
IETI-BASED LOW-RANK METHOD FOR PDE-CONSTRAINED
OPTIMIZATION

TOM-CHRISTIAN RIEMER∗, ALEXANDRA BÜNGER† , AND MARTIN STOLL‡

Abstract. Isogeometric Analysis (IgA) is a versatile method for the discretization of partial
differential equations on complex domains, which arise in various applications of science and engineer-
ing. Some complex geometries can be better described as a computational domain by a multi-patch
approach, where each patch is determined by a tensor product Non-Uniform Rational Basis Splines
(NURBS) parameterization. This allows on the one hand to consider the problem of the complex
assembly of mass or stiffness matrices (or tensors) over the whole geometry locally on the individual
smaller patches, and on the other hand it is possible to perform local mesh refinements independently
on each patch, allowing efficient local refinement in regions of high activity where higher accuracy is
required, while coarser meshes can be used elsewhere. Furthermore, the information about differing
material models or properties that are to apply in a subdomain of the geometry can be included
in the patch in which this subdomain is located. For this it must be ensured that the approximate
solution is continuous over the entire computational domain and therefore at the interfaces of two
(or more) patches. The most promising approach for this problem, which transfers the idea of Finite
Element Tearing and Interconnecting (FETI) methods into the isogeometric setup, was the IsogEo-
metric Tearing and Interconnecting (IETI) method, where by introducing a constraints matrix and
associated Lagrange multipliers and formulating it into a dual problem, depending only on the La-
grange multipliers, continuity at the interfaces was ensured in solving the resulting system. In this
paper we illustrate that low-rank methods based on the tensor-train format can be generalised for a
multi-patch IgA setup, which follows the IETI idea.

Key words. isogeometric analysis, multi-patch, IETI, optimal control, low-rank decompositions,
tensor-train format

AMS subject classifications. 65F10, 65F50, 15A69, 93C20

1. Motivation. Isogeometric Analysis (IgA) is a discretization technique used
for approximating solutions to a partial differential equation (PDE) defined on a
given domain Ω. It was introduced by Hughes, Cottrell and Bazilevs in 2005 [13].
In Isogeometric Analysis the problem domain Ω and the solution space for solving
the PDE using a Galerkin approach [34] are parameterized by the same spline func-
tions, typically B-splines or NURBS (Non-Uniform Rational Basis Splines). These
basis functions are globally defined and have overlapping supports depending on their
degrees. As such these discretizations have a higher computational complexity, in-
creasing exponentially with respect to the dimension of the problem [18], but also
allow the relatively easy approximation of domains rather difficult to treat with trad-
tional finite element methods. One of the major research interests in IgA is to find
strategies to overcome the complexity drawback and efficiently assemble the system
matrices [1, 14, 26, 27].

We here follow the idea of Mantzaflaris et al. [17, 16] of using a low-rank tensor
method, which exploits the tensor structure of the basis functions and separates the
variables of the integrals. As a result the system matrices are then approximated
to high accuracy by a sum of Kronecker products of smaller matrices, which are
assembled via univariate integration. We here rely on the method of [5] where the

∗Technische Universität Chemnitz, Department of Mathematics, Chair of Scientific Computing,
09107 Chemnitz, Germany, tom-christian.riemer@mathematik.tu-chemnitz.de

†University of British Columbia, Computer Science, Vancouver, BC Canada V6T 1Z4, 604 822
3061, alexandra.buenger@mathematik.tu-chemnitz.de

‡Technische Universität Chemnitz, Department of Mathematics, Chair of Scientific Computing,
09107 Chemnitz, Germany, martin.stoll@mathematik.tu-chemnitz.de

1

ar
X

iv
:2

40
5.

06
45

8v
1

 [
m

at
h.

N
A

]
 1

0
M

ay
 2

02
4

mailto:tom-christian.riemer@mathematik.tu-chemnitz.de
mailto:alexandra.buenger@mathematik.tu-chemnitz.de
mailto:martin.stoll@mathematik.tu-chemnitz.de

assembly is carried out using an interpolation step and a low-rank representation of
the resulting coefficient tensor. The authors there combine the low-rank method of
Mantzaflaris et al. with low-rank tensor-train (TT) calculations [23, 25]. Exploiting
the tensor product nature of the arising interpolation, we can calculate a low-rank
TT approximation without prior assembly of the full coefficient tensor by means of
the Alternating Minimal Energy (AMEn) method [10]. Our goal for this paper is
to extend this technique to the case of a multi-patch domain discretized using IgA.
This poses the problem that the approximations generated for the corresponding
problems can show discontinuities at the interfaces of these patches. We overcome
this by transferring the idea of the IETI method from [15] to the low-rank tensor
setup. We also want to test our technique on the following problems. We consider
the low-rank solution of the elliptic problem defined by Poisson’s equation equipped
with homogeneous Dirichlet boundary conditions

(1.1)
−∆y = f in Ω,

y = 0 on ∂Ω.

Here f is some source function and Ω is a given mulit-patch geometry parameterized
by B-splines or NURBS. The second problem we consider is an optimization problem
where the heat equation becomes the constraint of an objective function that we want
to minimize, i.e.,

min
y,u

1
2

∫ T

0

∫
Ω

(y−ŷ)2 dx dt + α

2

∫ T

0

∫
Ω

u2 dx dt(1.2)

s.t. yt − ∆y = u in (0, T) × Ω,(1.3)
y = 0 on (0, T) × ∂Ω,(1.4)
y = y0 on Ω for t = 0,(1.5)

with a desired state ŷ and control u on a mulit-patch geometry Ω. The discretization
of (1.2) to (1.5) in this paper will be performed by IgA. Tensor techniques for IgA
have shown promising results in many areas and we refer to [19] for the single-patch
case and for the multi-patch case to [20]. In the latter the authors use Tucker tensors
for the low-rank approximation and focus on the forward elasticity simulation on
conforming (or fully matching) multi-patch geometries. In this paper we focus on the
approximation via the tensor-train format and provide approaches for the solution of
the optimal control problem, also on nonconforming geometries. Nevertheless, their
method and ours are similar in spirit by aiming at breaking the curse of dimensionality
by relying on low-rank tensor formats.

The paper is structured as follows: In the preliminaries we first discuss low-rank
tensor formats in subsection 2.1, in subsection 2.2 we introduce the basics of IgA
and discuss how the tensor-train format can be used so that the system matrices
or tensors can be assembled low-rank, in subsection 2.3 we present our multi-patch
IgA notation and state the general problem. In section 3, we present how the idea
of the IETI method [15] can be generalised for the tensor setup and how the so-
called jump tensors can be defined. Then we explain in section 4 how the resulting
low-rank IETI method works to generate continuous low-rank approximations over
multi-patch geometries. In section 5, we show how this method can be used to find an
approximation of the optimization problem described by (1.2) to (1.5). The results
of our numerical experiments are presented in section 6. In section 7, we summarise
the insights and results, concluding our work.

2

2. Preliminaries.

2.1. Low-rank tensor format. The most well-known technique for low-rank
approximations is the singular value decomposition, illustrated for a matrix W ∈
Rn1×n2 as

(2.1) W = UΣV ⊤ ≈
R∑

r=1
urσrv⊤

r =
R∑

r=1
(ur

√
σr) ⊗ (vr

√
σr).

with U ∈ Rn1×n1 , V ∈ Rn2×n2 with their columns denoted by ur and vr, and
Σ ∈ Rn1×n2 is the rectangular matrix holding the sorted singular values σi, i =
1, . . . , min(n1, n2) on its main diagonal. The best low-rank approximation is obtained
by the truncated SVD where we truncate all singular values below some given thresh-
hold resulting in a rank-R approximation, where R is the number of used singular
values and therefore the number of summands in (2.1).

In the high-dimensional case we need low-rank tensor approximation of a D-
dimensional tensor. Such approximations are given by, e.g., the higher-order singular
value decomposition (HOSVD) [6], or a canonical polyadic decomposition (CP) [31].
However, the approximation problem in the CP format is typically ill-posed [7] and
might be numerically unstable. The HOSVD (known also as the Tucker format) still
contains the curse of dimensionality as it relies on the dimension of the original tensor.
We switch to the more robust tensor-train (TT) decomposition [23] in this paper also
given the availability of appropriate methods within a robust software framework.

A tensor W ∈ Rn1×...×nD is given in the TT format if it is written as

W (i1, . . . , iD) = W (1)(i1) · · · W (D)(iD),(2.2)

where W (d)(·) ∈ RRd−1×nd×Rd are the TT cores, which can be understood as param-
eter dependent matrices W (d)(id), id = 1, . . . , nd, of size Rd−1 × Rd with R0 = RD =
1 [23]. The TT format can be rewritten into a canonical representation as

(2.3) W =
R1∑

r1=1
· · ·

RD∑
rD=1

D⊗
d=1

W (d)(rd−1, :, rd).

2.2. Low-rank IgA. Isogeometric analysis allows to represent a geometry ex-
actly using a set of B-splines or NURBS [30] and by using the same basis functions
for the solution space of a PDE on this geometry lies at the heart of the IgA method
and its success in scientific computing [13, 21]. We here briefly review some important
properties of the method with a focus on deriving the discretized equations.

