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Empirical contact networks or interaction networks demonstrate peculiar characteristics stemming
from the fundamental social, psychological, physical mechanisms governing human interactions. Al-
though these mechanisms are complex, we test whether we are able to reproduce some dynamical
properties of these empirical networks from relatively simple models. In this study, we perform
simulations for a range of 2D models of particle dynamics, namely the Random Walk, Active Brow-
nian Particles, and Vicsek models, to generate artificial contact networks. We investigate temporal
properties of these contact networks: the distributions of contact durations, inter-contact durations
and number of contact per pair of particle. We demonstrate that the distribution of inter-contact
durations can be recovered by the dynamics of these simple crowd particle models, and show that
it is simply related to the well-know first-return process, which explains the −3/2 exponent that is
found in both the numerical models and empirical contact networks.

INTRODUCTION

Temporal networks, characterized by dynamic inter-
actions and evolving connections over time, have gained
significant attention across various disciplines in recent
years, precisely because of their evolving nature. These
networks capture essential aspects of real-world systems,
where relationships, interactions, and information flows
are highly time-dependent. Analyzing temporal net-
works provides valuable insights into numerous fields,
including ecology[1, 5, 9, 46, 47] disease spreading
[22, 29, 51], transportation [35], neuroscience [3, 4, 30],
communication networks such as mobile phone calls
[21, 25, 32] and email networks [11, 12], as well as
citation networks [41, 42].

The structures and properties of temporal networks
constrain processes which unfold on top of them. While
understanding the effect of these structures is usually
done with randomisation techniques [14, 16, 18, 19],
generative models are needed to understand their origin.
In the realm of generative models for temporal networks,
there exist several noteworthy approaches, including
but not limited to the following approaches. Holme
introduced a fundamental technique known as “Static
networks with link dynamics” [17, 39]. In this approach
a temporal network is created by firstly generating a
static network using a specific model and then generating
a sequence of contacts for each link, typically without
considering the network position of the links. Perra et
al. [37] introduced an even more simplified model of
temporal networks using a graph sequence framework.
The approach involves increasing a time counter to t and
initializing an empty simple graph Gt. For each node i,
activation occurs with a probability ai∆t, connecting i
to m other randomly selected nodes, whether active or
not. The probability ai follows a truncated power-law
distribution. The networks constructed in this way are

called Activity-driven networks [28]. Other approaches
tried to take into account the intrinsic heterogeneous
properties of the dynamics of empirical networks by
implementing reinforcement processes, such as link-node
memory models [49], and Self-exciting point processes
[7, 31].

Among temporal networks, proximity networks, which
describe how individuals interact with each other in the
physical space, are of particular interest for various con-
texts such as disease transmission, information dissemi-
nation, crowd management during disasters, and more.
In this regard, the study of temporal networks from a
socio-temporal perspective has acquired significant at-
tention in recent years, primarily linked to the emer-
gence of contemporary data collection techniques such as
GPS [8], and RFID chips [2, 23, 36, 50]. With the aid of
advanced technology and data collection techniques, re-
searchers can now analyze these networks in great detail,
shedding light on the dynamics and patterns that govern
our social exchanges. In this context, a groundbreaking
investigation was the Reality Mining project, which in-
volved outfitting Massachusetts Institute of Technology
students with cell phones. These phones were equipped
with Bluetooth technology capable of sensing their close-
ness to fellow individuals [10]. Another relevant effort
in this area is the SocioPatterns Project, which has de-
vised a mechanism for gauging physical closeness through
wearable badges incorporating radiofrequency identifica-
tion devices (RFID) [6]. Within this initiative, they have
successfully constructed closed gathering temporal net-
works for various groups, including hospital patients [20],
conferences participants [45], and students in schools [13].

