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Abstract

Peptide identification in mass spectrometry-based proteomics is crucial for under-
standing protein function and dynamics. Traditional database search methods,
though widely used, rely on heuristic scoring functions and statistical estima-
tions have to be introduced for a higher identification rate. Here, we introduce
DeepSearch, the first deep learning-based end-to-end database search method for
tandem mass spectrometry. DeepSearch leverages a modified transformer-based
encoder-decoder architecture under the contrastive learning framework. Unlike
conventional methods that rely on ion-to-ion matching, DeepSearch adopts a
data-driven approach to score peptide spectrum matches. DeepSearch is also the
first deep learning-based method that can profile variable post-translational mod-
ifications in a zero-shot manner. We showed that DeepSearch’s scoring scheme
expressed less bias and did not require any statistical estimation. We vali-
dated DeepSearch’s accuracy and robustness across various datasets, including
those from species with diverse protein compositions and a modification-enriched
dataset. DeepSearch sheds new light on database search methods in tandem mass
spectrometry.
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Search, Zero-shot PTM profiling
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1 Main

Peptide identification in mass spectrometry-based (MS-based) proteomics is a fun-
damental challenge in proteomics [1]. In one widely adopted MS-based proteomics,
proteins are digested into peptides with protease, and the resulting peptides are
analyzed by liquid chromatography coupled with tandem MS (MS/MS) [2]. MS/MS
spectra contain mass and intensity information of measured peptide fragment ions.
The most widely adopted method for peptide identification is database search, which
matches the experimental MS/MS spectra to theoretical spectra deduced from a pep-
tide sequence database [3]. However, almost all existing database search engines [4–8]
rely on heuristic scoring functions, most of which match sets of most common ions
while ignoring the vast unknown and satellite fragmentations [9]. Besides, probabilistic
models based on statistical significance [5, 7, 10] or Bayesian probability esitma-
tion [4, 11] have to be introduced to mitigate potential biases of scoring functions for
a higher identification rate.

Advancements of deep learning in proteomics boost the amino acid level accu-
racy of de novo peptide sequencing, which directly infer peptide sequence from
MS/MS spectra without any prior information [12–15]. DeepNovo [12] introduced
spectrum CNN coupled with LSTM to predict peptide sequences from MS/MS spec-
tra. PointNovo [13] further improved the accuracy of predicted peptides and enabled
resolution-free spectrum encoding with PointNet [16]. Previous studies also demon-
strated the robustness of transformer-based encoder-decoder architecture by training
models across the modalities of MS/MS spectra and peptide sequences [14, 15, 17].
Nevertheless, most of the existing de novo sequencing methods show significant per-
formance drops on datasets with much different protein compositions [15]. These
methods also fall short of much lower peptide level accuracy and are unable to iden-
tify variable post-translational modifications (PTMs), which are crucial in functional
and structural analysis of proteins [18].

Recently introduced multimodal foundation models under the contrastive learning
framework significantly improved the performance in various downstream cross-
modal understanding tasks, especially in computer vision and natural language
processing [19–22]. These models are capable of learning a joint embedding space
across different modalities and demonstrated profound results in zero-shot learning
tasks [19, 21]. Most importantly, the weak supervision regime under these frame-
works requires no annotations beyond cross-modal data pairs, demonstrating increased
tolerance to biases and enhanced robustness across datasets [23, 24].

Here, we proposed the first end-to-end deep learning-based database search
method, DeepSearch. Instead of ion-to-ion matching, DeepSearch employed the cross-
modal cosine similarity as the scoring scheme. DeepSearch was trained under the
contrastive learning framework and jointly optimized with a de novo sequencing objec-
tive on MassIVE v2 [25], a high-quality set of peptide-spectrum matches (PSMs)
built upon human MS/MS library. We demonstrated that the scores reported by
DeepSearch are less biased, and our method accurately identified peptides across
multiple MS/MS datasets from species with diverse protein compositions. Finally,
we highlighted DeepSearch’s capacity to report PTM profiles of high accuracy on a
phosphorylation-enriched HeLa dataset in a zero-shot scenario. To our knowledge,
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DeepSearch is also the first deep learning-based peptide identification method capable
of conducting zero-shot variable PTM profiling.

