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Abstract

The aim of this work is to deal with a discontinuous Hamilton-Jacobi equation in

the whole euclidian N -dimensional space, associated to a possibly unbounded optimal

control problem. Here, the discontinuities are located on a hyperplane and the typical

questions we address concern the existence and uniqueness of solutions, and of course

the definition itself of solution. We consider viscosity solutions in the sense of Ishii. The

convex Hamiltonians are associated to a control problem with specific cost and dynamics

given on each side of the hyperplane. We assume that those are Lipschitz continuous

but the main difficulty we deal with is that they are potentially unbounded, as well as

the control spaces. Using Bellman’s approach we construct two value functions which

turn out to be the minimal and maximal solutions in the sense of Ishii. Moreover, we

also build a whole family of value functions, which are still solutions in the sense of Ishii

and connect continuously the minimal solution to the maximal one.

Keywords— Optimal control, discontinuous dynamic, Hamilton-Jacobi-Bellman Equation, vis-

cosity solutions, Ishii Problem.

1 Introduction

Inspired by the works of Kruzhkov, Viscosity Solutions’ theory has been developed and applied

to a wide extent since its birth in the early 80’s. We refer the reader to [7, 9] for the initial papers

on the subject, the famous User’s guide [8] and the book of Barles [2] for a more complete overview

of the theory.
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This theory is well-established and now quite stable in the case of continuous Hamiltonians, but

dealing with discontinuities has always been difficult due to the pointwise nature of the concept of

solution. And apart from several specific cases, even dealing with simple discontinuous problems

has not been fully addressed until recently. We refer to the book [6] for a widespread introduction,

information and results about discontinuous Hamilton-Jacobi problems.

In [3] G. Barles, A. Briani and E. Chasseigne study discontinuous Hamilton-Jacobi-Bellman

equations in R
N , associated to an infinite horizon control problem where the discontinuities are

located on the hyperplane H = {xN = 0}. A more global approach can be found in [5, 6] but here

we focus on this hyperplane, stationary situation.

Before presenting the approach in [3], let us already mention that so far, the literature on

discontinuous Hamilton-Jacobi-Bellman equations only focuses on bounded control sets, bounded

dynamics and costs. One of the main goals of the present paper is to bridge the gap to the unbounded

case, using some specific hypotheses.

The bounded case — In order to give a quick overview of the results in [3] and introduce some

notations and concepts that we use throughout this work, let us decompose the space into three

parts R
N = Ω1 ∪ H ∪ Ω2, where Ω1 = {x ∈ R

N | xN > 0} and Ω2 = {x ∈ R
N | xN < 0}, H being

the hyperplane separating Ω1 and Ω2: H = {x ∈ R
N | xN = 0}. We will take A1, A2 ⊂ R

d to be

the sets of controls. In each domain Ωi, a control problem is defined through a dynamic function

bi : Ωi × Ai → R
N and a cost function li : Ωi × Ai → R. As in [3], for the moment the reader may

assume that each Ai is compact and the (bi, li) are at least continuous and bounded on Ωi ×Ai.

In order to define a value function, it is first necessary to define trajectories that may cross or

stay on H, hence we also need to define the dynamics and cost on H. Following [3], we set A :=

A1×A2× [0, 1] and use the control set formed by bounded measurable functions A := L∞(0,∞;A).

Then on H we introduce a relaxed dynamic bH : H × A → R
N given by a convex combination of

b1 and b2 through a parameter µ ∈ [0, 1], and similarly a cost function lH : H × A → R given by a

convex combination of l1 and l2. More precisely, bH and lH are defined as

bH(x, a) = µb1(x, α1) + (1− µ)b2(x, α2), x ∈ H, a = (α1, α2, µ) ∈ A,

lH(x, a) = µl1(x, α1) + (1− µ)l2(x, α2), x ∈ H, a = (α1, α2, µ) ∈ A.

Following this construction, a global formulation of trajectories can be obtained by solving

a differential inclusion, we detail this approach in the Preliminaries section below. As shown in

[3], any trajectory X(·) solving the differential inclusion can be associated to a control function

a = (α1, α2, µ) ∈ A := L∞(0,∞;A) such that

Ẋ (t) = b1
(

X(t), α1(t)
)

1{X(t)∈Ω1} + b2
(

X(t), α2t)
)

1{Xx(t)∈Ω2}

+ bH
(

X(t), a(t)
)

1{Xx(t)∈H} for a.e. t > 0 .
(1.1)

Denoting by τA(x) the set of such controlled trajectories, (X, a), starting from X(0) = x, it is
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natural to introduce the following value function

U−
A (x) := inf

(X,a)∈τA(x)

(
∫ ∞

0
l(X(t), a(t))e−λtdt

)

(1.2)

where l stands for the global cost: l = l1, l2 or lH depending on the location. Introducing in each Ωi

the Hamiltonian

Hi(x, u, p) = sup
αi∈Ai

{

λu− bi(x, αi) · p− li(x, αi)
}

,

it is clear enough that the value function satisfies Hi(x, u,Du) = 0 in each Ωi—in the viscosity

sense—, a fact which can be actually obtained by performing the standard analysis through the

dynamic programming principle locally inside each Ωi.

It remains to understand the situation on H and, as the viscosity theory suggests, it turns out

that the value function U−
A satisfies the Ishii conditions on H, leading to a full set of (in)equations:


















H1 (x, u,Du) = 0 in Ω1 ,

H2 (x, u,Du) = 0 in Ω2 ,

min{H1 (x, u,Du) ,H2 (x, u,Du)} ≤ 0 on H ,

max{H1 (x, u,Du) ,H2 (x, u,Du)} ≥ 0 on H .

(1.3)

Notice that on H, only the min-inequality is required for a subsolution in the sense of Ishii, while

only the max-one is required for a supersolution. However, the special solution U−
A satisfies a comple-

mented (N − 1)-dimensional inequation on H: HT (x, u,Du) ≤ 0, where the tangential Hamiltonian

is defined by

HT (x, φ,DHφ) = sup
(α1,α2,µ)∈A0(x)

{

λφ(x)− bH(x, α1, α2, µ) ·DHφ(x)− lH(x, α1, α2, µ)
}

. (1.4)

Here, A0(x) is the set of controls that allow the trajectory to remain on H, that is, the controls such

that bH(x, a) · eN = 0 and

DHφ (x) =

(

∂φ

∂x1
, . . . ,

∂φ

∂xn−1

)

.

Adding the tangential subsolution condition HT (x, u,Du) ≤ 0 to problem (1.3) allows to prove a

comparison result between sub and supersolutions, leading to the fact that U−
A is the unique Ishii

solution satisfying HT ≤ 0.

Including the subsolution condition HT ≤ 0 leads to the notion of stratified solutions which

is the good notion of solution for treating (1.3), meaning that a complete comparison result between

sub and supersolutions holds in this framework.

Regular dynamics, extremal Ishii solutions — The precise analysis of the situation per-

formed in [3] shows that at least two specific value functions can be built, the “natural” one being

of course U−
A . But the authors also build a second solution in the sense of Ishii by introducing the

regular dynamics on H, which are defined as bH = µb1 + (1− µ)b2 satisfying

∀x ∈ H , b1(x, α1) · eN ≤ 0 and b2(x, α2) · eN ≥ 0 .
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Intuitively, such dynamics are maintaining the trajectory on H by “pushing” from either side of

the hyperplane, contrary to singular dynamics which corresponds to an equilibrium obtained by

“pulling” from both sides.

Defining the set of regular trajectories as

τ regA (x) :=
{

(X(·), a(·)) ∈ τA(x) and for a.e. t ∈ EH, bH(X(t), a(t)) is regular
}

(1.5)

where EH := {t : X(t) ∈ H}, allows to construct a second value function:

U+
A (x) := inf

(X,a)∈τ regA (x)

(
∫ ∞

0
l(X(t), a(t))e−λtdt

)

. (1.6)

As shown in [3], it turns out that U−
A is the minimal (super)solution of the Ishii problem (1.3), while

U+
A is the maximal (sub)solution. Of course, U−

A is the unique stratified solution.

