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MAPS BETWEEN SPHERICAL GROUP RINGS

SHACHAR CARMELI, THOMAS NIKOLAUS, AND ALLEN YUAN

Abstract. We prove that for finitely generated abelian groups A and B, the space of E∞-ring
maps between the spherical groups rings S[A] → S[B] is equivalent to the discrete set of group
homomorphisms A → B. We also prove generalizations where the sphere is replaced by other
ring spectra, e.g. we give a formula for the strict units in group rings of the form R[A] for A a
finite p-group and R p-completely chromatically complete.
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1. Introduction

This paper deals with a question about commutative ring spectra, also known as E∞-rings. In recent
years, many concepts from the ordinary algebra of rings have been generalized to the higher algebra
of ring spectra, leading to significant breakthroughs in many classical areas, such as algebraic K-
theory [BHM93, HM03] and p-adic Hodge theory [BMS19]. However, some very basic questions in
the area remain open — most notably, understanding maps between ring spectra is generally very
hard. For an abelian group A, we consider the commutative ring spectrum

S[A] := Σ∞
+ A,

called the spherical group ring of A, which is a lift of the usual group ring Z[A] from the integers
Z to the sphere spectrum S. The main question that we address in this paper is the question of
which maps exist between these ring spectra. Our answer can be summarized as follows.

Theorem 1.1. The spherical group ring functor A 7→ S[A] from the category of finitely generated
abelian groups to the ∞-category of commutative ring spectra is fully faithful.
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2 SHACHAR CARMELI, THOMAS NIKOLAUS, AND ALLEN YUAN

In other words: for finitely generated abelian groups A and B, the space of E∞-ring maps S[A] →
S[B] is discrete and in bijection with the set of group homomorphisms A→ B.

This result is very surprising, at least to the authors. Indeed, the analogous result in ordinary
algebra is completely false: there are many maps Z[A] → Z[B] which do not arise from group
homomorphisms A → B. For instance, when A = Z, such maps are simply units in Z[B], and
the question of units in group rings has been extensively studied [Hig40, Kar83, JM96, Gar21]. In
addition to the unit −1, which does not come from an element of B, we have for instance the Bass
cyclic units, see, e.g., [JM96, §2].

Theorem 1.1 asserts that none of these units lift to S, implying that much of the number theory
underlying these units, such as the theory of cyclotomic fields and cyclotomic units, does not extend
to the sphere. The theorem can also be seen as a strong rigidity result about group rings over S.
In fact, it says more — the discreteness of the mapping spaces asserts that the maps that do lift,
lift in a unique way. More precisely, the fibers of the map of spaces

(1) MapCAlg(Sp)(S[A], S[B]) → MapRing(Z[A],Z[B])

given by base-change along S→ Z (or equivalently by taking π0) are empty or contractible.

1.1. Background and motivation. There is a slick way to see that the image of (1) consists only
of maps induced by group homomorphisms A→ B. The idea is that such maps must be compatible
with certain natural operations acting on the homotopy groups of commutative ring spectra.

Namely, suppose R is an ordinary ring and we have a lift SR to a commutative ring spectrum
such that SR ⊗S Z ≃ R (i.e., a Moore spectrum)1. Then, the Tate-valued Frobenius map of [NS18]
naturally endows R∧

p with a (p-)Frobenius lift for every prime p. In fact, R acquires a natural

δp-ring structure on each of its p-completions – together, we refer to this as a δ̂-ring structure.2

In the special case of group rings Z[A], the δ̂-ring structure arising from the spherical lift S[A] is
simple: the corresponding Frobenius lifts are induced from the group homomorphisms A

p
−→ A for

every prime p. While there can be many interesting ring homomorphisms Z[A] → Z[B], one can
show by elementary algebra that the only ones compatible with this δ̂-ring structure are the ones
induced by group homomorphisms A→ B.

Summarizing this discussion, the map (1) naturally lands in morphisms of δ̂-rings and our main
result is equivalent to the assertion that the resulting map

MapCAlg(Sp)(S[A], S[B])→ Mapδ̂-Ring(Z[A],Z[B])

is an equivalence. We view this result as answering an important special case of the following
general question:

Question 1. For which δ̂-rings R does there exist an E∞-lift to the sphere SR, and for which pairs
of lifts SR, SR′ is the induced map

(2) MapCAlg(Sp)(SR, SR′)→ Mapδ̂-Ring(R,R′)

an equivalence?

1Note that the underlying spectrum of SR is determined by R, so this is really about the E∞-structure.
2We warn the reader that this is non-standard terminology and there are some subtleties about derived completion

hidden.
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Example 1.2. If R is a Q-algebra, then each p-completion of R vanishes and thus a δ̂-ring structure
is no additional data. Moreover, we have SR = R, so (2) is tautologically an equivalence.

On the other hand, a p-complete δ̂-ring is just a δp-ring, as all other completions vanish. In this
case, Question 1 is understood to have a positive answer in formally étale situations, such as the
spherical Witt vectors SW (κ) of R = W (κ) by [Lur18, Example 5.2.7]. A variant of our main
theorem extends this to the case of p-complete group rings:

Theorem 1.3 (Corollary 6.2). Suppose that S, S′ are E∞-rings of the form SW (κ)[M ]∧p for some
perfect ring κ of characteristic p and some finitely generated abelian group M . Then the natural
map

π0 : MapCAlg(Sp)(S, S
′)→ Mapδp−Ring(π0(S), π0(S′))

is an equivalence (cf. Construction 2.3 for the δp-structures in the target).

We point out that unlike in the integral case, the equivalent mapping spaces in Theorem 1.3 are not
in general equivalent to the corresponding set of group homomorphisms, unless the groups involved
have no prime to p torsion (Theorem 2.30).

We believe the above results to be the first systematic computations of mapping spaces between
such flat S-algebras that are not (formally) étale extensions of the sphere spectrum or completions
thereof. Yet, some fundamental cases of Question 1 remain open: for instance, one can study
spherical monoid rings, rather than group rings. In fact, to the knowledge of the authors, even the
case of polynomial rings is open in all nontrivial cases:

Question 2. What is the space of maps MapCAlg(Sp)(S[Ni], S[Nj ]) for any i, j ≥ 1?

Example 1.4. The map (2) is not an equivalence in general. For example, if SR = S⊕S is a square
zero extension of S by itself, then the space of E∞-maps SR → SR contains Ω∞S is a retract and
hence it is not discrete.

As for the first part of Question 1, the lifting question is equivalent to the question of highly struc-
tured multiplications on Moore spectra and has been extensively studied [Oka84, Bur22, Bha22],
though we do not know many interesting examples of spherical lifts in the E∞ case beyond the
spherical Witt vectors of [Lur18, Example 5.2.7]. For instance, we believe the following is open:

Question 3. Does the free δp-ring on one generator lift to S?

Our interest in studying Question 1 arose in work of the second author joint with B. Antieau and
A. Krause on prismatic cohomology: for a given δp-ring R and any R-algebra S, there is prismatic
cohomology ∆S/R ∈ D(Z), an important invariant in p-adic geometry generalizing crystalline co-
homology to mixed characteristic [BMS19, BS22, AKN23]. The development of this theory was
inspired by topological periodic homology and one can generally ask if ∆S/R admits a topological
refinement, i.e. if it is the associated graded of a filtration on topological periodic homology of a
cyclotomic spectrum3. It will be shown in forthcoming work of the second author with Antieau and
Krause that this is indeed the case if R admits a lift SR to the sphere with the cyclotomic spectrum
in question given by THH(S/SR). The cyclotomic spectrum THH(S/SR) is clearly functorial in the
lift SR. This relates Question 1 to a question of P. Scholze about which prisms can be realized by
cyclotomic spectra and how functorially this can be done [Sch].

3We are suppressing Breuil-Kisin twists, Frobenius twists and Nygaard completions for simplicity.
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1.2. Outline and further results. The core content of the paper is Theorem 1.3 in the case
S = S[Z]∧p and S′ = S[M ]∧p , i.e. proving the equivalence

MapCAlg(Sp)(S[Z]∧p , S[M ]∧p ) ∼−→ Mapδp−Ring(Z[Z]∧p ,Z[M ]∧p ).

Our approach is to compute both sides. The right-hand side is purely algebraic, and we start by
completely understanding it in the self-contained §2. The mapping space on the left-hand side is
known as the strict units of S[M ]∧p , denoted by Gm(S[M ]∧p ).

Remark 1.5. Strict units of commutative ring spectra are of significant interest in homotopy
theory [Fun20], as they are closely related to questions of adjoining roots to ring spectra [Law20] and
multiplicative twists of cohomology theories by ordinary cohomology classes [MS06, ABG18, SW15].
Despite this, the difficulty of computing maps between commutative ring spectra has allowed for
only a few computations so far — notably the cases of Lubin–Tate theories (unpublished work of
Rezk and Hopkins–Lurie, cf. also [BSY22]) and the sphere and its completions [Car22].

Using the augmentation of S[M ]∧p , we obtain a splitting

Gm(S[M ]∧p ) ≃ Gred
m (S[M ]∧p )⊕Gm(Sp)

into Gm(Sp), which has been computed in [Car22], and what we call the reduced units Gred
m (S[M ]∧p ).

We study these via the “obvious” map θ : M → Gred
m (S[M ]) given informally by m 7→ [m]. A key

idea is that θ is a special case of a map

ΘR : M(R)→ Gred
m (R[M ])

which is natural in the commutative ring spectrum R and, critically, often an equivalence.4 This
property, which we call rigidity (“R is M -rigid”), is an organizing principle in this paper, as we can
analyze its closure under changing R and M . After compiling some basic techniques for proving
rigidity in §3, the remainder of the paper proceeds as follows:

§4: When R is p-complete and M is a finite abelian p-group. We show:

Theorem 1.6. Assume that R is p-complete, R/p is chromatically complete, and M is a finite
abelian p-group. Then R is M -rigid.

In fact, we prove a more general form of this theorem as Corollary 4.13. We start with the case
where R is instead a T (n)-local ring spectrum that admits a primitive higher root of unity in
the sense of [CSY21] (e.g., any algebra over a height n Lubin–Tate theory). Here, we can verify
Theorem 1.6 directly by computation using the chromatic Fourier equivalence [BCSY22, HL13a]

R[M ] ≃ RBnM∗

.

Then, closure under limits allows us to bootstrap to the general setting.

§5: Extending to torsion free M = Zm. Here, we specialize to R = SW (κ), the spherical Witt
vectors of a perfect ring κ (though intermediate results are proven in greater generality). We show
that the short exact sequence M

p
−→M →M/p induces a cofiber sequence of spectra

(3) Gred
m (SW (κ)[M ]∧p )→ Gred

m (SW (κ)[M ]∧p )→ Gred
m (SW (κ)[M/p]∧p ).

It turns out that the first map can be identified with the map induced by the Tate-valued Frobenius,
which for general reasons induces multiplication by p on strict units. This allows us to bootstrap
our knowledge of Gred

m (SW (κ)[M/p]∧p ) from Theorem 1.6 to obtain:

4Here, M(R) denotes locally constant functions Spec(π0(R)) → M .
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Theorem 1.7. Let κ be a perfect Fp-algebra and M be a finitely generated abelian group. Then
SW (κ) is M -rigid.

Combined with Theorem 1.6, we obtain an analogous result when M is additionally allowed to have
p-power torsion part (Corollary 5.19).

§6: Assembling the pieces. We first add in the prime to p torsion in M , in particular proving
Theorem 1.3. Then, we use an arithmetic fracture square argument to combine the p-complete
results of the previous sections to prove our main theorem about R = S.

1.3. Acknowledgements. The authors would like to thank Zhouhang Mao, Tomer Schlank, and
the entire Copenhagen homotopy theory seminar group for useful discussions related to this ma-
terial, as well as Achim Krause for sharing his ideas related to §2.4. We would also like to thank
Edith Hübner and Robert Szafarczyk for helpful discussions and suggestions concerning Section 2.
The first author was partially supported by the Danish National Research Foundation through the
Copenhagen Centre for Geometry and Topology (DNRF151). The second author was funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 427320536 -
SFB 1442, as well as under Germany’s Excellence Strategy EXC 2044 390685587, Mathematics
Münster: Dynamics-Geometry-Structure. The third author was supported in part by NSF grant
DMS-2002029.

2. Rank 1 units in δ-rings

In this section, we consider the algebraic analogue of the main results of this paper. We start by
reviewing the relevant structures to set notation.

Definition 2.1. For a prime p, a δp-ring5 is a commutative ring R together with an operation
δp : R→ R satisfying the identities:

δp(0) = δp(1) = 0,

δp(x+ y) = δp(x) + δp(y) +
1
p

(xp + yp − (x + y)p),

δp(xy) = xpδp(y) + ypδp(x) + pδp(x)δp(y).

We denote the category of these by δp−Ring.

The identities are rigged so that the operation ψ(x) = xp + pδp(x) is a Frobenius lift. In fact,
a δp-structure on a torsion-free ring is simply a Frobenius lift. This becomes even cleaner in the
animated setting.

Definition 2.2. Let ACR denote the category of animated commutative rings (cf. e.g. [CS19,
§1.2]). Then an animated δp-ring is an animated commutative ring R together with a lift

R R

R//p R//p.
ϕR//p

Here, R//p denotes the derived reduction mod p, and ϕR//p denotes the animated Frobenius. We
let ACRδp denote the category of animated δp-rings.

5These are often simply called δ-rings, but we add the p to the notation to allow for different primes.