2 Results

Deep learning-based end-to-end database search

DeepSearch employs a deep learning model to match the experimental MS/MS spec-
tra with peptide sequences, while most conventional database search engines compare
experimental MS/MS spectra with theoretical spectra computed from a peptide
sequence database (Fig. 1A). Starting with an in silico digestion of a protein database,
DeepSearch encodes the digested peptides and experimental MS/MS spectra into
embeddings. Instead of relying on heuristic scoring functions and ion-to-ion matching,
DeepSearch uses cosine similarities between corresponding embeddings to score PSMs,
which can be efficiently computed through single matrix multiplication (Fig. 1B). To
address the challenge of annotating closely related negative pairs in PSMs and to
mitigate biases from the search engines employed in annotations, we adopted the in-
batch contrastive learning framework [19, 21] (Fig. 1C). DeepSearch randomly samples
a batch of PSMs anchored with peptide mass and utilizes peptide-spectrum pairs,
excluding the sampled PSMs, as negative pairs.

We utilized a modified transformer-based encoder-decoder architecture [20, 21, 26]
as shown in Fig. 1D. The MS/MS spectra were encoded using a spectrum encoder, and
spectrum embeddings were derived through a layer of attention pooling [27]. Peptide
sequences appended with a trainable CLS token and their corresponding theoretical
spectra were fed into the unimodal peptide decoder. The embeddings of the CLS
token serve as representations of the corresponding peptides. We jointly trained the
multimodal peptide decoder with a peptide inference task, which was utilized for
PSM re-ranking (Fig. 1E). We calculated the Phred quality score [28] for peptide
sequences by using the softmax logits corresponding to each amino acid. Additionally,
DeepSearch supports PTM profiling without prior training or fine-tuning on PTM
enrichment data. Unlike previous methods that encode PTMs as tokens of element
compositions [29, 30], we adjusted the theoretical spectrum by the PTM mass to
obtain the embedding for peptides with corresponding modifications, as shown in Fig.
1F. Details are further described in the Methods and Supplementary Note.

Less biased PSM scoring with DeepSearch

We evaluated the performance of DeepSearch on the proteome-wide higher-energy
collisional dissociation (HCD) MS/MS dataset from species with different protein com-
positions. We compared the results reported by DeepSearch to that of widely adopted
search engines MSFragger [5], MSGF+ [6], and MaxQuant [4] with a similar search
configuration (described in Methods) on Arabidopsis thaliana [31], HEK293 [32],
Caenorhabditis elegans [33], Escherichia coli [34] and HeLa phosphorylation enrich-
ment dataset [35]. We first investigated the scoring function of DeepSearch on peptides
of varying lengths on Arabidopsis thaliana dataset [31]. Traditional database search
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Database search strategy and the DeepSearch model.

Fig. 1 A. Conventional database search engines compare experimental MS/MS spectra with the-
oretical spectra generated from an in silico digested peptide database. B. DeepSearch performs in
silico protein digestion and computes an embedding database for peptides. Spectrum is encoded
into spectrum embedding and the cosine similarities between the spectrum embedding and peptide
embeddings are computed with matrix multiplication. C. DeepSearch uses the in-batch contrastive
learning framework without handcrafting negative pairs. D. DeepSearch adopts a transformer-based
encoder-decoder architecture coupled with a contrastive learning framework. E. DeepSearch performs
PSM re-ranking with the multimodal peptide decoder using the Phred quality score calculated from
softmax probabilities of amino acids in the peptide sequence. F. DeepSearch performs zero-shot PTM
profiling by shifting the theoretical spectrum with the corresponding PTM mass.

engines [4, 5, 7, 8] with ion-matching scoring functions may exhibit biases towards pep-
tides of different lengths, as longer peptides typically produce more fragmented ions.
Conversely, a well-designed scoring function should exhibit reduced sensitivity to pep-
tide compositions and consistently yield similar score distributions for both decoy hits
and less confident target hits, assuming the decoys are generated using appropriate
strategies [36]. To assess this, we categorized identified peptides into five length-based
groups and analyzed their score distributions across all search engines, as depicted in
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Fig. 2. We observed that MSFragger, MSGF+ and MaxQuant tended to assign higher
scores to longer peptides, which is foreseeable as longer peptides are more likely to
have more matched ions and thus higher scores. Specifically, when the peptide length
ranges between 7 and 11 amino acids, the differences between the median scores of
target and decoy peptides reported by three other search engines are smaller than
those observed in longer peptides. This suggests fewer identifications of shorter pep-
tides if FDR were controlled with scores. Furthermore, we observed that MaxQuant
reported significantly fewer decoy hits for longer peptides, indicating a potential bias
in its scoring function. In contrast, DeepSearch employs cosine similarities as scor-
ing functions and demonstrates uniform score distributions across all peptide length
groups, as shown in Fig 2A, B. However, we observed a slight performance drop in
peptides longer than 30 amino acids, which can be attributable to the transformer-
based model’s degradation in handling longer sequences [37, 38]. For search engines’
score distributions on other benchmarked datasets, see Supplementary Figure 2-4.