Let us mention finally that in [4] the authors extend the results in several directions by considering

general domains and finite horizon control problems under weaker controllability assumptions. An

even more global approach is performed in [6] but the authors always consider mainly bounded

control sets, bounded dynamics and costs functions, apart from some remarks on some unbounded

cases like KPP-type problems.

Main results of the paper — As was said above, in [3, 4, 6] the Ishii problem (1.3) is treated in

the context of compact control space and bounded cost-dynamics, restricting the study to sublinear

Hamiltonians. In this work one of the main objectives is to verify which results of [3], [4] are still

valid when dealing with non-compact controls spaces and unbounded cost-dynamics.

The clear motivation for considering non-compact controls spaces is that some important Hamil-

tonians can only be approached in this context, like the following typical quadratic example

Hi(x, u,Du) = λu+ ci|Du|
2 − fi(x) , |fi(x)| ≤ C|x|2 . (1.7)

While the literature related to superlinear Hamiltonians is extensive — see for example [1], [10], [11]

[12] for control related topics —, dealing with discontinuities in non-compact settings is far from

being easy.

So, in this work we consider unbounded sets of controls, typically Ai = R
d, and only locally

bounded cost-dynamic functions (bi, li). In this framework, a central hypothesis in our paper is the

following:

lim
|αi|→∞

li(y, αi)

1 + |bi(y, αi)|
= ∞, locally uniformly with respect to y. (1.8)

The key idea here is that the cost associated to large dynamics is so big that such strategies are

not optimal. This allows to recover some compactness of the trajectories and the associated con-

trols. This type of hypothesis already appears in [1] where the reader will find counter-examples to

uniqueness when it is not satisfied. Using (1.8) allows to reduce several arguments to the case of
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bounded control sets where we can use the results of [3] even if not all the arguments are so easy to

handle. The main results of the paper can be summarized as:

Assuming (1.8), a global comparison result holds for (1.3) between stratified sub and supersolutions.

As a consequence, U−
A is the unique stratified solution of this problem.

We also build a whole family of value functions, which are still solutions in the sense of Ishii and

connect continuously the minimal solution to the maximal one. We have already commented that

problems with discontinuities, in general, do not have uniqueness. In fact, U+
A and U−

A are viscosity

solutions of the Ishii problem, but they are not the only ones. We build a family, Uη
A, of locally

Lipschitz Ishii solutions. Under appropriate assumptions we obtain that the limit when η goes to

zero is U+
A and when η goes to infinite is U−

A . This family can then be seen as a continuous path

connecting U−
A to U+

A . Such solutions are built on the relaxed regular trajectories

τηA(x) :=
{

(

X(·), a(·)
)

∈ τA(x) such that for a.e. t ∈ EH ,

b2(X(t), a(t)) · eN ≥ −η, b1(X(t), a(t)) · eN ≤ η
}

.
(1.9)

These η−trajectories may not be regular, but they are almost regular if η is close to 0. On the

contrary, if η is close to +∞, we recover most of the trajectories. The η-value function is then

defined as one can expect:

Uη
A(x) := inf

(X,a)∈τηA(x)

(
∫ ∞

0
l(X(t), a(t))e−λtdt

)

. (1.10)
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2 Preliminaries

Let us begin with some basic notation, already introduced in the introduction: throughout

this paper, A1, A2 ⊂ R
d are (non compact) metric spaces which are both closed and convex, and

Ω1,Ω2,H ⊂ R
N are defined by

Ω1 = {x ∈ R
N : xN > 0} , Ω2 = {x ∈ R

N : xN < 0} , H = {x ∈ R
N : xN = 0} .

We assume that for i = 1, 2 we are given a pair of dynamic-cost functions bi, li defined on Ωi × Ai

and given a fixed parameter λ > 0 (the actualization factor), we define for x ∈ Ωi the Hamiltonian

Hi(x, u, p) := sup
αi∈Ai

{

λu− b(x, αi) · p− li(x, αi)
}

.

More precise assumptions on (bi, li) are given below.
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2.1 Main assumptions

Many arguments in this paper are based on compact approximations of the control sets Ai. To

this end, let us introduce a sequence of compact sets A1
i ⊂ A2

i ⊂ · · · ⊂ Am
i · · · ⊂ Ai such that

Ai =
⋃

m∈N

Am
i , (2.1)

We consider also all the definitions related to the control sets Am
i : the associated Hamiltonians

Hm
1 ,H

m
2 , the Ishii problem, as well as the value functions U+

Am , U−
Am and the tangential Hamiltonian

Hm
T which will be defined below.

Let us now state the main hypotheses on the dynamic and cost functions that we use.

(HA) for i = 1, 2, (x, αi) 7→ li(x, αi) and (x, αi) 7→ bi(x, αi) are continuous functions with respect

to (x, αi); bi is Lipschitz continuous with respect to αi, uniformly for x in compact subsets

of RN ;

(HB) for i = 1, 2, any x ∈ R
N and m ∈ N∗, the set {(bi(x, αi), li(x, αi)) : αi ∈ Am

i } is closed and

convex. Moreover, there exists δ > 0 such that

Bδ(0) ⊂ BAm
i (x), where BAm

i (x) := {bi(x, αi) : αi ∈ A
m
i } .

(HC) for i = 1, 2, li : R
N ×Ai → R and bi : R

N ×Ai → R
N satisfy

lim
|αi|→∞

|bi(x, αi)| = +∞ and lim
|αi|→∞

li(x, αi)

1 + |bi(x, αi)|
= +∞ ,

uniformly with respect to x in compact subsets of RN ;

Hypothesis (HA) is quite natural in this non-compact setting. Notice that the total controllability

assumption (HB) is also automatically satisfied by Ai, i = 1, 2. More important is hypothesis (HC)

which states that if the dynamic grows too much, the associated cost gets very high. Hence, the

associated trajectories with high cost are not the ones that are important in the definition of the

value function, or the dynamic programming principle.

2.2 The control problem

Following [3], global trajectories of the control problem are defined by solving the following

differential inclusion
{

Ẋ(t) ∈ B
(

X(t)
)

for a.e. t ∈ (0,∞) ,

X(0) = x for x ∈ R
N ,

(2.2)

7



where the dynamic set-valued map is defined by

B(x) :=











B1(x) :=
{

b1(x, α1) : α1 ∈ A1

}

, if xN > 0 ,

B2(x) :=
{

b2(x, α2) : α2 ∈ A2

}

, if xN < 0 ,

co
(

B1(x) ∪ B2(x)
)

if xN = 0 ,

(2.3)

co(·) being the convex hull. We then say that X(·) is a trajectory if it is a Lipschitz continuous

function that satisfies the following differential inclusion

Ẋ(t) ∈ B
(

X(t)
)

for a.e. t ∈ (0,∞) . (2.4)

To each solution X(·) of the differential inclusion, we can associate an extended control a(·) =

(α1, α2, µ)(·) ∈ A := A1 × A2 × [0, 1] so that (X, a) becomes a controlled trajectory of the system.

More precisely, introducing the following notations

E1 := {t : X(t) ∈ Ω1}, E2 := {t : X(t) ∈ Ω2}, EH := {t : X(t) ∈ H} ,

then the result is the following. For more details see [3, Th. 2.1].

