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ABSTRACT

Galactic cosmic ray (GCR) particles have a significant impact on the particle-induced background

of X-ray observatories, and their flux exhibits substantial temporal variability, potentially influencing

background levels. In this study, we present one-day binned high-energy reject rates derived from

the Chandra-ACIS and XMM-Newton EPIC-pn instruments, serving as proxies for GCR particle flux.

We systematically analyze the ACIS and EPIC-pn reject rates and compare them with the AMS

proton flux. Our analysis initially reveals robust correlations between the AMS proton flux and the

ACIS/EPIC-pn reject rates when binned over 27-day intervals. However, a closer examination reveals

substantial fluctuations within each 27-day bin, indicating shorter-term variability. Upon daily binning,

we observe finer temporal structures in the datasets, demonstrating the presence of recurrent variations

with periods of ∼ 25 days and 23 days in ACIS and EPIC-pn reject rates, respectively, spanning the

years 2014 to 2018. Notably, during the 2016–2017 period, we additionally detect periodicities of

∼ 13.5 days and 9 days in the ACIS and EPIC-pn reject rates, respectively. Intriguingly, we observe

a time lag of ∼ 6 days between the AMS proton flux and the ACIS/EPIC-pn reject rates during the

second half of 2016. This time lag is not visible before 2016 and after 2017. The underlying physical

mechanisms responsible for this time lag remain a subject of ongoing investigation.

1. INTRODUCTION

Athena (Advanced Telescope for High ENergy Astro-

physics), ESA’s next large X-ray observatory, is sched-

uled to launch in the mid 2030s to Earth-Sun L2 (Nan-

dra et al. 2013). Some of Athena’s primary scientific

objectives align with the study of faint diffuse emission,

including those from galaxy clusters, groups of galax-

ies, and the intergalactic medium (IGM). These are also

primary science goals of current (e.g., Chandra, XMM-

Newton, eROSITA, XRISM) and future (Lynx; Gaskin

et al. 2019, LEM; Kraft et al. 2022, AXIS; Reynolds

et al. 2023) X-ray telescopes. Achieving these objectives

hinges on precise control of the total flux and minimiz-

ing systematic uncertainties linked to our understand-

ing of the non-X-ray background (Sarkar et al. 2021,

arnabsar@mit.edu

2022a,b, 2023, 2024). Extensive efforts have been in-

vested in understanding, modeling, and mitigating this

background component originating from particles and

high-energy photons, for example, the Self-Anti- Co-

incidence (SAC) technique, Miller et al. 2022, machine

learning approach, Poliszczuk et al. 2023, and many oth-

ers (e.g., Grant et al. 2018; Bulbul et al. 2020; Grant

et al. 2022; Gastaldello et al. 2022). The non-X-ray

background has consistently posed a significant chal-

lenge in X-ray missions, limiting the full exploitation

of scientific data from diffuse sources (Molendi 2017).

The non-X-ray background arises primarily from two

sources: soft protons focused onto the focal plane by

the telescope mirrors and unfocused background gener-

ated by various particles (Campana 2022). Soft protons,

originating in the solar corona and Earth’s magneto-

sphere, possess energies typically below a few 100 keV

and can reach the detectors due to their concentration

by the telescope mirrors. The spectral shape of this
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component can be approximated by a power-law con-

tinuum, characterized by highly variable intensity and

slope (Kuntz & Snowden 2008). Soft protons, when

present, can dramatically elevate the overall background

intensity in brief time intervals, often referred to as “soft

proton flares” (Kuntz & Snowden 2008). These protons

primarily deposit their energy near the detector’s surface

and generate event patterns identical to valid X-ray pho-

tons, making them challenging to distinguish and reject

during onboard processing (Gastaldello et al. 2017).

The unfocused particle-induced background can arise

from several sources, including Galactic cosmic rays

(GCRs), solar energetic protons, and trapped radiation

within Earth’s magnetosphere. The characteristics of

this background, including its temporal behavior, spec-

tral features, and spatial distribution, depend on the

primary particle’s energy. GCR particles, typically with

energies greater than 10 MeV and composed mainly of

protons, electrons, and helium ions, exhibit variability

linked to the solar cycle. These incoming particles inter-

act with the detector and surrounding components, giv-

ing rise to secondary particles (e.g., Kuntz & Snowden

2008; von Kienlin et al. 2018). To prevent these high-

energy particles from saturating the limited bandwidth

for telemetry, onboard event processing is employed to

reject events generated by primary GCRs, primarily due

to their high total energies or their distinctive pixel pat-

terns (Lumb et al. 2002). However, secondary electrons

and photons resulting from these unfocused components

deposit charge in the detector, posing challenges in dis-

tinguishing them from X-ray events originating from

celestial sources. Consequently, they significantly con-

tribute to, and often dominate, the residual (unrejected)

instrumental background.

Quantifying the particle-induced background of X-ray

observatories is a complex task due to its pronounced

temporal variability, further complicated by the pres-

ence or absence of the geomagnetic shielding. The trans-

portation of GCRs within the heliosphere is governed

by the interplay between the solar wind and the regu-

lar as well as turbulent components of the heliospheric

magnetic field (HMF). As GCRs interact with the solar

wind and the HMF, their spectrum below a few dozen

GV undergoes modulation relative to the local interstel-

lar spectrum (LIS; Potgieter 2013). This modulation of

GCR flux leads to a range of quasi-periodic variations

occurring on various timescales, spanning from hours to

several years. These phenomena have been extensively

studied in Usoskin (2017); Kudela & Sabbah (2016);

Chowdhury et al. (2016); Bazilevskaya et al. (2014);

Modzelewska & Gil (2021) and references therein.