Search engines reported score distribution by peptide length for
Arabidopsis thaliana dataset.

Fig. 2 A. Search engines reported score distributions for DeepSearch, MSFragger, MSGF+, and
MaxQuant. Peptides are grouped into 5 categories based on their length. B. DeepSearch reported
score distribution by peptide length.

To assess the impact of statistical estimations, we benchmarked the number of
accepted PSMs at 1% FDR on the Arabidopsis thaliana, HEK293, Caenorhabditis
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elegans, Escherichia coli and HeLa phosphorylation enrichment dataset, as shown in
Fig. 3. The PSM level FDR control was performed with score, search engine reported
expect value (for MaxQuant, this is the reported PEP), or estimated PEP. We observed
that DeepSearch constantly reported more PSMs on all datasets than MSFragger
and MaxQuant and achieved comparable results with MSGF+ when the FDR was
controlled with scores. DeepSearch maintained its consistency on the HEK293 and
HeLa datasets when variable PTM search was enabled.

We noted that these search engines may rely on statistical models to achieve a
higher identification rate. We observed significantly fewer reported PSMs at 1% FDR
for MaxQuant when controlled with raw scores across multiple datasets. On the Ara-
bidopsis thaliana and HeLa dataset, MSFragger experienced performance degradation
without a statistical estimation (Fig. 3A, F). MSGF+ also benefits from its own
statistical model for all searches. In contrast, the number of DeepSearch reported
PSMs, when controlled with different criteria at 1% FDR, remains consistent. Such
consistency persisted in the peptide and protein levels on all datasets (Table 1, Sup-
plementary Table 2). Further work is necessary to assess the impact of different
statistical models, when coupled with target-decoy search strategies, on the quality of
the reported matches.

Accurate and robust peptide identification with DeepSearch

We conducted a systematic analysis of search engines’ reported results on the human
proteome-wide HEK293 dataset. Fig. 4A shows DeepSearch reported score distribu-
tion, revealing the presence of two distinct clusters corresponding to high and low
confidence matches. It is also noticeable that the distributions for low-confident tar-
get hits and decoy hits are highly similar despite decoy sequences not being included
during training. This similarity is a crucial prerequisite for a well-designed scoring
function [36]. We then evaluated the spectra identification rate with FDR controlled
using search engines’ reported scores or expect values, as shown in Fig. 4B, C.
DeepSearch achieved comparable results with MSGF+ and a higher identification rate
than MSFragger and MaxQuant with FDR less than 3% when controlled with scores.
When the FDR was performed with expect values, we observed around 6% and 10%
increase in identified spectra for MSGF+ and MaxQuant correspondingly at 1% FDR
while DeepSearch remains consistent. Fig. 4 D, E display the peptide identification
for the benchmarked search engines with PSM level FDR controlled at 1%. When
controlled with scores, approximately 89% of peptides identified by DeepSearch were
also reported by at least two other search engines, suggesting DeepSearch’s accuracy
in identifying PSMs without actual ion matching. This percentage increased to about
92% when the FDR was controlled using expect values, while DeepSearch identified
the same amount of peptides. This further indicated DeepSeach’s ability to reliably
identify peptides without relying on statistical estimation. Moreover, we observed that
MaxQuant relies more on probabilistic estimation to identify some peptides co-found
by DeepSearch, MSFragger, and MSGF+. Besides, even with the second-highest spec-
tra identification rate at 1% FDR when controlled by expect values, MaxQuant still
fell short on the number of identified protein groups (Table 1).
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Number of PSMs at 1% FDR on proteome-wide datasets for multiple
datasets.

Fig. 3 PSMs are controlled by raw score, search engine reported expect value, or estimated PEP for
A. Arabidopsis thaliana dataset. B. HEK293 dataset. C. HEK293 dataset with methionine oxidation
as variable PTM. D. Caenorhabditis elegans dataset. E. Escherichia coli dataset. F. HeLa dataset
with methionine oxidation and phosphorylation of serine, threonine, and tyrosine as variable PTMs.
Different colors represent different search engines, the y-axis represents the number of PSMs with an
FDR of 1%, and MaxQuant failed on the F) HeLa dataset.

