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Here we theoretically and computationally study the frequency dependence of phase speed
and attenuation for marine sediments from the perspective of granular mechanics. We lever-
age recent theoretical insights from the granular physics community as well as discrete-
element method simulations, where the granular material is treated as a packing of discrete
objects that interact via pairwise forces. These pairwise forces include both repulsive con-
tact forces as well as dissipative terms which may include losses from the fluid as well as
losses from inelasticity at grain-grain contacts. We show that the structure of disordered
granular packings leads to anomalous scaling laws for frequency-dependent phase speed and
attenuation that do not follow from a continuum treatment. Our results demonstrate that
granular packing structure, which is not explicitly considered in existing models, may play
a crucial role in a complete theory of sediment acoustics. While this simple approach does
not explicitly treat sound propagation or inertial effects in the interstitial fluid, it provides a
starting point for future models that include these and other more complex features.
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I. INTRODUCTION

The dispersion relation for acoustic waves is a funda-
mental observable for materials. The functions c(f) and
α(f) connecting the phase speed c and attenuation coef-
ficient α to the frequency f depend strongly on the mi-
croscopic processes that control wave propagation. Ma-
rine sediments are fundamentally fluid-saturated granu-
lar materials, and there are many complex physical as-
pects to consider, even for an idealized scenario (e.g.,
neglecting biological matter1). For example, the nonlin-
ear Hertzian2,3 and inelastic contact forces4 between the
grains, the structure and other properties of the granu-
lar contact network5,6, and the details of the interactions
with the interstitial fluid7,8 all may affect the acoustic
response.

One of the important applications of dispersion mod-
els is their use in acoustic remote sensing of the seafloor,
which commonly uses measurements of the reflection
coefficient9–13 or waveguide dispersion14,15, combined
with an acoustic model, to estimate the sound speed
and density as a function of depth within the seafloor.
If these measurements are made over a wide frequency
band, then dispersion will be important16. Another ap-
plication of sediment dispersion models is the prediction
of the bottom-interacting acoustic field due to a source
(i.e. propagation17 or reverberation18–24), with the goal
of performance modeling of remote sensing of objects in
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the ocean25. For these applications, linking the micro-
scopic properties with the observables is a key step.

Real-world data for c and α can be difficult to ob-
tain for a wide range of f and there is still debate about
the functional forms that best describe these materials.
One compilation26 of data shows distinct behavior at low
f , with c(f) constant and α(f) ∝ f2, and high f , with
c(f) increasing and α(f) ∝ f1/2, with some crossover
region characterized by a frequency f = f∗. This behav-
ior is also typical of plane wave propagation in a viscous
medium, and will be termed “classical viscosity.” These
data can be fit to the Biot-Stoll model and its exten-
sions7,27–33, which treat the sediment as a porous medium
in which the frame can support elasticity, and losses re-
sult from the relative motion between the fluid and the
frame due to the viscosity of seawater. Its adaptation to
sediments introduced losses within the poroelastic frame
using a viscoelastic solid model33. The majority of the
Zhou, et al.26, data that show this dependence are based
on indirect dispersion measurements, such as bottom re-
flection or waveguide propagation. It is also assumed
that the sediment is a homogeneous half space. At those
low frequencies, the acoustic waves interact with at least
several meters of the sediment, which often contains gra-
dients and layering structure. As recent work34,35 has
shown, slight layer contrasts within a weakly shear sup-
porting sediment may have significant impact on modal
attenuation. Therefore, we focus on only direct measure-
ments of sediment dispersion, either in situ, laboratory,
or using an idealized sediment composed of glass beads.

Many of the direct measurements of dispersion in
sandy sediments depart from classical viscosity, most
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FIG. 1. A compilation of direct measurements of the atten-

uation coefficient of saturated sand or glass beads. Field

measurements from SAX9937, SAX0438, Hamilton36, Simp-

son et al.40, and Turgut and Yamamoto39 are included here.

The laboratory measurements are from from Wingham41 and

Hefner and Williams42. The solid black line shows α ∝ f .

notably showing an approximate α(f) ∝ f relation-
ship. The field studies cited here are from the measure-
ments compiled by Hamilton36, the large SAX9937, and
SAX0438 experiments, as well as field measurements by
Turgut and Yamamoto39 and Simpson, et al.40. Labo-
ratory data using sand are collected from Wingham41,
and laboratory measurements using glass spheres were
made by Hefner and Williams42 (using both water and
oil as the saturating fluid). These measurements are col-
lected in Fig. 1, and show a deviation from the Biot-
Stoll model, and agreement with α ∝ f for frequencies
1 < f < 400 kHz. We note that several experiments43,44

were excluded from our compilation of experimental data
in Fig. 1 due to the presence of negative velocity disper-
sion, an indication that the wavelength was close to the
mean grain size of the medium (see Hare and Hay45 and
references therein).

Trying to understand how such an attenuation form
(specifically the α ∝ f trend observed in SAX9936) might
arise was in part the motivation for Buckingham’s grain-
shearing (GS)46,47, theory of sediment acoustics, and the
later addition of viscosity48. In his justification of this
theory, Buckingham47 noted that “grains in an uncon-
solidated granular material do not form a macroscopic
elastic skeletal frame,” but instead that “forces within
the unconsolidated medium arise from grain-to-grain in-
teractions” which “give rise to force chains.” The term
“force chains” refers to the fact that granular contact
networks are spatially disordered, and the forces between
grains are not homogeneous5.