As these networks arise from interactions between
agents in the physical space, they may be intrinsically
different form other classes of temporal networks which
emerge from non spatial interactions (such as communi-
cation networks for example). Among generative mod-
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els for temporal networks, few have tried to tackle the
class of face-to-face interaction networks specifically, and
thus a comprehensive theoretical understanding of face-
to-face interaction data remains elusive. However, the
underlying spatial aspect of their origin allows to take a
different approach in their generative process. Starnini’s
research, which introduces a dynamic framework for hu-
man interactions, is a pioneering work in this field [44].
The framework utilizes a two-dimensional random walk,
with each agent possessing an attractiveness factor that
influences the pace of movement for individuals in their
proximity. This approach provides valuable insights into
the dynamics of human interactions. However, the rela-
tion between spatial constraints and the properties of the
temporal network of interactions remain unclear.

Previous analysis of empirical contact networks, and in
particular the SocioPatterns datasets, have shown that
specific dynamic features such as contact duration and
inter-contact duration distributions exhibit similar prop-
erties across various contexts [44]. While acknowledging
the inherent complexities of these networks, a compelling
question arises: Can we capture some of their dynamic
characteristics using simpler contact models? In this re-
gard, we explore the feasibility of understanding empiri-
cal contact networks through the lens of relatively simple
contact models which take into account the spatial origin
of the contacts. Specifically, we focus on 2D particle dy-
namics, and we investigate the behavior of three distinct
models: the Random Walk, the Active Brownian Parti-
cle model, and the Vicsek model. The first one is the
simplest model for the dynamics of particles; the second
one allows to introduce some limited memory effect on
the trajectory, and the third one is one of the simplest
models for motion of active matter exhibiting collective
behavior.

Our primary objective is to generate contact networks
from each of these 2D particle models and analyze the
temporal aspects of these networks. We focus on three
distributions: contact duration, inter-contact duration,
and the number of contacts per pair of particles. By
scrutinizing these temporal patterns, we aim to discern
which aspects of empirical contact networks can be elu-
cidated through the dynamics of these straightforward
crowd particle models and which aspects necessitate ad-
ditional mechanisms or complexities to achieve accurate
representation.

One key finding of our investigation is the consis-
tent presence of heavy-tailed distributions in the inter-
contact duration, irrespective of the specific particle
model employed. This interesting observation suggests
that, though sociological, psychological, neurological and
biological mechanisms are at play in human interactions,
some patterns can be explained by a very simple, purely
statistical effect. Indeed, we manage to connect the shape
of the distribution of inter-contact durations to a simple
first-return time problem, and recover the empirical ex-

ponent of −1.5 observed in all models and datasets.

METHODS

Models

Our primary objective is to understand the properties
of empirical contact networks by exploring what happens
for basic interaction models. One question in particular
we aim to address is whether there exist universal prop-
erties that remain independent while varying the contact
dynamics. To achieve this, we use three distinctive two-
dimensional particle dynamics models: Random Walk,
Active Brownian Particle, and Vicsek model. Fig. 1
shows a schematic explanation for the dynamics of a sin-
gle particle between two consecutive time steps in each
model. In all models we first assume that the particles
are point-wise entities, which means their presence does
not influence each other; their trajectories remain un-
changed when they meet. In a second version, particles
have a fixed size, and simply stop at contact.
We consider in all cases a system containing N = 1000

point-wise particles confined within a 2D box of side
length L = 100. We have chosen this particular density
for the particles to ensure comparability with the den-
sity of people in the conference data sets we have utilized
[14]. After setting random initial conditions, the parti-
cles are observed to move freely within the box. When
they encounter the boundaries, they undergo classic re-
flection due to the reflective boundary conditions. For
completeness, we further tested the models with periodic
boundary conditions or on an infinite space.
We deliberately adopt these relatively simple parti-

cle models and make their contact network, aiming to
uncover potentially reproducible properties of empirical
contact networks, even within the context of basic pedes-
trian models. While these models are widely explored, we
aim to provide a concise yet comprehensive explanation
of each of them, providing a clear understanding of their
characteristics and relevance to our study.

Random walk

In the 2D Random Walk, each walker selects a random
direction at each subsequent step, uniformly distributed
between 0 and 2π, with a step length of ∆r. The value of
∆r is drawn at random in the positive half of a Gaussian
distribution of mean 0 and of varianceD∗dt, whereD and
dt represent the diffusion coefficient and time increment
at each step respectively. This continuous randomness
in the particle’s movements is classically known to be a
good model for a brownian motion [27]. The diffusion
coefficient allows us to control the characteristics of the
random walk. For a given time increment dt, a larger
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diffusion coefficient implies that the random walker is
more likely to move and spread rapidly throughout its
surrounding space.