Theorem 2.1. For each solution X(·) of the differential inclusion (2.4), there exists a control

a(·) = (α1(·), α2(·), µ(·)) ∈ A := L∞
loc(0,∞;A) such that

Ẋ(t) = b1
(

X(t), α1(t)
)

1{X(t)∈Ω1} + b2
(

X(t), α2(t)
)

1{X(t)∈Ω2}

+ bH
(

X(t), a(t)
)

1{X(t)∈H} for a.e. t > 0.
(2.5)

Moreover,

bH
(

X(t), a(t)
)

· eN = 0 for a.e. t ∈ EH. (2.6)

The set of trajectories starting from x ∈ R
N can then be defined by

τA(x) :=
{

(

X(·), a(·)
)

∈ Lip(R+;Rn)×A satisfying (2.5) and X(0) = x
}

, (2.7)

and for any x ∈ H, we define A0(x) :=
{

a ∈ A : bH(x, a) · eN = 0
}

, the set of controls maintaining

the trajectory on H.

As we saw in the introduction, regular dynamics and trajectories are also of interest. They are

defined as follows:

Definition 2.2.

(i) Given x ∈ H and a = (α1, α2, µ) ∈ A0(x), we say that a = (α1, α2, µ) is a regular control if

b1(x, α1) · eN ≤ 0 and b2(x, α2) · eN ≥ 0 . (2.8)

We denote by Areg
0 (x) the subset of controls in A0(x) which are regular.

(ii) If x ∈ H and α ∈ Areg
0 (x), we say that the dynamic bH(x, a) is regular.
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(iii) The set of regular trajectories is defined as

τ regA (x) :=
{

(

X(·), a(·)
)

∈ τA(x) : for a.e. t ∈ EH , bH
(

X(t), a(t)
)

is regular
}

. (2.9)

We will also use some intermediate set between the set of regular and general trajectories in

Section 5, by relaxing condition (2.8) with a parameter η > 0 instead of 0.

Notice that, given a controled trajectory (X, a), we can define (b, l) globally by setting (b, l) =

(bi, li) in Ωi for i = 1, 2 and (b, l) = (bH, lH) on H. We then define two value functions by

U−
A (x) := inf

(X,a)∈τA(x)

(
∫ ∞

0
l(X(t), a(t))e−λtdt

)

. (2.10)

U+
A (x) := inf

(X,a)∈τ regA (x)

(
∫ ∞

0
l(X(t), a(t))e−λtdt

)

. (2.11)

We detail some properties of U−
A and U+

A in Section 3. Of course, similar definitions are used for the

case of compact control sets, and the notation of the respective value functions are U−
Am and U+

Am .

2.3 Hamiltonians

As is well-known, optimal control problems are related to some Hamilton-Jacobi equation sat-

isfied by value functions. The natural Hamiltonian associated to the control problem is defined

by

H(x, u, p) := sup
a∈A

{

λu− b(x, a) · p− l(x, a)
}

, (2.12)

where we recall that the extended control takes the form a = (α1, α2, µ). We refer to [2, Lemma 7.3]

for proof of the fact that

H (x, u, p) :=











H1 (x, u, p) in Ω1,

H2 (x, u, p) in Ω2,

max{H1 (x, u, p) , H2 (x, u, p)} on H.

(2.13)

Moreover, as mentioned in the introduction, in order to get a comparison result for (1.3), we

need to define the tangential Hamiltonian. For (x, u, q) ∈ H× R× R
N−1 we set

HT (x, u, q) = sup
a∈A0(x)

{

λu− bH(x, a) · (q, 0) − lH(x, a)
}

. (2.14)

We can similarly define Hreg
T by using regular controls, as is done in [3]:

Hreg
T (x, u, q) = sup

a∈Areg
0 (x)

{

λu− bH(x, a) · (q, 0) − lH(x, a)
}

, (2.15)

however, this second tangential Hamiltonian is not as useful as HT in the sense that it does not lead

to a characterization of U+, nor a satisfying comparison result. We now turn to the regularity of

Hamiltonians, proving that the Hi are well defined, continuous, attain their supremum in a compact

control set and are locally coercive with respect to the third variable.
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Proposition 2.3. Assume that (HA), (HB) and (HC) hold. Then,

(i) If K ⊂ Ωi ×R×R
N is compact, there exists Ã ⊂ Ai compact such that for any (x, u, p) ∈ K,

the supremum defining Hi(x, u, p) is attained for αi ∈ Ã.

(ii) Hi(x, u, p) : Ωi × R× R
N → R is continuous with respect to all the variables.

(iii) Hi(x, u, p) is coercive in p, locally uniformly with respect to (x, u).

As a consequence, the same properties are valid for H and HT .

Proof. Recall that the Hamiltonian Hi is defined by

Hi(x, u, p) := sup
α∈Ai

{

λu− bi(x, α) · p− li(x, α)
}

.

(i ) On X = Ωi × R× R
N ×Ai, let us define hi : X −→ R by

hi(x, u, p, αi) := λu− bi(x, αi) · p− li(x, αi) ,

and notice that hi is a continuous function. Notice also that there exists M =M(K) > 0 such that

K ⊂ Vi × [−M,M ]× BM , where Vi := Ωi ∩BM , and BM is a ball centered in zero with radius M .

Thanks to hypothesis (HB), for any (x, u, p) ∈ K, there exists a control αx
i ∈ AM

i ⊂ Ai such that

bi(x, α
x
i ) = 0. So, for any (x, u, p) ∈ K

sup
αi∈Ai

{

− bi(x, αi) · p− li(x, αi)
}

≥ −bi(x, α
x
i ) · p− li(x, α

x
i ) ≥ −‖li‖L∞(Vi×AM

i ).

Let us fix

M̃i > max
{

max
|p|≤M

|p|, ‖li‖L∞(Vi×AM
i )

}

= max
{

M, ‖li‖L∞(Vi×AM
i )

}

. (2.16)

Thanks to hypothesis (HC), there exists ΓM̃i
> 0 such that if |αi| > ΓM̃i

then

li(x, αi) > M̃i(1 + |bi(x, αi)|) ∀x ∈ Vi. (2.17)

Hence, −bi(x, αi) · p − li(x, αi) < −‖li‖L∞(Vi×AM
i ), for controls such that |αi| ≥ ΓM̃i

. Therefore,

for any (x, u, p) ∈ K, the supremum of hi(x, u, p, αi) = λu − bi(x, αi) · p − li(x, αi) is attained for

αi ∈ AM
i , which is a compact subset of Ai. This proves (i).

(ii ) The fact that Hi is continuous just derives from (i): since hi is continuous and the supremum

is locally attained on a compact set of controls, the supremum of hi is continuous with respect

to (x, u, p), which proves (ii).

(iii ) Let us turn to the coercivity property. Let (x, u) ∈ Vi × [−M,M ] and p ∈ R
N . Due to (HB),

for any x ∈ Vi, there exists α̃x
i ∈ AM

i such that |bi(x, α̃
x
i )| = δ and −bi(x, α̃x) · p = δ|p|. This implies

that

Hi(x, u, p) ≥ λu+ δ|p| − ||li||L∞(Vi×AM
i ) ,

therefore, lim|p|→∞Hi(x, u, p) = +∞, and (iii) holds.

Looking at the definition of H and HT , it is clear that those Hamiltonians enjoy the same

properties as H1 and H2, the proofs being essentially identical.
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Approximations

Let us introduce a family (Hm)m∈N∗ of Hamiltonians by reducing the control problem to compact

control sets Am = Am
1 ×Am

2 × [0, 1]:

Hm(x, u, p) := sup
a∈Am

{

λu− b(x, a) · p− l(x, a)
}

, (2.18)

where of course Am := L∞
loc(0,∞;Am). It is clear from the definition of Am that for any fixed

(x, u, p), Hm(x, u, p) converges monotonically toH(x, u, p). Notice that both Hamiltonians are upper

semi-continuous by construction, and that of course for fixed (x, u, p), Hm(x, u, p) → H(x, u, p)

monotonically.

Now, in order to connect Hm and H we need to introduce the half-relaxed limits of Hm. We

refer the reader to [2] for more precise results on the semi-continuous enveloppes as well as upper

and lower semi-continuous functions (usc and lsc for short). Let us just recall here that for any

locally bounded function f on a set Ω ⊂ R
N , the lower and upper semi-continuous enveloppes are

defined respectively by

f∗(x) := lim inf
y→x

f(y) , f∗(x) := lim sup
y→x

f(y) .