Buckingham engaged with some of the pioneering
work in the field of granular mechanics 49 to justify the
need for a granular-focused approach. However, the key
mechanisms in the GS theory were the frictional and
time-dependent characteristics of the grain-grain con-
tacts and not the spatial structure of the “force chains”

explicitly. The time-dependent damping law used for
grain-grain interactions was the key to producing α ∝ f .

However, Buckingham’s original works were pub-
lished during the infancy of a revolution50–53 in our un-
derstanding of the mechanical properties of dense granu-
lar media, facilitated by improvements in experimental54

and simulation55,56 methods and technologies. One key
result is that disordered packings often have emergent
mechanical properties that are not a priori obvious or
consistent with a simple continuum picture.

For example, disordered packings of elastic disks
(2D) or spheres (3D) exhibit an excess of low-frequency
vibrational modes6,57. In uniform elastic solids, low-
frequency vibrations are assumed to be acoustic plane
waves obeying Debye scaling, which implies a density of
modes D(ω) ∝ ω2 in three dimensions, where ω = 2πf is
the angular frequency. In contrast, the density of vibra-
tional modes in disordered packings is empirically found
to be very sensitive to the dimensionless pressure P̂ , de-
fined as the ratio of system pressure to the bulk modulus
of an individual grain. At large P̂ (unrealistic for geolog-
ical granular materials including marine sediments), the
density of modes is consistent with the Debye picture, but
these particles are “soft” and possess many more contacts
than necessary. As P̂ is decreased, the system develops
an excess of low-frequency vibrational modes compared
with Debye scaling6.

How packing structure affects dispersion and attenu-
ation in disordered packings is an open question, the an-
swer to which would have obvious implications for marine
sediment acoustics as well as other systems. We note a re-
cent paper58, which studied standing modes in disordered
2D packings. These authors demonstrated that, even at
large P̂ , the disordered packing structure affects the dis-
persion relation and attenuation rate (in time) of atten-
uation of plane wave modes. However, many open ques-
tions remain, including the behavior at small P̂ , which
is more appropriate to geological granular materials like
marine sediments.

To this end, we here consider discrete-element
method (DEM) simulations of granular packings and
show that the granular packing structure plays a cru-
cial role in determining the dispersion and attenuation
curves. DEM simulations allow us to postulate grain-
grain interaction rules and then solve the equations of
motion for each grain individually. Thus, our approach
explicitly considers the granular packing structure with-
out assuming a continuum wave equation. This approach
has limitations, which we discuss below in Sec. II; how-
ever it is able to isolate the effect of the granular packing
structure on sound speed and attenuation, which has not
been explicitly considered previously.

We use linearized forces (linear springs and dashpots)
between every grain, which is mathematically similar to
viscous drag. The repulsive springs represent repulsive
intergrain interactions, and the dashpots represent the
combined effect of lossy grain-grain contacts and the ef-
fect of drag from the interstitial fluid (see Sec. II for fur-
ther discussion). Using these linearized forces we theoret-
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ically and computationally obtain the standard result of
α ∝ f2 at low f and α ∝ f1/2 at high f in the continuum
limit for a 1D periodic chain of spheres. However, in sim-
ulations of packings in two (2D) and three (3D) dimen-
sions, our results show emergent scaling, where α ∝ fβ at
low f with β < 2; the 3D simulations demonstrate that
β ≈ 7/6, which is very near 1. We find that 2D and 3D
packings revert back to the continuum behavior at large
P̂ , similar to the disappearance of excess low-frequency
modes at large P̂ discussed above.

Our results suggest that α ∝ fβ with β ≈ 1 scal-
ing may be a direct result of the packing structure of
granular materials, even with simple linear forces. The
finding of α ∝ f1 is consistent with many of the direct
measurements of dispersion in sandy sediments36,37,41,42.
Our results may be sensitive to other granular effects,
including Hertzian grain interactions2,3, which are more
realistic and involve a contact stiffness that increases with
relative displacement. Other nonlinearities include con-
tact breaking59,60, frictional grain interactions61. Non-
spherical grain geometry62,63 may also play a role. These
effects may be considered in future studies. The problem
of integrating the inertia and compressibility8 of the in-
terstitial fluid is key to explaining the behavior of in situ
dispersion measurements and is another area for future
work. However, the key result is that the granular pack-
ing structure plays a crucial role in determining the scal-
ing laws for c(f) and α(f) and therefore should be more
explicitly included in theories of sediment acoustics.

The remainder of this paper is organized as follows.
In Sec. II, we consider the continuum limit of a 1D
granular model. In Sec. III, we describe the numerical
simulations we use to compare to this continuum the-
ory. Results of the numerical simulations are shown in
Sec. IV, where we demonstrate how anomalous scaling
laws emerge in 2D and 3D due to the granular packing
structure. In Sec. V we provide discussion and conclud-
ing remarks.