Active Brownian Particles (ABP)

The Active Brownian Particle (ABP) model adds a
layer of complexity by adding a memory aspect into the
particle motion. In the classical version of this model,
particles undergo both a Brownian motion and a deliber-
ate movement (usually the consequence of internal energy
sources or external driving forces). In our simplified ver-
sion, we exclude Brownian motion affecting position and
focus solely on the self-propulsion of particles [40].
In practice, particles are constrained at each time step to
select a new orientation uniformly within a specific range
of angles, namely ∆θ = [− θ

2 ,
θ
2 ] around their current ori-

entation, while maintaining a constant velocity v.

In this model, trajectories of particles exhibit a per-
sistence of the angle over the persistence length, which
increases as the angle range ∆θ decreases. Note that for
∆θ = 2π, the ABP model is simply the 2D RandomWalk
with fixed step length.

Vicsek model

The Vicsek model focuses on collective behavior emerg-
ing from local interactions among self-propelled particles.
Inspired by the movement of flocks of birds or schools of
fish, this model assumes that particles align their veloci-
ties with those of their neighbors within a certain interac-
tion radius Rn, while accounting for uncertainties caused
by noise ηi. This alignment is mathematically described
by the following equation:

Θi(t+∆t) = ⟨Θj⟩|ri−rj|<Rn
+ ηi,

where Θi(t) indicates the angle defining the direction of
the velocity of particle i, while ⟨Θj⟩|ri−rj|<Rn

signifies
the average angle of velocity vectors among the neigh-
boring particles of particle i within a distance of Rn.
Hence, the particle moves at constant speed v in new
direction according to the following equation:

ri(t+∆t) = ri(t) + v∆t

(
cosΘi(t)

sinΘi(t)

)
,

where ri(t) indicates the position of particle i at time t.

FIG. 1. Schematic representation of the motion mech-
anisms for the three models. (a) 2D Random Walk: at
each time step, each particle selects a direction and a step
length at random, following a uniform distribution for the an-
gle and a half-gaussian for the step length. (b) Active Brow-
nian Particle: at each time step, each particle updates its
direction α by selecting uniformly at random a variation ∆α,
with ∆α constrained within the range [− θ

2
, θ
2
], while main-

taining of a constant velocity v. The smaller θ, the more the
particle exhibits persistence of the direction of its motion. (c)
Vicsek model: at each time step, particles align their direc-
tion with their neighbors by selecting the average direction
over all neighbors within a given radius Rn. The alignment
is altered by a noise η similar to the ABP model.

Contact network

Empirical data

A social interaction can mean many different behav-
iors, such as conversation, physical or eye contact, all of
which hold significance in analyzing connections within
a crowd. In our scenario we focus on a simpler inter-
pretation, namely what we call a “contact”, which refers
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FIG. 2. Typical four situations for particle contacts.
When two particles A and B are closer than the detection
radius rD, four different situations can occur depending on
their respective orientation vectors DA and DB . As per our
defined concept of contact, particles A and B are deemed to
be in contact in configurations (a) and (b), as their are in both
cases facing each other, i.e. in their respective front half-discs.
In configurations (c) and (d) however, they are not in such a
configuration and thus not considered to be in contact.

specifically to a physical closeness event. While phys-
ical proximity does not guarantee an interaction, past
research indicates that it serves as a reliable indicator for
an examination of the social context’s structure [43].

Such an approach was used by the SocioPatterns plat-
form [6] for gathering empirical data about contacts be-
tween individuals. This platform has been extensively
employed in the past decade to investigate interaction
patterns in social settings [15, 24, 26, 33, 34, 48]. The
system involves sensors affixed to participants’ nametags
and antennas strategically positioned throughout the
studied location to collect contact data from these sen-
sors. Each sensor is equipped with an RFID chip which is
able to detect other sensors within a proximity of approx-
imately 1.5 meters. Notably, detection only occurs when
two individuals are face-to-face, within each other’s front
half-spheres, as the emitted signal is blocked by the hu-
man body. A contact event is defined by such proximity
and geometry. These contacts are recorded at 20-second
intervals and are capped at 40 simultaneous contacts for
an individual within a 20-second time frame. According
to the system design, contacts lasting at least 20 seconds
are certain to be recorded, while shorter contacts may
also be recorded with a probability that diminishes as
their duration decreases.