Moreover, if (fε)ε>0 is a family of locally uniformly bounded functions, the half-relaxed limits as

ε→ 0 are defined similarly as

lim inf∗
ε→0

fε(x) := lim inf
ε→0

y→x

fε(y) , lim sup∗
ε→0

fε(x) := lim sup
ε→0

y→x

fε(y) .

Of course, lim inf∗ fε and lim sup∗ fε are respectively lower semi-continuous and upper semi-continuous.

We will need the following result, which appears in [2] as an exercise (we provide here a full proof

for completeness):

Lemma 2.4. Let (uε)ε>0 be a non-decreasing (with respect to ε) sequence of continuous functions

which are locally uniformly bounded on some set Ω ⊂ R
N . Then,

lim inf∗ uε = sup
ε>0

uε ,

lim sup∗ uε =
(

sup
ε>0

uε
)∗
.

Proof. Let us first notice that since (uε) is locally uniformly bounded, the various quantities in this

result are well-defined. Notice also that by monotonicity, as ε→ 0, uε(x) →
(

supε>0 uε
)

(x).

Let ε′ > 0 be fixed and consider a sequence (εn, yn) → (0, x). Then for εn < ε′, i.e. , n big

enough,

uεn(yn) =
[

uεn(yn)− uε′(yn)
]

+
[

uε′(yn)− uε′(x)
]

+ uε′(x)

≥ on(1) + uε′(x) .
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Indeed, this is obtained by using the monotonicity of (uε) for the first bracket, and the continuity of

uε′ for the second one. By taking the liminf, we deduce that lim inf∗ uε(x) ≥ uε′(x) for any ε′ > 0.

Now, since by monotonicity, uε′ → supuε, we get the inequality lim inf∗ uε ≥ supε>0 uε . For the

converse inequality, it is enough to notice that taking (εn, x) → (0, x) leads to

lim inf∗ uε(x) ≤ lim inf
εn→0

uεn(x) = sup
ε>0

uε(x)

and the first result of the Lemma follows.

For the limsup property, we first notice that of course lim sup∗ uε ≥ lim inf∗ uε = supε>0 uε , and

since lim sup∗ uε is upper semi-continuous, necessarily lim sup∗ uε ≥
(

supε>0 uε
)∗
. For the converse

inequality, using the monotonicity property of (uε) we see that

lim sup∗ uε(x) ≤ lim sup
y→x

(

sup
ε>0

uε
)

(y) =
(

sup
ε>0

uε

)∗

and the second result follows.

Let us give and important consequence:

Corollary 2.5. The following limits hold:

lim sup∗
m→+∞

Hm(x, u, p) = H(x, u, p) .

lim inf∗
m→+∞

U−
Am(x) = U−

A (x) .

Proof. This is a direct consequence of the previous Lemma. Take uεn = Hm: we already noticed

that for fixed (x, u, p), the sequence (Hm(x, u, p))m is non-decreasing; each Hm is continuous and

Hm ≤ H which yields a local uniform bound. Hence, using that H is upper semi-continuous,

lim sup∗
m→+∞

Hm(x, u, p) =
(

sup
m
Hm(x, u, p)

)∗
=

(

H(x, u, p)
)∗

= H(x, u, p) .

For the case of U−
Am , let us notice that since Am is compact, U−

Am is continuous. Moreover, m 7→ U−
Am

is non-increasing, and that

lim
m→+∞

U−
Am(x) = inf

m∈N∗

U−
Am(x) = inf

m∈N∗

inf
(X,a)∈τAm (x)

(
∫ ∞

0
l(X(t), a(t))e−λtdt

)

= inf
(X,a)∈τA(x)

(
∫ ∞

0
l(X(t), a(t))e−λtdt

)

= U−
A (x) .

Then, by using again Lemma 2.4 with the nondecreasing sequence (−U−
Am), we end up with the

second result.
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2.4 Viscosity solutions

By solutions of Problem 1.3 we mean of course viscosity solutions. Let us briefly recall some

definitions:

Definition 2.6. Let us consider an abstract Hamilton-Jacobi equation H(x, u,Du) = 0 posed in a

set Ω.

(i) An upper semi-continuous function u : Ω → R is a viscosity subsolution in Ω if for any

C1-smooth test-function φ, at any local maximum point x ∈ Ω of u− φ we have

H(x, u,Dφ(x)) ≤ 0 .

(ii) A lower semi-continuous function v : Ω → R is a viscosity supersolution in Ω if for any

C1-smooth test-function φ, at any local minimum point x ∈ Ω of u− φ we have

H(x, u,Dφ(x)) ≥ 0 .

(iii) A continuous function u : Ω → R is a viscosity solution of H(x, u,Du) = 0 in Ω if it is at the

same time a subsolution and a supersolution.

In the rest of the paper, we use the abbreviation u.s.c. and l.s.c. for upper semi-continuous and

lower semi-continuous respectively.

Notice that if u is only (locally) bounded, we can still consider its upper semi-continuous and

lower semi-continuous enveloppes, u∗ and u∗, which allows to define sub/super solutions through u∗

and u∗. But in this paper, we will always consider u.s.c. subsolutions and l.s.c. supersolutions.

The Ishii conditions in (1.3), i.e. the min and max conditions on H are checked as above by using

also C1-smooth test functions φ, where (i) u−φ reaches a maximum at x ∈ H for the min equation

(subsolution condition); (ii) u−φ reaches a minimum at x ∈ H for the max equation (supersolution

condition).

The case of HT or Hreg
T is particular since it is a (N−1)-dimensional equation. So, Definition 2.6

has to be applied with test-functions φ : H → R and considering local maximum/minimum of u− φ

on H. Equivalently, we can use φ as a test function in R
N and consider the max/min in x′ ∈ H of

u(x′, 0) − φ(x′, 0).

We end up this section by defining the notion of stratified solution, by adding HT to the set of

inequations. Following [6] we introduce the following definition.

Definition 2.7. Let us consider problem (1.3) that we write under the abstract form H(x, u,Du) = 0.

(i) An u.s.c. function u : RN → R is a stratified subsolution of H(x, u,Du) ≤ 0 H(x, u,Du) = 0

if it is a subsolution of (1.3) satisfying the additional inequality HT (x, u,Du) ≤ 0 in H.

(ii) A l.s.c. function v : RN → R is a stratified supersolution of H(x, u,Du) ≥ 0 H(x, u,Du) = 0

if it is a supersolution of (1.3).
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(iii) A continuous function is a stratified solution of H(x, u,Du) = 0 if it is at the same time a

stratified subsolution and a stratified supersolution.

Notice that of course, only the subsolution condition is complemented by HT ≤ 0, stratified

supersolutions are nothing but standard (Ishii) supersolutions of (1.3). We also want to comment

on the fact that in [6], the notion of weak and strong stratified solutions are used, due to some

specific regularity properties of subsolutions. In our situation, we are assuming total controllability

and Ishii inequalities on H so that weak stratified subsolutions are necessarily also strong ones. For

more details, see [6, Prop. 19.2].

One of the main goals of this paper is to establish a global comparison result for stratified

solutions of H(x, u,Du) = 0, or more precisely problem (1.3). By global and local comparison

results, as in [6] we mean here:

(GCR): For any u.s.c. subsolution, u, and l.s.c. supersolution, v, u ≤ v in R
N .

(LCR): For any x ∈ R
N , there exists r̄ > 0 such that for any u.s.c. subsolution, u, and l.s.c.

supersolution, v, and any 0 < r < r̄,

max
Br(x)

(u− v)+ = max
∂Br(x)

(u− v)+ .

We refer to Section 4 below where both type of results are proved.