II. 1D LINEAR CONTINUUM THEORY

We first consider the continuum limit of a 1D granu-
lar model, based on the dynamics of a single “force chain”
of grains, as shown in Fig. 2. We use this theory as a base-
line to compare numerical simulations in 1D, 2D, and 3D.
Each grain has identical diameter d and mass m. We as-
sume grains i and i+1 interact via dissipative, repulsive
contact forces. These forces are linearized by assuming
that the repulsive forces use linear springs and the dissi-
pative forces use simple dashpots. Physical grains have
nonlinear repulsive forces between them (e.g. the Hertz
contact law64), but a linear approximation is reasonable
for small displacements such as acoustic strains.

One limitation of this approach is that the grains
must be considered as perfectly rigid, and compression
of grains is modeled by the finite overlap between them.
This approximation is only valid in the limit where time
scales associated with dynamics inside the grains (in this
case, internal elastic waves) are very small compared with

other dynamical time scales in the system (e.g., shear
rates or, in this case, propagation of waves in the bulk
material). Marine sediments are on the edge of validity
of such approximations, since the sound speed in, e.g.,
silica grains is only about four times that of water. Future
work should more closely examine if and how treating the
grains as objects with internal elasticity (e.g., an FEM
approach) affects the results.

The linear dashpot term assumes that the dissipation
is directly proportional to the relative velocity between
the grains at any given time. Such a functional form
is meant to represent some combination of effects from
the interstitial fluid as well as inelastic effects that are
inherent to grain-grain contacts.

FIG. 2. A one dimensional chain of identical spherical grains.

With these assumptions, the displacement ui of grain
i from its unperturbed position x on the chain is then
governed by the following differential equation, which in-
cludes a repulsive spring force and a dashpot for each
neighbor i − 1 at position x − d and i + 1 at position
x+ d:

müi = κ(ui−1 − ui)− κ(ui − ui+1)

+ γ(u̇i−1 − u̇i)− γ(u̇i − u̇i+1) , (1)

Here, κ is a spring constant, γ is the dashpot coef-
ficient, and dots denote time derivatives. Taking the
long-wavelength limit (i.e., assuming d is small enough
to transform the finite differences into derivatives) yields

mutt = κd2uxx + γd2utxx, (2)

where subscripts t and x now denote derivatives with
respect to time and space, respectively. A decaying plane
wave is guessed, given by

u(x, t) = Ae−αxei(kx−ωt), (3)

where ω is the angular frequency, k is the acoustic
wavenumber, and α is the attenuation parameter with
units of radians per meter. We can then solve the sys-
tem to arrive at the two following equations for non-
dimensional wavenumber and attenuation:

α̂ = ω̂2 γ̂√
2

{[
1 + (ω̂γ̂)2

] [
1 +

√
1 + (ω̂γ̂)2

]}−1/2

(4)

k̂ = ω̂
1√
2

{[
1 + (ω̂γ̂)2

] [
1 +

√
1 + (ω̂γ̂)2

]}1/2

1 + (ω̂γ̂)2
. (5)

J. Acoust. Soc. Am. / 13 May 2024 An explicit granular-mechanics approach to sediment acoustics 3



The dimensionless quantities in Eqs. (4) and (5) are de-
fined by the following equations:

k̂ = kd (6)

α̂ = αd (7)

ω̂ = ω
√
m/κ (8)

γ̂ = γ/
√
κm . (9)

The wavenumber and attenuation coefficient each have
dimensions of inverse meters, and are easily non-
dimensionalized by the grain diameter. Angular fre-
quency is non-dimensionalized by the resonance angular
frequency for an individual grain contact, and the dash-
pot term is non-dimensionalized using the ratio of the
energy lost and energy stored per cycle, which is related
to the Q factor of the contact65.

We note that Eq. (4) gives α ∝ ω2 for low frequencies
and α ∝ ω1/2 at high frequencies. For wave speed, the
result is constant at low frequencies and then increases
according to c ∝ ω1/2 at high frequencies. Equation (2)
has a similar mathematical form to classic viscosity66, so
these results are expected.

III. METHODS

We now discuss the methods used to perform DEM
numerical simulations in 1D, 2D, and 3D of granular
packings subjected to harmonic driving at a boundary.

A. Numerical Integration Scheme

For each grain i, we use a modified velocity-Verlet67

scheme,

r(t+ dt) = r(t) + v(t)dt+
1

2
a(t)dt2 (10)

v(t+ dt) = v(t) +
1

2
[a(t) + a(t− dt)]dt (11)

to integrate Newton’s equations of motion. At each time
step, the acceleration for each grain i is calculated using

miai =
∑
j

Fij
c +

∑
j

Fij
d (12)

Here, mi is the mass of grain i; ri, vi, and ai are the
vector position, velocity, and acceleration of grain i; Fij

c

are repulsive contact forces between grains i and j that
depend on their positions; Fij

d are dissipative forces that
depend on the velocities of grains i and j; and the sum
over j denotes a sum over all grains j that are in contact
with grain i.

B. Intergrain forces

We use linearized repulsive forces that involve over-
laps ξij = (Ri + Rj − |ri − rj |)Θ(Ri + Rj − |ri − rj |).
Here, Ri and Rj are the radii of particles i and j and Θ
is the Heaviside function, which sets ξ to zero when par-
ticles are not in contact. The repulsive force is modeled

in terms of this overlap,

F ij
c = −κξijn̂ij , (13)

where the normal vector n̂ij has magnitude of 1 and
points along the line from the center of particle i to
the center of particle j. We note that the amplitudes
involved in acoustic waves are sufficiently small that in-
dividual grain-grain contacts are well approximated by
linear repulsive forces.