GCR particles are routinely detected and character-

ized using the Alpha Magnetic Spectrometer (AMS-02)

instrument, a specialized particle detector installed on

the International Space Station (ISS) (Kounine 2012;

Aguilar et al. 2015). AMS provides precise, synoptic

measurements of GCR particle fluxes and energies on

timescales as short as 1 day (Aguilar et al. 2021). These

data, when compared to background rates measured

aboard X-ray observatories can provide insight into the

mechanisms responsible for level and variability of the

particle-induced background in X-ray instruments.

When a GCR particle interacts with an X-ray detec-

tor, it leaves behind a distinctive particle track marked

by multiple pixels with large signal charge. Various

X-ray telescopes employ specific algorithms to identify

such invalid (i.e. non-X-ray) events.

These algorithms exploit the fact that X-ray optics fo-

cus incident cosmic X-rays over a limited spectral band

with a well-defined upper energy limit. Thus, for in-

stance, the ACIS instrument onboard Chandra has an

on-board filter that rejects events with energies sur-

passing a designated threshold. Similarly, the EPIC-

pn instrument onboard XMM-Newton discards entire

columns of pixels that contain pixels with energies ex-

ceeding a predefined threshold. Although these detec-

tors do not directly measure GCR particle fluxes, the

count of discarded events, expressed as reject rates per

frame per frame time, can serve as a proxy measure-

ment of GCR particle fluxes, as shown in several pre-

vious studies (Grant et al. 2018; Bulbul et al. 2020;

Gastaldello et al. 2022). Notably, Grant et al. (2022)

demonstrated a strong correlation between AMS proton

fluxes and ACIS reject rates binned over 27–day inter-

vals, further affirming the efficacy of X-ray reject rates

as proxies for GCR particle fluxes.

Despite the critical relevance of the variabilities seen

in the GCR particle flux (Aguilar et al. 2021), their

impact on the variability of the particle background as

seen by X-ray detectors has been relatively unexplored,

primarily due to the limited availability of non-X-ray-

background information over long intervals at fine time

bin. In this paper, for the first time we present results

derived from the analysis of one-day binned ACIS and

EPIC-pn reject rates, encompassing data from nearly all

archival science observations spanning the years 2011–

2020. We examine the long-term and short-term vari-

abilities in both datasets and compare them with that of

AMS proton fluxes. We discuss how this knowledge can

inform future missions, by inclusion of special purpose

particle monitors, or by comparison to other space-based

particle monitors. The overarching objective of this

work is to enhance our understanding of instrumental
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background characterization and mitigation strategies,

particularly relevant to the Athena Wide-Field Imager

(WFI). Results of this work, however, can be extended

and applied to any future X-ray missions.

2. DATA GATHERING

GCR protons are one of the important sources of qui-

escent particle-background, modulated by the solar cy-

cle and solar activity. We analyze 9 years (2011–2020)

of archival data on proton flux and high-energy reject

rates from AMS, Chandra, and XMM-Newton.

2.1. Alpha Magnetic Spectrometer (AMS-02)

The AMS-02 (hereafter AMS) is a state-of-the-art

particle physics experiment module installed on the ISS

in May 2011. Developed to explore the cosmos for high-

energy cosmic rays and particles, the AMS plays a cru-

cial role in advancing our understanding of fundamental

physics phenomena. This sophisticated instrument is

equipped with permanent magnet, silicon tracker and

time of flight (TOF) scintillation counters that allow it

to identify and analyze the properties of cosmic particles

with unparalleled precision (Aguilar et al. 2015). For the

detailed layout of the detector, we refer readers to Kou-

nine (2012). The large acceptance and high precision of

the AMS allow it to perform accurate measurements of

the particle fluxes as functions of time and energy. Its

unique vantage point in space provides data that can-

not be easily obtained from Earth-based experiments,

providing unique opportunities to probe the dynamics

of solar modulation (Tomassetti 2017), and the GCR

propagation (Boschini et al. 2017).

Though AMS orbits in Low Earth Orbit (LEO), pro-

ton flux measured by AMS can be reconstructed to an-

ticipate the flux that would occur in the absence of

Earth’s magnetic field shielding (Kounine 2012; Aguilar

et al. 2015). By understanding the ISS’s path around

the Earth, the observed cosmic ray spectrum can be cor-

rected for the effects of geomagnetic shielding at each

point in the ISS orbit to obtain the spectrum incident

outside the Earth’s magnetosphere (Aguilar et al. 2015)

Since the ISS’s orbital journey exposes it to varying lev-

els of cut-off rigidity, the GCR proton spectrum can

be reconstructed as without the influence of Earth’s

magnetic field. The AMS team has successfully accom-

plished this reconstruction, including assessments of the

potential errors introduced by this process, as well as by

the other calibration and filtering procedures and made

this data available to the wider community (Aguilar

et al. 2015, 2021).

Regarding the GCR proton flux, there have been three

significant data releases in the literature by the AMS

team. Firstly, the precise measurement of the proton

spectrum conducted by Aguilar et al. (2015). Following

that, an investigation into the temporal patterns of pro-

ton fluxes on timescales of the Bartels rotation period (a

period of 27 days, approximately equivalent to the syn-

odic solar rotation period), as detailed in Aguilar et al.