While many different situations have been studied with
this equipment, as a reference for the properties of empir-

ical contact networks we utilized data collected with the
SocioPatterns platform during 4 face-to-face interactions
conferences [14]. These data sets were preferred as they
are characterised by an adult population, larger freedom
of movement and less schedule constraints on the indi-
viduals’ behavior.

Particle models

In order to be able to compare empirical and artificial
interactions, we detect contacts in the models in a way
that mirrors the contact definition from the SocioPat-
terns data. An interaction between particles is thus de-
fined by two factors: the closeness of particles to each
other and the orientation with which particles can detect
each other. As illustrated in Fig. 2, particles can only
detect another particle present in their front half circle,
which is characterized by a detection radius rD and a

detection vector named
−→
Di for particle with index i. For

the sake of simplicity, we assume that the detection vec-
tor for each particle coincides with the velocity vector of
the particle. This assumption is logically sound, as in
most contact cases the orientation of the line of sight co-
incides with the movement. We further assume a similar
detection radius of rD = 1 for all particles.

Let us consider two particles A and B separated by a

distance less than rD. Let
−−→
AB be the vector from particle

A to particle B. Particle B is then within the detection

area of Particle A if
−−→
AB · −→DA ≥ 0. Similarly, Particle A

is within the detection area of Particle B if
−−→
AB ·−→DB ≤ 0.

The fulfillment of both these conditions is necessary to
establish that the two particles are in contact.

Contact networks comparison

To compare empirical and artificial contact networks,
we focus on the distributions of three temporal properties
of the contacts, namely contact duration, inter-contact
duration and the number of contacts per pair of parti-
cles. In practice, for each pair of particles with indices
i and j, we monitor their contact occurrences over time,
generating a timeline of their interactions. The timeline
of contacts between particle i and particle j takes the
following form: [t1, t2, t3, t4, ..., tk, ...], where each odd-
indexed element represents the beginning time of an in-
teraction, and each even-indexed element represents the
end time of the respective interaction. From this timeline
array we can derive all the properties for a particular pair
of particles, then join the results to obtain them for the
whole population. For networks generated by the mod-
els, if the size of timeline array is an odd number (which
indicates the contact was still ongoing at the end of the
simulation), we simply drop the last element of the array.
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RESULT

Temporal distributions form simple dynamics

Fig. 3 presents the contact duration, inter-contact du-
ration, and number of contacts distributions for 2D Ran-
domWalk (2DRW), Active Brownian Particle (ABP) and
Vicsek (VM) models respectively, for point particles and
hard boundary conditions, and compares them with their
empirical counterparts. In each model we tested several
values for the parameter that fixes the level of noise (the
diffusivity D for 2DRW, the angle range θ for ABP and
VM).

Contact duration and number of contacts

Figure 3 (a) shows the distributions for the 2DRW for
various diffusion coefficients: D = 1, 0.1, 0.01, 0.001. As
expected, the distributions have an exponential shape,
directly due to the uncorrelated randomness of the pro-
cess. When D is large, particles easily escape the detec-
tion area of each other; consequently, they tend to stay
in contact for shorter duration compared to when the
diffusion coefficient is lower. This effect explains the rel-
ative positions of the distributions of contact duration.
Similarly, distributions of number of contacts per pair of
particles also exhibit an exponential tail and an ordering
according to diffusivity. When two particles with a small
diffusion coefficient break contact, they are less likely to
move away quickly; as a result, they have a higher prob-
ability of making contact again in a shorter time period.
Consequently, in this scenario, the number of contacts
between two specific particles increases as the diffusivity
decreases.