We also examined the intersection of peptides jointly identified by DeepSearch
and MSGF+ on the human HEK293 dataset, as the spectra library used for training
was constructed with MSGF+. We categorized these peptides based on the confidence
level, as shown in Fig. 4F. Peptides accepted by both search engines (99,551 in total)
were considered high confidence, with a group FDR of 0.1%. Peptides identified by
both methods but accepted by only one at a 1% FDR are deemed lower confidence, as
suggested by the increased group FDR. Conversely, peptides accepted by one search
engine but not identified by the other were considered unique identifications, with
the highest group FDR. The 4,860 peptides with lower confidence and 4,417 unique
peptides accepted only by MSGF+ suggested that DeepSearch exhibited less bias
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Proteome-wide peptide identifications for the HEK293 dataset.

Fig. 4 A. DeepSearch PSMs’ score distribution with target-decoy strategy. B. Spectra identification
rate against FDR controlled with reported scores for DeepSearch and other search engines. C. Spectra
identification rate against FDR controlled with reported expect values for DeepSearch and other
search engines. D. Peptide identification after 1% PSMs FDR controlled with reported scores for
DeepSearch and other search engines. E. Peptide identification after 1% PSMs FDR controlled with
reported expect values for DeepSearch and other search engines. F. Identified peptides by DeepSearch
and MSGF+, divided based on the estimated confidence level. The FDR control is performed with
scores for DeepSearch and expect values for MSGF+. Group-specific FDRs are calculated using decoy
sequences in each group.

towards MSGF+ reported results and demonstrated its capability to identify unique
peptides.

To evaluate the generalization capabilities of DeepSearch on MS/MS spectra from
species with a much different protein composition, we further examined reported iden-
tifications on the Arabidopsis thaliana dataset. Fig. 5A displays the score distribution
reported by DeepSearch, and it revealed no significant difference compared to the
HEK293 dataset. This suggests DeepSearch’s scoring function may generalize effec-
tively across different species. As in the HEK293 dataset, DeepSearch maintained its
comparable results regarding the spectra identification rates under both FDR control
scenarios (Fig. 5B, C). Fig. 5D, E show the identified peptides reported by all bench-
marked search engines at 1% PSM level FDR. When controlled with PSM scores,
around 90.1% of DeepSearch identified peptides were also reported by at least 2 other
search engines. The percentage increases to 92.2% when controlled with expect val-
ues, demonstrating DeepSearch’s robustness in accurate peptide identification. Such
results imply that DeepSearch is less sensitive to statistical estimations, a pattern
also observed in the HEK293 dataset. For benchmarking results of other datasets, see
Supplementary Table 2 and Supplementary Figure 5-6.
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Proteome-wide peptide identifications for the Arabidopsis thaliana
dataset.

Fig. 5 A. DeepSearch PSMs’ score distribution with target-decoy strategy. B. Spectra identifica-
tion rate against FDR controlled with reported scores for DeepSearch and other search engines. C.
Spectra identification rate against FDR controlled with reported expect values for DeepSearch and
other search engines. D. Peptide identification after 1% PSMs FDR filtering with reported scores for
DeepSearch and other search engines. E. Peptide identification after 1% PSMs FDR filtering with
reported expect values for DeepSearch and other search engines.

Zero-shot variable PTM profiling

Deep learning-based peptide identification methods often fall short on variable PTMs
identification due to the significant expansion of token space required to encode vari-
able PTMs. Some previous methods only encode methionine oxidation [13, 15], which
is one of the most common PTMs. Transfer learning has also been applied [29, 30] but
still requires training on PTM enrichment data. To tackle these problems, DeepSearch
introduced a zero-shot variable PTM profiling scheme that effectively generalizes
across variable PTMs without enlarging the token space. To evaluate DeepSearch’s
proficiency in variable PTM profiling, we analyzed its performance using the HeLa
phosphorylation enrichment dataset. Fig. 6A shows DeepSearch’s reported score dis-
tributions based on the number of modifications in peptides. We observed that with
the increased number of modifications, the scores of high-confidence identifications
tended to decrease, whereas the score distributions for decoy and low-confidence iden-
tifications remained unchanged. This is expected, as performance drops are common
in zero-shot learning scenarios. We then examined the PTM profile reported by search
engines. DeepSearch achieved comparable results when the FDR was controlled by
search engines’ scores (Supplementary Figure 7). We also observed fewer PSMs with
modifications for DeepSearch compared to those reported by MSFragger and MSGF+
using statistical estimation, highlighting the need for PTM-related probability evalu-
ations (Fig. 6B). We further examined the accuracy of DeepSearch reported peptides
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Table 1 Identification results for Arabidopsis thaliana and HEK293 dataset at 1% FDR.