3 Value functions

Let us begin by recalling that in the bounded control case, i.e. , considering control sets Am for

m ∈ N∗, the results in [3] directly apply. If Hm
i , Hm

T and Hm,reg
T are the Hamiltonians associated to

the compact control set Am and U−
Am, U

+
Am are the associated value functions, the following result

holds:

Theorem 3.1 ([3], Thm. 2.5). Assuming (HA), (HB) and (HC), U+
Am and U−

Am are viscosity

solutions of the Ishii problem (1.3).

(i) U−
Am is a stratified subsolution, associated to the tangential Hamiltonian Hm

T , i.e. , for any

x̄ ∈ R
N−1, U−

Am(x̄, 0) satisfies

Hm
T (x, u,DHu) ≤ 0 .

(ii) U+
Am is a supersolution of the tangential Hamiltonian Hm,reg

T , i.e. , for any x̄ ∈ R
N−1,

U+
Am(x̄, 0) satisfies

Hm,reg
T (x, u,DHu) ≥ 0 .

We now go back to the non-bounded case.
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3.1 The dynamic programming principle

The result below is the Dynamic Programming Principle which is the main result to prove that

the value functions are subsolutions and supersolutions of (1.3).

Theorem 3.2 (Dynamic Programming Principle).

U−
A (x) = inf

(X,a)∈τA(x)

(
∫ T

0
l(X(t), a(t))e−λtdt+ U−

A (X (T )) e−λT

)

. (3.1)

U+
A (x) = inf

(X,a)∈τ regA (x)

(
∫ T

0
l(X(t), a(t))e−λtdt+ U+

A (X (T )) e−λT

)

. (3.2)

Proof. The proof is standard, cf. [2, p. 65].

In the following result, we prove that the trajectories in τAm(x) are locally bounded for time

small enough.

Lemma 3.3. Let m ∈ N∗ and let bi : Ωi × Am
i → R

N be continuous. Given r > 0 and x ∈ R
N ,

there exist t > 0 such that for any trajectory (X, a) ∈ τAm(x), we obtain

|Xx(s)− x| ≤ r, ∀ s ≤ t.

Proof. Integrating (2.5), we consider t ≤ r · (||b||L∞(Br(x)×Am)−1 to obtain the result.

3.2 Regularity

The main result here is the following

Proposition 3.4. Let us assume that hypotheses (HA), (HB), (HC) hold. Then U−
A and U+

A are

locally bounded and locally Lipschitz continuous functions.

Proof. We first prove some local bound, the Lipschitz regularity follows almost directly.

Let V ⊂ R
N be a convex compact set, and assume x ∈ Ωi ∩ V . Thanks to hypothesis (HB),

there exists a control α∗
i ∈ Ai such that bi(x, α

∗
i ) = 0, yielding the constant trajectory Xx(t) = x

with associated control αi(t) = α∗
i for all t. Hence,

U−
A (x) = inf

τ(x)

(
∫ ∞

0
l(Xx(t), α(t))e

−λtdt

)

≤

∫ ∞

0
l(x, α∗

i )e
−λtdt =

l(x, α∗
i )

λ
.

Using hypothesis (HA), it is clear that U−
A is bounded in Ωi ∩ V .

Now, if x ∈ H ∩ V , we use the same approach with some controls α∗
1 ∈ A1, α

∗
2 ∈ A2 such that

b1(x, α
∗
1) = 0 = b2(x, α

∗
2). The trajectory X(t) = x associated to a(t) = (α∗

1, α
∗
2, µ), with µ = 1/2
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for instance, yields a similar bound. So, U−
A is also bounded in V ∩ H and finally, U−

A is bounded

in V . Of course the same arguments work for U+
A because the control a = (α∗

1, α
∗
2, µ) is obviously

regular.

For the local Lipschitz continuity, the proof is analogous to [3, Th. 2.3]: fix as above V ⊂ R
N

compact and given x, y ∈ V , let us consider the constant dynamic

b̃ := −δ
x− y

|x− y|
.

Since |b̃| = δ, by (HB), b̃ ∈ BAm
i (z) for all z ∈ [x, y], where m ∈ N∗ is fixed. Notice here that x, y

may be on the same side of H or on the opposite sides, and even one or both may be located on

H. In all these cases, the trajectory X(t) := x+ tb̃ is an admissible straight line associated to some

extended control a(·) ∈ Am, i.e. |a(·)| ≤ m, such that

X(0) = x , X(|x− y|/δ) = y .

Using X(t) in the dynamic programming principle yields

U−
A (x) ≤

∫
|x−y|

δ

0
l(X(s), a(s))e−λsds+ U−

A (y)e−λ
|x−y|

δ .

Using (HA), we deduce that

U−
A (x)− U−

A (y) ≤
(

sup
V×Am

l(z, a)
) |x− y|

δ
+

(

e−λ
|x−y|

δ − 1
)

sup
V
U−
A (z) ≤ C|x− y|

for some constant C = C(V ). Since x, y are arbitrary in V this implies the local Lipschitz bound:

|U−
A (x)− U−

A (y)| ≤ C(V )|x− y|.

The same arguments work for U+
A because the trajectory is of course regular: if x, y are located

on the same side of H there is nothing to do; if they are on opposite sides the trajectory is just

reaching H for one specific time t but we do not take it into account since this is a neglectable set

in time; finally if x, y ∈ H the trajectory is purely tangential by construction, so it is regular.

3.3 Value functions are solutions of the Ishii problem

In order to prove that value functions U−
A and U+

A are both solutions in the sense of Ishii of

problem (1.3), we use the approximations by compact control sets and pass to the limit.

Theorem 3.5. Assume that (HA), (HB) and (HC) hold. Then

(i) the value functions U−
A and U+

A are both viscosity solutions of (1.3) in the sense of Ishii;

(ii) x′ 7→ U−
A (x′, 0) satisifies the tangential subsolution inequality

HT (x, u,Du) ≤ 0 on H .

16



Proof. We first prove the supersolution property, then the subsolution one and finally the tangential

property of U−
A .

(i ) In order to prove that U−
A is a supersolution, we proceed as in [1]. We recall that by Corollary 2.5,

the following limits hold:

lim sup∗
m→+∞

Hm(x, u, p) = H(x, u, p) , lim inf∗
m→+∞

U−
Am(x) = U−

A (x) ,

which allow to apply the half-relaxed limit method directly (cf. [6, Section 2.1.2]): since for each m

fixed, U−
Am is a supersolution of the Ishii problem associated to Hm, then U−

A = lim inf∗ U
−
Am is also

a supersolution of the problem associated to H = lim sup∗ Hm. In view of (2.13), in other words,

we have proved that U−
A is a supersolution of (1.3). Of course the same argument is valid for U+

A .

(ii ) To prove that are U+
A and U−

A are subsolutions we proceed exactly as in [3, Thm. 2.5]. For

the sake of completeness we provide here the main arguments but the proof readily applies to our

case, using some compactness arguments that we proved above (typically, the fact that the Hi are

continuous, etc.). Of course the proof in each Ωi is standard so we focus on getting the inequality

min(H1,H2) ≤ 0 on H, and we only do so for U+
A since the proof for U−

A is similar.

Let φ ∈ C1(RN ) and consider x ∈ H, a local maximum point of U+
A − φ. Assuming without

loss of generality that this maximum is zero, there exists r > 0 such that U+
A (y) − φ(y) ≤ 0 for all

y ∈ Br(x) ⊂ R
N and U+

A (x) = φ(x). Thanks to Lemma 2.3, Hi attains its supremum in a bounded

control set, so there exist (α1, α2) ∈ A1 ×A2 such that

H1 (x, φ (x) ,∇φ (x)) = λφ (x)− b1 (x, α1) · ∇φ (x)− l1(x, α1).

H2 (x, φ (x) ,∇φ (x)) = λφ (x)− b2 (x, α2) · ∇φ (x)− l2(x, α2).