We also use linearized dissipative forces using a
damping coefficient γ. For the bulk of the results we
show, the dissipative forces can be simply written as

F ij
d = −γ(vi − vj). (14)

We note that this form damps all relative motion be-
tween grains, both normal and tangential. Such a form
is intended to be the simplest form that mimics a combi-
nation of lossy grain-grain contacts combined with fluid-
mediated damping due to relative motion in saturated
granular packings.

The functional form in Eq. (14) assumes that normal
and tangential motion are damped with the same mag-
nitude (note that this only applies in 2D and 3D, since
there is no tangential motion in 1D). However, even if a
linear approximation is reasonable, there are likely dif-
ferences in the magnitude of damping for normal and
tangential relative motion between grains. In this case,
we can write in 2D, using δvij ≡ (vi − vj),

F ij
d = −γnn̂ij(δvij · n̂ij)− γtŝij(δvij · ŝij). (15)

Here, sij is a tangential unit vector such that sij ·nij = 0.
If γn = γt, this form reduces to the form given in Eq. (14).
While we primarily use Eq. (14), we also show simulations
in 2D using Eq. (15) with γt = 0 to support our claims
in Sec. IVB. In 3D, two tangential unit vectors would be
required.

We also note that use of γn and γt is common in
DEM simulations of dry granular media (i.e., with no
interstitial fluid). This is because grain-grain collisions
involve restitution losses, i.e., the conversion of some of
kinetic energy of the grains into heat. The magnitude
of these losses is often parameterized by a restitution
coefficient en, which can be connected to the magnitude
of γn for perfectly normal collisions. In particular, for
linear interactions4,

en = exp

(
− γn
2meff

tn

)
, (16)

with

tn = π

[
κ

meff
−
(

γn
2meff

)2
]−1/2

(17)

where meff is the reduced mass. These normal losses
have not been considered by the acoustics community
to date, although the work of Buckingham46 focused on
modeling of a time-dependent γt-like term. Some evi-
dence for grain-based losses is also provided by Hefner

4 J. Acoust. Soc. Am. / 13 May 2024 An explicit granular-mechanics approach to sediment acoustics



and Williams42 who found that increasing the kinematic
viscosity of the pore fluid by a factor of 100 only increased
the attenuation coefficient at the same frequency by a
factor of ten. This situation is possible if the effective γ
from grain contacts is ten times that of viscous drag from
water, and one tenth that of viscous drag from silicone
oil. Given estimates of en from glass beads of approxi-
mately 0.98 for small velocities68 the resulting γn results
in the right order of magnitude to explain the results of
Hefner and Wiliams42.

Thus, a linearized dashpot, which applies a force pro-
portional to the magnitude of relative velocity between
particles, is a reasonable model to use both for viscous-
like forces as well as inherently lossy grain-grain contacts.
Our γ parameters are meant to capture some combina-
tion of these effects. Using γn to control en models losses
during collisions, not necessarily due to relative motion
during harmonic oscillation of a packing, as we do here.
In the latter case, the contacts are enduring. Future work
is needed to better understand the relative contributions
of losses due to viscous effects and lossy contacts.

C. Generating Packings at Different Pressures

In 1D, initial configurations are trivial to generate,
as they constitute a periodic chain. However, in 2D and
3D, grains must be prepared in a disordered packing with
all grains in force balance. Here we describe how dis-
ordered packings are generated using DEM simulations,
and we discuss both 2D and 3D situations at the same
time, calling out differences as appropriate. Unless oth-
erwise stated, the discussion below applies to both 2D
and 3D packing generation protocols.

Disorder is enforced using two diameters of grains
with ratio 1.4, with equal number of particles of each
size69. Using two grain sizes ensures that 2D packings
do not end up with a periodic, crystaline structure. We
consider N grains, where N varies between 5,000 and
20,000, half with diameter d and half with a larger diam-
eter 1.4d. Despite having different diameters, all grain
masses are set to the same value m. Grains are initially
placed randomly throughout a large domain with fixed
walls in the x-direction at x = 0 and x = Lx and peri-
odic boundaries in the y and z directions with length Ly

and Lz (in 3D only). The periodic boundaries simulate
an infinite medium in the transverse directions, while a
nonperiodic (wall-based) boundary is required to observe
the propagating and decaying wave as it moves down the
channel.

During the computationally intensive initial com-
pression, we also include a dissipative force that is lin-
early dependent on the absolute velocity of the grain, as if
the grains were in a highly viscous background fluid. Ad-
ditionally, we set the velocity and acceleration to zero for
any particle with no contacts, which significantly speeds
up the compression phase. These additional damping
mechanisms are turned off after the initial packings are
generated.