A set of n B-splines is uniquely defined by its degree p ∈ N0 and the knot vector
ξ = {ξ1, . . . , ξn+p+1} with

(2.4) 0 = ξ1 = · · · = ξp+1 < ξp+2 ≤ · · · ≤ ξn < ξn+1 = · · · = ξn+p+1 = 1,

where the end knots appear p+1 times and for all other knots, duplicate appearances
are allowed up to multiplicity p. Here n ∈ N denotes the number of B-splines βi,p,
with i = 1, . . . , n.

For each knot vector ξ as in (2.4), the according B-splines βi,p of degree p, with
i = 1, . . . , n, are uniquely defined by a recursion formula. The resulting B-splines βi,p

have the local support [ξi, ξi+p+1]. We use Sp
ξ to denote the spline space spanned by

the B-splines with degree p and knot vector ξ and we refer to the basis functions as
3

βi ∈ Sp
ξ . In order to increase the accuracy of the numerical approximation a refinement

strategy based on knot insertion is often applied and we refer to [13, 30].
For D-dimensional geometries we use tensor products of univariate spline spaces

considering D different univariate spline spaces Spd

ξd
, where one can assume that each

space has the degree pd and an individual knot vector ξd, with d = 1, . . . , D. Here,
x̂(d) ∈ [0, 1] are the 1D variables and β

(d)
1 , . . . , β

(d)
nd the basis functions. The resulting

spline space is then denoted by SD = Sp1
ξ1

⊗ . . .⊗SpD

ξD
. For simplicity we assume further

that pd = p ∀d and the index pd will be omitted from Sp
ξd

in the remainder due to
better readability. The basis functions of SD are denoted by

βi (x̂) =
D∏

d=1
β

(d)
id

(
x̂(d)

)
,

with multi-index i ∈ I = {(i1, . . . , iD) : id ∈ {1, . . . , nd} , d = 1, . . . , D} and variables
x̂ =

[
x̂(1), . . . , x̂(D)]⊤ ∈ [0, 1]D. All multivariate basis functions evaluated at a point

x̂ ∈ [0, 1]D can be written as a tensor product

B (x̂) =
D⊗

d=1
B(d)

(
x̂(d)

)
∈ Rn1×...×nD ,

where B(d) (x̂(d)) =
[
β

(d)
1d

(
x̂(d)) , . . . , β

(d)
nd

(
x̂(d))]⊤

∈ Rnd is a vector holding the uni-
variate B-splines in dimension d = 1, . . . , D.

To use these functions for solving a PDE on the domain Ω ⊂ RD we need a B-
spline geometry mapping G : Ω̂ → Ω from the D-dimensional unit cube Ω̂ := [0, 1]D
onto Ω. This is given by

(2.5) G (x̂) =
∑
i∈I

Ciβi (x̂) = C : B (x̂) ,

where Ci ∈ RD are the control points. All control points and evaluations of the
B-splines are organised in the tensors C ∈ RD×n1×...×nD and B (x̂) ∈ Rn1×...×nD ,
respectively. Here, : denotes the Frobenius product. To overcome some limitations of
the B-spline approach NURBS (Non-uniform rational B-splines) have been used [29]
quite extensively but will not be discussed further here.

The discretization of the PDE is usually obtained from a weak formulation where
we compute approximations of y ∈ H1

0 (Ω) with discrete functions yh ∈ Vh ⊂ H1
0 (Ω)

using B-splines. In IgA, the same splines that are used in the construction of the
geometry mapping (2.5) are used to parameterize the solution space, i.e. Vh =
span

{
β̂i := βi ◦ G−1 : i ∈ I0

}
⊂ H1

0 (Ω) with basis functions βi ∈ SD and an index set
I0 = {(i1, . . . , iD) : id ∈ {2, . . . , nd − 1} , d = 1, . . . , D} ⊂ I in which the first and last
index of I in each dimension are omitted, since the remaining splines with index in I\I0
are zero for homogeneous Dirichlet conditions. To improve readability, we make an
index shift so that I0 = {(i1, . . . , iD) : id ∈ {1, . . . , ñd} , d = 1, . . . , D}. The functions
yh ∈ Vh are linear combinations of the basis functions yh =

∑
i∈I0

yi(βi ◦ G−1) with
coefficients yi ∈ R. The tensor product structure of SD induces a tensor product struc-
ture of the solution space Vh, since each basis function β̂i ∈ Vh, i = (i1, . . . , iD) ∈ I0,
can be represented as

(2.6) β̂i (x) = βi
(
G−1 (x)

)
= β

(1)
i1

(
G−1 (x)(1)

)
· · · β

(D)
iD

(
G−1 (x)(D)

)
,

4

where G−1 (x)(d) ∈ [0, 1] is the d-th component of the inverse of the geometry map-
ping and the β

(d)
id

∈ Sξd
, d = 1, . . . , D, are the univariate splines.

The space Vh is now used for the Galerkin discretization, resulting in the discrete
mass and stiffness terms

am(uh, vh) =
∫

Ω
uh(x)vh(x) dx =

∫
Ω̂

∑
i∈I0

uiβi (x̂)
∑
j∈I0

vjβj (x̂) ω (x̂) dx̂,

as(uh, vh) =
∫

Ω
∇uh(x) · ∇vh(x) dx =

∫
Ω̂

(
Q (x̂)

∑
i∈I0

ui∇βi (x̂)
)

·
∑
j∈I0

vj∇βj (x̂) dx̂,

for uh, vh ∈ Vh, with the additional terms stemming from the domain transformation,

ω (x̂) = |det ∇G (x̂)| ∈ R,

Q (x̂) =
(

∇G (x̂)T ∇G (x̂)
)−1

|det ∇G (x̂)| ∈ RD×D,

as introduced in [17]. The corresponding mass and stiffness terms can be written in
tensor form, i.e., the mass tensor

(2.7) M =
∫

Ω̂
ω (x̂) B (x̂) ⊗ B (x̂) dx̂ ∈ R(ñ1,...,ñD)×(ñ1,...,ñD).

Similarly, we can write the stiffness tensor as

(2.8) K =
∫

Ω̂
[Q (x̂) · (∇ ⊗ B (x̂))] · (∇ ⊗ B (x̂)) dx̂ ∈ R(ñ1,...,ñD)×(ñ1,...,ñD).

The computation and storage of (2.7) and (2.8) can be extremely expensive due
to multi-dimensional quadrature and the overlapping support of B-splines with high
degrees. But it has been observed that these tensors can be well approximated in
low-rank tensor formats [17, 5] based on a low-rank approximation of the coupling
terms in the integral. For that we approximate the arising multi-dimensional integrals
as products of univariate integrals. The ingredients for the mass and stiffness tensors
are all univariately defined, except for the weight functions ω (x̂) and Q (x̂), which are
determined by the geometry mapping (2.5) but are not separable into one-dimensional
factors. We therefore interpolate these weight functions by a combination of univariate
B-splines of higher order B̂ (x̂) ∈ R(n̂1,...,n̂D), i.e.

(2.9) ω (x̂) ≈ W : B̂ (x̂) .

For that we follow the approach introduced in [5] by computing a low-rank approxi-
mation in TT format (2.3) of the coefficient tensor W ∈ R(n̂1,...,n̂D)

WR :=
R1∑

r1=1
· · ·

RD∑
rD=1

D⊗
d=1

W
(d)
R (rd−1, :, rd) =

R∑
r=1

D⊗
d=1

w(d)
r ≈ W,

where w
(d)
r ∈ Rn̂d and R = R1 · · · RD. With this we get a low-rank representation of

the weight function,

ω (x̂) ≈ WR : B̂ (x̂) =
R∑

r=1

D∏
d=1

w(d)
r · B̂(d)

(
x̂(d)

)
,

5

where B̂(d) (x̂(d)) ∈ Rn̂d denotes the vector holding all univariate basis functions
evaluated in x̂(d) ∈ [0, 1]. As a result the integrands are separable and we can write
the mass tensor (2.7) as a sum of tensor products of small univariate mass matrices

(2.10)

M =
R∑

r=1

D⊗
d=1

∫ 1

0

(
w(d)

r · B̂(d)
(

x̂(d)
))

B(d)
(

x̂(d)
)

⊗ B(d)
(

x̂(d)
)

dx̂(d)

=
R∑

r=1

D⊗
d=1

M (d)
r .

The same procedure can be applied to each entry of Q (x̂) such that we get a low-rank
tensor representation of (2.8) as

(2.11) K =
D∑

k,l=1

R∑
r=1

D⊗
d=1

K
(d)
k,l,r.

We refer to [5] for details and to the codes on our website [4].

2.3. Multi-patch IgA. In a multi-patch setting we assume that the geometric
shape Ω ⊂ RD can be decomposed into NP many single-patch NURBS parameteriza-
tions, such as (2.5), i.e.