6 SHACHAR CARMELI, THOMAS NIKOLAUS, AND ALLEN YUAN

This definition is compatible with Definition 2.1 in the sense that the objects in ACRδp with discrete
underlying ring are exactly δp-rings, and ACRδp is the animation of δp−Ring [Hol23, Thm. 2.4.4].

We will be particularly interested in the following δp-rings:

Construction 2.3. Let M be an abelian group. Since the group ring Z[M ] is torsion free, a δp-ring
structure on it is the same as a lift of Frobenius. Accordingly, we equip the group rings Z[M ] with
the δp-structures corresponding to the lift of Frobenius

ϕ(
∑

m∈M

am · [m]) =
∑

m∈M

am · [pm].

More generally, for a δp-ring R, we endow R[M ] = R ⊗ Z[M ] with the tensor product δp-ring
structure, i.e. ϕR[M ] = ϕR ⊗ ϕZ[M ].

The analogue of strict units in this setting are the following:

Definition 2.4. A rank 1 unit in a δp-ring A is a morphism of δp-rings

Z[Z] =: Z[t±1]→ A.

We denote by G
δp
m (A) the set of rank 1 units, which can be described as the units t ∈ Gm(A) such

that δp(t) = 0. In fact, the identities for δp immediately imply that Gδp
m(A) is a subgroup of Gm(A).

Remark 2.5. The functor A 7→ G
δp
m (A) from δp-rings to abelian groups is right adjoint to the

group algebra functor of Construction 2.3.

Example 2.6 (Witt vectors, cf. e.g. [Bha]). For any perfect ring κ, the ring of p-typical Witt
vectors W (κ) admits a unique δp-structure, with Frobenius lift induced by the Frobenius map
κ → κ. In fact, these are precisely the perfect δp-rings, i.e. those with invertible lift of Frobenius.
In this case, the multiplicative lift and the projection W (κ)→ κ induce isomorphisms

κ× ∼−→ Gδp
m (W (κ)) ∼−→ κ×.

Our first goal in this section is to compute the rank 1 units of group algebras. The techniques are
quite different from those in the S-linear situation of the later sections – they rely on the deformation
theory of the functor G

δp
m (−), which we study in §2.1. Applying this in §2.2, we show:

Theorem 2.7. Let A be a p-complete δp-ring and M be a finitely generated abelian group whose
torsion part is p-power torsion. Then there is a natural isomorphism

Gδp
m (A[M ]∧p ) ∼= Gδp

m (A)⊕M(A).

Here, M(A) denotes the abelian group of locally constant M -valued functions on Spec(A).

We finish with some material connecting this story to the remainder of the paper. In §2.3, we
globalize these results (across primes p) using the notion of a δ̂-ring, which is essentially a ring with
a δp-structure on its p-completion for each p. Finally, in §2.4, we relate this discussion back to the
topological story by showing that if R is a commutative ring spectrum such that R⊗ Z is discrete
(i.e., a Moore spectrum), then π0(R) acquires a natural δ̂-ring structure.
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2.1. Deformation theory of rank 1 units. We study rank 1 units of group algebras by deforma-
tion theory, starting in §2.1.1 with the case of a square-zero extension of δp-rings. Here, by explicit
analysis, we obtain an exact sequence

(4) 0→ Iδp=1 → Gδp
m (A)→ Gδp

m (A/I).

The key ingredient to going further is the observation that units of rank 1 satisfy a certain “square
nil-invariance.” That is, under appropriate completeness conditions on an ideal I ⊂ A, we prove in
§2.1.2 an isomorphism G

δp
m (A) ∼= G

δp
m(A/I2). This gives us (4) more generally.

The final ingredient we need is to identify the fiber term in the case where A is a group algebra. It
turns out that this can be done with a form of Artin–Schreier theory for δp-rings, which we discuss
in §2.1.3.

2.1.1. δp-ideals and square-zero extensions.

Definition 2.8. We say an ideal I in a δp-ring A is a δp-ideal if δp(I) ⊆ I.

δp-ideals are particularly easy to analyze in the case where I is square-zero, that is, I2 = 0.

Proposition 2.9. Let A be a δp-ring and let I ⊂ A be a square zero δp-ideal. Then:

(1) The map δp : I → I is a ϕ-semilinear morphism of A-modules. Namely, it is a group
homomorphism and satisfies

δp(xa) = ϕ(x)δp(a), ∀x ∈ A, a ∈ I.

(2) For x ∈ A and a ∈ I we have

δp(x+ a) = δp(x) + δp(a)− xp−1a.

Proof. Both statements follow immediately from the additive and multiplicative identities of δp,
using the fact that I is a square zero ideal. Specifically:

δp(a+ b) = δp(a) + δp(b) +
ap + bp − (a+ b)p

p
= δp(a) + δp(b) ∀a, b ∈ I,

δp(xa) = xpδp(a) + apδp(x) + pδp(x)δp(a) = (xp + pδp(x))δp(a) = ϕ(x)δp(a) ∀x ∈ A, a ∈ I,

and

δp(x+ a) = δp(x) + δp(a) +
xp + ap − (x+ a)p

p
= δp(x) + δp(a)− xp−1a ∀x ∈ A, a ∈ I.

�

This gives us the following statement about how G
δp
m (−) changes in square-zero extensions.

Proposition 2.10. Let A be a δp-ring and let I be a square-zero δp-ideal in A. Then, we have an
exact sequence

0 −→ Iδp=1 −→ Gδp
m (A) −→ Gδp

m (A/I)

Proof. Let 1 + x ∈ G
δp
m (A) be an element of ker(Gδp

m (A)→ G
δp
m (A/I)), where x ∈ I. Then we have

(using Proposition 2.9(2))
0 = δp(1 + x) = δp(1) + δp(x)− x.

Noting that δp(1) = 0, we obtain the conclusion. �
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Remark 2.11. As we analyze the behavior of G
δp
m (−) along deformations, we focus on the case

when the relevant ideals are closed in the p-adic topology. However, even if I ⊆ A is closed, its
powers In may not be, so we let In denote their closures in the p-adic topology. (In any case, for
our applications, this distinction will not be important as our ideals will be finitely generated.)

The following lemma ensures that these operations play well with the δp-structure:

Lemma 2.12. Let I ⊂ A be a δp-ideal. Then:

(1) For n ≥ 0, In is a δp-ideal.
(2) The ideal I ⊂ A is a δp-ideal.

Proof. The first statement is immediate from the addition and multiplication formulas for δp, and
the latter follows from the fact that δp is p-adically continuous. �

2.1.2. Square nil-invariance. While the functor G
δp
m (−) is not nil-invariant in general, we will show

here that it is invariant under quotient by the square of an ideal with respect to which a δp-ring is
complete. The key input is the following lemma:

Lemma 2.13. Let A be a δp-ring and I ⊂ A be a δp-ideal. Then, for m ≥ 2, the images of the
induced maps

δp : Im/Im+1 → Im/Im+1

δp : Im/Im+1 → Im/Im+1

are contained in p · Im/Im+1 and p · Im/Im+1 respectively.

Proof. The second statement is immediate from the first because δp is p-adically continuous.

To see the first statement, we note that by the additivity statement of Proposition 2.9, it suffices
to consider elements of the form ab ∈ Im for a ∈ I and b ∈ Im−1. Then we have

δp(ab) = apδp(b) + bpδp(a) + pδp(a)δp(b)

≡ pδp(a)δp(b) (mod Im+1).

�

Given this, we have our main statement:

Proposition 2.14. Let A be a δp-ring and let I be a δp-ideal such that A is classically (I, p)-
complete. Then, the map

A→ A/I2

induces an isomorphism
Gδp

m (A) ∼−→ Gδp
m (A/I2).

Proof. Our assumption that A is (I, p)-complete implies that

A ≃ lim←−−A/I
m.

To see this, note that the map from A to the limit is clearly surjective by assumption, and so it is
enough to check that ∩Im = {0}. But if x ∈ ∩Im, then for all j ∈ N, x ∈ ∩Im modulo pj , and
hence x ≡ 0 mod pj since A/pj is I-complete. Since A is p-complete this implies that x = 0.
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It therefore suffices to show that the induced map

Gδp
m (A/Im+1)→ Gδp

m(A/Im)

is an isomorphism when m ≥ 2. For this, let x ∈ G
δp
m(A/Im) and let x̃ be a lift of x to A/Im+1.

We will show there is a unique a ∈ Im/Im+1 such that x̃+ a ∈ G
δp
m(A/Im+1). As A is I-complete,

x̃ + a is certainly a unit, so x̃ + a ∈ G
δp
m (A/Im+1) if and only if δp(x̃ + a) = 0. Since the ideal

Im/Im+1 ⊂ A/Im+1 is square-zero, we have by Proposition 2.9(2)

δp(x̃+ a) = δp(x̃) + δp(a)− x̃p−1a

Since x ∈ G
δp
m(A/Im), the first term is in Im/Im+1. It therefore suffices to show that the function

Im/Im+1 → Im/Im+1

a 7→ δp(a)− x̃p−1a

is a bijection. But x̃ is a unit, so it’s enough to show that id− 1
x̃p−1 δp is an isomorphism. But this

has inverse given by

b 7→

∞∑

j=0

(
1

x̃p−1
δp

)(j)

(b),

which is a well-defined element of Im/Im+1 because the j-th term of this series is divisible by pj

by Lemma 2.13.

�

Combining this with Proposition 2.14, we have the following extension of Proposition 2.10:

Proposition 2.15. Let A be a δp-ring and let I be a δp-ideal in A such that A is classically (I, p)-

complete. Then A→ A/I2 induces an isomorphism on G
δp
m(−) and we obtain an exact sequence

0 // (I/I2)δp=1 // G
δp
m (A) // G

δp
m (A/I) .

Here, the left term is the kernel of the homomorphism δp − id : I/I2 → I/I2.

Remark 2.16. In the situation of Proposition 2.15, the map G
δp
m(A)→ G

δp
m (A/I) is not generally

surjective. However, it will be in our cases of interest, as we take A→ A/I to be the augmentation
of an augmented algebra (the group ring), which has a section.

2.1.3. Artin–Schreier theory. Another general result regarding δp-rings that we need is Artin-
Schreier theory. In this sub-section, for an animated commutative ring R ∈ ACR, we regard
the derived scheme Spec(R) as endowed with the étale topology on its small étale site (see, e.g.,
[CS19, §5.2.3]). We refer to sheaves on Spec(R) simply as étale sheaves, and unless stated otherwise
consider spectral coefficients. For an abelian group A, we denote by Aet the constant étale sheaf
on Spec(R).

Definition 2.17. Let R ∈ ACRZ/pr and let R := R⊗Z/pr Z/p. A lift of Frobenius for R is a map
ϕR : R → R which lifts the derived Frobenius map ϕR : R → R along the reduction map R ։ R.
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More precisely, it is the data of a commutative square of the form:

R

��

ϕ
// R

��

R
ϕ

// R

Our main example for lifts of Frobenius is the following.

Example 2.18. Let A be a δp-ring, and ϕ : A → A the corresponding Frobenius map. Then, by
definition, the map A//pr → A//pr induced from ϕ by reducing mod pr extends canonically to a lift
of Frobenius. Moreover, if A is derived p-complete, we may view the δp-ring structure on A as a
compatible choice of such lifts of Frobenius.

It turns out that a lift of Frobenius for R automatically extends to all étale R-algebras.

Lemma 2.19. Let R be an animated commutative Z/pr-algebra endowed with a lift of Frobenius
ϕR : R→ R. Then, every étale R-algebra S admits a unique lift of Frobenius ϕS : S → S compatible
with ϕR.

Proof. Let S := S ⊗Z/pr Z/p, so that we have a reduction mod p map S → S. A compatible lift of
Frobenius for S is a solution to the lifting problem

R
ϕR

//

��

R // S

��

S //

77

S
ϕ

S // S

.

Since S is an animated Z/pr-algebra as well, the right vertical map is a nil-thickening, and the
uniqueness of the lift now follows from the lifting property of étale morphisms of animated commu-
tative rings (i.e. by the vanishing of the cotangent complex Lalg

S/R). �

Corollary 2.20. Let R be an animated commutative Z/pr-algebra with a lift of Frobenius ϕR : R→
R. Then, the map ϕR extends uniquely to an endomorphism of sheaves of Z/pr-algebras ϕ : OR →
OR on the small étale site of Spec(R). Here, OR denotes the structure sheaf of Spec(R).

Proof. The data of a morphism ϕ : OR → OR lifting ϕR is the same as that of a map of sheaves of
animated commutative R-algebras ϕ∗

ROR → OR. Note that both the source and target consist of
sheaves of étale algebras over R.

Since the ∞-category of étale R-algebras is equivalent to the 1-category of étale π0R-algebras (see,
e.g., [CS19, Proposition 5.2.4]), it follows that a natural transformation ϕ∗

ROR → OR is determined
by its restriction to objects and morphisms in the category of étale R-algebras. Individual lifts at
the objects exist uniquely by Lemma 2.19, and they are compatible with morphisms immediately
by the uniqueness. �

Since ϕR is a morphism of sheaves of Z/pr-algebras, we have a canonical null sequence of sheaves

(Z/pr)et −→ OR
ϕ−1
−−−→ OR,

where (Z/pr)et is the constant étale sheaf on the value Z/pr.
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Lemma 2.21. Let R be an animated commutative Z/pr-algebra with a lift of Frobenius ϕR : R→ R.
For all i > 0, the map ϕR induces a nilpotent endomorphism of πiR. In particular, ϕR − 1 is an
isomorphism on πiR.

Proof. Let R := R ⊗Z/pr Z/p. Tensoring the p-adic filtration of Z/pr with R, we obtain a natural
finite filtration R• with associated graded

gr(R•) ≃ R⊗Z/pr gr((Z/pr)•) ≃ R[t]/tr.