In order to prove that U+
A is subsolution of min{H1,H2}, we use specific trajectories that we build

using the constant controls α1 and α2. Notice that such controls may not necessarily be regular, but

in each case we find a suitable regular trajectory in order to use the dynamic programming principle

for U+
A .

Let us focus on the (regular) case where

b1 (x, α1) · eN < 0 and b2 (x, α2) · eN > 0.

The proof for all the other posible combinations of signs of bi(x, αi) · eN is similar with a few

adaptations using normal controllability, see [3, Thm. 2.5].

The idea is to construct a regular trajectory, (X, a) ∈ τ regA (x), staying on H, at least for a while.

Since the dynamic functions bi are continuous, there exists δ̄ > 0, such that for any y ∈ H ∩ Bδ̄(x)

the following quantity is well-defined:

µ(y) :=
−b2(y, α2) · eN

(b1(y, α1)− b2(y, α2)) · eN
∈ (0, 1) . (3.3)

Next, we consider the local trajectory defined by solving for t > 0 small enough,

Ẋ(t) = µ
(

X(t)
)

b1
(

X(t), α1

)

+
(

1− µ(X(t))
)

b2
(

X(t), α2) , (3.4)
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withX(0) = x. Since b1, b2 and µ are continuous functions, (3.4) has a local solution and substituting

µ(X(t)) in (3.4), we easily check that by construction, Ẋ(t) · eN = 0 for t > 0 small enough. Hence

X(·) stays on H for a while. Moreover, thanks to the continuity of X(·), there exists T > 0 such

that

0 < µ(X(t)) < 1, b1(X(t), α1) · eN < 0, b2(X(t), α2) · eN > 0 for 0 ≤ t ≤ T.

Let us define the following trajectory

Xx(t) :=

{

X(t), if 0 ≤ t < T

X(T ), if t ≥ T.
(3.5)

By the continuity of bi and the trajectory, the trajectory is Lipschitz. From hypothesis (HB), there

exists α∗
i ∈ Ai such that bi(Xx(T ), α

∗
i ) = 0, and we may consider the extended control

a(t) :=

{

(α1, α2, µ(X(t))) if 0 ≤ t < T,

(α∗
1, α

∗
2, µ) if t ≥ T,

(3.6)

obtaining a regular trajectory (Xx, a) ∈ τ
reg
A . Observe that µ for t ≥ T is any value in [0, 1].

Recall UA(y) − φ(y) ≤ 0 for all y ∈ Br(x) and UA(x) = φ(x). Since Xx is Lipschitz, then there

exists 0 < T ′ < T such that Xx (t) ∈ Br(x) for all t < T ′. Now, by the Dynamic Programming

Principle, we have

φ(x) ≤

∫ T ′

0
lH

(

Xx(t), a(t)
)

e−λtdt+ φ
(

Xx(T )
)

e−λT ′
.

From the Fundamental Calculus Theorem, we have

0 ≥

∫ T ′

0

[

− lH
(

Xx(t), a(t)
)

+ λφ
(

Xx(t)
)

− bH
(

Xx(t), a(t)
)

· ∇φ
(

Xx(t)
)

]

e−λtdt.

Dividing by T ′ and taking the limit as T ′ goes to 0, we get

0 ≥ λφ(x)− bH
(

x, α1, α2, µ(x)
)

· ∇φ(x)− lH
(

x, α1, α2, µ(x)
)

= µ(x)
(

λφ(x)− b1(x, α1) · ∇φ(x)− l1(x, α1)
)

+
(

1− µ(x)
)(

λφ(x)− b2(x, α2) · ∇φ(x)− l2(x, α2)
)

.

So, finally we end up with,

0 ≥ min
{

λφ(x)− b1(x, α1) · ∇φ(x)− l1(x, α1), λφ(x) − b2(x, α2) · ∇φ(x)− l2(x, α2)
}

= min
{

H1

(

x, φ(x),∇φ(x)
)

,H2

(

x, φ(x),∇φ(x)
)}

.

As we said, the other cases are treated by the same approach, the conclusion being that U+
A is

subsolution of min{H1,H2} on H.

Proving the tangential inequalities is analogous: by constructing a trajectory staying on H, the

extended control a(·) belongs to A0 and we get the subsolution inequality HT (x, u,Du) ≤ 0 as

above, by using the dynamic programming and passing to the limit. We refer again to [3, Thm. 2.5]

for more details.
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4 Comparison results

In this section, we prove that stratified subsolutions and supersolutions of the Ishii problem are

ordered. We start giving a local comparison result for the Ishii problem, meaning that the maximum

of u−v in the closure of a ball is attained in the boundary. Then, under some localization hypotheses

we deduce a Global Comparison Result in R
N . As a consequence of this comparison results, the

value functions U−
A and U+

A are extremal Ishii solutions.

We recall that by definition, a stratified subsolution satisfies the additional subsolution inequality

HT ≤ 0 while a stratified supersolution is nothing but a usual Ishii supersolution.

4.1 Local comparison result

Let us first recall that in the case of compact control sets, a Local Comparison Result for stratified

solutions can be found in [4], which translates here directly as a Local Comparison Result for each

problem associated to the control set Am:

Theorem 4.1 (see [4]). Assume hypotheses (HA), (HB) and let m ∈ N∗ be fixed. Let u be a

locally bounded stratified subsolution of Ishii problem (1.3) with Hamiltonians Hm
1 ,Hm

2 ,Hm
T and v be

a locally bounded supersolution of the same problem. Then for any x ∈ R
N and r > 0, the following

comparison result holds:

max
Br(x)

(u− v)+ ≤ max
∂Br(x)

(u− v)+.

While it is clear from the definition that if Hm
i (x, u,Du) ≤ 0 in R

N the same holds for Hi ≤ Hm
i ,

getting a similar property for supersolutions can only be obtained under some restrictions. In order

to do so, let us introduce the notation V ⊂⊂ R
N , meaning that V ⊂ R

N is open, and V is compact.

The result is the following.

Proposition 4.2. Assume hypotheses (HA), (HB), (HC) and let v be a locally bounded l.s.c. super-

solution of Ishii problem (1.3). Then, for any V ⊂⊂ R
N , there exists m = mV ∈ N∗ such that v is

a supersolution in V of the Ishii problem associated to Am.

Proof. First we fix m̄ ∈ N∗ arbitrary. Due to hypothesis (HA), the following quantity is well-defined:

K :=
||l||L∞(V×Am̄

i ) + λ||v||L∞(V )

δ
.

To begin, we fix a test function φ ∈ C1(V ) such that x ∈ V ∩Ωi is a local minimum point of v − φ,

(we explain how to treat the case x ∈ H at the end of the proof).

Let us assume on one hand, that |∇φ(x)| ≥ K. Notice that thanks to (HB), for any ω ∈

Bδ(0) and x ∈ V ∩ Ωi, there exists αi ∈ Am̄
i such that bi(x, αi) = ω. Applying this to ω :=

−δ∇φ(x)/|∇φ(x)|, we find some αi ∈ Am̄
i such that bi(x, αi) = ω.
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It follows that −bi(x, αi) · ∇φ(x) = δ|∇φ(x)|, which implies that

Hm̄
i (x, v(x),∇φ(x)) ≥ −λ||v||L∞(V ) + δ|∇φ(x)| − ||li||L∞(V×Am

i ) ≥ 0.

Let us assume now that on the other hand, |∇φ(x)| < K. Then, thanks to Proposition 2.3, there

exists m(K) > 0 independent of x ∈ V ∩ Ωi such that

H
m(K)
i (x, v(x),∇φ(x)) = Hi(x, v(x),∇φ(x)) ≥ 0.

Taking mV := max{m̄,m(K)}, we have that for any x ∈ V ∩ Ωi,

HmV

i (x, v(x),∇φ(x)) ≥ 0 ,

because the supremum is taken over a larger set in each case. Therefore, v is a supersolution of

HmV

i in Ωi.