G(j)
(

Ω̂
)

= Ω(j) ⊂ Ω, j = 1, . . . , NP ,

such that

Ω =
NP⋃
j=1

Ω(j) and Ω(j) ∩ Ω(k) = ∅.

We note that the parameter space Ω̂ := [0, 1]D is the same for each parameterization
G(j). The multi-patch geometries considered in this paper are all 3-dimensional, so
from now on we set D = 3 to simplify the notation. Further we assign all variables
belonging to the patch Ω(j), such as basis functions, control points, index sets, etc. a
superscript (j).

As in the single-patch case, the same splines to represent the geometry Ω are used
to approximate the solution of the underlying PDE problem. Since each patch Ω(j)

has its own tensor product spline space S(j)
3 = S(j)

ξ1
⊗S(j)

ξ2
⊗S(j)

ξ3
with parameterization

G(j) : Ω̂ → Ω(j), we define a local solution space for each patch via

V
(j)

h = span
{

β̂
(j)
i := β

(j)
i ◦ G(j)−1

: i ∈ I(j)
0

}
⊂ H1(Ω(j)),

where I(j)
0 ⊂ I(j) contains the indices of all splines of patch Ω(j) whose support does

not lie on ∂Ω ∩ ∂Ω(j). As in the single-patch case, the splines of the remaining indices
can be considered as zero. We assume that this set of indices has a tensor structure, i.e.
I(j)

0 =
{(

i
(j)
1 , i

(j)
2 , i

(j)
3

)
: i

(j)
d ∈

{
1, . . . , ñ

(j)
d

}
, d = 1, 2, 3

}
⊂ Nñ

(j)
1 ×ñ

(j)
2 ×ñ

(j)
3 . We note

that the solution space V
(j)

h , j = 1, . . . , Np, has a tensor product structure induced
by S(j)

3 , since all basis functions can be written as in (2.6).
6

The space of functions on Ω which are locally in V
(j)

h is denoted by

ΠVh =
{

y ∈ L2 (Ω) : y|Ω(j) ∈ V
(j)

h , ∀j = 1, . . . , Np

}
.

Each function yh ∈ ΠVh, yh : Ω → R, can be represented patch-wise by a linear
combination of the basis functions of the corresponding patch V

(j)
h with coefficients

y
(j)
i ∈ R, which from now on are referred to as degrees of freedom (DoFs), i.e.

(2.12) yh|Ω(j) (x̃) =
∑

i∈I(j)
0

y
(j)
i β̂

(j)
i (x̃) , ∀j = 1, . . . , NP .

The set I(j)
0 can therefore be seen as the set of DoFs for each patch Ω(j), j = 1, . . . , NP .

The multi-patch approach is used when the geometric domain Ω cannot be para-
meterized by a single geometry mapping (2.5) but it also enables us to assume different
material models and element types on different patches (cf. [13]) or to undertake a
patch-wise local refinement by using different rich bases for the solution spaces of
different patches. We note that the patches coincide with the non-overlapping subdo-
mains of a FETI-like method [15]. The challenge in computing an approximation for
a PDE problem on a multi-patch geometry Ω lies in the fact that discrete functions
yh : Ω → R defined by (2.12) are, in general, discontinuous across the patch interfaces.
In the following we denote the interface of two patches Ω(j) and Ω(k) by

Γ(j,k) = ∂Ω(j) ∩ ∂Ω(k).

The set of the index-tupels of all interfaces that are not empty is denoted by

C =
{

(j, k) ∈ {1, . . . , NP }2 : Γ(j,k) ̸= ∅, j < k
}

.

The condition j < k ensures that each interface is only counted once in C.
In this paper we assume that the computational domain Ω is represented as a

collection of several patches connected along their interfaces with C0-continuity. Since
the parameter space is the unit cube Ω̂ = [0, 1]3 for each patch, we further assume that
each interface Γ(j,k) of two patches Ω(j) and Ω(k) is always a 2-dimensional surface,
which is the image of one entire side of the six sides of the unit cube Ω̂ under both
parameterizations G(j) and G(k). For the sake of simplicity, we assume that the
two patches which are connected via an interface Γ(j,k) have the same orientation in
the Cartesian coordinate system, i.e. if we number the sides of the unit cube Ω̂ like
a dice for each patch (e.g. the side {0} × [0, 1] × [0, 1] is referred to as side 1 and
{1} × [0, 1] × [0, 1] as side 6) and for patch Ω(j) the interface Γ(j,k) is the image under
G(j) of side 1, then for patch Ω(k) the interface Γ(j,k) is the image under G(k) of side 6.
This means that two opposite sides of the dice are always the sides of the patches that
form their interface. We also assume that there can only be one interface between
two patches.

We say that for (j, k) ∈ C the two patches Ω(j) and Ω(k) are connected in dimen-
sion d1 ∈ {1, 2, 3} by the interface Γ(j,k), if both parameterizations G(j) and G(k) are
not fixed in the parameters of the dimensions d2, d3 ∈ {1, 2, 3} \ {d1}, d2 ̸= d3, when
mapping to the interface Γ(j,k), which means that the dimensions d2 and d3 span
the interface Γ(j,k). In the following, triplets of the variables that depend on these
dimensions are written in the order specified by the additional index, so that it can

7

be understood as a correctly permuted variant of the triplet, i.e. let d1 = 3, d2 = 1,
d3 = 2, then

(
ñ

(j)
d1

, ñ
(j)
d2

, ñ
(j)
d3

)
is equivalent to

(
ñ

(j)
1 , ñ

(j)
2 , ñ

(j)
3

)
.

In the following for (j, k) ∈ C we will use

IΓ(j, k) =
{

i ∈ I(j)
0 : supp

(
β̂

(j)
i

)
∩ Γ(j,k) ̸= ∅

}
to denote the set of indices of basis functions on Ω(j), whose support intersects with
the interface Γ(j,k) and for i ∈ IΓ(j, k) we say that y

(j)
i is associated with the interface

Γ(j,k). The definition of IΓ(k, j) is analogous for (j, k) ∈ C, i.e. for m ∈ IΓ(k, j),
y

(k)
m is associated with Γ(j,k). Because of our assumption about the orientation of

the patches and the tensor product structure of the splines, these DoFs can be easily
identified. For example, let for (j, k) ∈ C the patches Ω(j) and Ω(k) be connected in
dimension d = 2, such that the interface Γ(j,k) is located on side 2 of patch Ω(j) and
correspondingly on side 5 of patch Ω(k), then

IΓ(j, k) =
{(

i
(j)
1 , 1, i

(j)
3

)
: i

(j)
d = 1, . . . , ñ

(j)
d , d ∈ {1, 3}

}
⊂ Nñ

(j)
1 ×1×ñ

(j)
3 ,

IΓ(k, j) =
{(

i
(k)
1 , ñ

(k)
2 , i

(k)
3

)
: i

(k)
d = 1, . . . , ñ

(k)
d , d ∈ {1, 3}

}
⊂ Nñ

(k)
1 ×1×ñ

(k)
3 .

We see, if the two patches Ω(j) and Ω(k) are connected in dimension d1 ∈ {1, 2, 3} by
the interface Γ(j,k), then IΓ(j, k) can be understood as the set of the ñ

(j)
d2

ñ
(j)
d3

many

DoFs y
(j)
IΓ(j,k) ∈ R1×ñ

(j)
d2

×ñ
(j)
d3 of patch Ω(j) that lie on the interface Γ(j,k).

3. Jump tensors. The strategy of the IETI method [15] for finding an ap-
proximation for (1.1) is to determine the coefficients y of the discrete approximation
yh ∈ ΠVh by solving the following saddle point formulation

(3.1)
[
K A⊤

A 0

] [
y
λ

]
=
[
f
0

]
,

where K is a block diagonal matrix having the local stiffness matrices of each patch
on its diagonal, A is a so-called jump matrix through which the C0-continuity is
enforced by linear constraints, f is the source vector and λ the corresponding Lagrange
multipliers. To transfer this idea to the tensor setup, we think of the system (3.1) as
a block system of tensors, where each block has again a block structure. This means

(3.2) K =

K(1)

. . .
K(NP)


is a block diagonal tensor and its diagonal blocks K(j), j = 1, . . . , NP , are 3-
dimensional stiffness tensors defined by (2.11), corresponding to the bilinear form on
each patch Ω(j). The tensor y =

[
y(1), . . . , y(NP)]⊤ is the unique representation of

yh : Ω → R, whose blocks y(j) ∈ Rñ
(j)
1 ×ñ

(j)
2 ×ñ

(j)
3 are the local tensors with the real-

valued coefficients of each patch Ω(j) for (2.12). The source tensor f has the same
structure as y.