Since the filtration is finite and natural in R, it is stable under ϕR and it suffices to show that ϕR

is nilpotent on πigr(R•); in fact we will show it is zero. Indeed, we have

ϕR(atj) = ϕR(a)tj ∀a ∈ πiR,

which is 0 because ϕR vanishes in positive degrees (cf. [BS17, Prop 11.6, Rem 11.8]). �

Corollary 2.22. Let R be an animated commutative Z/pr-algebra with a lift of Frobenius ϕR : R→
R. Then, the square

OR
ϕ−1

//

��

OR

��
π0OR

ϕ−1
// π0OR

is a Cartesian square of étale sheaves on Spec(R).

Proof. It suffices to prove that the square becomes Cartesian after evaluation at Spec(S) for an
étale R-algebra S, namely that

S
ϕS−1

//

��

S

��
π0S //ϕS−1

// π0S

is Cartesian. The fiber of both vertical maps is τ≥1S, and ϕS − 1 is an isomorphism on this fiber
by Lemma 2.21. This implies the result. �

We are ready to state and prove a version of Artin-Schreier theory for Frobenius lifts.

Proposition 2.23 (Artin-Schreier for Frobenius Lifts). Let R ∈ ACRZ/pr with a lift of Frobenius
ϕR : R → R, and let ϕ : OR → OR be its unique extension from Lemma 2.19. Then, the null
sequence

(Z/pr)et −→ OR
ϕ−1
−−−→ OR

is a fiber sequence of sheaves of Z/pr-module spectra on Spec(R), and it induces a short exact
sequence

0 −→ (Z/pr)et −→ π0OR
ϕ−1
−−−→ π0OR −→ 0

of sheaves of abelian groups on Spec(R).



12 SHACHAR CARMELI, THOMAS NIKOLAUS, AND ALLEN YUAN

Proof. First, observe that the first sequence being a fiber sequence and the second sequence being
exact are equivalent, by Corollary 2.22. Now, the claim for r = 1 follows from classical Artin-
Schreier theory, which says that for a (classical) Z/p-scheme X the sequence

0 −→ (Z/p)et −→ OX
ϕX−1
−−−−→ OX −→ 0

is a short exact sequence of étale sheaves. For the general case, let R ∈ ACRZ/pr with lift of
Frobenius ϕR, and setR := R⊗Z/prZ/p. Then, via the equivalence of étale sites Spec(R) ≃ Spec(R),
the base-change of the null sequence

(Z/pr)et −→ OR
ϕ−1
−−−→ OR

along the map Z/pr → Z/p identifies with the sequence

(Z/p)et −→ OR

ϕ
R

−1
−−−−→ OR.

Since the latter is a fiber sequence by the case r = 1 and the functor Z/p ⊗Z/pr (−) is exact and
conservative, we deduce that the former sequence is a fiber sequence and the result follows. �

Corollary 2.24. Let A be a derived p-complete δp-ring. For every r ∈ N we have an exact sequence

0 −→ Z/pr(A)→ A/pr ϕA−1
−−−−→ A/pr.

Proof. Let R = A//pr, which is an animated Z/pr-algebra with lift of Frobenius. Applying
Proposition 2.23 to it, we get an exact sequence

0 −→ (Z/pr)et −→ π0OR
ϕ−1
−−−→ π0OR −→ 0

of étale sheaves on Spec(R). Taking the long exact sequence of cohomologies associated with this
exact sequence of sheaves, we get an exact sequence

0 −→ H0
et(Spec(R);Z/pr)→ A/pr → A/pr.

Now, the zeroth étale cohomology with constant coefficients is locally constant functions so

H0
et(Spec(R);Z/pr) ≃ Z/pr(R) = Z/pr(A/pr).

Finally, the assumption that A is derived p-complete implies that (A, (pr)) is an Henselian pair
([Sta18, Lemma 15.93.10]), so that A → A/pr induces a bijection on Zariski-components [Sta18,
Lemma 15.11.6], and hence on global sections of the constant sheaf Z/pr. This concludes the
proof. �

2.2. Rigidity for δp-group algebras. In this section, we compute the rank 1 units of a p-complete
group algebra A[M ]∧p in terms of M and the rank 1 units in A. It will be convenient to phrase our

results in terms of a slight variant of Gδp
m (−).

Definition 2.25. For an abelian group M , set

Gδp,red
m (A[M ]) := Ker(Gδp

m (A[M ])→ Gδp
m (A)),

Gδp,red
m (A[M ]∧p ) := Ker(Gδp

m (A[M ]∧p )→ Gδp
m (A)).

Here, the δp-structure on the p-completion of a δp-ring R is the unique one for which R→ R∧
p is a

δp-ring map, see [BS22, Lemma 2.17]. We refer to these as the reduced units of rank 1.

Since the augmentation A[M ]∧p → A is split, Theorem 2.7 is equivalent to:
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Theorem 2.26. Let A be a p-complete δp-ring and M be a finitely generated abelian group whose
torsion part is p-power torsion. Then there is a natural isomorphism

Gδp,red
m (A[M ]∧p ) ∼= M(A).

We handle the case where M is a finite abelian p-group in §2.2.1 and the general case in 2.2.2.

2.2.1. The torsion case. Our strategy is to apply the square nil-invariance results to the augmen-
tation ideal in A[M ] when M is a finite abelian p-group. To do so, we need the following lemma:

Lemma 2.27. Let A be a p-complete commutative ring, let M be a finite abelian p-group, and let
J ⊂ A[M ] denote the kernel of the augmentation A[M ]→ A. Then A[M ] is (p, J)-complete.

Proof. Note that J is generated by the finite set of elements [m]−1 for m ∈M . Since A is assumed
to be p-complete, it suffices to show that some power of each [m]− 1 is divisible by p. But we have
that

([m]− 1)pj

≡ [m]p
j

− 1 = [pjm]− 1 (mod p)

and so this is 0 (mod p) for pj larger than the order of torsion in M . �

It follows from Proposition 2.15 that we may identify G
δp,red
m (A[M ]) with (J/J2)δp=1. We now

compute this group.

Lemma 2.28. Let A be a δp-ring, let M be a finite abelian p-group, and let J ⊂ A[M ] denote the
kernel of the augmentation A[M ]→ A. Then there is a canonical isomorphism of abelian groups

A⊗M ≃ J/J2

a⊗m 7→ a([m]− 1) ∈ J.

Under this isomorphism, the operation δp on the right-hand side is identified with the endomorphism
ϕA ⊗ idM on the left-hand side.

Proof. To see this isomorphism of abelian groups, we note that J is a free A-module with generators
[m]− 1 for m ∈M , and that J2 is generated by the relations ([m]− 1)([n]− 1) = 0, that is,

([m]− 1) + ([n]− 1) ≡ [m+ n]− 1 mod J2.

Thus, the quotient J/J2 is visibly the same as the left-hand side, so it remains to identify these
two operations ϕA ⊗ idM and δp.

Since δp(a([m]−1)) ≡ ϕA(a)δp([m]−1) on J/J2 by Proposition 2.9(1), it suffices to prove the claim
for a = 1. In this case we have

δp([m]− 1) =
ϕ([m] − 1)− ([m]− 1)p

p
=

([m]p − 1)− ([m]− 1)p

p
.

The right-hand side is a polynomial q([m]) with integer coefficients such that q(1) = 0 and q′(1) = 1,
and hence

q([m]) ≡ [m]− 1 mod ([m] − 1)2

as desired. �

Given this identification, we can use the results of §2.1.3 to prove the desired result:

Proposition 2.29. Let A be a p-complete δp-ring and M be a finite abelian p-group. Then there
is a natural isomorphism

Gδp,red
m (A[M ]∧p ) ≃M(A).
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Proof. By Proposition 2.15 and Lemma 2.28, we may identify G
δp,red
m (A[M ]∧p ) with the fixed points

of ϕA ⊗ idM on A⊗M . Since M is a finite abelian p-group, it is a finite direct sum of quotients of
the form Z/pr, so we may reduce to the case M = Z/pr. In this case, we have A⊗M = A/pr and
Corollary 2.24 identifies the fixed points of ϕA ⊗ idM on this object with Z/pr(A) = M(A). �

2.2.2. The general case.

Theorem 2.30. Let M be a finitely generated abelian group whose torsion part is p-power torsion
and let A be a p-complete δp-ring. Then

Gδp,red
m (A[M ]∧p ) ≃M(A).

Proof. Note that there is a canonical map M(A)→ G
δp,red
m (A[M ]∧p ) locally given by m 7→ [m]. We

shall refer to its image as the “tautological units”. Note further that the assumption on M implies
that

⋂
r p

rM = {0}. As a result, for every finite subset T ⊆ M , there exists r > 0 such that T
injects into M/pr.

Given a reduced unit f ∈ G
δp,red
m (A[M ]∧p ) of rank 1, we wish to show that we can find a finite

decomposition A ≃
∏

i Ai such that the image of f in Ai[M ]∧p is of the form [m] for some m ∈M .
Expand f as a p-adically convergent series

f =
∑

m∈M

xm[m],

and let fr,s be the image of f in A/pr[M/ps]. In this notation, we will allow r = ∞ or s = ∞, in
which case we write f∞,s (resp. fr,∞) to mean the image of f in A[M/ps] (resp. A/pr[M ]). Thus,
our aim is to show that f := f∞,∞ is a tautological unit.

Since f∞,s is a reduced unit of rank 1, by Proposition 2.29 it is a tautological unit for every s ∈ N.
On the other hand, f1,∞ is an element of A/p[M ] so it is a sum f1,∞ =

∑
m∈T xm[m], for some

finite T ⊆ M . Choosing s ∈ N for which the map T → M/ps is injective, we see that the fact
that f1,s is tautological implies the same for f1,∞. This implies that there is a finite decomposition
A/p ≃

∏
iAi such that the image of f1,∞ in Ai[M ] is tautological. By Hensel’s lemma, we can lift

the mentioned decomposition to a decomposition A ≃
∏

iAi. Replacing A by one of the Ai’s, we
may thus assume that f1,∞ = [m] for some m ∈ M . Multiplying by [−m], we are thus reduced to
the case where f1,∞ = 1. We claim that in this case, we already have f = 1, and in particular that
it is tautological. Indeed, assuming the contrary, let 0 6= m0 ∈M be an element for which xm0 6= 0.
Choose r large enough so that xm 6= 0 mod pr, and write again

fr,∞ =
∑

m∈T ′

xm[m]

for some finite set T ′ ⊆ M . Choose s large enough so that the composition T ′ →֒ M ։ M/ps is
injective. Then, the fact that xm0 6= 0 mod pr implies that

fr,s = 1 + xm0 [m0] + . . . ,

where xm0 is the (non-vanishing) reduction of xm0 modulo pr. Since fr,s is the image of f∞,s under
the map A → A/pr, it is also tautological, and since the coefficient of 0 ∈ M is invertible, this
forces all other coefficients, including xm0 , to be 0. This is a contradiction and we are done. �
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2.3. δ̂-rings. We now introduce a global variant of δp-rings which we call δ̂-rings. In contrast with
the theory of λ-rings, our notion of δ̂-rings “decouples” different primes.

Definition 2.31. Define the category of δ̂-rings by the pullback

δ̂−Ring
∏

p ACRδp

CAlg♥
Z

∏
p ACR∧

p .

∏
(−)∧

p

In other words, a δ̂-ring is a (discrete) commutative ring R with a lift of each derived p-completion
R∧

p to an animated δp-ring.

Although we assume the underlying ring R is discrete, its (derived) p-completions may not be, and
thus we need to work in the animated context for the above definition. Nevertheless, it is easy to
see that the category of δ̂-rings is (equivalent to) a 1-category. Additionally, we will generally only
consider δ̂-rings with bounded torsion, so this point will not be important.

Remark 2.32. If R is already derived p-complete, then a δ̂-ring structure on R is exactly given by
a δp-ring structure, since all other completions vanish. On the other hand, if R is rational, then a
δ̂-ring structure on R is no data at all.

As in Construction 2.3, Z[M ] for an abelian group M acquires a natural δ̂-ring structure.

Definition 2.33. Define the group of rank 1 δ̂-units of R by

Gδ̂
m(R) := Map

δ̂−Ring
(Z[t±1], R).

While Gδ̂
m(R) can in general be non-discrete, we will typically consider R with bounded torsion, in

which case Gδ̂
m(R) can be described as the subgroup of units t ∈ R× such that δp(t) = 0 for all p.

This notion of δ̂-rings allows us to make an integral analogue of the previous results in the section,
which we view as the algebraic analogue of our main theorem (Theorem 1.1).

Theorem 2.34. Let M and N be finitely generated abelian groups. Then the natural map

HomAb(N,M)→ Hom
δ̂−Ring

(Z[N ],Z[M ])

is an isomorphism. In particular, Gδ̂
m(Z[M ]) ≃M .

Proof. Both sides send colimits in N to limits, so it suffices to consider N = Z, where the statement

becomes Gδ̂
m(Z[M ]) ≃ M . Here, write M = M ′ ⊕ Λ where Λ is free and M ′ is finite. Since Z[M ′]

has connected Zariski spectrum, we have an isomorphism Gm(Z[M ′][Λ]) ≃ Gm(Z[M ′]) ⊕ Λ (cf.
[Kar83, Theorem 1]). It follows that

Gδ̂
m(Z[M ′][Λ]) ≃ Gδ̂

m(Z[M ′])⊕ Λ.