(2018). Lastly, Aguilar et al. (2021) presents the daily

variations in proton fluxes. In the scope of our current

research, we employ these meticulously calibrated daily

proton flux data spanning from 2011 to 2019. For this

work, we summed all the proton fluxes in the 0.4–60

GeV energy band for a specific time bin. This dataset

enables us to examine the temporal intricacies of GCR

protons while considering the particle background effects

relevant to future X-ray telescopes.

2.2. Chandra ACIS

The Advanced CCD Imaging Spectrometer (ACIS)

onboard the Chandra X-ray Observatory was launched

into a highly elliptical 2.7 day orbit in 1999. ACIS em-

ploys an assembly of framestore charge-coupled devices

(CCDs), comprising a total of ten CCDs. Each indi-

vidual CCD encompasses a matrix of 1024 by 1024 pix-

els, each with dimensions of 24 microns. Our particular

focus centers on the properties of the back-illuminated

(BI) CCD, specifically ACIS-S3, situated at the ACIS-

S aimpoint (Grant et al. 2022). This choice is moti-

vated by its intrinsic resemblance to forthcoming detec-

tors such as the Athena-WFI. ACIS-S3 measures 45 mi-

crons in thickness, operates in a fully depleted state, and

is configured for photon-counting mode, characterized

by frametimes of approximately 3 seconds. For detailed

layout we refer readers to Weisskopf et al. (2000).

Chandra is in a highly elliptical orbit (perigee ∼
10,000 km; apogee ∼ 130,000 km) which traverses di-

verse particle environments during its orbital trajectory,

dipping into the Earth’s radiation belts around perigee.

Scientific observations, however, all occur well outside

Earth’s radiation belts and magnetic shielding at al-

titudes above roughly 60,000 km (Grant et al. 2002).

The Chandra orbit evolves with time with apogee rang-

ing from about 130,000 to 145,000 km during this time

period. It is anticipated that the external particle en-

vironment encountered by potential upcoming missions

at the Langrage points L1/L2 or in other high-Earth or-

bits should closely resemble that observed by Chandra.

This similarity underscores the significance of ACIS as

a valuable tool for investigating high-energy GCR par-

ticles and comprehending their impact on particle back-

ground dynamics.

The detection methodology involves an on-board fil-

tering mechanism: events with pulse-heights surpassing
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a tunable upper threshold (generally either 13 keV or 15

keV), as well as events exhibiting morphologies charac-

terized by an abundance of contiguous pixels, are sys-

tematically excluded. While the filtered events are not

telemetered to the ground, the instrument maintains a

comprehensive record of the count of eliminated events

and the rationale behind their removal. Among these

counters, the parameter denoted as the “high-energy re-

ject rate” serves as a proxy ∗ for the particle rate en-

countered by the spacecraft.

In this study, we investigate high-energy reject rates

(reject rates hereafter) from the period spanning 2011

to 2020. These rates are available in the standard data

products provided with each ACIS observation. † In

this particular study, we made use of a separate teleme-

try archive created by the ACIS instrument team, as a

quicker method to access the reject rates. To derive the

reject rates, we employ two distinct datasets.

One set of data with a threshold of 3750 ADU (∼ 15

keV) was collected during instances when ACIS was in

a stowed configuration and was exposed to an external

calibration source. During this configuration, the detec-

tor remained shielded from focused X-rays. Another set

of data with a threshold of 3275 ADU (∼ 13 keV) was

gathered during the time when detector was exposed to

the sky for nominal science operation. The reject rates

were derived by aligning the 15 keV dataset with the 13

keV dataset and combining them. To achieve this align-

ment, the 15 keV dataset was normalized using the best-

fit parameters derived from a linear regression analysis

between the two datasets. Figure 1 provides a visual-

ization of these datasets along with their corresponding

best-fit linear regression line.

It is worth noting that the prevailing quiescent particle

background primarily arises from GCR protons and any

secondary particles from interactions with the spacecraft

and instrument components, whether the instrument is

in the stowed position or otherwise. Focused low en-

ergy protons (∼ 100 keV) which can cause short term

increases in background count rates are not seen while

the instrument is stowed and in general produce few

events in the reject rate channel. This is further demon-

strated by the good agreement in reject rates between

the stowed and science observations after scaling.

∗ One particle interaction can potentially create many associated
events in the CCD, so there is not a one-to-one correspondence
between particle rate and reject rate, but the two quantities
should be related.

† The DROP AMP column of the level 1 exposure statistics file,
“acisf⋆stat1.fits”, found in the “secondary” directory (https://
cxc.cfa.harvard.edu/ciao/threads/intro data/).
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Figure 1. Correlation between the reject rates for the 15
keV and 13 keV pulseheight filters of ACIS data. Red line
shows the best-fit linear regression.

2.3. XMM-Newton EPIC-pn

The EPIC-pn CCD camera stands as a key instrument

on XMM-Newton, featuring a collection area of approx-

imately 2500 cm2 at 1 keV and a field of view spanning

27.2 × 26.2 degrees across the wide energy spectrum of

0.1 keV to 12 keV (Strüder et al. 2001). EPIC-pn con-

sists of four individual quadrants (BI) each having three

CCD subunits with a format 200 × 64 pixels with a pixel

size of 150 µm. Operating in a highly elliptical orbit like

Chandra ( with an apogee of about 114,000 km and a

perigee of about 7000 km ), XMM-Newton also offers

an environment for studying GCR interactions, relevant

to upcoming X-ray telescopes’ orbits. The significance

of XMM-Newton is twofold: its EPIC-pn camera bears

similarity to Athena–WFI; its elliptical orbit remains

unshielded by Earth’s magnetic field for the majority of

its trajectory, causing it to encounter the effects of high-

energy GCRs resembling Athena’s L1/L2 orbit situation

(Marelli et al. 2021; Bulbul et al. 2020; Gastaldello et al.