The continuity of the approximation yh is ensured in (3.1) by a so-called jump
tensor A and the Lagrange multipliers λ =

[
λ(1), . . . , λ(|C|)]⊤. The jump tensor A is

8

also in block structure and has horizontally NP many block columns and vertically
|C| many block rows, one for each interface. In each block row of A, all blocks are
zero tensors except for two blocks. Let (j, k) ∈ C, then by applying A to y, the
C0-continuity of yh : Ω → R on the interface Γ(j,k) is enforced on the DoFs y(j) and
y(k) through the corresponding block row of A with the two non-zero tensors A

(j)
(j,k)

and A
(k)
(j,k) via

(3.3) A
(j)
(j,k) · y(j) − A

(k)
(j,k) · y(k) = 0,

where · denotes the contracted product over the dimensions ñ
(j)
1 × ñ

(j)
2 × ñ

(j)
3 . The

idea is that the DoFs of one patch should be expressed as a linear combination of
the DoFs of the other patch on the interface Γ(j,k). We note that other boundary
conditions are not incorporated in A as in [15], since we only consider homogeneous
Dirichlet conditions and by using the index sets I(j)

0 the corresponding entries in the
local stiffness tensors K(j), j = 1, . . . , NP , are simply eliminated. We further note
that λ is only unique up to an additive constant of ker

(
A⊤).

As in [15], the tensors A
(j)
(j,k) and A

(k)
(j,k) enforce C0-continuity by linear constraints

on the DoFs y(j) and y(k), which each are located on the interface Γ(j,k). For this,
the tensor A

(j)
(j,k) has to address the corresponding DoFs of patch Ω(j) with indices in

IΓ(j, k). For that we make use of the tensor product structure of the solution space
V

(j)
h . Each DoF y

(j)
i , which represents the basis function β̂

(j)
i ∈ V

(j)
h , i = (i1, i2, i3) ∈

I(j)
0 , can be addressed by

(3.4)

y
(j)
i = vi · y(j),

vi = vi1 ⊗ vi2 ⊗ vi3 ∈ R(1,1,1)×
(

ñ
(j)
1 ,ñ

(j)
2 ,ñ

(j)
3

)
,

vid
= [0, . . . , 0, 1, 0, . . . , 0] ∈ R1×ñ

(j)
d , d = 1, 2, 3.

id-th entry

This justifies that for (j, k) ∈ C the tensors A
(m)
(j,k), m ∈ {j, k}, have a rank-one

representation, i.e.

(3.5) A
(m)
(j,k) = A

(m)(1)
(j,k) ⊗ A

(m)(2)
(j,k) ⊗ A

(m)(3)
(j,k) ∈ R

(
J

(j,k)
1 ,J

(j,k)
2 ,J

(j,k)
3

)
×
(

ñ
(m)
1 ,ñ

(m)
2 ,ñ

(m)
3

)
where A

(m)(d)
(j,k) ∈ RJ

(j,k)
d

×ñ
(m)
d , J

(j,k)
d is the number of continuity constraints in dimen-

sion d, and the entries of these factor matrices depend on the underlying interface
Γ(j,k). To simplify the notation, we will omit the index (j, k) in the following. When
transposing A, the block structure of A is transposed as in the matrix case and in
addition all factor matrices A(m)(d), d ∈ {1, 2, 3}, in (3.5) are transposed.

The C0-continuity of the discrete approximation yh : Ω → R can now be enforced
by choosing suitable factor matrices in (3.5). Their entries depend on which side
of the unit cube the interface Γ(j,k) of the respective patch is located and the rela-
tionship between y

(j)
IΓ(j,k) and y

(k)
IΓ(k,j). By exploiting the tensor product structure of

V
(m)

h , m ∈ {j, k}, we can split the C0-continuity condition on the interface Γ(j,k) into
9

1-dimensional C0-continuity conditions and thus formulate the corresponding linear
constraints in the factor matrix A(m)(d) for each dimension d ∈ {1, 2, 3}.

For (j, k) ∈ C let Ω(j) and Ω(k) be connected by the interface Γ(j,k) in dimension
d1 ∈ {1, 2, 3}. Then IΓ(j, k) and IΓ(k, j) are 1-dimensional in dimension d1, which
means that for each patch all basis functions on this interface β̂

(j)
IΓ(j,k), and thus the

discrete function yh, are constructed by only one univariate spline in dimension d1,
see (2.6). As this univariate spline must be located on one side of the unit cube for
each patch in dimension d1 and based on our assumption about the orientation of
the patches, this is the first univariate spline for one patch and the last univariate
spline for the other patch in dimension d1. All basis functions on the interface Γ(j,k)

of the corresponding patch have this one univariate spline in (2.6), and to ensure C0-
continuity on that interface, the DoFs of both patches that depend on this univariate
spline must match in dimension d1. From (3.4), we can identify all DoFs of the basis
functions in dimension d1 for both patches Ω(j) and Ω(k) by using a row vector, i.e.
A(m)(d1) ∈ R1×ñ

(m)
d1 , m ∈ {j, k}. This row vector contains only zeros except for one

1, which is either the first or the last entry of the vector for the corresponding patch,
which depends on which of the two sides of the unit cube of the respective patch in
dimension d1 the interface Γ(j,k) is located. When we think of a dice again and for
patch Ω(j) the interface is located on side 1 and for patch Ω(k) on side 6, then d1 = 1
and we have

A(j)(1) = [1, 0, . . . , 0] ∈ R1×ñ
(j)
1 ,

A(k)(1) = [0, . . . , 0, 1] ∈ R1×ñ
(k)
1 ,

as d1-th factor matrix for A(j) and A(k) in (3.5). This addresses the DoFs on the
interface on the corresponding side of the respective patch in the dimension d1 of the
dice due to the tensor product structure. We note that we multiply one of the two
factor matrices A(j)(d1) or A(k)(d1) by −1, since we want to subtract the resulting
tensors from each other as in (3.3).

The factor matrices in (3.5) for dimension dl ∈ {1, 2, 3} \ {d1}, l ∈ {2, 3}, depend
on whether the patches Ω(j) and Ω(k) are fully matching (cf. [15]) in this dimension
dl on the interface Γ(j,k) or not.

If the patches Ω(j) and Ω(k) are fully matching on Γ(j,k) in dimension dl ∈
{1, 2, 3} \ {d1}, l ∈ {2, 3}, then the knot vector ξ

(j)
dl

is affinely related to the knot
vector ξ

(k)
dl

and the corresponding weights and degrees are equal. In the following,
we will use the familiar term conforming. With our assumption about the orienta-
tion of the patches, the two knot vectors actually match in this case, which in turn
implies, that S(j)

ξ
(j)
dl

= S(k)
ξ

(k)
dl

and ñ
(j)
dl

= ñ
(k)
dl

holds. This means that the univariate

factors of the basis functions of both patches Ω(j) and Ω(k) coincide in (2.6) for this
dimension dl on the interface Γ(j,k). To ensure C0-continuity of the approximation,
the dl-th factor matrix in (3.5) for both patches must be a square Boolean matrix
A(m)(dl) ∈ Rñ

(m)
dl

×ñ
(m)
dl , m ∈ {j, k}, whose rows are the vectors vidl

∈ R1×ñ
(m)
dl for

dimension dl in (3.4), which address the corresponding DoFs on the interface Γ(j,k).
With our assumption about the orientation, these factor matrices in (3.5) are for both
patches Ω(j) and Ω(k) the identity matrix, i.e. A(j)(dl) = A(k)(dl) = I ∈ Rñ

(j)
dl

×ñ
(j)
dl .

If the patches Ω(j) and Ω(k) are not fully matching or nonconforming in dimension
10

dl ∈ {1, 2, 3} \ {d1}, l ∈ {2, 3}, but the knot vector ξ
(j)
dl

is obtained from the knot
vector ξ

(k)
dl

by one step of uniform h-refinement, then the univariate spline spaces S(j)
ξ

(j)
dl

and S(k)
ξ

(k)
dl

no longer coincide with each other and ñ
(j)
dl

̸= ñ
(k)
dl

. In [15] it was shown

for the 2-dimensional case, where the interface is a 1-dimensional edge, that the DoFs
of the finer patch Ω(j) can be expressed as a linear combination of the DoFs of the
coarser patch Ω(k) on the interface Γ(j,k). We adopt this approach, which means that
∀
(

i
(j)
d1

, i
(j)
dl

, idp

)
∈ IΓ(j, k)

(3.6) y
(j)(

i
(j)
d1

,i
(j)
dl

,idp

) =
ñ

(k)
dl∑

i
(k)
dl

=1

Z
i

(j)
dl

,i
(k)
dl

y
(k)(

i
(k)
d1

,i
(k)
dl

,idp

), (
i
(k)
d1

, i
(k)
dl

, idp

)
∈ IΓ(k, j),

must hold to ensure C0-continuity, where the linear coefficients Z ∈ Rñ
(j)
dl

×ñ
(k)
dl can

be obtained from the formula for h-refinement of B-spline basis functions (cf. [30,
Section 5.3]). We note that the index i

(m)
d1

∈ {1, ñ
(m)
d1

}, m ∈ {j, k}, on both sides
in (3.6) is fixed and given by the location of the interface Γ(j,k) and for simplicity
we assume that the patches Ω(j) and Ω(k) are conforming in dimension dp, which is
why we can assume that the index in dimension dp is the same. If the patches are
nonconforming in dimension dp and the patch Ω(j) is finer in this dimension, then
this would result in a double sum in (3.6), so that the DoFs of the finer patch Ω(j)

can also be represented as a linear combination of the DoFs of the coarser patch
Ω(k). This means that the number of continuity constraints in dimension dl is given
by the number of univariate splines of the finer patch Ω(j), i.e. A(j)(dl) ∈ Rñ

(j)
dl

×ñ
(j)
dl

and A(k)(dl) ∈ Rñ
(j)
dl

×ñ
(k)
dl . The factor matrix A(j)(dl) of the finer patch Ω(j) is again a

Boolean matrix, which addresses with its rows the corresponding DoFs on the interface
Γ(j,k) as in (3.4). With our assumption about the orientation of the patches, we can
choose for that the identity matrix I ∈ Rñ

(j)
dl

×ñ
(j)
dl . The factor matrix A(k)(dl) of the

coarser patch Ω(k) is given by the coefficients matrix, i.e. A(k)(dl) = Z.