Hence, it suffices to prove the result for M finite. We start by showing that in this case Gδ̂
m(Z[M ])

is finite. Choose a prime p. Since the p-completion map

Gδ̂
m(Z[M ])→ Gδp

m (Z[M ]∧p )



16 SHACHAR CARMELI, THOMAS NIKOLAUS, AND ALLEN YUAN

is injective, it suffices to show that G
δp
m (Z[M ]∧p ) is finite. Writing M = Mp ⊕Mp̄ where Mp is a

p-group and Mp̄ is of order prime to p, we have by Proposition 2.29 that

Gδp
m (Z[M ]∧p ) ≃Mp(Z[Mp̄]∧p )⊕Gδp

m (Z[Mp̄]∧p ).

The first summand is finite because Spec(Z[Mp̄]∧p ) has finitely many connected components, and
the second is finite because Z[Mp̄]∧p is perfect and hence by Example 2.6 we have

Gδp
m(Z[Mp̄]∧p ) ≃ Gm(Fp[Mp̄]).

Finally, once we know Gδ̂
m(Z[M ]) is finite, the result follows from [Hig40, Theorem 2], which asserts

that all torsion reduced units in the group algebra are in the image of the map M → Gm(Z[M ]). �

2.4. δ-rings and commutative ring spectra. Now we will link the existence of δ̂-ring structures
on R to lifts SR to the sphere spectrum. Recall from [NS18, §IV.1] that a commutative ring
spectrum R admits two natural maps to the Tate construction RtCp : the Tate-valued Frobenius

frob: R→ RtCp ,

given by the composite of the Tate diagonal R→ (R⊗p)tCp with multiplication, and the map

triv : R→ RtCp .

given by the composite R→ RhCp → RtCp . Note that the latter is defined for an arbitrary spectrum
and does not depend on the multiplication, but when R is a commutative ring spectrum then triv
is a commutative ring map.

The Segal conjecture supplies a large collection of spectra for which the triv map is an isomorphism.

Definition 2.35. Let X be a spectrum. We say that X is of finite Tor-amplitude if X is bounded
below and X ⊗ Z is bounded. Equivalently, X admits a cell structure with cells of bounded
dimension. We further say that X is a Moore spectrum if X ⊗ Z is concentrated in degree 0.

Proposition 2.36 ([BS24, Theorem 1.2, Example 4.4], cf. also [Yua22, Lemma 6.7]). Let X be a
spectrum of finite Tor-amplitude. Then, triv : X → XtCp exhibits XtCp as the p-completion of X.

Thus, any commutative ring spectrum R of finite Tor-amplitude admits a canonical map

ϕR := triv−1 ◦ frob: R→ R∧
p ,

which we call the Frobenius map of R. Our goal for the rest of the section is to show that in the
special case where R is a Moore spectrum (i.e., R⊗Z is discrete), these Frobenius maps for varying
p induce a δ̂-ring structure on π0R. We need a few preliminary lemmas.

Lemma 2.37. Let F,G : ACR → C be functors and F0, G0 denote their restriction to the full
subcategory PolyZ ⊂ ACR of (discrete) polynomial algebras. If F commutes with sifted colimits,
then there is an isomorphism of spaces of natural transformations

Nat(F,G) ≃ Nat(F0, G0).

Proof. This follows from the fact that ACR = PΣ(PolyZ) is the the animation of the category of
polynomial rings. �
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Lemma 2.38. Let R be a discrete commutative ring, so that the Frobenius and trivial maps R →
RtCp factor uniquely through τ≥0R

tCp . Then, there is a natural isomorphism τ[0,1]R
tCp ≃ R//p in

CAlgcn
Z fitting into the commutative diagrams

R τ≥0R
tCp R τ≥0R

tCp

R//p R//p ≃ τ[0,1]R
tCp R//p R//p ≃ τ[0,1]R

tCp .

triv

≀

frob

≀

= ϕR//p

Proof. Note that for R ∈ PolyZ, the constructions R//p and τ[0,1]R
tCp are both given by the discrete

ring R/p and thus are naturally identified. By Lemma 2.37, we obtain a natural transformation

R//p
ν
−→ τ[0,1]R

tCp

which is an isomorphism at least for R ∈ PolyZ. Moreover, the diagrams commute because they
commute for R ∈ PolyZ; this is clear for the first one and for the second, it amounts to the statement
that frob induces the usual Frobenius on π0R/p [NS18, Example IV.1.2].

It remains to check that ν is an isomorphism for all discrete rings. Let G(R) : CAlgan
Z → ModZ be

the cofiber of the composite

RhCp

Nm
−−→ RhCp

res
−−→ R.

Note that we have a natural transformation τ[0,1]R
tCp → τ[0,1]G(R) which is an isomorphism on

discrete rings. Therefore, it suffices to show that for R discrete, the induced map

ν′ : R//p→ τ[0,1]G(R)

is an isomorphism. But the source and target both preserve colimits, as functors to Mod[0,1]
Z

, so
the conclusion follows from the fact that ν, and therefore ν′, is an isomorphism for R ∈ PolyZ.

�

Lemma 2.39. Let R,S ∈ ACR and assume that S is 1-truncated. Then

MapACR(R,S)→ MapCAlg
Z

(R,S)

is an inclusion of connected components, which is an equivalence if π1(S) does not have 2-torsion.

Proof. First, since the condition of the theorem is closed under limits, it suffices to consider the case
R = Z[x] where we consider the map Ω∞S → MapCAlg

Z

(Z[x], S). Letting Z{x} =
⊕

n≥0 Z[BΣn]
denote the free commutative Z-algebra on a degree 0 class, we note that π0Z{x} = Z[x] and
π1Z{x} = βZ/2[x] (for instance because the sign character Σn → C2 is the abelianization map).
Consequently, defining P by the pushout

Z{S1/2} Z

Z{x} P,

β

the natural map P → Z[x] is an isomorphism in degrees 0, 1 and surjective on π2. It follows that
Map(P, S) ≃Map(Z[x], S), so it suffices to show that Ω∞S → MapCAlg

Z
(P, S). The conclusion then

follows by considering commutative Z-algebra maps from the above pushout square into S. �
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Lemma 2.40. Let X be a bounded below spectrum. Then

(X∧
p )⊗ Z = (X ⊗ Z)∧

p .

Proof. This follows because (X∧
p ) ⊗ Z is p-complete [BB19, Lemma 3.3] and the natural map

(X∧
p )⊗ Z→ (X ⊗ Z)∧

p becomes an isomorphism after tensoring with S/p.

�

We can now prove the main statement about the relationship between commutative ring Moore
spectra and δ̂-rings:

Proposition 2.41. Let CAlgM ⊂ CAlg(Sp) denote the full subcategory of commutative ring Moore
spectra. Then for R ∈ CAlgM, π0(R) acquires a natural δ̂-ring structure, i.e., π0(−) lifts to a
functor

π0 : CAlgM → δ̂−Ring.

Proof. For each prime p, consider the diagram of commutative ring spectra

R∧
p (π0R)∧

p π0R//p

RtCp τ≥0(π0R)tCp

R∧
p (π0R)∧

p π0R//p

frob

ϕR

frob

ϕπ0R//p

triv triv

where the right vertical map is induced by the animated Frobenius. The commutativity of the
diagram is clear other than the right two triangles, which commute by Lemma 2.38. Since the right
vertical map is Z-linear and Z⊗R∧

p ≃ (π0R)∧
p by Lemma 2.40, the outer square induces a square

(π0R)∧
p (π0R)∧

p

π0R//p π0R//p.

ϕR⊗Z

ϕπ0R//p

To see that this induces an animated δp-ring structure on (π0R)∧
p , it suffices to lift the left vertical

map to an animated ring map. But (π0R)∧
p is 1-truncated, and we claim there is no 2-torsion in π1

in case p = 2. Indeed, if there were, then π0(R)∧
2 //2 = π0(R)//2 would have nontrivial π2, which is

impossible. Thus, by Lemma 2.39, ϕR ⊗ Z lifts uniquely to an animated map, as desired. �

Remark 2.42. In fact, A. Krause has shown that δ̂-ring structures on a torsion-free commutative
ring are equivalent to H∞-ring structures on the corresponding Moore spectrum [Kra].
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3. Tautological units, rigidity, and staticity

Let R0 be a (discrete) commutative ring and let M be a finitely generated abelian group. Then
there is a natural map of abelian groups

θ : M → R0[M ]×

m 7→ [m]

picking out what we call the tautological units. There are at least two reasons why this map fails
to be an isomorphism:

(1) The target also contains units coming from R×
0 .

(2) IfR0 splits as a productR′
0×R

′′
0 , then we have units of the form ([m], [m′]) ∈ (R′

0×R
′′
0 [M ])×.

These obstructions carry over verbatim when R0 is replaced by a commutative ring spectrum R
and units are replaced by strict units. To side-step (1), we introduce the following definition:

Definition 3.1. Let R be a commutative ring spectrum and S be an augmented commutative
R-algebra (e.g. R[M ] or R[M ]∧p with their canonical augmentations). Then we denote

Gred
m (S) := fib(Gm(S)→ Gm(R))

so that there is a splitting

Gm(S) ≃ Gm(R)⊕Gred
m (S).

We refer to Gred
m (S) as the reduced strict units of S. 6

Thus, the question of computing Gm(R[M ]) reduces to separately computing Gm(R) and Gred
m (R[M ]).

In our case of interest R = S, the former vanishes by [Car22], and so we begin our analysis in §3.1
with the basic properties of reduced units Gred

m (−).

Next, while the map θ lands in reduced units, (2) still obstructs it from being an isomorphism.
Thus, we consider instead a certain natural map

Θ : M(R)→ Gred
m (R[M ])

where M(R) denotes the group of locally constant M -valued functions on Spec(R). The map Θ is
a better approximation to Gred

m (R[M ]) than θ, and turns out to be an isomorphism for a large class
of commutative ring spectra R. We refer to this feature of (R,M) as rigidity. Much of the paper
is dedicated to proving rigidity in various situations, so we set notation more carefully in §3.2.

Finally, in §3.3, we discuss a condition under which rigidity is easy to check. We say that a pair
(R,M) is Gred

m (−)-static if the natural map

Gred
m (R[M ])→ Gred

m (π0R[M ])

is an inclusion of connected components. In this case, rigidity reduces to an essentially algebraic
question of checking whether all (reduced) strict units of R[M ] are tautological at the level of π0

(cf. Proposition 3.22).

6We warn that the notation is slightly abusive, as Gred
m (S) depends on both S and its augmentation, but we will

clarify whenever there is risk for confusion.
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3.1. Strict units, reduced units, and descent. The main object of study in this paper is the
following:

Definition 3.2. A strict unit in a commutative ring spectrum R is a map of commutative ring
spectra

S[Z] =: S[t±1]→ R.

We denote the spectrum of strict units by Gm(R), so that

Ω∞Gm(R) = MapCAlg(S[t±1], R) ≃MapSp(Z, gl1(R)).

In fact, Gm(R) naturally has a connective Z-module spectrum structure [Lur18, Cons. 1.6.10].

As mentioned earlier, we will need the following variant of strict units:

Definition 3.3 (Reduced units). Let R be a commutative ring spectrum and S be an augmented
commutative R-algebra. Then we denote

Gred
m (S) := fib(Gm(S)→ Gm(R))

so that there is a splitting
Gm(S) ≃ Gm(R)⊕Gred

m (S).

We refer to Gred
m (S) as the reduced strict units of S. 7

For us, we will generally take S to be R[M ] or R[M ]∧p with their canonical augmentations.

Remark 3.4. The reduced strict units can alternately be interpreted as a space of augmented
maps:

Ω∞Gred
m (R[M ]) ≃ MapCAlgaug

R
(R[Z], R[M ]).

Accordingly, we have for every R ∈ CAlg an adjunction

R[−] : Modcn
Z ⇄ CAlgaug

R : Gred
m (−).

3.1.1. Descent for reduced units. The construction Gred
m (R[M ]) is functorial in both the ring R and

the group M . In the ring R, we have the following descent statement:

Proposition 3.5. For M ∈ Modcn
Z , the functors Gm(−[M ]),Gred

m (−[M ]) ∈ Fun(CAlg,Modcn
Z )

are sheaves for the Zariski topology. If M is additionally finite and discrete, then Gm(−[M ]) and
Gred

m (−[M ]) are moreover affine group schemes (i.e., they are co-representable by commutative R-
algebras).

Proof. Since Gred
m −[M ] is a retract of Gm(−[M ]), it suffices to prove the claims for the latter

functor. Since the Zariski topology is finitary, the sheaf condition for Gm(−[M ]) amounts to the
construction R 7→ Gm(R[M ]) commuting with a finite limit, which follows from the facts that
R 7→ R[M ] preserves finite limits and Gm preserves all limits. If M is finite, then R 7→ R[M ] and
Gm are accessible and limit preserving, so the result follows from the Adjoint Functor Theorem. �

The behavior of Gred
m (R[M ]) as M changes is more subtle, but there are some cases when it interacts

with limits or colimits in a predictable way. First, while Gred
m (R[−]) does not preserve direct sums,

one can always decompose Gred
m (R[M ⊕N ]) into simpler pieces.

7We warn that the notation is slightly abusive, as Gred
m (S) depends on both S and its augmentation, but we will

clarify whenever there is risk for confusion.
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Observation 3.6. Let R be a commutative ring spectrum and let M,N ∈ Modcn
Z . Then there are

canonical isomorphisms

Gred
m (R[M ⊕N ]) ≃ Gred

m (R[M ])⊕Gred
m (R[M ][N ]),

Gred
m (R[M ⊕N ]∧p ) ≃ Gred

m (R[M ]∧p )⊕Gred
m (R[M ][N ]∧p )

where we regard R[M ][N ] as being augmented over R[M ] (and similarly for the p-complete version).