2022).

The EPIC background encompasses three primary

components: first, the background originating from de-

tector noise and defects; second, the component re-

sulting from mirror concentration (comprising X-ray

photons and low-energy protons); and third, the unfo-

cused high-energy particles and their subsequent prod-

ucts (Freyberg et al. 2004; Fraser et al. 2014; Marelli

et al. 2021). For this work, we primarily focused on the

unfocused component. Certain particles, such as MIPs,

are identified and subsequently discarded onboard the

satellite. This leads to time-dependent exclusion of CCD

columns and/or events exhibiting patterns inconsistent

https://cxc.cfa.harvard.edu/ciao/threads/intro_data/
https://cxc.cfa.harvard.edu/ciao/threads/intro_data/
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with valid X-ray events, primarily due to uneven spatial

distribution across nearby pixels.

For this present study, we collected onboard excluded

EPIC-pn CCD columns due to MIPs, known as Number

of Discarded Lines (NDSLIN), as a proxy for high-energy

GCR particle rates seen by EPIC-pn ‡. The EPIC-

pn data used in this work was taken when telescope

was in normal science operation mode and performed in

Full Window Mode (FWM). We analyze all the archival

EPIC-pn data in FWM mode spanning 2011–2020. Ini-

tially, EPIC-pn event files were generated and filtered

using SAS tool – epchain and pn-filter. Finally, the

NDSLIN rates were derived from the house-keeping ex-

tension contained within the EPIC-pn event files.

3. RESULTS

We present our findings obtained through the analysis

and comparison of AMS proton flux, ACIS high-energy

reject rates, and PN NDSLIN rates spanning the period

from 2011 to 2020.

3.1. Correlation between AMS, ACIS, and PN

To facilitate comparison across all three datasets, we

have first re-binned them into 27-day intervals, com-

monly referred to as Bartel’s rotation. Within the data,

outliers correspond to distinct solar storms that led to

heightened particle rates. Our primary interest lies in

investigating quiescent variations, prompting us to re-

move the positive outliers during the binning process.

To detect and remove the outliers, we implemented a

3-σ clipping method for the ACIS and EPIC-pn re-

ject rates. Each 27-day bin was carefully examined,

and count rates exceeding 3-σ from the median value of

the respective bin were flagged as anomalous and sub-

sequently removed. However, negative outliers were

not removed, as they indicate extended declines in par-

ticle background following intense solar events (Forbush

1937). Figure 2 illustrates the outcome of this 27-day

binning for the AMS, ACIS, and EPIC-pn datasets.

Each panel incorporates 1σ uncertainties, although they

might not be clearly visible due to their small size (com-

prising both statistical and systematic errors for AMS,

and solely statistical errors for ACIS and PN). Despite

differences in uncertainties and being plotted on differ-

ent y-ranges, all three datasets exhibit noticeable de-

grees of similar features characteristic of the solar cycle,

encompassing a significant portion of Solar Cycle 23 and

a smaller fraction of Cycle 24.

‡ For detailed description on NDSLIN - https://www.cosmos.esa.
int/documents/332006/623312/IdlC NDSLIN May2019.pdf

To further underscore this correlation, we have em-

ployed linear regression to model relationships between

the ACIS reject rates and AMS proton flux, as well as

between the EPIC-pn NDSLIN rates and AMS proton

flux. Figure 3 provides a visualization of these datasets

along with their corresponding best-fit linear regression

lines (χ2/dof = 43.6/111 for EPIC-pn and χ2/dof =

24.8/111 for ACIS) . The computed best-fit slope for

the AMS vs. ACIS fitting is 0.00273, while for the AMS

vs. EPIC-pn fitting, it is 0.011. Upon extrapolation to

zero AMS proton flux, the linear fits yield non-zero in-

tercepts ACIS count rates of approximately 10 counts

per second and PN count rates of roughly 44 counts

per second. These non-zero intercepts are, in part, at-

tributable to the consistent pedestal contributed by the

hard X-ray background. A similar correlation between

ACIS reject rates and AMS proton flux was also found

by Grant et al. (2022). Notably, both linear fits ex-

hibit high statistical significance. However, we observe

minor scatter around the best-fit lines, potentially stem-

ming from actual disparities between the two respective

datasets within each time bin.

To gain a deeper insight into the factors contribut-

ing to the scatter observed in the correlation, we con-

ducted an analysis of root mean square (RMS) devia-

tions. Specifically, we computed the RMS deviation of

the ACIS and PN data within each 27-day time bin from

their respective best-fit linear regression lines. Figure 4

illustrates the resultant RMS deviations for each 27-day

bin as a function of AMS proton flux. While the over-

all correlation remains evident, the notable magnitude

of the RMS deviation underscores the existence of sub-

stantial variations within the ACIS and PN datasets oc-

curring on timescales shorter than 27 days. This obser-

vation strongly indicates that the fluctuations in GCR

particle flux exhibit finer temporal variations than the

27-day interval under consideration.

3.2. Daily binned data

To examine the short term variation in the particle

background, we re-binned the AMS proton flux, ACIS

reject rates, and PN NDSLIN rates into one-day inter-

vals. This re-binning strategy was chosen to align with

the minimal time bin of one day provided by publicly re-

leased AMS data, ensuring consistency and facilitating

direct comparisons across datasets. Additionally, for a

comprehensive comparison of all three datasets, we re-

normalized the ACIS and PN rates to match the AMS

proton flux. This normalization was achieved using the

best-fit slopes and intercepts as outlined in Section 3.1.