4. IETI-based low-rank method. We now discuss how to compute an ap-
proximate solution of (3.1) to obtain the linear coefficients y(j) ∈ Rñ

(j)
1 ×ñ

(j)
2 ×ñ

(j)
3

for the patch-wise representation (2.12) of the discrete approximation yh : Ω → R
of (1.1). We consider this here using MATLAB. An extended block AMEn method
(implemented as amen_block_solve.m in the TT-Toolbox [24]), which allows us
to solve large systems while preserving the block structure without assembling the
whole equation system and returns the solution in a low-rank TT format (cf. [2], [9]),
could be used for solving (3.1), but our experiments have shown that this inevitably
leads to the complication, that all blocks in K and A must have the same size for
this solver. An alternative would be to fill the blocks that are too small with zeros in
the corresponding entries, but this would greatly impair numerical stability and the
performance of the method is not competitive.

As in [15], our approach follows the idea of a FETI-like method by eliminating
the primal variables y from the system (3.1) and solving for the dual variables λ. The
primal variables y can then be easily recovered from the dual variables λ. We achieve
this by solving the Schur complement of (3.1), i.e. we search for λ =

[
λ(1), . . . , λ(|C|)]⊤

11

that solves

(4.1) A K−1 A⊤ λ = A K−1 f .

All blocks A, K, f and λ have the same structure as before and are in TT format. We
note that tensors and tensor matrices in canonical format (such as (2.8) and (3.5))
can easily be converted to TT format (cf. [22]). Obviously, the number of variables
in (4.1) is smaller, since we only solve for the Lagrange multipliers λ and each block
of λ represents an interface Γ(j,k) with J

(j,k)
d2

J
(j,k)
d3

many linear constraints, where
J

(j,k)
dl

= max
({

ñ
(j)
dl

, ñ
(k)
dl

})
, l ∈ {2, 3}, since J

(j,k)
d1

= 1.
We find an approximate solution λ∗ of (4.1) using a tensor block version of TT-

GMRES (implemented as tt_gmres_block.m in [24], cf. [8]). This method is in
contrast to the block AMEn method tensor-matrix free, i.e. we can define the linear
operator A K−1 A⊤ as a function handle and filling with zeros is not necessary. When
solving (4.1), we take advantage of the fact that the blocks of λ can be represented
as 2-dimensional tensors in order to simplify the problem, since these tensors are
only 1-dimensional in the dimension d1 in which the two corresponding patches are
connected, i.e. λ((j,k)) ∈ RJ

(j,k)
d1

×J
(j,k)
d2

×J
(j,k)
d3 = R1×J

(j,k)
d2

×J
(j,k)
d3 ∼= RJ

(j,k)
d2

×J
(j,k)
d3 . There-

fore, the TT-GMRES is applied to a 2-dimensional linear block system in our setup,
which reduces the complexity. When applying the function handle of the linear opera-
tor A K−1 A⊤ on λ, each block of λ is first reshaped into 3-dimensional tensors using
the reshape.m function of the TT-Toolbox, then the actual linear system is applied
and finally all blocks of λ are reshaped back into 2-dimensional tensors. When apply-
ing K−1 within the function handle, the patch-wise given linear systems are solved
using the standard AMEn method (implemented as amen_solve2.m in [24]).

Although the system (4.1) is smaller than the original system (3.1), precondition-
ers are still necessary to compute the variables λ in a reasonable number of iterations.
This is because the system (4.1) is generally ill-conditioned. We use a block diagonal
tensor matrix with |C| many 3-dimensional tensor matrices as diagonal blocks as a
left preconditioner, i.e.

(4.2) P−1 A K−1 A⊤ λ = P−1 A K−1 f ,

which we apply to the iterate λ(k) after applying the linear operator A K−1 A⊤ but
before reshaping back to 2-dimensional tensors in the function handle.

For (j, k) ∈ C let Ω(j) and Ω(k) be connected by the interface Γ(j,k) in dimension
d1 ∈ {1, 2, 3} and assuming that the patch Ω(j) is at least in one dimension dl ∈
{1, 2, 3} \ {d1}, l ∈ {2, 3}, finer than the patch Ω(k). Then we explicitly set the
diagonal blocks of P−1 with respect to the Lagrange multipliers of the interface Γ(j,k)

as

(4.3) P ((j,k)) = A
(j)
(j,k) · K(j) · A

(j)
(j,k)

T
∈ R

(
1,J

(j,k)
d2

,J
(j,k)
d3

)
×
(

1,J
(j,k)
d2

,J
(j,k)
d3

)
,

where K(j) is the low-rank stiffness tensor of patch Ω(j) and A
(j)
(j,k) is given by (3.5),

both in TT format. Here · denotes again a contracted product, namely the product
of two TT matrices (cf. [22]). We note that it is important that we use in (4.3) the
information from the finer patch Ω(j). In the conforming case, it has been shown that
we can use the information from either patch and get similar results for the resulting
two preconditioners.

12

5. A PDE-constrained optimization model problem. We now want to
discuss the discretization in both time and space of the optimization problem given
on (1.2) to (1.5), resulting in a large saddle point problem [3, 11]. Using an implicit
Euler scheme for the time discretization of the PDE and the rectangle rule for the
objective function leads to the time-discrete problem, which we then discretize in
space using a Galerkin-based spatial discretization, which in turn leads to the discrete
quadratic problem

min
y,u

Nt∑
ℓ=1

τ

2
(
(yℓ − ŷℓ)⊤M(yℓ − ŷt) + α u⊤

ℓ Muℓ

)
s.t. Myℓ − Myℓ−1

τ
+ Kyℓ = Muℓ for ℓ = 1, . . . , Nt,

with the number of time steps Nt corresponding to the time step size τ = T/Nt.
For the general case, M and K can be understood as mass or stiffness matrix of the
corresponding geometry and all boundary conditions (1.4) are incorporated in M and
K. The states are collected in a block vector y = [y1, . . . , yNt

]⊤ and similarly for the
control u and the desired state ŷ.

Such problems typically lead to saddle point systems as discussed in [3, 11]. We
get to such a formulation by applying a Lagrangian formalism using a multiplier block
vector µ = [µ1, . . . , µNt]

⊤ such that the Lagrangian of the problem reads as

(5.1) L (y, u, µ) =
Nt∑
ℓ=1

(
τ

2

((
yℓ − ŷℓ

)⊤
M
(
yℓ − ŷℓ

)
+ α u⊤

ℓ Muℓ

)
+ µ⊤

ℓ

(
Myℓ − Myℓ−1 + τKyℓ − τMuℓ

))
.

Taking the derivative with respect to state y, control u and Lagrange multiplier µ
leads to the system

(5.2)

τM 0 K⊤

0 ταM −τM
K −τM 0

y
u
µ

 =

τMŷ
0
0

 ,

where M = I ⊗ M and K = I ⊗ τK + C ⊗ M , using the identity matrix I ∈ RNt×Nt

and C is representing the Euler scheme via

C =


1 0 0 . . . 0

−1 1 0 . . . 0
0 −1 1 . . . 0
...

.
0 . . . 0 −1 1

 .

Note that in this derivation we used the same spline spaces for the state and control.
It is also possible to have a different discretization for the control and this would make
the system solver we use in the low-rank method more involved (cf. [5]). The resulting
equation system (5.2) is a saddle point problem as described in [3, 33, 28].