Compression of the system is done in the follow-
ing way. Grains are initially placed randomly, with-
out touching, with very large Ly ≈ Lx. The value of
Lx is held fixed throughout compression, typically be-
tween 200 < Lx/d < 1000. Additionally, in 3D, Lz is
held fixed throughout the simulation, typically between
5 ≤ Lz/d ≤ 10. At each compression step, we compress
the y-direction using the substitution Ly → Ly(1 − ∆)
as well as substituting the y-position of each particle us-
ing yi → yi(1 − ∆), where ∆ is chosen to achieve the

desired P̂ (typically, ∆ ≈ P̂ . After such a compression
step, we allow the particles to rearrange and the energy
to dissipate by evolving the simulation in time. When the
total kinetic energy becomes sufficiently small, we com-
press again and again allow the system to relax. During
compression, we track the mean kinetic energy per par-
ticle K̄ = 1

N

∑
i
1
2mv2i and potential energy per particle

Ū = 1
2N

∑
i

∑
j

1
2κξ

2
ij , where the extra factor of 2 in the

denominator of Ū accounts for double counting of con-
tacts.

The system pressure is defined P = 1
dD−1

√
2Ūκ,

where D is the number of spatial dimensions. We use
the dimensionless pressure P̂ to characterize the pack-
ings, with P̂ = P/κ in 2D and P̂ = Pd/κ in 3D, i.e.,

P̂ =

√
2Ū

κd2
. (18)

Physically, P̂ can also be thought of as an approximation
of the characteristic size of the overlap between two par-
ticles compared to a particle size, ξ̄/d. Realistic values

of P̂ for marine sediments may be extremely small, since
confining pressures are generated by the weight of grains
above them, e.g., ρgh ≈ 25 kPa for ρ = 2500 kg/m3,
g = 9.81 m/s2, and h = 1 m. The stiffness of the grains

is tens of GPa, so P̂ ≈ 10−6 may be a physically rea-
sonable value. Although packings at such low P̂ are dif-
ficult to generate computationally, it is often true that
there is a low-pressure limit at a value of P̂ that is much
higher and therefore much easier to generate. In this low-
pressure limit, the dynamics are insensitive to the value
of P̂ so long as it is sufficiently low.

Thus, our approach here is to prepare packings at a
range of values of P̂ spanning 10−1 down to 10−4 until a
low-P̂ limit is reached. Despite the fact that the large-
P̂ packings are unrealistic, our approach has two major
benefits. First, it allows us to show that the low-pressure
limit occurs for our simulations at P̂ ≈ 0.005, and fur-
ther decreasing P̂ has no effect on the results. Second,
our approach allows us to show that the acoustic prop-
erties of granular packings agree with the 1D continuum
theory at large P̂ , whereas anomalous scaling appears as
the low-pressure limit is approached. Packings in 2D at
high and low P̂ are shown in Fig. 3. The high P̂ pack-
ing is far from the unjamming transition6,51, where the
packing would break apart and have no intergrain forces,
which can be seen from its large grain-grain overlaps and
relatively large number of contacts per grain. It is thus
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(a)

(b)

FIG. 3. Two packings, one at P̂ ≈ 0.1 (a) and another at

P̂ ≈ 0.001 (b).

expected to behave more like a continuum elastic solid
than the low P̂ packing.

IV. RESULTS

A. 1D Simulations

We first perform simulations in 1D. These simula-
tions both confirm our theoretical analysis above as well
as demonstrate that the effects observed in higher di-
mensions are not an artifact of DEM simulations but a
result of disordered granular mechanics in higher spatial
dimension.

The initial positions of grains are prepared, in 1D,
by assigning the grains’ positions at equally spaced po-
sitions similar to Fig. 2. In 1D, ri = xix̂, where x̂ is a
unit vector along the chain. We study 10,000 equal sized
grains placed in equal spacing d = 1 along a line. Each
grain is subject to forces from two neighbors, according
to Eq. (1). The first grain in the chain is driven in one
of two ways. The first method, constant driving, begins
driving at t = 0 according to x1(t) = x1(0) + A sin(ωt).
We choose A/d = 10−4 and have verified that our re-
sults are not sensitive to this choice. Second, we drive
the grain according to a Gaussian-enveloped pulse with
a primary angular frequency of ω and a bandwidth of
ω/5. These two types of driving yield similar results.

We measure α for a given ω by measuring the peak
height of oscillation of each grain as a function of its
distance down the chain and fitting to a decaying ex-
ponential. For the constant-driving case, we measure the
wavenumber k by observing the phase ϕ of each grain and
fitting to ϕ = kx. This allows us to infer c = ω/k. For
the Gaussian-enveloped pulse, we measure c using the

10
-4

10
-3

10
-2

10
-1

10
0

10
1

1

1.5

2

2.5

3

3.5

4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

FIG. 4. Results for 1D simulations. Dimensionless wave

speed, ĉ, and ratio of attenuation to frequency, α̂/ω̂, both

plotted as a function of dimensionless frequency times dimen-

sionless damping, ω̂γ̂. Solid black lines show the theoretical

result from Eqs. (4) and (5).

time corresponding to the largest displacement of each
grain. The results from these two methods are indistin-
guishable.

Results of these measurements are shown in Fig. 4.
We systematically vary κ, ω, and γ in order to access
a wide range of values of ω̂γ̂. The measured data from
simulations agree well with the continuum theory from
Sec. II over a large range of γ̂.