Figure 5 visually presents the outcomes of this daily

binning process for the AMS, ACIS, and PN datasets,

https://www.cosmos.esa.int/documents/332006/623312/IdlC_NDSLIN_May2019.pdf
https://www.cosmos.esa.int/documents/332006/623312/IdlC_NDSLIN_May2019.pdf
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Figure 2. AMS proton flux (top), ACIS high-energy reject rates (middle), and EPIC-pn NDSLIN rates (bottom) binned over
27-days Bartel bin, spanning the years 2011–2020. The 1-σ uncertainties are plotted, but are too small to see.
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encompassing the timeframe from 2011 to 2020. Each

panel is accompanied by 1σ uncertainties, although their

visual clarity may be hindered by their relatively small

size. For AMS data, these uncertainties encompass both

statistical and systematic errors, whereas for ACIS and

PN data, they solely encompass statistical errors. In

handling outliers within individual datasets, we adopt

a methodology similar to that elaborated upon in the

previous section.

As expected from the AMS data, the ACIS and pn

data exhibit statistically significant variations on one-

day time scales. This difference is highlighted in Figure

5, where the ACIS and PN datasets exhibit greater dis-

persion than the AMS dataset. This discrepancy can be

attributed, in part, to the inherent characteristics of the

respective instruments. AMS functions as a precision

GCR particle detector, while ACIS and PN tally the

count of events surpassing a specific energy threshold,

acting as a proxy for the direct detection of GCR par-

ticles. Consequently, a single GCR particle can trigger

multiple events (ranging from 1 to around 100) in ACIS

and PN, leading to intrinsic scattering in these datasets

(Miller et al. 2022). Despite this inherent scattering, all

three datasets illustrate notably similar temporal vari-

ations. As depicted in Figure 6, we present the tem-

poral variation of AMS proton flux, ACIS reject rates,

and PN NDSLIN rates spanning the years 2016 to 2017.

Evidently, all three datasets exhibit a consistent saw-



Correlated variability between AMS and Chandra/XMM-Newton 9

AMS	-	1	day	binned

AM
S	
pr
ot
on
	fl
ux
	[c
ts
	s

-1
	m

-2
	s
r-1
	G
V-

1 ]
104

5000

Start	time
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

ACIS	1	day	binned

N
or
m
al
iz
ed
	A
CI
S	
hi
gh
-e
ne
rg
y	
re
je
ct
	ra

te
s

104

5000

Start	time
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

PN	-	1	day	binned	(FW	mode)

N
or
m
al
iz
ed
	E
PI
C-
pn
	N
D
SL
IN
	ra

te

104

5000

Start	time
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Figure 5. AMS proton flux, (top) ACIS high-energy reject rates (middle), and EPIC-pn NDSLIN rates (bottom) binned over
one-day, spanning the years 2011–2020. ACIS reject rates and EPIC-pn NDSLIN rates were re-normalized to match AMS proton
flux based on best-fit parameters reported in Section 3.1. The 1-σ uncertainties are plotted, but are too small to see.



10

tooth pattern characterized by comparable amplitudes

and frequencies. This observation clearly demonstrates

that day-to-day variations in cosmic ray flux produce

corresponding variation in the instrumental background.

3.3. Periodicity in datasets

The propagation of GCR particles from the interstel-

lar medium through the heliosphere is substantially in-

fluenced by the large-scale solar wind flow and the tur-

bulent interplanetary magnetic field (IMF), collectively

referred to as “solar modulation”. Parker’s transport

equation (Parker 1965) includes four principal modu-

lation mechanisms, encompassing gradient and curva-

ture drifts, diffusion within the irregular IMF, radial

convection in the expanding solar wind, and adiabatic

deceleration (or adiabatic energy loss) (e.g., Sabbah

2000; Ihongo & Wang 2016; Modzelewska & Gil 2021).

These modulation processes intricately shape the tem-

poral fluctuations evident in GCR particle fluxes, and

thus in principle play a role in modulating instrumental

backgrounds.

To investigate temporal variations across the broadest

range of timescales, our search focus on the 1-day binned

datasets. As illustrated in Figure 5, the global GCR

particle flux exhibits a minimum between 2014 and 2015,

with peaks before 2011 and around 2019. This long-term

variability can be attributed to the modulation of GCR

particle fluxes, driven by the magnetic polarity reversal

of the Sun’s orientation (Fu et al. 2021). The 22-year

helio-magnetic cycle, known as the Hale cycle, leads to a

distinctive cosmic-ray intensity profile characterized by

alternating sharp and flat-topped features (McDonald

et al. 2010), as seen in Figure 5. This periodic pattern

has been extensively examined in the literature since the

early 1960s, as exemplified by studies such as McDonald

et al. (2010) and references therein.

Previous studies employing daily-binned data have

shown short-term (ranging from months to even days)

variability in AMS proton fluxes spanning the years

2014 to 2018 (Aguilar et al. 2021), as partially de-

picted in Figure 6. This variability is particularly pro-

nounced for lower energies, specifically those less than

approximately 10 GeV, where the heliosphere’s mag-

netic shielding effect becomes crucial. To probe similar

fluctuations within the ACIS and PN reject rates over

shorter timescales, we have employed the wavelet time-

frequency technique, as described in Torrence & Compo

(1998) and Grinsted et al. (2004). A similar approach

was also employed by Aguilar et al. (2021) while in-

vestigating periodicities in AMS proton flux. Figure 7

visually presents the resultant wavelet power spectra for

the daily-binned AMS proton flux, ACIS and PN reject

rates, encompassing both the 2014–2018 and 2016–2017

year periods. All power spectra featured in subsequent

figures are normalized by the peak value to effectively

portray the strength of the underlying periodicities.