Search engine Peptides Peptides† Peptide†† Proteins Proteins† Proteins††

Dataset: HEK293
DeepSearch 106891 106884 107502 8467 8467 8474
MSFragger 98670 102595 104492 8362 8447 8344
MSGF+ 106073 111864 107215 8500 8543 8496

MaxQuant 89798 108402 104503 7720 7923 7893
Dataset: A. Thaliana
DeepSearch 100537 100543 100975 10993 10993 11018
MSFragger 77372 93756 99072 10729 11069 10837
MSGF+ 101894 103716 102154 11037 11072 11041

MaxQuant 92586 94647 94349 10242 10339 10296

Peptide and protein group identifications for the HEK293 and Arabidopsis thaliana dataset
with DeepSearch and other search engines. PSMs are controlled at 1% PSM-level FDR. The
FDR control is based on search engines’ reported scores, expect values (indicated by †), or
estimated PEPs (indicated by ††). Proteins are controlled with 1% protein-level FDR using
estimated PEPs for protein groups.

and their PTM profiles (Fig. 6C, D) at 1% PSM level FDR. As expected, approxi-
mately 82.1% of peptides and 84.1% of PTM profiles identified by DeepSearch were
also reported by MSFragger and MSGF+, respectively. Nevertheless, there were 1,513
peptides and 2,428 PTM profiles that were jointly reported by MSFragger and MSGF+
but not identified by DeepSearch. For the PTM profiling of the HEK293 dataset with
methionine oxidation, see Supplementary Figure 8-9.

3 Discussion

In this study, we introduced the first end-to-end deep learning-based database search
method, DeepSearch. DeepSearch utilized the modified transformer-based encoder-
decoder architectures [21, 26] to learn a cross-modality embedding space for MS/MS
spectra and peptide sequences. To address the challenge of annotating negative pairs of
PSMs and biases related to search engine algorithms in the training data, DeepSearch
adopted an in-batch contrastive learning framework [19, 21] featuring a mass-anchored
sampling scheme. Unlike traditional database search engines which perform ion-to-
ion matching, DeepSearch used the cosine similarities between spectra and peptide
embeddings to rank the PSMs, which allows for efficient computation through a sin-
gle matrix multiplication. We evaluated our method on a variety of datasets from
species with diverse protein compositions. Though trained only on human spectra
library, DeepSearch constantly reported a comparable number of PSMs at 1% FDR
when compared with state-of-the-art database search engines [4–6] on all datasets. We
demonstrated that the majority of peptides identified by DeepSearch were corrobo-
rated by other search engines with high confidence. Such results suggest DeepSearch’s
capability to report peptides accurately and its robustness across species.

Traditional database search engines depend on heuristic scoring functions, which
may be biased towards certain peptide compositions. These search engines also require
statistical estimation [10, 11] based on the scores to achieve higher identification rates.
DeepSearch, on the other hand, employed a data-driven approach to score PSMs.
DeepSearch maintained consistent performance, with or without a statistical model,
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Zero-shot PTM profiling on the phosphorylation enrichment HeLa dataset.

Fig. 6 PTM profiling with methionine oxidation and phosphorylation of serine, threonine, and
tyrosine set as variable PTMs. Up to two modifications per peptide are allowed.
A. DeepSearch PSMs’ score distribution by the number of modifications, dashed line marks the score
at 1% FDR. B. Number of search engines reported PSMs at 1% FDR by type of modifications. The
FDR is controlled by scores for DeepSearch and expect values for MSFragger and MSGF+. C. Peptide
identifications at 1% PSMs FDR. Peptides were counted in unmodified forms. The FDR is controlled
by scores for DeepSearch and expect values for MSFragger and MSGF+. D. Peptide identifications
at 1% PSMs FDR. Peptides were counted with PTM profiles. The FDR is controlled by scores for
DeepSearch and expect values for MSFragger and MSGF+.

which may be related to its less biased scoring schemes. The impact of statistical
estimation, when coupled with the target decoy search strategy, on the quality of
PSMs requires further careful examination.

Previous deep learning-based methods in the proteomics field usually fall short on
variable PTM profiling since encoding variable PTMs drastically increases the token
space [29, 30, 39]. Moreover, it is impractical to apply transfer learning on PTM enrich-
ment datasets for all common variable PTMs. We demonstrated that DeepSearch was
able to report peptides with PTM profiles of high accuracy with phosphorylation and
oxidation. Despite this, it requires more examination of DeepSearch’s profilings on
diverse PTMs. To our knowledge, DeepSearch is the first deep learning-based method
capable of zero-shot variable PTM profiling without any prior information other than
the mass of the PTM. DeepSearch circumvented the token space limitation by jointly
encoding the PTM-shifted theoretical spectrum alongside the unmodified peptide
sequence.
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