We also have the following descent statement along injections M → N of abelian groups.

Definition 3.7. For a morphism α : M → N in ModZ, its Čech nerve is the cosimplicial diagram

C•(α) :=
(
N N ⊕M N N ⊕M N ⊕M N

)
∈ (Modcn

Z )∆

obtained as an augmented cosimplicial object from α by left Kan extension along ∆≤0
+ →֒ ∆+.

Proposition 3.8. Let α : M →֒ N be an injective map of abelian groups. Then the natural maps

Gred
m (R[M ])→ lim←−−G

red
m (R[C•(α)])

Gred
m (R[M ]∧p )→ lim←−−G

red
m (R[C•(α)]∧p )

are isomorphisms.

Proof. We consider the non p-complete case first. Since Gred
m (R[M ]) is the fiber of the map

Gm(R[M ]) → Gm(R) and constant functors preserve contractible limits, it suffices to prove the
analogous statement for Gm(R[M ]). This follows from the fact that Gm preserves limits and
R[M ]→ R[N ] is descendable in the sense of [Mat16, Definition 3.18, Proposition 3.20], as it admits
a retract. The p-complete case follows similarly, using that R[M ]/p→ R[N ]/p admits a retract.

�

3.2. Rigidity. We begin by constructing the inclusion of the tautological units.

Definition 3.9 (Constant group scheme [Lur18, Exm. 2.5.7]). For M ∈ Modcn
Z , denote by

M : CAlg→ Modcn
Z

the Zariski sheafification of the constant functor valued at M .

Remark 3.10. For an abelian group M and commutative ring spectrum R, we have

M(R) = {Locally constant functions f : | Spec(R)| →M}.

Moreover, when M is finite, the functor M is corepresented by the commutative ring spectrum SM .

Construction 3.11 (Tautological units). A consequence of Definition 3.9 is that for any Zariski
sheaf F on CAlg, we have

Nat(M(−), F ) = MapModcn
Z

(M,F (S)),

since the constant functor construction is adjoint to evaluation at the initial object. Applying this
to the Zariski sheaf F = Gred

m (−[M ]) (Proposition 3.5), we define

ΘM : M(−)→ Gred
m (−[M ])

to be the unique natural transformation whose value on S agrees with the unit mapM → Gred
m (S[M ])

of the adjunction of Remark 3.4.
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The bulk of this paper is dedicated to analyzing the pairs (R ∈ CAlg,M ∈ Ab) for which ΘM (R)
is an isomorphism.

Definition 3.12. Let M be an abelian group and let R be a commutative ring spectrum.

(1) We say that R is M -rigid if the map ΘM (R) : M(R)→ Gred
m (R[M ]) is an isomorphism.

(2) We say that R is p-rigid if it is M -rigid for every finite abelian p-group M .

Variant 3.13. If R is additionally p-complete, we say R is p-completely M -rigid or p-rigid if the

analogous conditions hold for the composite Θ̂M (R) : M(R)
Θ
−→ Gred

m (R[M ])→ Gred
m (R[M ]∧p ). Note

that for M finite, R[M ] ≃ R[M ]∧p so this coincides with the above definition.

Example 3.14 (see, e.g., [Kar83, Theorem 1]). Let R be a discrete commutative ring and let Λ
be a finitely generated free abelian group, i.e. Λ ≃ Zk. A commutative ring R is Λ-rigid if and
only if R is reduced, that is, contains no non-zero nilpotent elements. More generally, for every
connected commutative ring R, the units of R[Λ] are the products r · λ0 · f where r ∈ R×, λ0 ∈ Λ,
and f ∈ R[Λ] is congruent to 1 modulo the nil-radical of R.

We next discuss closure properties of rigidity with respect to M and R. First, since ΘM is a
morphism of Zariski sheaves, the collection of M -rigid commutative ring spectra R is always closed
under Zariski covers. For finite M , we have a much stronger closure property.

Proposition 3.15. Let M be a finite abelian group. Then the collection of M -rigid (resp. p-rigid)
commutative ring spectra is closed under all limits in CAlg(Sp).

Proof. The second statement clearly follows from the first. For fixed finite M , it suffices to note
that Gred

m (−[M ]) and M(−) are representable (Proposition 3.5, Remark 3.10). �

3.3. Staticity. Consider the forgetful map

(5) Gm(R)→ Gm(π0(R)) = π0(R)×.

One difficulty in computing strict units is that Gm(R) may not be discrete, and so while it can be
relatively easy to see which units in π0(R) lift to strict units (as we saw in the introduction), there
may be a nontrivial space of ways in which they lift. In this paper, we are interested in when this
does not happen – that is, when (5) is just an inclusion of connected components. We call this
phenomenon staticity.

Definition 3.16. Suppose F : CAlgcn → S and R ∈ CAlgcn. Then we say R is F -static (or
symmetrically F is R-static) if the map F (R)→ F (π0(R)) is an inclusion of spaces.8 For functors
G taking values in spectra, we say R is G-static if it is Ω∞G-static.

Example 3.17. Let M be an abelian group. Then every connective commutative ring spectrum
R is M -static.

Staticity exhibits closure with respect to many operations.

Lemma 3.18. Let R be a connective commutative ring spectrum.

(1) If {Fi}i∈I is a diagram of functors in Fun(CAlg,S) and Fi is R-static for every i, then
lim
←−−

Fi is R-static.

8Note that here, an inclusion (of spaces) means a map which is the inclusion of a union of connected components,
or equivalently, a (−1)-truncated map.
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(2) If F0 → F1 → F2 is a fiber sequence in Fun(CAlg, Spcn) with F0 and F2 both R-static, then
F1 is R-static.

Proof. The claims follow by using that limits of functors are computed pointwise and (−1)-truncated
maps are closed under limits and passage to total spaces of principal fibrations in S. �

The behavior with respect to the rings is more subtle, but at least we have the following:

Lemma 3.19. Let F : CAlg→ S be representable (equivalently, limit preserving) and let {Ri}i∈I be
a diagram of connective commutative ring spectra. If each of the Ri is F -static and the coassembly
map

π0lim
←−−

Ri → lim
←−−

π0Ri

is an isomorphism9, then lim←−−Ri is F -static.

Proof. This follows again because (−1)-truncated maps are closed under limits. �

We now study staticity in a few special situations.

3.3.1. Staticity is automatic away from the residual characteristic.

Proposition 3.20. Let R be a p-complete commutative ring spectrum and let G be an affine
abelian group scheme such that the multiplication by p map G

p
−→ G is invertible. Then the map

G(R)→ G(π0R) is an isomorphism, and in particular R is G-static.

Proof. Consider the Postnikov tower

R ∼−→ lim←−−τ≤mR→ · · · → τ≤2R→ τ≤1R→ τ≤0R = π0(R).

Since G is an affine abelian group scheme, it is a limit preserving functor, and hence

G(R) ∼−→ lim←−−G(τ≤mR) ∈ Modcn
Z .

It therefore suffices to show that the maps τ≤m+1R→ τ≤mR become isomorphisms after applying
G. Each of these maps fits into a pullback square

τ≤m+1R

��

// τ≤mR

��
π0(R) // π0(R)⊕ Σm+1πm+1(R)

where the bottom right corner is the split square-zero extension of π0(R) by Σm+2πm+1R. Thus, it
suffices to show that the map π0R → π0R ⊕ Σm+2πm+1R induces an isomorphism upon applying
G. Since this map has a left inverse given by the canonical augmentation π0(R)⊕Σm+2πm+1(R)→
π0(R), it remains to show that the fiber of the map

G(Σm+2πm+1(R)⊕ π0(R))→ G(π0(R))

vanishes. Let L be the cotangent fiber of G at its identity element. Then, by definition, we have

fib(G(Σm+2πm+1(R)⊕ π0(R))→ G(π0(R))) ≃ homSpcn (L,Σm+2πm+1(R))

9Here, on the right hand side, the limit is computed in CAlg(Sp), i.e., it is the “derived” limit of a diagram of
discrete commutative rings.
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Since p is invertible on G, it also acts invertibly on L. Since R is p-complete, so is Σm+2πm+1(R).
We conclude that

homSpcn (L,Σm+2πm+1(R)) ≃ 0

and the result follows. �

3.3.2. Gred
m (−[M ])-staticity. We now specialize to functors of the form Gred

m (−[M ]). The staticity
of these functors is compatible with direct sums in M , in the following sense.

Proposition 3.21. Let M and N be abelian groups and let R be a commutative ring spectrum. If R
is Gred

m (−[M ])-static and R[M ] is Gred
m (−[N ])-static, then R is Gred

m (−[M⊕N ])-static. Similarly, if
R = R∧

p is Gred
m (−[M ]∧p )-static and R[M ]∧p is Gred

m (−[N ]∧p )-static, then R is Gred
m (−[M⊕N ]∧p )-static.

Proof. We prove the non p-complete version, as the p-complete one is analogous. By Observation 3.6
we can identify the morphism

Gred
m (R[M ⊕N ])→ Gred

m (π0R[M ⊕N ])

with the direct sum of the morphisms

Gred
m (R[M ])→ Gred

m (π0R[M ]) and Gred
m (R[M ][N ])→ Gred

m (π0R[M ][N ]),

where in the latter we regard R[M ][N ] ≃ R[M⊕N ] as an augmented R[M ]-algebra. The result now
follows from the fact that inclusions of connective spectra are closed under finite direct sums. �

Next, we reformulate the notion of rigidity in terms of staticity with respect to Gred
m (−[M ]).

Proposition 3.22. Let M be an abelian group and let R be a commutative ring spectrum. Then,
R is M -rigid if and only if it satisfies the following two conditions:

(1) It is Gred
m (−[M ])-static, that is, the map Gred

m (R[M ])→ Gred
m (π0R[M ]) is an inclusion, and

so we can regard the left-hand side as a subgroup of the right-hand side.
(2) The subgroup

Gred
m (R[M ]) ⊆ Gred

m (π0R[M ])

is contained in the image of the map

Θπ0R : M(π0R)→ Gred
m (π0R[M ]).

In other words, the reduced strict units of R[M ] map to tautological units of π0(R[M ]).

Similarly, if R is p-complete, then R is p-completely M -rigid if and only if it is Gred
m (−[M ]∧p )-static

and the reduced strict units of R[M ]∧p map to tautological units of π0(R[M ]∧p ).

Proof. We show the non-p-complete case, as the p-complete one is proved identically. Consider the
commutative square

M(R)
ΘR

//

≀

��

Gred
m (R[M ])

��

M(π0R) �
�
Θπ0R

// Gred
m (π0R[M ])

arising from the naturality of Θ. In this square, the left vertical map is an isomorphism by
Example 3.17, and the lower horizontal map is an inclusion of abelian groups.

Now, assume that R is M -rigid. Then, the upper horizontal map ΘR is an isomorphism, and hence
the right vertical map is an inclusion, with image contained in that of Θπ0R, as we wanted to show.
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Conversely, if R satisfies condition (1) then, since inclusions of spaces satisfy cancellation from the
right, this forces the upper vertical map to be an inclusion as well. Now, by the commutativity and
the fact that the left vertical map is an isomorphism, condition (2) forces it to be also surjective on
connected components. Together, this shows that the upper horizontal map ΘR is an isomorphism,
so that R is M -rigid. �

4. Rigidity for finite p-groups

In this section, we will show that many commutative ring spectra are p-rigid (i.e., rigid for every
finite abelian p-group).

Example 4.1. Consider the following failures of p-rigidity for discrete R:

(1) If M is a finite group of exponent pe and R is a Z[1/p]-algebra with a primitive pe-th root
of unity, then there is a discrete Fourier isomorphism R[M ] ∼= RM∗

of algebras. This gives
an isomorphism Gred

m (R[M ]) ≃ Gm(R)M∗\{0}, which is usually larger than M .
(2) p-rigidity usually fails when R is an Fp-algebra. For example, Fp[Cp] ≃ Fp[t]/tp, and

the (automatically strict) reduced units in this ring contain all the elements of the form
1 + a1t+ · · ·+ ap−1t

p−1 for arbitrary ai ∈ Fp.

One can view these classical obstructions through the lens of chromatic homotopy theory:

• (1) originates from the existence of primitive p-th roots of unity, a phenomenon that occurs
only when p is invertible (i.e., in chromatic height 0), cf. [Dev20]. We shall thus restrict
our attention to p-complete commutative ring spectra.
• (2) is related to Fp-linearity: any Fp-algebra has vanishing T (n)-localizations for n ≥ 0

and is therefore “concentrated in chromatic height ∞”. We will therefore work with an
appropriate category of commutative ring spectra with “no height ∞ part.”

It turns out that the above obstructions are essentially the only ones. Most of this section will be
dedicated to showing that T (n)-local ring spectra are p-rigid (Theorem 4.11). Since this condition
is closed under limits, any iterated limit of T (n)-local rings will be p-rigid. In particular, we will
see that this holds for the p-complete sphere Sp and any algebra of finite Tor-amplitude over it, by
chromatic convergence (§4.2).

4.1. T (n)-local rigidity. Throughout this section we fix a prime p and we consider the T (n)
localization of p-local spectra for n ≥ 1, so that all spectra to which we apply this localization
are implicitly assumed to be p-local. The aim of this section is to show that every T (n)-local
commutative ring spectrum R is p-rigid (Theorem 4.11), i.e. that the map

ΘM (R) : M(R)→ Gred
m (R[M ])

is an isomorphism for M any finite abelian p-group.