Let us study now the case, when x ∈ H. Of course, if x ∈ V ∩H, then since

max{H1(x, v(x),∇φ(x)),H2(x, v(x),∇φ(x))} ≥ 0 ,

there exists i ∈ {1, 2} with Hi(x, v(x),∇φ(x)) ≥ 0 and from the above arguments we deduce that

for some mV ∈ N∗,

max{HmV

1 (x, v(x),∇φ(x)),HmV

2 (x, v(x),∇φ(x))} ≥ 0 ,

which ends the proof.

Now we can prove the local comparison result for the Ishii problem associated to the complete

problem, associated to the unbounded control set A.

Corollary 4.3. Assume (HA), (HB) and (HC). Let u be a locally bounded stratified subsolution of

Ishii problem (1.3) and let v be a locally bounded l.s.c. supersolution of the same problem. For any

x ∈ R
N and r > 0, the following result holds:

max
Br(x)

(u− v)+ ≤ max
∂Br(x)

(u− v)+. (4.1)

Proof. Given x ∈ R
N and r > 0, we apply Proposition 4.2 with V := Br(x). It follows that v is a

supersolution of the Ishii problem associated to AmV , for some mV ∈ N∗. On the other hand, as we

already noticed, u is obviously a stratified subsolution of the Ishii problem associated to this same

compact control set AmV . So, applying Theorem 4.1 with m = mV we deduce that (4.1) holds.

20



4.2 Global comparison results

As explained in [6], a (GCR) can be reduced to a (LCR) which is simpler, by requiring two

additional assumptions. The framework in [6] is far more general than what we need here and leads

to some complexities that are not necessary in the present situation. For this reason, we provide

here a simplified version, well adapted to our needs, introducing (LOC1) and (LOC2) below.

Let C∗ be a set of subsolutions with certain growing hypotheses, and let C∗ be a set of super-

solutions with certain growing hypotheses. Of course, we have in mind stratified subsolutions here.

Here are the localization assumptions we will use:

(LOC1): Given an u.s.c. subsolution u ∈ C∗ and a l.s.c. supersolution v ∈ C∗ there exists a sequence

of u.s.c. subsolutions (uβ)β such that for all x ∈ R
N ,

lim
|x|→∞

(uβ − v)(x) = −∞ and lim
β→0

uβ(x) = u(x).

(LOC2): For any x ∈ R
N and r > 0, if u is an u.s.c. subsolution, there exists a sequence (uγ)γ>0 of

u.s.c. subsolutions such that for each γ > 0,

uγ(x)− u(x) ≥ uγ(y)− u(y) + d(γ) for all y ∈ ∂Br(x) , for some d(γ) > 0.

Moreover, uγ(z) → u(z) as γ → 0 for any z ∈ Br(x).

The growth conditions included in C∗ and C∗ have to be specified in each case. Notice that in [6],

the fact that the control spaces are bounded implies implicitly that the various comparison results

are obtained for bounded sub and supersolutions, so that no growth conditions are required.

But, for instance, in the quadratic example (1.7), the typical growth assumption for sub and

supersolutions is that both should grow strictly less than quadratically. In that case, (LOC1) and

(LOC2) can be obtained by using

uβ(x) := βu(x) + (1− β)|x|2 and uγ(x) := u(x) + γ
(

|x− x0|
2) .

We refer to Section 6 for a detailed and more general example.

For the sake of completeness we provide here the proof that with those assumptions, (LCR)

implies (GCR), this is, subsolutions and supersolutions of the Ishii problem are ordered:

Proposition 4.4. Under hypotheses (LOC1) and (LOC2), a Local Comparison Result implies a

Global Comparison Result.

Proof. Let u ∈ C∗ and v ∈ C∗ be respectively an u.s.c. subsolution and a l.s.c. supersolution. Thanks

to (LOC1) there exists xβ ∈ R
N such that

Mβ := max
RN

(uβ − v) = uβ(xβ)− v(xβ) . (4.2)
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We assume that Mβ > 0 and fix some r > 0 for which the (LCR) holds around xβ . Notice that by

the maximum point property, in particular

Mβ = uβ(xβ)− v(xβ) ≤ max
∂Br(xβ)

(uβ − v) .

Now thanks to (LOC2), there exists a sequence of subsolutions (uβγ)γ that are approximations

of uβ in Br(xβ) and using the Local Comparison Result with uβγ and v in Br(xβ) yields

max
B̄r(xβ)

(uβγ − v)+ ≤ max
∂Br(xβ)

(uβγ − v)+. (4.3)

Notice that since Mβ,γ := maxB̄r(xβ)
(uβγ − v) → Mβ > 0, for γ close enough to zero we can leave

out the positive part of the functions in the previous inequality (4.3). Consequently, thanks to (4.2)

and (LOC2), we have that

uβ,γ(xβ)− v(xβ) ≤ max
∂Br(xβ)

(uβ,γ − v)

≤ max
∂Br(xβ)

(uβ − v) + max
∂Br(xβ)

(uβ,γ − uβ)

≤Mβ + (uβ,γ(xβ)− uβ(xβ))− d(γ) ,

leading to Mβ ≤Mβ − d(γ) < Mβ which is a contradiction. Therefore, Mβ ≤ 0 for any β > 0 small

enough and taking limits as β → 0 in (4.2), we end up with u(x) ≤ v(x) for any x ∈ R
N .

As a consequence of the previous Proposition 4.4, we obtain the uniqueness of a stratified solution

of the Ishii problem:

Corollary 4.5. Assume (HA), (HB), (HC), (LOC1) and (LOC2). Then a Global Comparison Result

holds between locally bounded stratified subsolutions and supersolutions of (1.3). As a consequence,

there exists a unique stratified solution of (1.3).

4.3 Extremal Ishii Solution

We prove here that U−
A and U+

A are respectively the minimal and maximal solutions in the sense

of Ishii. Of course, we recall that U−
A is the unique stratified solution, the only one enjoying the

complementary inequality HT ≤ 0 among all Ishii subsolutions.

Proposition 4.6. Under hypotheses (HA), (HB), (HC), (LOC1), (LOC2),

(i) U−
A is the minimal locally bounded u.s.c. supersolution (and solution) of the Ishii problem (1.3);

(ii) U+
A is the maximal locally bounded l.s.c. subsolution (and solution) of the Ishii problem (1.3);

(iii) U−
A is the unique stratified solution of (1.3).

Proof. Let v be any supersolution of (1.3). Since U−
A is a stratified subsolution, we can apply the

global comparison result to U−
A and v, then we have that U−

A ≤ v in R
N . As U−

A is itself of course a

22



supersolution, it is clearly the minimal one. Of course, since any viscosity solution is a supersolution

by definition, then for any solution u, the argument proves that U−
A ≤ u so that U−

A is also the

minimal viscosity solution.

Concerning the maximal subsolution, the simplest way to obtain the result it is to recall that

if u is any viscosity subsolution in the sense of Ishii (we do not require here that it is a stratified

subsolution), it is also a viscosity subsolution of the Ishii problem associated to the compact control

spaces Am for any m ∈ N∗.

Using the fact that U+
Am is the maximal subsolution for the bounded control case (see [3, Corollary

4.4]), we deduce that u ≤ U+
Am for any m ∈ N∗. Then, passing to the limit as m → +∞ yields the

result : u ≤ U+
A .

The proof of (iii) just follows from Corollary 4.5. Since U−
A is a stratified solution of (1.3), it is

the unique one.

5 A continuous family of solutions

In this section we build a whole family of value functions, Uη, with η > 0. Those turn out to be

locally Lipschitz Ishii solutions which yield a continuous path between U−
A and U+

A .