The fact that the 1D simulations do not signifi-
cantly deviate from the 1D theory is not surprising, since
the theory was developed to model this exact situation.
These results are presented as an example to provide con-
fidence that the observed emergent scaling behavior in 2D
and 3D is not an artifact of the simulation methods but
instead comes from the granular packing structure.

B. 2D Simulations

In 2D and 3D, we perform similar simulations. How-
ever, the initial configurations of grains are not along
a line but are generated by the packing procedure de-
scribed above in Sec. III C. Before describing the results
of the phase speed and attenuation measurements, we
first discuss some features of the packings themselves.

A common way to characterize granular packings in-
volves characterizing the number of contacts per particle
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FIG. 5. (a) Excess contacts Z − Zc plotted as a function of

dimensionless pressure P̂ , showing Z−Zc ∝ P̂ 1/2 (solid line).

(b) The probability distribution p(F̂ ) of dimensionless contact

forces F̂ . Changing colors (blue to red) represent increasing

P̂ , with the same color and symbol convension between panels

(a) and (b).

Z using the concept of isostaticity51. When a system is
isostatic, the number of degrees of freedom is equal to
the number of constraints. For N frictionless particles in
2D, there are 2N degrees of freedom. Thus, isostaticity
for frictionless disks in 2D requires 2N total grain-grain
contacts, or Z = 4 contacts per particle, since each con-
tact is shared between two grains. This relation is valid
for large systems where constraints related to the bound-
aries are not important. The isostatic limit is denoted
Zc. Figure 5(a) shows that ∆Z ≡ Z −Zc ∝ P̂ 1/2, mean-

ing that Z → Zc, with Zc = 4 in this case, as P̂ → 0;
this agrees with many previous studies51,69,70. We find
similar results for 3D packings, but with Zc = 6 due to
the extra degree of freedom for each particle.

For sufficiently low P̂ and ∆Z, the statistical proper-
ties of the granular force network become nearly indepen-
dent of pressure. For example, Fig. 5(b) shows a prob-

ability distribution p(F̂ ) of dimensionless contact force

F̂ ≡ Fc/Pd (note that in 2D pressure has units of force
per length). These force distributions show exponential
tails with some dependence on pressure. However, the
distributions become independent of P̂ for P̂ ≤ 0.005.
For the high-pressure packings, which have large over-
laps between particles, there are extra contacts in the
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FIG. 6. (a) Normalized displacement of an individual grain,

∆x/A (solid black curve) is plotted as a function of time,

which can be fit to an sinusoid of the form A sin(ωt − ∆ϕ)

(dashed red curve). (b,c) The constants A (b) and ∆ϕ (c)

can then be plotted as a function of the initial x position of

each grain and then used to extract the wavenumber k and

the attenuation coefficient α.

force network leading to a narrower distribution of F̂ .
These packings with large P̂ are certainly not physically
similar to marine sediments, due to large particle defor-
mations, and are also unphysical in the sense that real
grains would deform and fracture at such high strains.

Using these packings, we vibrate the wall at x =
0 and measure the resulting displacements of all grains
as a function of time. A plot of the x displacement of
a single grain is shown in Fig. 6(a). For every grain,
we fit to a form ∆x/A = A sin(ωt − ∆ϕ) and extract
the normalized oscillation amplitude A and the phase
offset ∆ϕ, as shown in the figure. These are plotted as
a function of the x position along the channel in panels
(b) and (c) of Fig. 6. The slope of ∆ϕ versus x(t = 0)
gives us the wavenumber k, and the magnitude of the
slope of logA versus x(t = 0) gives us α. We perform
such measurements for multiple packings per pressure,
widely varying ω, γ, κ, and m. We then can obtain the

dimensionless quantities α̂ and k̂ as a function of the
input parameters ω̂ and γ̂ to test the agreement with the
continuum theory.

Figure 7 shows the key result of this paper, which
are measurements of sound speed and attenuation for
the packings characterized in Fig. 5, using only linear
springs and dashpots at each contact. In accordance with
the 1D continuum theory in Sec. II, we plot ĉ and α̂/ω̂
as a function of dimensionless frequency ω̂γ̂ for packings
with pressures ranging from P̂ = 0.001 to 0.1. Each data
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point represents an average measurement over multiple
realizations of packings at the same P̂ as well as multiple
combinations of parameter values to form the dimension-
less quantity ω̂γ̂. We do this to check that the particular
combinations of dimensionless quantities being plotted
are still valid (despite the disagreement with the contin-
uum theory from which they follow). For this reason, we
show error bars using the standard deviation of the mea-
surements being averaged (not the standard error, which
would be the same quantity divided by the square root
of the number of measurements). Most of the error bars
are smaller than the symbols themselves, except for the
measurements of very small α (since very little attenu-
ation occurs over the entire channel) and large c (since
these are associated with very high driving frequencies
and large attenuation). This shows that for multiple pa-
rameter combinations, ĉ and α̂/ω̂ versus ω̂γ̂ is still able
to collapse the data, albeit with different scaling forms
for different values of P̂ .