When n = 0, we understood the T (0)-local (i.e. rational) failure of p-rigidity in Example 4.1(2)
using a Fourier isomorphism R[M ] ≃ RM∗

. Since the right-hand side is a product of rings, its units
are easy to compute.

In the case n > 0, there is an analogous isomorphism known as the chromatic Fourier transform,
which identifies R[M ] as cochains on the classifying space BnM∗. We review this in §4.1.1 and use
it to identify the target of

ΘM : M → Gred
m (−[M ])
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in §4.1.2. More precisely, for each r ≥ 0, we will show that if we restrict the target to Z/pr-modules
M , it can be identified with the functor M . Then, we finish by using this to show that ΘM induces
an isomorphism in §4.1.3.

Remark 4.2. Let us indicate why the n = 0 case behaves qualitatively differently. The issue is
that in the equivalence R[M ] ≃ RM∗

, the right-hand side depends, as a ring, only on the number
of elements of M but not on the group structure. This means that Gred

m (R[M ]) depends only on
the number of elements of M whereas M(R) is clearly sensitive to the group structure of M and so

ΘM (R) : M(R)→ Gred
m (R[M ])

cannot be an isomorphism in general. At heights n > 0, the chromatic Fourier transform identifies
R[M ] with RBnM∗

, which, in contrast, does depend on the group structure on M∗.

4.1.1. Chromatic Fourier transform. We start by briefly recalling the chromatic Fourier transform
from [CSY21, BCSY22]. For a T (n)-local commutative ring spectrum R, a higher root of unity of
height n and order pr in R is a map

ω : S[ΣnZ/pr]→ R

of commutative ring spectra. We denote the space of such higher roots of unity by µ(n)
pr (R). Each

ω ∈ µ
(n)
pr (R) determines a natural transformation

Fω(M) : R[M ]→ RΩ∞ΣnM∗

∈ CAlgR(SpT (n))

of functors of M , a π-finite connective Z/pr-module spectrum, where

M∗ := homZ(M,Q/Z) ≃ homZ/pr (M,Z/pr) ∈ ModZ/pr

denotes the Pontryagin dual of M . We refer to Fω(M) as the chromatic Fourier transform.

The natural quotient maps Z/pr → Z/pr−1 induce maps µ(n)
pr−1 (R)→ µ

(n)
pr (R) corresponding to the

“inclusion of pr−1-roots of unity.” A higher root of unity ω ∈ µ(n)
pr (R) is called primitive if the base

change to µ(n)
pr (R′) for any non-zero, T (n)-localR-algebraR′ is not in the image of the corresponding

map µ
(n)
pr−1 (R′)→ µ

(n)
pr (R′). For primitive roots, the Fourier transform is an isomorphism (i.e., one

has a “Fourier inversion”):

Theorem 4.3 (Chromatic Fourier Transform [BCSY22, Theorem A]). Let n ≥ 0 and let R ∈

CAlg(SpT (n)). If ω ∈ µ(n)
pr (R) is primitive, then the Fourier transform

Fω : R[M ] ∼−→ RΩ∞−nM∗

∈ CAlg(SpT (n))

is an isomorphism for every π-finite connective Z/pr-module spectrum M .

While not all commutative T (n)-local algebras have primitive roots of order pr, they do after passing
to a finite Galois extension. In fact, primitive higher roots of unity are classified by a finite Galois
extension of the T (n)-local sphere ST (n).

Theorem 4.4 (Higher Cyclotomic Extensions, [CSY21, Proposition 5.2]). The functor that takes
R ∈ CAlg(SpT (n)) to the subspace of µ(n)

pr (R) consisting of primitive roots is co-representable by a
T (n)-local Z/pr-Galois extension Rf

n,r of ST (n).

These Galois extensions Rf
n,r are referred to in [CSY21] as the chromatic cyclotomic extensions.

The upshot for us will be that, provided we work over Rf
n,r, there is a natural Fourier isomorphism:
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Corollary 4.5. There is a natural isomorphism of commutative and cocommutative Hopf algebras
in SpT (n), defined for R ∈ CAlgRf

n,r
(SpT (n)) and M ∈Modcn

Z/pr with π∗M finite, of the form

F : R[M ] ∼−→ RΩ∞−nM∗

.

Proof. Let ω ∈ µ(n)
pr (Rf

n,r) be the universal primitive pr-th root of unity of height n, and let F = Fω.
For the Hopf algebra structure, see [BCSY22, §3.3]. �

Implicit in Corollary 4.5 is that if M is p-power torsion and n-connected, then R[M ] ≃ R. We will
need a torsion-free variant of this fact:

Lemma 4.6. Suppose R is a T (n)-local commutative ring spectrum and suppose j > n+ 1. Then
the unit map R→ LT (n)R[ΣjZ] is an isomorphism. In particular, the connective Z-module Gm(R)
is (n+ 1)-truncated.

Proof. The first statement follows from the formula

LT (n)R[ΣjZ] = LT (n)lim−→ rR[Σj−1Z/pr]

and the aforementioned fact about R[M ] for M p-power torsion and n-connected (cf. also [CSY20,
Lemma 2.4.4, Proposition 3.2.1], for instance). The “in particular” follows from considering R-
algebra maps into R. �

For our applications, we will need one additional fact about the Rf
n,r:

Lemma 4.7. For n, r ≥ 0, the commutative ring spectrum Rf
n,r is Zariski-connected.

Proof. Suppose Rf
n,r = R1 × R2 for nonzero rings R1, R2. Let En denote a Lubin-Tate theory of

height n and consider LK(n)(Rf
n,r ⊗ En) with its action of the Morava stabilizer group Gn. By

[CSY21, Propositions 5.2, 5.4, 5.5], this has Zariski spectrum isomorphic to (Z/pr)×, acted on
transitively by Gn through the “higher cyclotomic character.”

On the other hand, by the Devinatz–Hopkins–Smith Nilpotence theorem (cf. [CSY18, Corollary
5.1.17]), the functor LK(n)(− ⊗ En) : SpT (n) → SpT (n) is nil-conservative, i.e., it does not send
any rings to zero. Thus, LK(n)(Rf

n,r ⊗ Ri) is nonzero for i = 1, 2, and so the Zariski spectrum of
LK(n)(Rf

n,r ⊗ En) splits into at least two nontrivial Gn-orbits, which is a contradiction. �

4.1.2. Identifying the Target of Θ. Recall that our goal is to show that ΘM (R) is an isomorphism
for every R ∈ CAlg(SpT (n)) and finite abelian p-group M . In this section, we use the chromatic
Fourier transform to abstractly identify Gred

m (R[M ]) with M(R) under the additional assumption
that R admits a primitive pr-th root of unity of height n and M is pr-torsion. Later, we will show
that the existence of such natural isomorphisms forces every T (n)-local commutative ring spectrum
to be p-rigid.

Proposition 4.8. There is an isomorphism of functors

ΨM : Gred
m (−[M ]) ∼−→M ∈ Shvzar(Rf

n,r; Modcn
Z )

which is natural in the finite discrete Z/pr-module M . In particular, for every commutative Rf
n,r-

algebra R and every such M , there is an isomorphism

Gred
m (R[M ]) ≃M(R).
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Proof. By Corollary 4.5, we have for R ∈ CAlgRf
n,r

(SpT (n)) and M a finite discrete Z/pr-module a

natural equivalence of T (n)-local commutative and cocommutative Hopf algebras

F : R[M ] ∼−→ RΩ∞−nM∗

≃ RBnM∗

.

This yields natural equivalences of connective spectra:

Gred
m (R[M ]) := fib(Gm(R[M ])→ Gm(R))

≃ fib(Gm(RBnM∗

)→ Gm(R))

≃ fib(Gm(R)BnM∗

→ Gm(R))

≃ MapS∗
(BnM∗,Gm(R)),

where the last space is the space of pointed maps BnM∗ → Gm(R). Now, Gm(R) is a connective,
(n+ 1)-truncated Z-module by Lemma 4.6, and hence there is a natural equivalence

MapS∗
(BnM∗,Gm(R)) ≃MapModZ

(τ≤n+1C̃∗(BnM∗;Z),Gm(R)),

where C̃∗(BnM∗;Z) is the Z-module of reduced integral homology chains of BnM∗ (that is, Z ⊗
Σ∞BnM∗). Finally, by a classical computation of the homology of Eilenberg–MacLane spaces, we
see that the counit map

C̃∗(BnM∗;Z)→ ΣnM∗ ∈ Modcn
Z

induces an isomorphism in homology up to degree n+ 1, and hence an isomorphism of the trunca-
tions:

τ≤n+1C̃∗(BnM∗;Z) ≃ ΣnM∗ ∈ Modcn
Z .

Combining the above, we obtain a natural equivalence

Gred
m (R[M ]) ≃ HomModcn

Z
(ΣnM∗,Gm(R)) = HomCAlg

R
f
n,r

(SpT (n))(R
f
n,r[ΣnM∗], R).

Finally, the (inverse) Fourier transform gives an isomorphism

F : Rf
n,r[ΣnM∗] ∼−→ (Rf

n,r)Ω∞M

of commutative and cocommutative Hopf algebras in SpT (n) and so we have an equivalence

Gred
m (−[M ]) ≃M ∈ Shvzar(Rf

n,r; Spcn)

of Zariski sheaves of connective spectra over Rf
n,r. Since M (and hence the left-hand side) is discrete

and pr-torsion, this isomorphism admits a unique Z/pr-linear structure, and the result follows.

�

Remark 4.9. The reason that we work with each finite r rather than assuming R has all pr-th
height n roots of unity is that the argument in Section 4.1.3 is by Galois descent. While one has
descent from each Rf

n,r, descent for the maximal higher cyclotomic extension lim−→ rR
f
n,r fails in

heights n ≥ 2, as shown by Burklund, Hahn, Levy, and Schlank in [BHLS23, §6.4].

On the other hand, if one is satisfied with the K(n)-local version of Theorem 4.11 (which suffices for
our applications), one can simply use descent from Lubin-Tate theory where the required Fourier
transform is constructed by Hopkins and Lurie and shown to be an isomorphism for all p-local
π-finite M , not just Z/pr-modules for a fixed r (see [HL13b, Corollary 5.3.26]).
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4.1.3. Θ is a T (n)-local equivalence. We would like to show that ΘM : M → Gred
m (−[M ]) is an

isomorphism for any finite abelian p-group M . It suffices to check this in the case when M is a
Z/pr-module, for every r ≥ 0. Naturally in a finite discrete Z/pr-module M , we have a diagram of
Modcn

Z -valued functors

M Gred
m (−[M ]) M

Θ̃M

ΘM ΨM

≃

where Θ̃M denotes the composite ΨM ◦ ΘM . By Proposition 4.8, ΨM is an isomorphism and thus
showing ΘM is an isomorphism amounts to showing that Θ̃M is an isomorphism. Note that both the
source and target of Θ̃M are discrete and pr-torsion, so we may regard Θ̃M as a natural morphism
of sheaves of ordinary Z/pr-modules.

Proposition 4.10. For every r ≥ 0 and every finite Z/pr-module M , the morphism

Θ̃M : M →M ∈ Shvzar(Rf
n,r; Modcn

Z )

is an equivalence.

Proof. Since (−) is left adjoint to the evaluation atRf
n,r, the natural transformation Θ̃M corresponds

to a morphism M → M(Rf
n,r) of Z/pr-modules. Since Rf

n,r is connected by Lemma 4.7, this can
be identified with a natural transformation θM : M →M (for instance given by evaluating Θ̃M at
Rf

n,r), and it suffices to show that θM is an isomorphism for all M .

Since θM is a natural endomorphism of the identity functor on the category of finite discrete Z/pr-
modules, it is given by multiplication by some scalar a ∈ Z/pr. It suffices to show that a is invertible.
For this, one only needs to show that a is invertible mod p, or equivalently, that θCp : Cp → Cp is
invertible. But θCp is a Z/p-module map, so this amounts to showing θCp is non-zero.

Up to isomorphisms, θCp is identified with ΘCp(Rf
n,r), or even ΘCp(S). This is non-constant by

definition, so θCp cannot be zero.

�

We can now prove the main result of this section.

Theorem 4.11. For n ≥ 1, every T (n)-local commutative ring spectrum is p-rigid.

Proof. Let R be a T (n)-local commutative ring spectrum and let M be a finite abelian p-group.
We wish to show that R is M -rigid. Choose r > 0 for which M is pr-torsion and let R⊗̂Rf

n,r be the
T (n)-local tensor product of R and Rf

n,r. By Proposition 4.10, we have that R⊗̂Rf
n,r is M -rigid.

But the unit map R→ R⊗̂Rf
n,r is a faithful (Z/pr)×-Galois extension in CAlg(SpT (n)), and hence

R ≃ (R⊗̂Rf
n,r)h(Z/pr)×

∈ CAlg(SpT (n)).

Since the embedding CAlg(SpT (n)) → CAlg(Sp) is limit preserving, the same formula holds in
CAlg(Sp). Thus, since p-rigid rings are closed under limits, this implies that R is M -rigid as well
and the result follows. �
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4.2. Chromatic convergence and p-rigidity over S∧
p . Since p-rigidity is closed under limits in

CAlg(Sp), we immediately deduce from Theorem 4.11 that:

Theorem 4.12. Let K ⊂ Sp be the smallest subcategory which is closed under limits and which
contains SpT (n) for any n > 0. Then any R ∈ CAlg(Sp) whose underlying spectrum is in K is
p-rigid.

The class K contains many spectra of interest.

Corollary 4.13. Suppose R ∈ CAlg(Sp) is p-complete and satisfies any of the following conditions:

(1) R is Lf
n-local for some n > 0.