Aguilar et al. (2021) observed recurrent AMS pro-

ton flux variations with a period of ∼ 27 days at a

significance above the 95% confidence level from 2014

to 2018. Shorter periods of ∼13.5 days and ∼9 days

were also found only in 2016. Both of these periodic-

ities are clearly visible in the top panels of Figure 7.

We have identified a periodicity of ∼ 25 days in ACIS

high-energy reject rates and a periodicity of ∼ 23 days

in PN NDSLIN rates within the 2014–2018 timeframe,

as seen in the middle-left and bottom-left panels of Fig-

ure 7. Discrepancies in these periods compared to AMS

observations are primarily attributed to intrinsic scat-

tering present in the ACIS and PN datasets leading to

choosing different peaks in the datasets, as described in

Section 3.2.

This recurring 27-day variation in GCR particle flux

was also observed on Earth by neutron monitors (NMs;

Modzelewska & Alania 2013), in space by Advanced

Composition Explorer (ACE; Leske et al. 2013), out of

the ecliptic plane by Ulysses (McKibben et al. 1995), and

even in the remote heliosphere by the Voyager space-

craft (Decker 1999). These observations point to the

solar rotation as the dominant factor driving the 27-day

variability in GCR particle flux. The uneven distribu-

tion of active regions on the Sun’s surface lead to (he-

liographic) longitudinal asymmetry in electromagnetic

conditions throughout one solar rotation, thereby mod-

ulating the 27-day wave observed in GCR particle fluxes

(e.g., Richardson 2004, 2018; Modzelewska & Gil 2021).

Furthermore, we have also identified a ∼ 9-day and

∼ 13.5-day variability in the ACIS and PN reject rates

within the 2016–2017 interval, similar to the patterns

observed in AMS data, as shown in the right panels of

Figure 7. These 13.5-day and 9-day periodicities corre-

spond to the higher harmonics of the∼ 27-day GCR par-

ticle flux periodicity. Specifically, the 13.5-day periodic-

ity represents the second harmonic, and the 9-day peri-

odicity represents the third harmonic (Richardson 2004;

Sabbah & Kudela 2011; Modzelewska & Alania 2013).

The quasi-period of ∼ 13.5 days originates mainly due

to two distinct groups of active regions on the Sun’s

surface, situated approximately 180 degrees apart in

longitude (Modzelewska & Alania 2013). This second

harmonic has been meticulously explored by Mursula &

Zieger (1996).

Furthermore, Sabbah & Kudela (2011) showed that

the effects of corotating interaction regions, stemming

from high-speed solar wind streams overtaking preced-
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ing slower solar wind, give rise to the 9-day GCR mod-

ulations. Comparable variability of ∼ 13.5 days and 9

days has also been observed in Helios 1, Helios 2, and

IMP-8 experiments (Richardson 2004), Neutron Mon-

itors (Sabbah & Kudela 2011), as well as by LISA

Pathfinder (Grimani et al. 2017, 2020). These consis-

tent findings highlight the robust nature of the observed

periodicities in the ACIS and PN reject rates.

3.4. Time lag between datasets

We have identified a time lag of ∼ 6 days between

AMS proton flux and ACIS/EPIC-pn reject rates. This

time lag exhibits greater prominence within the time

span of 2016–2017, while it becomes less apparent prior

to 2016 and subsequent to 2017. Figure 6 top panel

provides a visual representation of this time-lag during

the 2016—2017 period, indicated by black arrows. To
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Figure 7. Left panels (top to bottom): the wavelet time-frequency power spectrum of one-day binned AMS proton fluxes, ACIS
high energy reject rates, and PN NDSLIN rates, respectively, spanning in the years 2014–2018. The colorbar indicates the
normalized power. The horizontal dashed lines indicate the 27 days, 25 days and 23 days periods seen in AMS, ACIS, and PN
datasets, respectively. Right panels: similar to the left panels, but zoomed in the year span 2016–2017. The horizontal dashed
lines indicate the 13.5 days, 9 days periods.

quantify the time-lag, we estimate the cross-correlations

between AMS proton flux and ACIS/EPIC-pn reject

rates. The bottom panels of Figure 6 display the normal-

ized cross-correlation coefficients and the corresponding

time-lag with 1σ standard errors (SE). The standard

errors were estimated adopting, SE =
√

1−r2

n (Bonett

2008), where r is cross-correlation coefficient and n is

number of data points. A distinct time-lag of 6 days

is evident in both cross-correlations, corroborating our

observations from the top panel of Figure 6. The under-

lying cause of this observed time lag remains uncertain.

To facilitate a comprehensive comparison of all three

datasets, we have normalized the ACIS and EPIC-pn

reject rates to align with the AMS proton flux using

the best-fit parameters obtained from the linear fit pre-
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sented in Figure 3. This normalization process may in-

troduce slight short-term scaling discrepancies in count

rates. This arises due to the fact that the linear fitting

was executed on 27-day binned data, leading to a visual

impression of a time lag. It is important to emphasize

that this lag is specifically evident on the ascending por-

tions of the curve, as depicted in Figure 6, and is most

noticeable in the second half of 2016. Notably, within a

similar time span, ACIS and EPIC-pn reject rates align

with each other without any noticeable lag, despite be-

ing measured by different instruments and being scaled

independently. We show in the bottom panel of Figure

6 that ACIS and EPIC-pn reject rates cross-correlates

best with no time lag. These observations suggest that

the observed time lag may not solely be attributed to

the scaling factor.