The key message from these plots is that the func-
tional forms of c(f) and α(f) for the low-pressure (i.e.,
more realistic) packings do not agree with the contin-
uum picture but instead follow a new, emergent func-
tional form. For large P̂ , we recover scaling functions for
ĉ and α̂/ω̂ as a function of ω̂γ̂ that agree with the con-
tinuum picture (solid black lines), e.g., α̂/ω̂ ∝ ω̂γ̂ at low

frequencies. However, as P̂ is decreased, we observe that
ĉ and α̂/ω̂ asymptotically approach new scaling forms.
In particular, α̂/ω̂ ∝ (ω̂γ̂)1/3, which implies α ∝ f4/3

for small ω̂γ̂ in 2D. Additionally, rather than ĉ constant
for ω̂γ̂ < 0.1, ĉ weakly increases over 10−3 < ω̂γ̂ < 10−1

before joining the high-pressure curves at ω̂γ̂ ≈ 0.5 and
above. In measurements of sediment dispersion37, there
typically exists a finite low-frequency asymptote, which
is related to the inertial effects of the saturating fluid,
as discussed by Williams8. Further model development
using a saturating fluid is key for explaining the low fre-
quency sound speed behavior.

Figure 8 shows similar measurements but with shear
waves instead of compressional waves. For these mea-
surements, we vibrate the wall as before but in the or-
thogonal lateral direction, tracking the lateral motion of
particles down the channel to obtain α and k. We then
plot the same dimensionless combinations as before. At
high P̂ , the curves for speed and attenuation mimic the
continuum theory, albeit shifted in both magnitude as
well as the crossover value of ω̂γ̂. As P̂ is decreased, the
curves shift to lower ĉ with less of a plateau at low ω̂γ̂
as well as an emergent scaling of α̂/ω̂ roughly constant
for small ω̂γ̂. This implies that α ∝ f for shear waves in
this system.

These emergent scaling forms likely arise from non-
affine motion of grains during the local deformations as-
sociated with the traveling waves. In this context, “non-
affine” refers to motion of individual grains that is not
perfectly aligned with large-scale, average motion71. We
support this claim with two figures. First, in Fig. 9,
we show that grains undergo elliptical motion with semi-
major and semi-minor axes a and b. This is in contrast
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FIG. 7. Dispersion and attenuation in 2D with varied pressure

for compression waves. Plots show ĉ and α̂/ω̂ versus ω̂γ̂. Solid

black lines show the theoretical result from Eqs. (4) and (5).

to linear (affine) motion, which would be expected from
a continuum picture with compressive oscillation in the x
direction. Additionally, we find that these ellipses have
increased aspect ratio b/a and increased rotation angle
θ as pressure is decreased, with asymptotic behavior at
low pressures (similar to the results in Figs. 7 and 8).
Figure 9(a) shows a plot of the deviation of the particles
from their initial position for one grain during one simu-
lation; the data points (red circles) trace out an elliptical
shape to excellent approximation. The black line is a
best-fit ellipse, with semi-major axis a, semi-minor axis
b, and rotation angle θ, defined as the angle between the
x direction and the direction of the closest semi-major
axis. This particular plot is typical of all grains, i.e., all
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FIG. 8. Dispersion and attenuation in 2D with varied pressure

for shear waves. Plots show ĉ and α̂/ω̂ versus ω̂γ̂. Solid black

lines show the theoretical result from Eqs. (4) and (5).

grains trace out shapes that can be fit to an ellipse with
excellent fidelity.

Figure 9(b) and (c) show probability distributions p
of the aspect ratio b/a and the absolute value of the ro-
tation angle |θ|, since the statistics of θ are even about

θ = 0. For P̂ = 0.1, both distributions decay rapidly
away from 0, suggesting again that at large P̂ , the mo-
tion of grains is more similar to the continuum picture
(nearly linear along the direction of the applied oscilla-

tion at the boundary). However, as P̂ is decreased, the
tails of the distribution, which appear quasi-exponential,
decay much more slowly, meaning there are many more
particles tracing out elliptical trajectories with larger val-
ues of b/a and |θ|. For P̂ ≤ 0.005, the probability dis-

tributions become independent of P̂ , similar to the dis-
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FIG. 9. (a) A scatter plot of a single particle’s trajectory

during a simulation (red circle), along with a fitted ellipse

(black line) with semi-major axis a, semi-minor axis b, and

rotation angle θ. This particle is typical of all particles, which

are well-described by elliptical trajectories. (b,c) Probability

distributions p(b/a) and p(|θ|) are shown for varying P̂ but all

other parameters fixed, showing a trend toward larger aspect

ratio and larger rotation angle as pressure is decreased, with

asymptotic behavior for small P̂ .

persion and attenuation curves shown previously. Thus,
we conclude that the anomalous scaling shown in Figs. 7
and 8 is directly associated with a transition from pre-
dominantly linear motion to elliptical motion.

The second figure to support our claim is Fig. 10.
Here we show dispersion and attenuation as a function
of the product of dimensionless damping and frequency
for simulations where we damp only the component of rel-
ative velocity that is along the grain-grain contact, i.e.,
we do not damp the tangential motion. This is equiva-
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FIG. 10. Attenuation in 2D with varied pressure for compres-

sional waves, but where the tangential motion of grains is not

damped. Curves are shifted but remain parallel to the 1D

continuum theory (solid black line, from Eqs. (4) and (5)).

lent to using γn = γ and γt = 0, as discussed in Sec. III.
In such a system, we observe that the attenuation coef-
ficient mimics the 1D theory, albeit shifted and scaled.
Thus, the anomalous scaling arises when two conditions
are met: first, particle oscillations have significant non-
affine components that are not along the imposed oscilla-
tion direction, and, second, these non-affine motions are
damped.