(2) R/p is chromatically convergent (more generally, a retract of its chromatic tower).
(3) R is a Sp-algebra of finite Tor-amplitude (cf. Definition 2.35).

Then R is p-rigid, i.e., there is a canonical isomorphism

Gm(R[M ]) ≃ Gm(R)⊕M(R).

for any finite abelian p-group M .

Proof. Claim (1) follows by induction, starting from the case n = 1 (note that Lf
1 -local and T (1)-

local are the same for p-complete spectra) and using the chromatic fracture squares

(Lf
nR)∧

p
//

��

LT (n)R

��

(Lf
n−1R)∧

p
// (Lf

n−1LT (n)R)∧
p ,

Claim (2) follows immediately because limLnR is in K by limit closure (note that LnR is Lf
n-

local) and the hypothesis implies R→ limLnR is a mod p isomorphism of p-complete spectra and
therefore an isomorphism. The statement about retracts follows because retracts are limits.

Finally, any R satisfying (3) has a finite filtration with quotients of the form Σk(
⊕

i∈I Sp)∧
p . Thus,

by (2), it suffices to see that any spectrum of the form Σk(
⊕

i∈I S/p)
∧
p is chromatically convergent.

Since S/p is a finite spectrum, it has finite projective BP -dimension in the sense of [Bar16, Definition
2.1] (see, e.g., [Bar16, Proposition 2.4]). Since direct sums of projective resolutions are projective
resolutions, this implies that any sum of copies of S/p also has finite projective BP -dimension, and
hence is chromatically complete by [Bar16, Theorem 3.8]10. �

5. Rigidity for free abelian groups

In the previous section, we gave conditions for the maps ΘM (R) : M(R) → Gred
m (R[M ]) to be

isomorphisms in the case that M is a finite abelian p-group — this we called p-rigidity. In this
section, we give analogous results when M ≃ Zk is a free abelian group of finite rank, for a much
more restrictive class of commutative ring spectra R. In fact, our main result is a statement just
for spherical Witt vectors (though we prove more specific statements along the way).

10One can also argue directly using that the chromatic convergence on S is pro-constant on each homotopy group.
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Theorem 5.1 (Theorem 5.18). Let κ be a perfect ring of characteristic p and let Λ be a free abelian
group of finite rank. Then the ring of spherical Witt vectors SW (κ) is p-completely Λ-rigid.11

Proving rigidity for free abelian groups presents new difficulties: first of all, the functor Gred
m (−[Λ])

is no longer limit preserving when Λ is infinite, and second, an analogue of the chromatic Fourier
transform for infinite abelian groups is not known. We therefore take a different approach: we access
the Z-module spectrum Gred

m (R[Λ]) via the quotient map Gred
m (R[Λ])→ Gred

m (R[Λ/p]). Indeed, while
Λ is infinite, the group Λ/p is a finite abelian p-group and therefore fits into the framework of the
previous section. We summarize our strategy as follows:

(1) In §5.1, we show that when R is p-complete of finite Tor-amplitude, the short exact sequence

Λ
[p]
−→ Λ→ Λ/p induces a cofiber sequence

Gred
m (R[Λ]∧p )

[p]∗
// Gred

m (R[Λ]∧p ) // Gred
m (R[Λ/p]) .

(2) We then show in §5.2 that the multiplication by p map of the Z-module Gred
m (R[Λ]∧p ) can

be written as the composite of the map [p]∗ and the map induced by the Frobenius of R.
Thus, when R is perfect, that is, has invertible Frobenius, the map [p]∗ can be replaced by
the multiplication by p map in the above cofiber sequence.

(3) Finally, in §5.3, we use the above exact sequence and our results on p-rigidity to show that
any perfect connective R is Gred

m (−[Λ]∧p )-static, in the sense of Definition 3.16. In view of
Proposition 3.22, this reduces our question to an algebraic problem, which we solve using
our analysis of rank 1 units in δp-rings from §2, completing the proof.

5.1. Exactness of reduced strict units. We begin by carrying out part (1) of our strategy. More
generally, given an exact sequence of abelian groups

0 // M // N // L // 0 ,

we may ask whether the induced sequence

Gred
m (R[M ]∧p ) // Gred

m (R[N ]∧p ) // Gred
m (R[L]∧p )

is a (co)fiber sequence in Modcn
Z . This will turn out to be true under mild hypotheses involving

L-rigidity (Proposition 5.3). We start by analyzing the special case of a split exact sequence.

Proposition 5.2. Let R be a commutative ring spectrum and let M and N be abelian groups. If
R[M ]∧p is p-completely N -rigid and the map R → R[M ]∧p induces a bijection π0 Spec(R[M ]∧p ) ≃
π0 Spec(R), then the assembly map

Gred
m (R[M ]∧p )⊕Gred

m (R[N ]∧p )→ Gred
m (R[M ⊕N ]∧p )

is an isomorphism. Equivalently, the split exact sequence

0 // M // M ⊕N // N // 0 ,

is taken by Gred
m (R[−]∧p ) to a split cofiber sequence.

11We work with p-complete rigidity (cf. Variant 3.13) because for Λ infinite, the spectrum R[Λ] may not be
p-complete even if R is.
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Proof. By Observation 3.6, the assembly map is identified with the map

Gred
m (R[M ]∧p )⊕Gred

m (R[N ]∧p )→ Gred
m (R[M ]∧p )⊕Gred

m (R[M ][N ]∧p )

given by the sum of the identity of Gred
m (R[M ]∧p ) and the map

(∗) Gred
m (R[N ]∧p )→ Gred

m (R[M ][N ]∧p )

induced by applying Gred
m ((−)[N ]∧p ) to the unit map R → R[M ]∧p . It therefore suffices to show

that (∗) is an isomorphism. Since R is a retract of R[M ]∧p , the assumption that R[M ]∧p is p-
completely N -rigid implies that R is p-completely N -rigid as well. Thus, we can identify (∗) with
the corresponding map

N(R)→ N(R[M ]∧p ).

But this is an isomorphism by the assumption that π0 Spec(R[M ]∧p ) ≃ π0 Spec(R). �

Consider now a general exact sequence

0 // M
α // N

β
// L // 0 .

There is a standard procedure to approximate it by split exact sequences. Namely, by forming the
pushout along the map α, we obtain a morphism of exact sequences of the form

0 // M
α //

α

��

N
β

//

δ0

��

L // 0

0 // N
δ1 // N ⊕M N

β′

// L // 0

in which the bottom sequence is split exact12 and the vertical maps are all injections. The left square
in the diagram is the first part of the Čech nerve of the map α, as defined in Definition 3.7. In fact,
using the descent result of Proposition 3.8, we can reduce the exactness question for Gred

m (R[−]∧p )
to the split case, and obtain the following result.

Proposition 5.3. Let R be a p-complete commutative ring spectrum and let

0 // M
α // N

β
// L // 0

be an exact sequence of abelian groups. Assume that for every ℓ ∈ N:

• R[N ⊕ L⊕ℓ]∧p is L-rigid.
• The unit map R→ R[N ⊕ L⊕ℓ]∧p induces a bijection

π0 Spec(R[N ⊕ L⊕ℓ]∧p ) ≃ π0 Spec(R).

Then, the null sequence

(∗) Gred
m (R[M ]∧p ) // Gred

m (R[N ]∧p ) // Gred
m (R[L]∧p )

is a cofiber sequence in Modcn
Z .

12A splitting is given by sending ℓ ∈ L to (n, −n) ∈ N ⊕M N for any lift β(n) = ℓ.
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Proof. We start by showing the weaker claim that this sequence is a fiber sequence in Modcn
Z .

Consider the Čech nerve functor C• : (ModZ)∆1

→ Mod∆
Z from Definition 3.7. Applying the com-

position

Gred
m (R[C•(−)]∧p ) : (Modcn

Z )∆1 C•

−−→ (Modcn
Z )∆ G

red
m (R[−])
−−−−−−−→ (Modcn

Z )∆

to the exact sequence of morphisms of abelian groups

0 // M
α //

α

��

N
β

//

δ0

��

L // 0

0 // N
δ1 // N ⊕M N

β′

// L // 0

from above, we obtain a null sequence in (Modcn
Z )∆

(∗∗) Gred
m (R[C•(α)]∧p ) // Gred

m (R[C•(δ0)]∧p ) // Gred
m (R[C•(idL)]∧p ).

Since the three maps α, δ0 and idL are injections, we deduce from Proposition 3.8 that the sequence
(∗) from the statement of the proposition is the limit of the sequences (∗∗) over ∆. Since the functor

lim
∆

: (Modcn
Z )∆ → Modcn

Z

is limit preserving (and in particular preserves fiber sequences), it suffices to show that for every
ℓ ∈ N the sequence

(∗ℓ) Gred
m (R[Cℓ(α)]∧p ) // Gred

m (R[Cℓ(δ0)]∧p ) // Gred
m (R[Cℓ(idL)]∧p )

is a fiber sequence in Modcn
Z . We do this by verifying the conditions of Proposition 5.2: note that

the exact sequences

0 // Cℓ(α) // Cℓ(δ0) // Cℓ(idL) // 0

are split, as they are pushouts of the split exact sequence

0 // N // N ⊕M N // L // 0

along the injections N → Cℓ(α). In particular, this means that for ℓ = 0, 1, . . . , we obtain that
Cℓ(δ0) ≃ N ⊕ L⊕ℓ, and we clearly have Cℓ(idL) ≃ L. Therefore, our hypotheses exactly check the
conditions of Proposition 5.2. It follows that (∗ℓ) are fiber sequences, and so (∗) is as well.

To show that (∗) is in fact a cofiber sequence, observe that by our assumption that R[N ]∧p is
p-completely L-rigid, the same holds for R and hence we have an isomorphism

Gred
m (R[L]∧p ) ≃ L(R)

fitting into a commutative square

M(R)

��

//

Θ̂M

��

L(R)

Θ̂L
≀

��

π0G
red
m (R[M ]∧p ) // π0G

red
m (R[L]∧p )

.

Since the upper map is surjective, we deduce that the same holds for the bottom map, and hence
that (∗) is a cofiber sequence in Modcn

Z . �
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We will be particularly interested in Proposition 5.3 for the exact sequence

0 // Λ
[p]

// Λ // Λ/p // 0 .

To check the conditions of the proposition, we need the following:

Lemma 5.4. Let R be a p-complete commutative ring spectrum and let M be a finitely generated
abelian group which contains no elements of order prime to p. Then, the unit map R → R[M ]∧p
induces a bijection

π0 Spec(R[M ]∧p ) ≃ π0 Spec(R)

Proof. As both sides depend only on π0, we can immediately reduce to R discrete. Moreover, the
rings are derived p-complete, so we can in fact reduce modulo p and further assume that R is a ring
of characteristic p (in which case we can drop the extra p-completion).

Write M = M ′ ⊕ Zk where M ′ is a finite p-group. Then R[M ] is a nil-thickening of R[Zk], so it
suffices to consider the case M ′ = 0, and in fact we can assume k = 1 and R is reduced. But here,
one sees by inspection that any idempotent in R[t±1] is inside R, and the conclusion follows. �

We are ready to prove the main result of this subsection:

Proposition 5.5. Let R be a p-complete commutative ring spectrum of finite Tor-amplitude, let Λ
be a free abelian group of finite rank (i.e. Λ ≃ Zk), and let [p] : Λ→ Λ denote the multiplication by
p map. Then, the null sequence

Gred
m (R[Λ]∧p )

[p]∗
// Gred

m (R[Λ]∧p ) // Gred
m (R[Λ/p])

is a cofiber sequence.

Proof. In this case, R[Λ⊕(Λ/p)⊕ℓ]∧p is also of finite Tor-amplitude and hence p-rigid by Corollary 4.13.
In particular, it is p-completely Λ/p-rigid. The result now follows by combining this with Lemma 5.4
and Proposition 5.3. �

5.2. The Frobenius on strict units of group algebras. We turn to (2) in our strategy; that
is, we relate the map induced by [p] : Λ → Λ to the multiplication by p map on the spectrum
Gred

m (R[Λ]∧p ). More specifically, for R p-complete of finite Tor-amplitude, we show:

• The Frobenius map (cf. Section 2.4) of the group algebra R[Λ]∧p (“absolute Frobenius”) is
the composite of [p]∗ : R[Λ]∧p → R[Λ]∧p (“geometric Frobenius”) and the Frobenius ϕR of R
(“arithmetic Frobenius”, cf. §2.4).
• The absolute Frobenius map ϕR[Λ]∧

p
acts on strict units via raising to the p-th power.

It will follow that when R is perfect (i.e., ϕR is an isomorphism), the map [p]∗ : Gred
m (R[Λ]∧p ) →

Gred
m (R[Λ]∧p ) differs from multiplication by p by an isomorphism. We therefore obtain a variant of

Proposition 5.5 with [p]∗ replaced by p : Gred
m (R[Λ]∧p )→ Gred

m (R[Λ]∧p ).

We begin with a lemma on the compatibility of Frobenius with tensor products. Let ⊗̂ denote the
p-completed tensor product in Sp∧

p . If R and S have finite Tor-amplitude, then so does R⊗̂S, so
we have a Frobenius ϕ

R⊗̂S
.

Lemma 5.6. Let R and S be p-complete commutative ring spectra of finite Tor-amplitude. Then
the two maps R⊗̂S → R⊗̂S given by ϕR⊗̂ϕS and ϕ

R⊗̂S
are homotopic.
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Proof. Immediate from the diagram (with completions left implicit for clarity)

(R⊗ S)tCp

R⊗ S RtCp ⊗ StCp R ⊗ S,

frobR⊗S

frobR ⊗ frobS

trivR⊗S

trivR ⊗ trivS

where the triangles arise from frob and triv being lax monoidal natural transformations [NS18,
Section I.3]. �

As a result, we obtain a formula for the Frobenius of group algebras.