4. DISCUSSION

A fundamental objective of forthcoming X-ray obser-

vatories is the mapping the cosmic web through deep

exposures of faint diffuse sources. Achieving this sci-

ence goal hinges on maintaining low and well-determined

background levels and a comprehensive understanding

of the residual unrejected background. Notably, the

predominant contributor to the particle background at

energy levels surpassing 1-2 keV is attributed to GCR

protons. As described in the preceding section, the

fluxes and spectrum of GCR protons exhibit modu-

lation patterns related to both the 11-year solar cy-

cle and shorter temporal scales characterized by spans

of months, weeks, or even days due to solar activ-

ity. The principal objective of this paper centers on

the understanding this variabilty in various locations

in space, notably those situated at L1/L2, which may

prove crucial to minimizing uncertainties in particle-

background of ESA’s NewAthena X-ray Observatory

and other missions with large collecting area, like Lynx

(Gaskin et al. 2019), Advanced X-ray Imaging Satellite

(AXIS; Mushotzky et al. 2019), and Line Emission Map-

per (LEM; Kraft et al. 2022).

Particle background data used in analyzing faint dif-

fuse X-ray sources is often derived from the extended

observations (> 100 ks) of relatively blank part of the

sky and dark Moon (Bartalucci et al. 2014). However, a

common challenge arises from the temporal disparity be-

tween the blank-sky observation date and the actual ob-

servation of the science target. The underlying assump-

tion is that the particle background remains stable at

the high elliptical orbit at any subsequent time post the

blank-sky observation. We have shown that the substan-

tial variability of the GCR particle flux, on time scale as

short as 1 day, produces corresponding variations in the

background observed in the X-ray imaging instruments

(as seen in Figure 4). An important question is, there-

fore, the reliability of a background measurement ob-

tained at a specific time ‘t’ for utilization with a science

observation at a later time. To answer this question,

we have estimated the auto-correlation of AMS proton

flux, ACIS and EPIC-pn reject rates starting from an

arbitrarily selected date. The auto-correlation function

offers a relative measure of the correlation between data

at time t = 0 and any subsequent time.

For each of the datasets, we computed the auto-

correlation between measurements at the initial day

(t=0) and subsequent days. Figure 8 presents the re-

sulting auto-correlation functions for all three datasets.

Notably, the AMS dataset maintains a significant cor-

relation percentage exceeding 70% even after 6 days

from its initial measurement at t=0. However, the auto-

correlation percentages for the ACIS and EPIC-pn re-

ject rates exhibit a rapid decline compared to AMS.

Specifically, for the ACIS dataset, the auto-correlation

drops below 60% by the 5th day, while for the EPIC-

pn dataset, it falls below 50% on the subsequent day

following the start-point.

We investigated whether the inherent fluctuations in

the ACIS and EPIC-pn reject rates are the main cause

of the quicker decay observed in their auto-correlations

compared to the AMS. To explore this, we introduced

random Gaussian noise mimicking scatter in the ACIS

and EPIC-pn reject rates to the AMS proton flux and

computed the auto-correlation within the same time-

frame. The auto-correlation of the AMS proton flux

with added noise, illustrated by the dashed blue and

green curves in Figure 8, exhibited a similarly rapid de-

cline as observed in the EPIC-pn and ACIS reject rates.

This finding confirms that the intrinsic variability in the

EPIC-pn and ACIS reject rates is the primary contribu-

tor to the rapid decline in their auto-correlations. More-

over, it suggests that additional stochastic processes and

sources may contribute to the variability, the mecha-

nisms of which are not yet fully understood.

These observations pose a challenge to the conven-

tional practice of employing blank-sky observations to

constrain particle background, especially considering its

misalignment with the actual date of scientific obser-

vations. This underscores the potential value of

of incorporating dedicated instrumentation to monitor

background-generating particles in X-ray telescopes, es-

pecially operating in orbits with little or no geomag-

netic shielding. However, the AMS, serving as a preci-

sion GCR particle detector, demonstrates the capacity

to retain a higher correlation percentage, thereby hold-

ing potential for particle-background constraint for X-
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Figure 8. Auto-correlation functions of AMS proton flux,
ACIS high-energy reject rates, and PN NDSLIN rates, es-
timated using one-day binned data, starting from an arbi-
trary date of observation. The y-axis shows the correlation
percentage. Dashed blue and green curves show the auto-
correlation of the AMS proton flux after adding the synthetic
scatter of ACIS and PN reject rates, respectively.

ray telescopes. In an upcoming study, we will show how

the AMS can effectively be utilized to predict particle

background for telescopes situated in high elliptical or-

bits.

5. CONCLUSION

For the first time, we have introduced daily-binned

datasets encompassing high-energy reject rates recorded

by ACIS and EPIC-pn instruments, using nearly all

archival science observations spanning from 2011 to

2020. These high-energy reject rates serve as proxy

measurements for GCR proton fluxes, which are pre-

cisely measured by the AMS particle detector onboard

the ISS. We have conducted a comprehensive compari-

son of the variability observed in the ACIS and EPIC-pn

reject rates with that of AMS proton fluxes. Our find-

ings are summarized below.