C. 3D Simulations

We repeat our 2D simulations for compressional
waves in 3D. We find similar results for the packing statis-
tics as those shown in Fig. 5. We again find Z−Zc ∝ P̂ 1/2

but with Zc = 6 for frictionless 3D spheres, as expected51.
We again find that particles trace out elliptical paths, as
shown in Fig. 11. We again find that, as P̂ is decreased,
the ellipses become less aligned with the imposed oscil-
lation at the boundary and they develop larger aspect
ratios, although the summary statistics are not shown
here. We save a complete analysis of particle motion,
including spatial correlations, in 3D for future work.

We again consider the motion of each grain along the
imposed oscillation direction and fit it to a sine wave, as
in Fig. 6. We measure k and α in the same way, and
again plot ĉ and α̂/ω̂ as a function of ω̂γ̂ for a range of
parameter values, as shown in Fig. 12. We again find
that ω̂γ̂ is a good predictor of these two quantities, irre-
spective of the values of the individual parameters used
to construct this combination, at least for an individual
value of P̂ .

The results shown in Fig. 12 are very similar to the
2D case, except for the fact that α̂/ω̂ ∝ (ω̂γ̂)β with β ≈
1/6 in 3D, as opposed to β ≈ 1/3 in 2D. This implies
α ∝ f7/6, which is very similar to α ∝ f .

FIG. 11. A scatter plot of a single particle’s trajectory during

a 3D simulation. This particle is typical of all particles, which

are well-described by elliptical trajectories.

V. DISCUSSION

In this manuscript we have shown that the packing
structure of the granular material may play an important
role in controlling the acoustic properties of marine sed-
iments. By studying frictionless granular packings using
only linearized forces (springs and dashpots), we observe
dispersion and attenuation curves that do not agree with
a naive continuum approach, which predicts α ∝ f2 for
low to moderate frequencies using linear forces. Instead,
we observe that the granular packing structure itself leads
to emergent scaling forms with α ∝ fβ , where β ≈ 4/3
for packings of 2D frictionless disks and β ≈ 7/6 for pack-
ings of 3D frictionless spheres. The observed scaling laws
are outputs of the DEM simulations and are not currently
explained by any theory.

Thus, the key message of our paper is to challenge
a common assumption in prior theoretical approaches,
that linearized forces necessarily lead to dispersion and
attenuation scaling that agrees with classic viscosity and
Biot-Stoll theory, notably α ∝ f2 at low f . Finding a
minimal theoretical framework that would give rise to
other scaling laws, e.g., α ∝ f , was a major factor in
motivating the GS and VGS models46,47. In contrast,
our results show that linear forces can give rise to alter-
native scaling laws that come directly from the granular
packing structure. We observe a transition from α ∝ f2

for unphysical, high-pressure packings (with large over-
laps between particles) to α ∝ β with β ≈ 4/3 for P-
waves in 2D, β ≈ 1 for S-waves in 2D, and β ≈ 7/6
for P-waves in 3D. This transition occurs as the packings
asymptotically approach the (more realistic) stiff-particle
limit. This transition is also associated with changes in
the force statistics of the packing structure (Fig. 5) as
well as a transition from linear to ellipitcal motion of
individual grains (Fig. 9).
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FIG. 12. Dispersion and attenuation in 3D with varied pres-

sure for compression waves. Plots show ĉ and α̂/ω̂ versus ω̂γ̂.

Solid black lines show the theoretical result from Eqs. (4) and

(5).

Our intent is not necessarily to advocate for any par-
ticular set of experimental data. However, we note that
the most direct measurements of acoustic properties of an
idealized granular packing immersed in a viscous fluid are
the laboratory experiments by Hefner and Williams42.
The fact that our simulation results are similar to these
measurements is very encouraging. These and other re-
sults were shown above in Fig. 1.

There are a large number of questions that arise from
our work. One line of inquiry might explore how our re-
sults would change using explicitly nonlinear grain-grain
forces, like Hertzian contact mechanics or the history-
dependent dashpot terms from the GS or VGS models.
Additionally, more realistic granular packings, like those
arising from frictional grain-grain interactions or irregu-
lar grain shapes, might give rise to changes in the scaling
laws we observe. Grain-grain friction, polydispersity (i.e.,

a larger range of grain sizes), and irregular grain shape
are known to affect the properties of the intergrain con-
tact network61–63.

Future work may also try to further characterize the
non-affine grain motions that are associated with the
anomalous scaling behavior. For example, we have shown
distributions of the ellipses traced out by grains in 2D,
but have not considered whether there are spatial correla-
tions in the orientation and aspect ratio of these ellipses.
This may provide additional insight, since it is not the el-
liptical motion directly that increases dissipation but the
relative motion between each grain and its neighbors.

Finally, the effect of a saturating fluid beyond its
contribution to the dashpot magnitude was not included
in our work. Previous work8 has shown that inertial ef-
fects of the fluid and grains must be treated properly.
Including the inertia, as well as compressional and vis-
cous effects of the saturating fluid is a key future step
in relating the work presented here to marine sediment
dispersion.
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