Proposition 5.7. Let R be a p-complete commutative ring spectrum of finite Tor-amplitude and
let M be an abelian group. Let [p] : R[M ]∧p → R[M ]∧p be the morphism induced by the multiplication
by p endomorphism of M . Then, the Frobenius morphism ϕR[M ]∧

p
is given by the composite

R[M ]∧p
ϕR[M ]∧

p
−−−−−→ R[M ]∧p

[p]
−→ R[M ]∧p .

In particular, on π∗R[M ]∧p it is given by

ϕR[M ]∧
p

(
∑

m∈M

rm[m]

)
=
∑

m∈M

ϕR(rm)[pm].

Proof. Since R[M ]∧p ≃ R⊗̂(Sp[M ]∧p ), the compatibility of Frobenius with tensor products (Lemma 5.6)
reduces the general case to the special case R = Sp. Since ϕSp is the identity ([NS18, Example
IV.1.2(ii)]), it suffices to see that ϕSp[M ]∧

p
≃ [p]. This follows, by passing to p-completions, from the

identification of the Tate diagonal of S[M ] as in [NS18, Lemma IV.1.3]. �

To identify the effect of these maps on strict units, we use the following result of [Car22].

Proposition 5.8 ([Car22, Proposition 4.5]). Let R be a p-complete commutative ring spectrum of
finite Tor-amplitude and let ϕ := ϕR be its Frobenius map. Then the map

ϕ∗ : Gm(R)→ Gm(R)

is homotopic to the multiplication by p map on the Z-module spectrum Gm(R).

Combining this with Proposition 5.7, we obtain the following statement for group algebras:

Corollary 5.9. Let R be a commutative ring spectrum of finite Tor-amplitude and let M be an
abelian group. Denote by [p] : R[M ]∧p → R[M ]∧p the map induced by multiplication by p on M .
Then there is a commutative triangle

Gred
m (R[M ]∧p )

[p]∗

''PP
PP

PP
PP

PP
PP

Gred
m (R[M ]∧p )

p
//

(ϕR)∗

77♦♦♦♦♦♦♦♦♦♦♦♦

Gred
m (R[M ]∧p ).

We will be particularly interested in rings R satisfying the following additional hypothesis:
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Definition 5.10. A p-complete commutative ring spectrum R is perfect if frob : R → RtCp is an
isomorphism.

Example 5.11. If κ is a (discrete) perfect Fp-algebra, then the ring of spherical Witt vectors SW (κ)

is perfect. More generally, any algebra of the form (SW (κ))A, for a finite complex A, is perfect.

The notion of a perfect commutative ring spectrum was previously defined in [Car22] and [Yua22]
in slightly different ways, but the two definitions agree (and agree with this one) for rings of finite
Tor-amplitude.

Remark 5.12. IfR is perfect and p-completely flat, then π0R/p is a perfect ring andR ≃ SW (π0R/p).

For a perfect commutative ring spectrum R, Corollary 5.9 implies:

Proposition 5.13. Let R be a perfect p-complete commutative ring spectrum of finite Tor-amplitude
and let Λ be a free abelian group of finite rank. Then there is a cofiber sequence in Modcn

Z

Gred
m (R[Λ]∧p )

p
// Gred

m (R[Λ]∧p ) // Gred
m (R[Λ/p]).

Proof. Combine Proposition 5.5 with Corollary 5.9 and the fact that (ϕR)∗ is an isomorphism.

�

This gives us p-completed Λ-rigidity up to p-completion:

Corollary 5.14. Let R be a perfect p-complete commutative ring spectrum of finite Tor-amplitude
and let Λ be a free abelian group of finite rank. Then the map

Θ̂Λ : Λ(R)→ Gred
m (R[Λ]∧p )

induces an isomorphism after p-completion.

Proof. By definition of p-completion, it suffices to show that the induced map

Λ(R)/p→ Gred
m (R[Λ]∧p )/p

is an isomorphism. But Λ(R)/p ≃ Λ/p(R) and by Proposition 5.13, we have Gred
m (R[Λ]∧p )/p ≃

Gred
m (R[Λ/p]), so the statement follows from Corollary 4.13. �

5.3. Staticity and rigidity for free abelian groups. We now turn to part (3) of our plan,
completing the proof of rigidity for free abelian groups.

Remark 5.15. At this point, we restrict to R = SW (κ) for clarity of proofs, despite the only
critical additional hypothesis being that R is connective. While this restriction appears dramatic,
we expect that any p-complete perfect connective ring R is of the form SW (κ) (though we do not
pursue this further here), so we do not really lose any generality.

The main technique is the notion of staticity introduced in §3.3. The following statement asserts
that the space of reduced strict units in SW (κ)[Λ]∧p is a subset of the reduced (strict) units of its π0.
This will reduce the computation of strict units to the algebraic question of finding rank 1 units in
the δp-ring W (κ)[Λ]∧p .

Proposition 5.16. Let κ be a perfect Fp-algebra and Λ be a free abelian group of finite rank. Then
SW (κ) is Gred

m (−[Λ]∧p )-static.
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Proof. For a connective spectrum X , let

VpX ≃ lim←−−(. . .
p
−→ X

p
−→ X

p
−→ X) ∈ Spcn,

and consider the fiber sequence of connective spectra

VpG
red
m (R[Λ]∧p )→ Gred

m (R[Λ]∧p )→ Gred
m (R[Λ]∧p )∧

p .

By Lemma 3.18(2), the statement reduces to the following two facts:

(1) SW (κ) is VpG
red
m (−[Λ]∧p )-static. Since Gred

m (−) is a summand of Gm(−), it suffices to see
that SW (κ)[Λ]∧p is VpGm-static. But this follows from Proposition 3.20 and the fact that
multiplication by p is invertible on VpGm ≃ Spec(S[Z[1/p]]).

(2) SW (κ) is Gred
m (−[Λ]∧p )∧

p -static. To see this, we consider the commutative square

Λ(SW (κ))∧
p

Θ̂ //

��

Gred
m (SW (κ)[Λ]∧p )∧

p

��

Λ(W (κ))∧
p

Θ̂ // Gred
m (W (κ)[Λ]∧p )∧

p .

We wish to show that the right vertical map is an inclusion. The left vertical map is clearly
an isomorphism, and by Corollary 5.14, the upper horizontal map is also an isomorphism.
Thus, since the bottom horizontal map is an injection of discrete abelian groups (and in
particular an inclusion), the right vertical map is an inclusion as well.

�

We now turn to the main result of this section, regarding rigidity for free abelian groups.

Proposition 5.17. The image of truncation Gred
m (SW (κ)[Λ]∧p ) → Gred

m (W (κ)[Λ]∧p ) is contained in
the image of

Θ̂W (κ) : Λ(W (κ))→ Gred
m (W (κ)[Λ]∧p ).

Proof. Any (reduced) strict unit in SW (κ)[Λ]∧p is classified by a map from S[t±1]. By Proposition 2.41,

the induced map on π0 is naturally a map of δp-rings and in particular, the image of t ∈ G
δp,red
m (Zp[t±1])

is a reduced rank 1 unit, i.e., an element of Gδp,red
m (W (κ)[Λ]∧p ). The statement then follows from

Theorem 2.30. �

Theorem 5.18. Let κ be a perfect Fp-algebra and let Λ be a free abelian group of finite rank. Then
SW (κ) is p-completely Λ-rigid.

Proof. Applying Proposition 3.22, the statement follows from Proposition 5.16 and Proposition 5.17.
�

Combining this with Corollary 4.13 and Proposition 5.2, we obtain:

Corollary 5.19. Let κ be a perfect Fp-algebra and M be a finitely generated abelian group with no
prime to p torsion. Then SW (κ) is M -rigid.
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6. Strict units and maps of spherical group algebras

In this final section, we finish proving the main results about strict units and maps between spherical
group rings. We handle the p-complete case in §6.1 and the integral case in §6.2.

6.1. Group algebras over spherical Witt vectors. In the p-complete case, we have:

Theorem 6.1. Let M be a finitely generated abelian group and let κ be a perfect ring of charac-
teristic p. Then applying π0 induces an isomorphism

Gm(SW (κ)[M ]∧p ) ∼−→ Gδp
m (W (κ)[M ]∧p ).

Proof. When M is a finite group of order prime to p, we have SW (κ)[M ]∧p ≃ SW (κ[M ]) and so the
result follows from [Car22, Corollary 4.15] and Example 2.6.

In general, we may split M as M = M1 ⊕M2 where M1 is finite of order prime to p and M2 has
only p-primary torsion part. We have compatible splittings

Gm(SW (κ)[M ]∧p ) ≃ Gm(SW (κ)[M1]∧p )⊕Gred
m (SW (κ)[M1][M2]∧p )

Gδp
m(W (κ)[M ]∧p ) ≃ Gδp

m (W (κ)[M1]∧p )⊕Gδp,red
m (W (κ)[M1][M2]∧p ),

where the second summand denotes the rank 1 units which map to 1 in W (κ)[M1]×. By the previous
special case, the π0 map identifies the first summands, and so it suffices to show that

Gred
m (SW (κ)[M1][M2]∧p )→ Gδp,red

m (W (κ)[M1][M2]∧p )

is an isomorphism. Replacing κ by κ[M1], we may further assume without loss of generality that
M1 = 0. But here, the result follows by Proposition 2.29, Corollary 5.19, and the evident commu-
tativity of the diagram

M(SW (κ))

≀

��

∼ // Gred
m (SW (κ)[M ]∧p )

��

M(W (κ)) ∼ // G
δp,red
m (W (κ)[M ]∧p ).

�

Corollary 6.2. Let p be a prime. Then the functor π0 : CAlgM → δ̂−Ring of Proposition 2.41
is fully faithful on the subcategory of rings of the form SW (κ)[M ]∧p , where κ is a perfect ring of
characteristic p and M is a finitely generated abelian group.

Proof. Consider two such objects corresponding to (κ,M) and (κ′,M ′). We have a map of fiber
sequences of spaces

MapSW (κ)
(SW (κ)[M ]∧p , SW (κ′)[M ′]∧p ) Mapδ̂

W (κ)/(W (κ)[M ]∧p ,W (κ′)[M ′]∧p )

MapCAlg(SW (κ)[M ]∧p , SW (κ′)[M ′]∧p ) Mapδ̂(W (κ)[M ]∧p ,W (κ′)[M ′]∧p )

MapCAlg(SW (κ), SW (κ′)[M ′]∧p ) Mapδ̂(W (κ),W (κ′)[M ′]∧p ).
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The bottom horizontal map is an isomorphism because even the composite with the inclusion into
Map(W (κ),W (κ′)[M ′]∧p ) is an isomorphism, by the universal property of spherical Witt vectors
[Lur18, Example 5.2.7]. But the top horizontal map is also an isomorphism by considering Z-module
maps from M into the equivalence of Theorem 6.1. Therefore, the middle map is an equivalence,
and the desired fully faithfulness follows.

�

6.2. Group algebras over the sphere. Over the sphere spectrum, we can describe the mapping
spaces between group algebras in a particularly simple way.

Proposition 6.3. Let M be a finitely generated abelian group. Then S[M ] is Gm-static, i.e.

Gm(S[M ])→ Gm(Z[M ])

is an inclusion of connective Z-module spectra. Consequently, the same holds for Gred
m (S[M ]).

Proof. Since Gm is representable, the collection of Gm-static connective commutative ring spectra
are closed under limits which are preserved by π0 by Lemma 3.19. By the arithmetic fracture square

S[M ]
∏

p S[M ]∧p

S[M ]⊗Q (
∏

p S[M ]∧p )⊗Q,

it suffices to show that S[M ]∧p is Gm-static for all p and that S[M ]⊗Q and (
∏

p S[M ]∧p )⊗Q are Gm-
static. The latter two rings are discrete and hence static, and the staticity of S[M ]∧p is Theorem 6.1.
The statement about Gred

m (S[M ]) follows immediately, as Gred
m is a retract of Gm. �

To prove the rigidity of the sphere in general, it remains to establish the following:

Proposition 6.4. Let M be a finitely generated abelian group. The image of the inclusion Gred
m (S[M ])→

Gred
m (Z[M ]) is contained in the image of the map ΘM : M → Gred

m (Z[M ]).

Proof. Since π0S[t±1] ≃ Z[t±1] as δ̂-rings, the image of Gred
m (S[M ]) is contained in the reduced rank

1 units, i.e. in Gδ̂
m(Z[M ]) ⊆ Gm(Z[M ]). Hence, the result follows from Theorem 2.34. �

We are finally ready to prove our main theorem.

Theorem 6.5. Let M be a finitely generated abelian group. Then the natural map

Θ : M → Gm(S[M ])

is an isomorphism.

Proof. Since by [Car22, Theorem B, Remark 1.3] we have Gm(S) ≃ 0, it suffices to show that
S is M -rigid. By Proposition 6.3, S is M -static, and by Proposition 6.4, the map Gred

m (S[M ]) →
Gred

m (π0S[M ]) lands in the image of Θ. Hence, the result follows from Proposition 3.22(2). �

Corollary 6.6. The spherical group ring functor S[−] : Abfg → CAlg is fully faithful.
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Proof. We want to see that for finitely generated abelian groups M and N , the natural map

HomAbfg(N,M)→ HomCAlg(S[N ], S[M ])

is an isomorphism. This follows by taking Z-module maps fromN to the equivalence of Theorem 6.5.
�
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