• We compared all three data sets binned to match

the 27 day binning in the AMS data release. We

find ACIS and EPIC-pn reject rates strongly cor-

relate with the AMS proton fluxes. However, there

is substantial variation in the ACIS and EPIC-pn

reject rates within each Bartel time bin, indicating

variability on shorter timescales. This observation

strongly indicates that the fluctuations in GCR

particle flux, on shorter timescales, produces cor-

responding variations in the background observed

in the X-ray imaging instruments.

• To understand the temporal dynamics of the GCR

particles, we rebinned ACIS and PN datasets into

one-day interval, similar to AMS. Daily binned

datasets exhibit finer temporal structures in com-

parison to those binned over 27-days intervals.

We note ACIS and EPIC-pn datasets display more

intrinsic scattering than AMS. The excess variabil-

ity in ACIS and EPIC-pn data compared to AMS

is of unknown origin and may involve additional

sources of instrumental background beyond those

produced by GCR. While AMS directly measure

the GCR proton flux, ACIS and EPIC-pn counts

the events surpassing a specific energy threshold.

Despite this intrinsic scattering, all three datasets

show remarkably similar temporal variations with

similar amplitudes and frequencies.

• All three datasets show a overall minima between

2014–2015 and peaks < 2011 and 2019. The long-

term variability is due to the modulation of the

GCR particle fluxes by the 11-year solar cycle. We

also find recurrent ACIS and EPIC-pn reject rates

vary with a period of ∼ 25 days and ∼ 23 days,

respectively, in the 2014–2018 year band. Similar

variation in AMS proton flux was also observed by

Aguilar et al. (2021). The longitudinal asymme-

try of the electro-magnetic field in the heliosphere,

which arises from the uneven distribution of active

regions on the Sun’s surface during a single so-

lar rotation, modulates the 27-day period in GCR

particle fluxes. Additionally, we have also detected

∼ 13.5 days and ∼ 9 days period, also known as

the second and third harmonics of 27-days period,

in ACIS and EPIC-pn reject rates between 2016–

2017.

• A time lag of ∼ 6 days has been observed be-

tween AMS proton flux and ACIS/EPIC-pn re-

ject rates in the second half of 2016. This time

lag is predominantly absent before 2016 and after

2017. The underlying cause of this time lag re-

mains largely unidentified. Nevertheless, the time

lag could potentially stem from the scaling re-

lationship between AMS and ACIS/EPIC-pn, as

well as the reconstruction procedures applied to

the AMS proton flux by the AMS team.
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Strüder, L., Briel, U., Dennerl, K., et al. 2001, A&A, 365,

L18, doi: 10.1051/0004-6361:20000066

Tomassetti, N. 2017, arXiv e-prints, arXiv:1712.03178,

doi: 10.48550/arXiv.1712.03178

Torrence, C., & Compo, G. P. 1998, Bulletin of the

American Meteorological Society, 79, 61,

doi: 10.1175/1520-0477(1998)079⟨0061:
APGTWA⟩2.0.CO;2

Usoskin, I. G. 2017, Living Reviews in Solar Physics, 14, 3,

doi: 10.1007/s41116-017-0006-9

von Kienlin, A., Eraerds, T., Bulbul, E., et al. 2018, in

Society of Photo-Optical Instrumentation Engineers

(SPIE) Conference Series, Vol. 10699, Space Telescopes

and Instrumentation 2018: Ultraviolet to Gamma Ray,

ed. J.-W. A. den Herder, S. Nikzad, & K. Nakazawa,

106991I, doi: 10.1117/12.2311987

Weisskopf, M. C., Tananbaum, H. D., Van Speybroeck,

L. P., & O’Dell, S. L. 2000, in Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series,

Vol. 4012, X-Ray Optics, Instruments, and Missions III,

ed. J. E. Truemper & B. Aschenbach, 2–16,

doi: 10.1117/12.391545

http://doi.org/10.1007/s11214-011-9772-1
http://doi.org/10.1051/0004-6361:20020531
http://doi.org/10.3847/1538-4357/abcfbc
http://doi.org/10.1029/2010GL044218
http://doi.org/10.1007/BF00768812
http://doi.org/10.1117/1.JATIS.8.1.018001
http://doi.org/10.1007/s11207-013-0261-4
http://doi.org/10.1051/0004-6361/202039651
http://doi.org/10.1007/s10686-017-9544-3
http://doi.org/10.1029/96JA02470
http://doi.org/10.48550/arXiv.1903.04083
http://doi.org/10.48550/arXiv.1306.2307
http://doi.org/10.1007/BF00216273
http://doi.org/10.1117/12.2677095
http://doi.org/10.12942/lrsp-2013-3
http://doi.org/10.1023/B:SPAC.0000032689.52830.3e
http://doi.org/10.1007/s41116-017-0011-z
http://doi.org/10.1029/2000GL003760
http://doi.org/10.1029/2010JA015922
http://doi.org/10.1093/mnras/staa3858
http://doi.org/10.1093/mnras/stac2416
http://doi.org/10.3847/2041-8213/ac86d4
http://doi.org/10.3847/1538-4357/acae9f
http://doi.org/10.3847/1538-4357/ad1aac
http://doi.org/10.1051/0004-6361:20000066
http://doi.org/10.48550/arXiv.1712.03178
http://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
http://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
http://doi.org/10.1007/s41116-017-0006-9
http://doi.org/10.1117/12.2311987
http://doi.org/10.1117/12.391545

	Introduction
	Data gathering
	Alpha Magnetic Spectrometer (AMS-02)
	Chandra ACIS
	XMM-Newton EPIC-pn

	Results
	Correlation between AMS, ACIS, and PN
	Daily binned data
	Periodicity in datasets
	Time lag between datasets

	Discussion
	Conclusion

