

Pinna, A., Lunesu, M. I., Orrù, S., and Tonelli, R. (2023). Investigation on self-
admitted technical debt in open-source blockchain projects. Future Internet,
15(7).

Potdar, A. and Shihab, E. (2014). An exploratory study on self-admitted
technical debt. In 2014 IEEE International Conference on Software Main-
tenance and Evolution, pages 91–100.

Prenner, J. and Robbes, R. (2022). Making the most of small software en-
gineering datasets with modern machine learning. IEEE Transactions on
Software Engineering, 48(12):5050–5067.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019).
Language models are unsupervised multitask learners.

Raffel, C., Shazeer, N. M., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou,
Y., Li, W., and Liu, P. J. (2019). Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of Machine Learning Re-
search, 21:140:1–140:67.

Rantala, L., Mäntylä, M., and Lo, D. (2020). Prevalence, contents and auto-
matic detection of kl-satd. In 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pages 385–388.

Ren, X., Xing, Z., Xia, X., Lo, D., Wang, X., and Grundy, J. (2019). Neural
network-based detection of self-admitted technical debt: From performance
to explainability. 28(3).

Sheikhaei, M. S. and Tian, Y. (2023). Automated self-admitted technical
debt tracking at commit-level: A language-independent approach. In 2023
ACM/IEEE International Conference on Technical Debt (TechDebt), pages
22–26.

Sridharan, M., Rantala, L., and Mäntylä, M. (2023). Pentacet data-23 million
contextual code comments and 250,000 satd comments. In 2023 IEEE/ACM
20th International Conference on Mining Software Repositories (MSR),
pages 412–416. IEEE.

Tam, D., Mascarenhas, A., Zhang, S., Kwan, S., Bansal, M., and Raffel, C.
(2023). Evaluating the factual consistency of large language models through
news summarization. In Rogers, A., Boyd-Graber, J., and Okazaki, N.,
editors, Findings of the Association for Computational Linguistics: ACL
2023, pages 5220–5255, Toronto, Canada. Association for Computational
Linguistics.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix,
T., Rozière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin,
A., Grave, E., and Lample, G. (2023). Llama: Open and efficient foundation
language models.

Trask, A., Michalak, P., and Liu, J. C. (2015). sense2vec - a fast and accurate
method for word sense disambiguation in neural word embeddings. ArXiv,
abs/1511.06388.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon,

LLM for SATD Identification and Classification 31

I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R., editors, Advances in Neural Information Processing Sys-
tems, volume 30. Curran Associates, Inc.

Wehaibi, S., Shihab, E., and Guerrouj, L. (2016). Examining the impact of
self-admitted technical debt on software quality. In 2016 IEEE 23Rd in-
ternational conference on software analysis, evolution, and reengineering
(SANER), volume 1, pages 179–188. IEEE.

Wei, Y., Wang, Z., Liu, J., Ding, Y., and Zhang, L. (2023). Magicoder: Source
code is all you need. arXiv preprint arXiv:2312.02120.

Xavier, L., Ferreira, F., Brito, R., and Valente, M. T. (2020). Beyond the code:
Mining self-admitted technical debt in issue tracker systems. In Proceedings
of the 17th International Conference on Mining Software Repositories, MSR
’20, page 137–146, New York, NY, USA. Association for Computing Machin-
ery.

Xiao, T., Wang, D., McIntosh, S., Hata, H., Kula, R. G., Ishio, T., and ichi
Matsumoto, K. (2021). Characterizing and mitigating self-admitted tech-
nical debt in build systems. IEEE Transactions on Software Engineering,
48:4214–4228.

Yu, D., Wang, L., Chen, X., and Chen, J. (2021). Using bilstm with attention
mechanism to automatically detect self-admitted technical debt. Frontiers
of Computer Science, 15(4):154208.

Yu, Z., Fahid, F. M., Tu, H., and Menzies, T. (2022). Identifying self-admitted
technical debts with jitterbug: A two-step approach. IEEE Trans. Softw.
Eng., 48(5):1676–1691.

Yuan, Z., Liu, J., Zi, Q., Liu, M., Peng, X., and Lou, Y. (2023). Evaluating
instruction-tuned large language models on code comprehension and gener-
ation. arXiv preprint arXiv:2308.01240.

Zhang, W., Deng, Y., Liu, B., Pan, S. J., and Bing, L. (2023). Sentiment
analysis in the era of large language models: A reality check.

	Introduction
	Related Work
	Study Setup
	Results and Analysis
	Discussion
	Threats to Validity
	Conclusion and Future Work