We now define the linear system (5.2) for multi-patch geometries, enforcing C0-
continuity for the state y and the Lagrange multiplier µ, but not for the control u,

13

since this is an algebraic variable (cf. [12]). We now include jump tensors as in the
case of the elliptic problem. By introducing Larange multipliers with respect to the
continuity constraints for y and µ we obtain

(5.3)


τM̄ 0 0 K̄⊤ Ā

0 0 0 Ā⊤ 0
0 0 ταM̄ −τM̄ 0
K̄ Ā⊤ −τM̄ 0 0
Ā 0 0 0 0




y
λy

u
µ
λµ

 =


τMŷ

0
0
0
0

 ,

where M̄ and K̄ are block diagonal tensors as in (3.2) with diagonal blocks

M̄ (j) = I ⊗ M (j), K̄(j) = I ⊗ τK(j) + C ⊗ M (j), j = 1, . . . , Np,

where M (j) is defined by (2.10) and K(j) by (2.11). Since the continuity should
apply for all time steps, we set each block of this jump tensor Ā to I ⊗ A

(m)
(j,k) where

A
(m)
(j,k), (j, k) ∈ C, m ∈ {j, k}, is defined as in section 3. The resulting saddle point

problem (5.3) typically becomes very large, depending on the number of time steps
and refinement in the spatial discretization which is why we are solving the Schur
complement for u

(5.4)

ταM̄ + τ3 [M̄ 0
] =K̄−⊤︷ ︸︸ ︷[

K̄ Ā⊤

Ā 0

]−⊤ [
M̄ 0
0 0

] =K̄−1︷ ︸︸ ︷[
K̄ Ā⊤

Ā 0

]−1 [
M̄
0

] u =

τ2 [M̄ 0
] [K̄ Ā⊤

Ā 0

]−⊤ [
M̄
0

]
ŷ,

where the control is defined by u =
[
u(1), . . . , u(NP)]⊤. The blocks of u are tensors

of the form u(j) ∈ Rñ
(j)
1 ×ñ

(j)
2 ×ñ

(j)
3 ×Nt for each patch Ω(j) and for all time steps. The

state y and multiplier µ can be easily recovered from the computed u.
We consider solving (5.4) using MATLAB. In order to compute u, we first trans-

form al tensors in TT format and then use again the tensor block version of TT-
GMRES. The application of matrix vector product in (5.4) is computed by applying
one operator after the other, which means that when applying (5.4) we have to solve
a linear system once with K̄ and once with K̄⊤, for which we use the approach de-
scribed in section 4 with the preconditioner described there. To reduce the number
of iterations of TT-GMRES, we apply the left preconditioner P whose block with
respect to the patch Ω(j) is defined as

(5.5) P(j) = τ α I ⊗
3⊗

d=1
M (j)(d)

rd
.

Here M
(j)(d)
rd is one of the factor matrices in (2.11) of M (j) and rd is chosen so that

the norm of M
(j)(d)
rd is the largest for all M

(j)(d)
r , r = 1, . . . , R, in this dimension d.

Note that since we are using an iterative solver, to apply the operator of (5.4)
in every iteration a flexible method such as FGMRES will be ideally suited and we
will tailor our approach in future research to this method as well designing a more
sophisticated preconditioning strategy for this system.

14

6. Numerical experiments. We now present the results of our numerical ex-
periments. First, we investigate the error and performance of the method presented in
section 4 with respect to different refinement levels and different solution tolerances.
Secondly, we investigate the robustness of our in section 5 proposed method with
respect to the penalty parameter α. The experiments are conducted on two B-spline
and one NURBS geometry with corresponding source functions or desired states for
conforming and nonconforming patch discretizations. We point out that we restrict
ourselves to low-rank multi-patch geometries, which means that the assembled mass
and stiffness tensors of the individual patches have a low rank in the representation
given by (2.10) and (2.11) (cf. [5]). This choice of geometry allows us, at least for the
B-spline geometries, to further reduce the cost of the assembly process. In more de-
tail, we do not require a rich spline space for the interpolation of the weight functions
as then refinement only takes place for the basis of the solution space.

For our numerical experiments we used MATLAB R2022b on a desktop com-
puter with an AMD Ryzen 5 5600X 6-core processor with 16 GB of RAM. Both
geometries and specific functions from the GeoPDEs 3.0 toolbox [35] with the aid of
the NURBS Toolbox [32] were used. Computations in the TT-format were carried
out using the TT-Toolbox [24].

6.1. Elliptic Problem. Let NDoF s denote the total number of DoFs for the
multi-patch geometry Ω and N

(j)
DoF s the number of DoFs of patch Ω(j) of Ω. Thus,

we define the relative L2-error to the analytical solution on a single patch and on the
whole geometry as

(6.1)

R(j) (yh, ysol) =
∥yh|Ω(j) − ysol|Ω(j)∥L2(Ω(j))

∥ysol|Ω(j)∥L2(Ω(j))
,

R (yh, ysol) =
Np∑
j=1

N
(j)
DoF s

NDoF s
R(j) (yh, ysol) ,

where yh|Ω(j) denotes the discrete approximation described by (2.12) for patch Ω(j),
ysol : Ω → R is the analytical solution and ∥·∥L2(Ω(j)) denotes the usual L2-norm.

For each numerical experiment we measure the error to the analytical solution
given by (6.1), the number of iterations of the solver and the total time needed to
compute the approximation, depending on different refinements of the solution space
and different tolerances. Refinement in the conforming case is to be understood as
starting with the original spline basis given by the geometry and then performing
one step of uniform h-refinement with an increasing number of knots to be inserted
between two existing knots in each dimension. In the nonconforming case, we do the
same, but then undertake another one or two steps of uniform h-refinement for certain
patches, in which only a single knot is inserted between two existing knots. Since we
have to rely on functions of the toolbox GeoPDEs 3.0 [35] for the error calculation
and for that we have to use the full coefficient vector, i.e. vec

(
y(j)) ∈ Rñ

(j)
1 ñ

(j)
2 ñ

(j)
3 ,

this is currently our limiting factor for further increasing the number of DoFs. Here,
ε refers to the tolerance for solving the weight function interpolation system (2.9)
within amen_block_solve.m (cf. [5]). For solving (4.2) we use tt_gmres_block.m,
where we set max_iters to 10, restart to 20, and tol to ε · 102. For solving the
local linear systems defined by K(j) inside (4.2) we use amen_solve2.m1. For the

1with parameters nswp = 20, kickrank = 2 and tol = ε · 10

15

(a) 3 cubes connected next to each other.

0 1 2 3 4 5 6

·105

10−3

10−5

10−7

10−2

10−4

10−6

10−8

NDoF s

R
(y

h
,y

s
o

l)
(b) Relative L2-error on Ω.

0 1 2 3 4 5 6

·105

5

10

15

20

NDoF s

|It
er

at
io

ns
|

(c) Number of iterations.

0 1 2 3 4 5 6

·105

100

101

102

103

NDoF s

s

(d) Total time in seconds s.

ε = 10−4 ε = 10−6 ε = 10−8 GeoPDEs 3.0

Fig. 1: Performance for different refinements and tolerances on the conforming multi-
patch geometry with 3 cubes shown in 1a with (6.2) as analytical solution.

conforming cases, we compare the error and time of our method with the results of
an approximation computed using GeoPDEs 3.0, which is limited to conforming
geometries.

We first study the multi-patch B-spline geometry shown in Figure 1a where the
analytical solution of (1.1) for this experiment is given by

(6.2) ysol (x, y, z) = sin (sin (y π) sin (z 2π) sin (x π)) sin (y π) sin (z 2π) sin (x π) .

We use B-splines of degree 5 in both the conforming case and the nonconforming
case. In the conforming case, we start with N

(j)
DoF s = 216 and we increase the number

of knots to be inserted until we reach N
(j)
DoF s = 216.000 DoFs for j = 1, 2, 3. In

16

0 0.5 1 1.5 2 2.5

·105

10−3

10−5

10−7

10−2

10−4

10−6

NDoF s

R
(y

h
,y

s
o

l)

(a) Relative L2-error on Ω.

0 0.5 1 1.5 2 2.5

·105

10−7

10−2

10−3

10−4

10−5

10−6

10−8

NDoF s

R
(j

) (
y

h
,y

s
o

l)
(b) Relative L2-error on Ω(j).

0 0.5 1 1.5 2 2.5

·105

5

10

15

20

25

30

35

NDoF s

|It
er

at
io

ns
|

(c) Number of iterations.

0 0.5 1 1.5 2 2.5

·105

101

102

NDoF s

s

(d) Total time in seconds s.

ε = 10−4 ε = 10−6 ε = 10−8

patch 1 patch 2 patch 3

Fig. 2: Performance for different refinements and tolerances on the nonconforming
multi-patch geometry with 3 cubes shown in 1a with (6.2) as analytical solution.

the nonconforming case, we start with the division N
(1)
DoF s = 729, N

(2)
DoF s = 343,

N
(3)
DoF s = 216 and end with N

(1)
DoF s = 226.981, N

(2)
DoF s = 35.937, N

(3)
DoF s = 6.859.

Figure 1b shows the relative L2-error R (yh, ysol) on the whole multi-patch geom-
etry Ω for different ε and depending on NDoF s. We see at a certain point, further
refinement no longer reduces the error for a given fixed tolerance ε, since for ε = 10−4

the error R (yh, ysol) does not decrease further after the sixth step of increasing NDoF s,
but increases and approaches ε = 10−3. Similar can be recognised for ε = 10−6, 10−8.
We can derive from that, that if the error should be reduced by refinement, this must
be done together with a calibration of the tolerance ε. We can also see in Figure 1b the
error of the approximation generated using GeoPDEs 3.0, where we are only able to

17

compute the solutions until the eighth step of increasing NDoF s, due to higher memory
requirements. Nevertheless, our method and GeoPDEs 3.0 show high agreement.
We can derive from the number of iterations shown in Figure 1c that they depend
mainly on ε and we see in Figure 1d that the timing for our method shows a very
benign growth with increasing number of NDoF s. In summary, it can be deduced from
the results that the error behaviour of the method presented in section 4 shows very
mild dependence on the number of degrees of freedom but that also a higher accuracy
requires further adjustment of the tolerance levels.