Figure 3 (b) shows the distributions for the ABP
model. In this model, except for the case θ = 2π which
is similar to the 2DRW, when particles come into con-
tact with each other they tend to remain in contact for a
longer duration, especially as θ decreases. This is mostly
due to the fact that, when θ is small, particles in contact
may have aligned directions, which are maintained for
a while, leading to longer-lasting interactions. Contrar-
ily, the ballistic aspect of their trajectories ensures that
when particles break contact, they move away and stay
apart longer, leading to a decrease in the total number
of contacts as θ decreases.

Figure 3 (c) shows the distributions for the Vicsek
model. This model is peculiar as it undergoes a phase
transition as θ varies, from a disordered state for high
values of θ to a flocking phase for low values of θ, with a
critical value of approximately π

4 in our case (see SI). In
the flocking phase, particles exhibit longer contact dura-
tion, as they move in groups, have aligned directions and
thus stay close to each other. As θ increases, the align-
ment effect vanishes and the contact durations decrease.

In all cases though, the shape of the distribution remains
exponential, similar to the 2DRW case. The behavior of
the distribution of number of contacts is different, with a
non-linearity directly due to the phase transition. While
in the disordered phase the distribution is exponential,
its shape changes towards higher values of n in the flock-
ing phase, due to the numerous contacts which occur in
the flocks.
As seen by comparing the previous results with Figure

3 (d), which shows the distributions for the four con-
ferences, all of them are completely different from what
is observed for empirical contacts. Empirical distribu-
tions exhibit a power law shape, which has been shown
to be a characteristic commonly observed in human be-
havior. This discrepancy is not a surprise, as the models
presented here incorporate dynamics that are far from
being realistic. The shapes of the distributions are in-
tricately tied to the specific dynamics inherent to each
particle model, demonstrating the distinctive character-
istics of each model and its interactions.

Inter-contact duration

However, we do observe something unexpected when
examining the distributions of inter-contact duration.
In all three models, this distribution exhibits the same
power-law shape as it does in the data sets, and always
with a similar exponent of −1.5 which is also observed
for empirical contacts. For each model, this shape holds
for all values of the parameter. The exponent is also
the same in most cases, changing only slightly in the
case of high diffusivity for 2DRW or long persistence for
ABP. This remarkable fact seems to indicate that this
particular property of contact dynamics between moving
particles is largely independent from the details of the
dynamics.
Focusing on the 2D random walk, arguments allow to

relate the analytical derivation of this distribution to the
distribution of first-passage times in a 1D random walk.
Indeed, as they do not interact all particles have inde-
pendent trajectories. The system can thus be reduced
to a single pair of particles, for which we investigate the
probability for two particles in contact to be in contact
again after a time ∆τ . Classically, this 2D problem can
be reduced to a 1D one by considering only the distance
between the two particles. The evolution of this distance
can be rewritten as a 1D random walk, which derivation
gives a first passage time distribution with a power law
tail of exponent −1.5. However, this method is applica-
ble only for particles moving on an infinite space. In our
case, the hard boundaries make it more difficult to use
a similar approach. Nonetheless, the fact that we do get
the same exponent for the tail of the distribution seems to
indicate that the effect of the boundaries probably does
not change the core of the derivation.
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FIG. 3. Comparison of the distributions of contact duration, inter-contact duration, and number of contacts
for the different models. (a) 2D Random Walk, (b) Active Brownian Particles, (c) Vicsek model, (d) conference data.

Furthermore, the fact that we get the same exponent
in the other models lets us formulate a general hypothesis
about the universality of this effect: if the motion of par-
ticles is “random enough” to be statistically equivalent
to a random walk, then the distribution of inter-contact
duration exhibits a power-law tail with exponent −1.5.

Finally, the fact that we observe the same feature in
empirical data of contacts between individuals lets us be-
lieve that the motion of human beings, although far from
a random walk at the individual’s scale and at short time,
is also sufficiently “random” to exhibit this property as
well when considering a crowd over a certain time win-
dow.