Figure 2 shows a similar set of results for the nonconforming case. The decrease
of the error R (yh, ysol) is slower than in the conforming case, which is due to the
fact that the patches are refined differently and therefore error decrease at different
rates. This is well illustrated in Figure 2b. Here the error R(j) (yh, ysol) is shown for
the tolerance ε = 10−8 on a single patch Ω(j) depending on NDoF s. In our numerical
tests it has been shown that an actual difference in the error R(j) (yh, ysol) for the
patches with different refinement is only recognizable for higher tolerances. Here too,
the error behaviour is as expected. The patch with the highest refinement, patch 1
in Figure 1a, converges at the fastest rate to an error of 10−7. It is to be expected
that the error for the other two patches will correspond to this if further refinements
are carried out. The number of iterations shown in Figure 2c is higher than in the
conforming case, but this is due to the fact that the system (4.2) is more complex,
since the factor matrices in (3.5) are not just Boolean matrices in that case, but have
more structure. Nevertheless, the method converges in a satisfying time also in the
nonconforming case.

The second B-spline geometry consisting of four cuboids connected to a cube is
shown in Figure 3a, where the analytical solution is given by

(6.3) ysol (x, y, z) = sin (x 3π) sin (y π) sin (z π) .

We use B-splines of degree 3 in both the conforming case (results in Figure 3) and
the nonconforming case (results in Figure 4). In the conforming case, we start with
N

(j)
DoF s = 64 and end with N

(j)
DoF s = 373.248 for j = 1, . . . , 4. In the nonconforming

case, we start with N
(1)
DoF s = 343, N

(2)
DoF s, N

(4)
DoF s = 125, N

(3)
DoF s = 64 and end with

N
(1)
DoF s = 357.911, N

(2)
DoF s, N

(4)
DoF s = 50.653, N

(3)
DoF s = 8000. We observe similar trends

for this domain. It is clear that the iteration numbers do increase for the noncon-
forming domain and that the tolerance for an increased number of DoFs also needs
further adjustment of the tolerances as stagnation of accuracy can be observed when
the tolerances are not decreased accordingly.

The last two test cases are studied on a NURBS geometry shown in Figure 5a
consisting of two vertically stacked annuli. The analytical is given by:

(6.4) ysol (x, y, z) =
(
x2 + y2 − 1

) (
x2 + y2 − 4

)
x y z (z − 2) .

We use B-splines of degree 3 in both the conforming case (results in Figure 5) and
the nonconforming case (results in Figure 6). In the conforming case, we start with
N

(j)
DoF s = 64 and end with N

(j)
DoF s = 438.976 for j = 1, 2. In the nonconforming

case, we start with N
(1)
DoF s = 125, N

(2)
DoF s = 64 and end with N

(1)
DoF s = 456.533,

N
(2)
DoF s = 64.000. We observe similar results here too.

18

(a) 4 cuboids connected to form a cube.

0 0.5 1 1.5

·106

10−4

10−6

10−2

10−3

10−5

10−7

NDoF s

R
(y

h
,y

s
o

l)
(b) Relative L2-error on Ω.

0 0.5 1 1.5

·106

5
10
15
20
25
30
35
40
45
50
55

NDoF s

|It
er

at
io

ns
|

(c) Number of iterations.

0 0.5 1 1.5

·106

100

101

102

103

NDoF s

s

(d) Total time in seconds s.

ε = 10−4 ε = 10−6 ε = 10−8 GeoPDEs 3.0

Fig. 3: Performance for different refinements and tolerances on the conforming multi-
patch geometry with 4 cuboids shown in 3a with (6.3) as analytical solution.

6.2. Optimal control. We now illustrate the performance of our low-rank ap-
proach in section 5 for the optimal control problem (1.2) to (1.5) using the following
desired state

(6.5) ŷ (x, y, z; t) = e
1

t+1 ysol (x, y, z) .

and we set T = 1 and Nt = 10. Our main goal is to illustrate the robustness of our
method with respect to changes in the penalty parameter α. We solve (5.4) using
tt_gmres_block.m, where we set max_iters to 10, restart to 20, and tol to 10−5.
We solve the inner linear systems K̄ and K̄⊤ with the approach described in section 4,

19

0 2 4

·105

10−4

10−6

10−2

10−3

10−5

NDoF s

R
(y

h
,y

s
o

l)

(a) Relative L2-error on Ω.

0 2 4

·105

10−6

10−2

10−3

10−4

10−5

NDoF s

R
(j

) (
y

h
,y

s
o

l)
(b) Relative L2-error on Ω(j).

0 2 4

·105

10
20
30
40
50
60
70
80
90

100
110
120
130
140

NDoF s

|It
er

at
io

ns
|

(c) Number of iterations.

0 2 4

·105

100

101

102

103

NDoF s

s

(d) Total time in seconds s.

ε = 10−4 ε = 10−6 ε = 10−8

patch 1 patch 2 patch 3

Fig. 4: Performance for different refinements and tolerances on the nonconforming
multi-patch geometry with 4 cuboids shown in 3a with (6.3) as analytical solution.

i.e. for solving (4.2) we use tt_gmres_block.m2 and for solving the local linear sys-
tems inside (4.2) we use amen_solve2.m3. As before we use amen_block_solve.m for
solving the weight function interpolation system (2.9) with a tolerance of 10−8.

We show in Figure 7 the results for the multi-patch geometry shown in Figure
3a with desired state defined by (6.5) where ysol (x, y, z) is defined by (6.3). We use
B-splines of degree 3 in both the conforming case and the nonconforming case. In the

2with parameters max_iters = 10, restart = 20 and tol = 10−6
3with parameters nswp = 20, kickrank = 2 and tol = 10−7

20

(a) 2 annuli placed on top of each other.

0 2 4 6 8

·105

10−4

10−6

10−8

10−2

10−3

10−5

10−7

NDoF s

R
(y

h
,y

s
o

l)
(b) Relative L2-error on Ω.

0 2 4 6 8

·105

0

5

10

15

20

NDoF s

|It
er

at
io

ns
|

(c) Number of iterations.

0 2 4 6 8

·105

10−1

100

101

102

103

NDoF s

s

(d) Total time in seconds s.

ε = 10−4 ε = 10−6 ε = 10−8 GeoPDEs 3.0

Fig. 5: Performance for different refinements and tolerances on the conforming multi-
patch geometry with 2 annuli shown in 5a with (6.4) as analytical solution.

conforming case we have a discretization of N
(j)
DoF s = 373.248 DoFs for j = 1, . . . , 4,

so that we consider a total of 14.929.920 many DoFs for Nt = 10 time steps. In the
nonconforming case we have the division N

(1)
DoF s = 357.911, N

(2)
DoF s, N

(4)
DoF s = 50.653,

N
(3)
DoF s = 8000, so that we consider a total of 4.672.170 DoFs with Nt = 10. We ob-

serve in both cases that the objective function value decreases while the norm of the
control increases for decreasing α. The number of iterations is small which suggests
that the preconditioner approximates the full operator sufficiently and hence reducing
the number of TT-GMRES iterations. The computational times remain moderate
in both cases and do only slightly vary in a similar way as the number of iterations,
which is to be expected.

21

0 2 4

·105

10−4

10−6

10−8

10−2

10−3

10−5

10−7

NDoF s

R
(y

h
,y

s
o

l)

(a) Relative L2-error on Ω.

0 2 4

·105

10−8

10−2

10−4

10−3

10−5

10−6

10−7

NDoF s

R
(j

) (
y

h
,y

s
o

l)
(b) Relative L2-error on Ω(j).

0 2 4

·105

10

20

30

40

50

NDoF s

|It
er

at
io

ns
|

(c) Number of iterations.

0 2 4

·105

100

101

102

NDoF s

s

(d) Total time in seconds s.

ε = 10−4 ε = 10−6 ε = 10−8

patch 1 patch 2

Fig. 6: Performance for different refinements and tolerances on the nonconforming
multi-patch geometry with 2 annuli shown in 5a with (6.4) as analytical solution.

We show in Figure 8 the results for the multi-patch geometry shown in Figure
5a with desired state defined by (6.5) where ysol (x, y, z) is defined by (6.4). We use
B-splines of degree 3 in both the conforming case and the nonconforming case. In
the conforming case we have a discretization of N

(j)
DoF s = 438.976 DoFs for j = 1, 2,

so that we consider a total of 8.779.520 many DoFs for Nt = 10 time steps. In the
nonconforming case we have the division N

(1)
DoF s = 456.533, N

(2)
DoF s = 64.000, so that

we consider a total of 5.205.330 DoFs with Nt = 10. We observe similar results here.
22

1e-4 1e-3 1e-2 1e-1 1

100.2

100.4

α

L
(y

,u
,µ

)

(a) Value of objective function L (y, u, µ).