Effect of particle size and boundary conditions on
inter-contact durations

In order to better understand the possible mechanisms
responsible for the peculiar shape of the distribution of
inter-contact durations, we focus on the 2D Random
Walk and modified the way particles interact as well as
the boundary conditions. For the particle size, the main

difference between point particles and finite-size parti-
cles is the spatial organization: point particles can be as
numerous as possible in a defined area of the simulated
space and thus have unlimited simultaneous interactions,
while the volume occupied by finite-size particles leads to
a spatial organization and limits the number of simulta-
neous interactions. Changes in boundary conditions can
modify the behaviour of a system. Hard boundaries im-
pact the trajectories of particles while periodic bound-
aries do not; hard boundaries and periodic boundaries
may impose finite-size effect on the global dynamics of
the system while open boundaries do not.

As seen on Figure 4, changes in the particle size or in
the boundary conditions do not affect at all the distribu-
tion of inter-contact durations, which retains in all cases
its power law tail with an exponent −1.5. In particular,
it works for the case of point particles doing a random
walk with no boundaries. This very simple setting allows
us to analytically derive the distribution.
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FIG. 4. Comparison of the distributions of inter-contact durations for the different version of the 2D Random
Walk. Top: point particles, bottom: finite size particles. (a) Hard boundaries, (b) Periodic boundaries, (c) No boundaries.

Analytical argument

For the 2D Randow Walk of point particles on an in-
finite space, we first acknowledge that the trajectories of
particles are uncorrelated, as they do not interact. The
distribution of inter-contact durations for a population
of particles is thus strictly identical as the one for only 2
particles.

Then, the system can be reduced to tracking the evo-
lution of the distance d between the two particles. If we
define the random walk with the following process:

x(t+ 1) = x(t) + r (1)

with r a random vector with an angle θ chosen uniformly
in [0, 2π[ and a norm r chosen following the positive half
of a gaussian, we have then:

d12(t+ 1) = d12(t) + s (2)

with s = r2 − r1. Given Eq. (1), s is also a random
vector, which angle follows a uniform distribution. This

indicates that d follows a 2D random walk process. As a
consequence, the evolution of its norm d can be written
as a 1D random walk process.
The distribution of inter-contact durations is then the

distribution of the time it takes for d, starting from
d ≤ rD, to become smaller than the detection radius
rD again. This distribution is exactly the distribution
of first return times for the associated 1D random walk.
Independently from the details of the stochastic process
governing the evolution of d, this distribution has a power
law tail p(∆τ) ∼ ∆τ−3/2 [38], which is precisely the ex-
ponent we observe numerically.

CONCLUSION

In this study we focused on generating contact net-
works using three distinct two-dimensional particle dy-
namics models: 2D Random Walk, Active Brownian Par-
ticles, and Vicsek model. These contact networks serve
as representations of pairwise interactions between parti-
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cles in crowd models, offering insights into collective be-
havior and emergent properties of crowds. The primary
objective was to compare the properties of empirical con-
tact networks with those of networks generated by these
models, and determine whether some of them could be
explained by such simple mechanisms.

The analysis involved investigating the distributions of
contact duration, inter-contact duration, and the number
of contacts for the various particle models. We observed
that the different models exhibited various characteristics
related to their microscopic dynamics. However, the dis-
tribution of inter-contact duration exhibited in all cases
a shape similar to what is found in empirical network of
contacts, with a power-law tail of exponent −1.5. Fur-
ther simulations showed that this feature was retained
even for a 2D random walk of point particles on a infi-
nite space, which allowed us to relate it to a first-return
time distribution in a 1D random walk, for which the
classical results indeed gives a −3/2 exponent.

The presence of this tail in all variants of the 2D Ran-
dom Walk indicates that this behaviour is not affected
by either the fact that particles have a size, nor by the
boundary conditions. Furthermore, the tail is retained in
the other models too. This demonstrates that, while the
dynamics of the particles might be very different, they are
statistically equivalent to the 2D Random Walk with re-
spect to the inter-contact durations. Finally, the presence
of the same behaviour in empirical data seems to indicate
that the trajectories of individuals, while far from being
random, are nonetheless also statistically equivalent to
random walks with respect to inter-contact durations.

In conclusion, this study provided insights into the dy-
namics of contact networks, shedding light on behavior in
crowds. The findings contribute to the understanding of
universal properties in pairwise interactions, even within
the context of basic crowd models.
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