1e-4 1e-3 1e-2 1e-1 1

101

102

103

104

105

106

α

∥u
∥

(b) Norm of control ∥u∥.

1e-4 1e-3 1e-2 1e-1 1
1

2

3

4

5

α

|It
er

at
io

ns
|

(c) Number of iterations.

1e-4 1e-3 1e-2 1e-1 1

103.8

104

α

s

(d) Total time in seconds s.

conforming nonconforming

Fig. 7: Stability of the method presented in section 5 depending on the parameter α
on the multi-patch geometry with 4 cuboids shown in 3a for the conforming and not
nonconforming case.

7. Conclusion. In this paper, we transferred the TT low-rank method presented
by Bünger et al. [5] to the multi-patch setting using the idea of the IETI method from
[15]. The C0-continuity of the approximation across the patch interfaces was ensured
by defining a jump tensor which can be represented in TT format. The resulting
linear system is highly structured and we showed that the solution can be approxi-
mated using TT-based solvers that rely on special Gmres iteration and the design
of efficient but also easy to use preconditioners. We applied the resulting scheme
to solve large-scale optimal control problems, where we introduced a preconditioned
Gmres method that can deal with differently sized PDE and constraint blocks. We

23

1e-4 1e-3 1e-2 1e-1 1

101

102

α

L
(y

,u
,µ

)

(a) Value of objective function L (y, u, µ).

1e-4 1e-3 1e-2 1e-1 1
102

103

104

105

α

∥u
∥

(b) Norm of control ∥u∥.

1e-4 1e-3 1e-2 1e-1 1
0

5

10

15

20

α

|It
er

at
io

ns
|

(c) Number of iterations.

1e-4 1e-3 1e-2 1e-1 1

103

103.5

α

s

(d) Total time in seconds s.

conforming nonconforming

Fig. 8: Stability of the method depending on the parameter α on the multi-patch
geometry with 2 annuli shown in 5a for the conforming and not nonconforming case.

also equipped the method with a preconditioner that allowed for a robust performance
of our scheme. We then illustrate the performance of our both methods on several
multi-patch testcases.

REFERENCES

[1] P. Antolin, A. Buffa, F. Calabró, M. Martinelli, and G. Sangalli, Efficient matrix com-
putation for tensor-product isogeometric analysis: The use of sum factorization, Comp.
Method. Appl. M., 285 (2015), pp. 817 – 828.

[2] P. Benner, S. Dolgov, A. Onwunta, and M. Stoll, Low-rank solvers for unsteady Stokes–
Brinkman optimal control problem with random data, Comput. Method. Appl. M., 304

24

(2016), pp. 26–54.
[3] M. Benzi, H. G. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta

Numerica, 14 (2005), pp. 1–137.
[4] A. Bünger, Low-rank tensor method for isogeometric analysis, 2020. tu-

chemnitz.de/mathematik/wire/codes.php, Accessed: 2024-05-10.
[5] A. Bünger, S. Dolgov, and M. Stoll, A low-rank tensor method for PDE-constrained op-

timization with isogeometric analysis, SIAM Journal on Scientific Computing, 42 (2020),
pp. A140–A161.

[6] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decom-
position, SIAM Journal on Matrix Analysis and Applications, 21 (2000), pp. 1253–1278.

[7] V. de Silva and L.-H. Lim, Tensor rank and the ill-posedness of the best low-rank approxima-
tion problem, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1084–1127.

[8] S. Dolgov, TT-GMRES: Solution to a linear system in the structured tensor format, Russian
Journal of Numerical Analysis and Mathematical Modelling, 28 (2013).

[9] S. Dolgov and M. Stoll, Low-rank solution to an optimization problem constrained by the
Navier–Stokes equations, SIAM J. Sci. Comput., 39 (2017), pp. A255–A280.

[10] S. V. Dolgov and D. V. Savostyanov, Alternating minimal energy methods for linear systems
in higher dimensions, SIAM J. Sci. Comput., 36 (2014), pp. A2248–A2271.

[11] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast iterative solvers:
with applications in incompressible fluid dynamics, Numerical Mathematics and Scientific
Computation, Oxford University Press, Oxford, second ed., 2014.

[12] R. Herzog and O. Rheinbach, FETI-DP methods for optimal control problems, Lecture Notes
in Computational Science and Engineering, 98 (2014), pp. 387–395.

[13] T. Hughes, J. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement, Comp. Methods Appl. Mech. Eng., 194
(2005), pp. 4135–4195.

[14] T. Hughes, A. Reali, and G. Sangalli, Efficient quadrature for NURBS-based isogeometric
analysis, Comp. Methods Appl. Mech. Eng., 199 (2010), pp. 301 – 313.

[15] S. Kleiss, C. Pechstein, B. Jüttler, and S. Tomar, IETI – Isogeometric Tearing and In-
terconnecting, Computer Methods in Applied Mechanics and Engineering, 247-248 (2012),
pp. 201–215.

[16] A. Mantzaflaris, B. Jüttler, B. N. Khoromskij, and U. Langer, Matrix generation in
isogeometric analysis by low rank tensor approximation, in Curves and Surfaces: 8th In-
ternational Conference, Paris, France, June 12-18, 2014, Revised Selected Papers, Springer
International Publishing, 2015, pp. 321–340.

[17] , Low rank tensor methods in Galerkin-based isogeometric analysis, Comp. Methods
Appl. Mech. Eng., 316 (2017), pp. 1062–1085.

[18] A. Mantzaflaris, F. Scholz, and I. Toulopoulos, Low-rank space-time decoupled isogeo-
metric analysis for parabolic problems with varying coefficients, Comp. Methods Appl. M.,
(2018 in press).

[19] M. Montardini, G. Sangalli, and M. Tani, A low-rank isogeometric solver based on Tucker
tensors, Computer Methods in Applied Mechanics and Engineering, 417 (2023), p. 116472.

[20] M. Montardini, G. Sangalli, and M. Tani, A low-rank solver for conforming multipatch
isogeometric analysis, 2024.

[21] V. P. Nguyen, C. Anitescu, S. P. Bordas, and T. Rabczuk, Isogeometric analysis: an over-
view and computer implementation aspects, Mathematics and Computers in Simulation,
117 (2015), pp. 89–116.

[22] I. Oseledets, Tensor-train decomposition, SIAM J. Scientific Computing, 33 (2011), pp. 2295–
2317.

[23] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295–2317.
[24] I. V. Oseledets, S. Dolgov, V. Kazeev, D. Savostyanov, O. Lebedeva, P. Zhlobich,

T. Mach, and L. Song, TT-Toolbox, 2011. https://github.com/oseledets/TT-Toolbox.
[25] I. V. Oseledets and S. V. Dolgov, Solution of linear systems and matrix inversion in the

TT-format, SIAM J. Sci. Comput., 34 (2012), pp. A2718–A2739.
[26] M. Pan, B. Jüttler, and A. Giust, Fast formation of isogeometric Galerkin matrices via

integration by interpolation and look-up, Computer Methods in Applied Mechanics and
Engineering, 366 (2020), p. 113005.

[27] M. Pan, B. Jüttler, and A. Mantzaflaris, Efficient matrix assembly in isogeometric analy-
sis with hierarchical B-splines, Journal of Computational and Applied Mathematics, 390
(2021), p. 113278.

[28] J. W. Pearson, M. Stoll, and A. J. Wathen, Regularization-robust preconditioners for
time-dependent PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl., 33

25

https://www.tu-chemnitz.de/mathematik/wire/codes.php
https://www.tu-chemnitz.de/mathematik/wire/codes.php

(2012), pp. 1126–1152.
[29] L. Piegl, On NURBS, a survey, IEEE Computer Graphics and Applications, 11 (1991), pp. 55–

71.
[30] L. Piegl and W. Tiller, The NURBS Book, Monographs in Visual Communication, Springer

Berlin Heidelberg, 1996.
[31] M. Sorensen, D. Lathauwer, P. Comon, S. Icart, and L. Deneire, Canonical polyadic

decomposition with a columnwise orthonormal factor matrix, SIAM Journal on Matrix
Analysis and Applications, 33 (2012), pp. 1190–1213.

[32] D. Spink, Nurbs toolbox.
[33] M. Stoll and T. Breiten, A low-rank in time approach to PDE-constrained optimization,

SIAM J. Sci. Comput., 37 (2015), pp. B1–B29.
[34] G. Strang and G. Fix, An Analysis of the Finite Element Method, Wellesley-Cambridge Press,

2008.
[35] R. Vázquez, A new design for the implementation of isogeometric analysis in Octave and

Matlab: GeoPDEs 3.0, Computers & Mathematics with Applications, 72 (2016), pp. 523–
554.

26

	Motivation
	Preliminaries
	Low-rank tensor format
	Low-rank IgA
	Multi-patch IgA

	Jump tensors
	IETI-based low-rank method
	A PDE-constrained optimization model problem
	Numerical experiments
	Elliptic Problem
	Optimal control

	Conclusion
	References