To build them, let us start with defining η-trajectories. For η > 0 we set

τηA(x) :=
{

(X(·), α(·)) ∈τA(x) | for a.e. t ∈ EH,

b2(X(t), α(t)) · eN ≥ −η, b1(X(t), α(t)) · eN ≤ η
}

.
(5.1)

All η−trajectories are of course not necessarily regular, however they are close to regular for η > 0

small. Notice that for all 0 < η ≤ η′,

τ regA (x) ⊂ τηA(x) ⊂ τη
′

A (x) ⊂ τA(s) .

Now, let us define the associated η-value function as usual:

Uη
A(x) = inf

τηA(x)

(
∫ ∞

0
l(Xx(t), α(t))e

−λtdt

)

. (5.2)

Of course, for 0 < η ≤ η′ as above,

U−
A ≤ Uη′

A ≤ Uη
A ≤ U+

A . (5.3)

Having a look at Proposition 3.4, it is easy to see that the same arguments work for any η-value

function. So, we claim that Uη
A is locally bounded and locally Lipschitz continuous. We omit the

details here since we actually prove a stronger result below, see Lemma 5.5: the (Uη
A)η are locally

uniformly Lipschitz and bounded.
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5.1 η-value functions are Ishii solutions

As is standard, let us begin with the Dynamic Programming Principle:

Theorem 5.1 (Dynamic Programming Principle). Let η > 0. Then for any T > 0,

Uη
A(x) = inf

τηA(x)

(
∫ T

0
l(X(t), α(t))e−λtdt+ Uη

A (X (T )) e−λT

)

. (5.4)

Proof. The proof is analogous to Theorem 3.2 in section 3.

We also define a η-tangential Hamiltonian that will play the role of HT or Hreg
T for Uη

A. Let

Aη
0(x) = {α = (α1, α2, µ) ∈ A0 | b1(x, α1, α2) · eN ≤ η, b2(x, α1, α2) · eN ≥ −η} ,

we define the η-tangential Hamiltonian as

Hη
T (x, φ(x),DHφ) = sup

α∈Aη
0
(x)

{

λφ (x)− bH (x, α) · (DHφ (x) , 0)− lH(x, α)
}

(5.5)

and notice that Proposition 2.3 obviously applies to Hη
T as well.

Let us prove below that the η-value functions are Ishii solutions.

Theorem 5.2. Assume that (HA), (HB), (HC) hold and let η > 0. Then the value function Uη
A is

a viscosity solution of the Ishii problem, (1.3). Moreover, Uη
A satisfies Hη

T (x, u,Du) ≤ 0 on H.

Proof. Since the Dynamic Programming Principle 5.1 holds, the proof that Uη
A is at the same time

a sub and and supersolutions of (1.3) is analogous to the standard case, see Theorem 3.5.

In order to prove the Hη
T property we need some adaptations which follow the lines of Theo-

rem 3.5-(ii). Here we face several cases as follows:

1. b1(x, α1) · eN < η and b2(x, α2) · eN > −η.

2. b1(x, α1) · eN = η and b2(x, α2) · eN = −η.

3. b1(x, α1) · eN = η and b2(x, α2) · eN > −η.

4. b1(x, α1) · eN < η and b2(x, α2) · eN = −η.

We do not detail more the computations since they are obvious adaptations. Here also we use the

controllability for dealing with the limit cases bi · eN = η or −η. The reader can also check similar

proofs in [3, Theorem 2.5] for the case η = 0.
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5.2 Asymptotics as η → +∞ of U
η
A

In this section we prove the asymptotic results for the Hamiltonian Hη
T and the η value function

Uη
A.

Let us begin with the results related to the Hamiltonian Hη
T .

Lemma 5.3. Assume (HA), (HB) and (HC). Then the following limits are monotone and locally

uniform in R
N × R× R

N :

lim
η→+∞

Hη
T = HT , lim

η→0+
Hη

T = Hreg
T .

Proof. It is clear from the definition of Aη
0 that this sequence of sets is monotone with respect to

η and that moreover Aη
0 → A0 as η → +∞ while Aη

0 → Areg
0 as η → 0. On the other hand, from

Proposition 2.3, we know that on any fixed compact K ⊂ R
N × R × R

N , the sup defining Hη
T is

attained on a compact control set AK ⊂ A0 which can be chosen uniformly with respect to η.

Let us consider the case η → +∞. We already know that obviously Hη
T ≤ HT since the control

sets involved are ordered the same way. Now let us fix a compact set K ⊂ R
N × R × R

N . There

exists ÃK ⊂ A0 such that for any (x, u, p) ∈ K, we have an optimal control a ∈ ÃK . In other words,

HT (x, u, p) = λu− bH(x, a) · p− lH(x, a) .

But since ÃK is compact, it follows that there exists η = η(K) big enough such that ÃK ⊂ Aη
0. In

other words, for any (x, u, p) ∈ K, HT (x, u, p) ≤ Hη
T (x, u, p) since this last Hamiltonian is taken as

the supremum over Aη
0. This implies that in fact HT = Hη

T on K and of course the same property

holds for η′ > η. The asymptotic result follows.

We turn now to the case η → 0. Here the inequality Hη
T ≥ Hreg

T is the obvious one. To get the

reverse, we use a similar approach as above, but with some adaptations.

Since Hη
T is non-increasing with respect to η and bounded from below by Hreg

T , the following

limit is well-defined for any (x, u, p)

h(x, u, p) := lim
η→0

Hη
T (x, u, p) .

Now consider K compact as above and (x, u, p) ∈ K. Given a decreasing sequence ηn → 0, there

exists a sequence of associated optimal controls (an)n for Hηn
T (x, u, p). As we already did above,

there exists a compact set ÃK ⊂ Aηn
0 uniformly with respect to n, such that an ∈ ÃK for any n ∈ N.

So, we can extract a subsequence still denoted by (an)n converging to some control a∗ ∈ ÃK .

Since for any n, the optimal control an ∈ Aηn
0 , we deduce that a∗ ∈ Areg

0 and passing to the limit in

the Hamiltonian we get

lim
n→+∞

Hηn(x, u, p) = λu− bH(x, a∗) · p− lH(x, a∗) ≤ Hreg
T (x, u, p) .

This implies in the end that limη→0H
η
T = Hreg

T , and the limit is uniform on K because the controls

involved remain in a fixed compact set, and (b, l) are continuous with respect to a.
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Remark 5.4. Actually we have proved a stronger property for the case η → +∞: for any compact

K ⊂ R
N ×R× R

N there exists η0(K) > 0 such that

for any η ≥ η0 , Hη
T = HT on K .

Lemma 5.5. Assume that (HA), (HB) and (HC) hold. The sequence (Uη
A)η>0 is non-increasing

with respect to η, locally uniformly bounded and locally uniformly Lipschitz in R
N with respect to η.

As a consequence, the following limits

w−(x) := lim
η→+∞

Uη
A(x) and w+(x) := lim

η→0
Uη
A(x) (5.6)

are classical (Ishii) viscosity solutions of (1.3).

Proof. Let us first notice that the monotonicity property is obvious since the sequence of controlled

trajectories τηA is non-decreasing as η increases. As we already noticed, for any η > 0, U−
A ≤ Uη

A ≤

U+
A , so the sequence is locally uniformly bounded in R

N .

Taking a look at the proof of Proposition 3.4, it is clear that the same computations are valid

for Uη
A, and the local Lipschitz constant C(V ) does not dependent on η since it only depends on the

local bound of Uη
A, and the parameter δ > 0 in (HB). So, the result holds.

Thanks to the former properties, the two functions w− and w+ are well-defined and continuous

functions in R
N . Moreover, by the standard stability properties of viscosity solutions, it is clear that

both are viscosity solutions in the sense of Ishii of (1.3).

Now we can prove easily one of the convergence result :

Proposition 5.6. Assume (HA), (HB), (HC), (LOC1), (LOC2). Then the following limit holds

lim
η→+∞

Uη
A = U−

A locally uniformly in R
N .

Proof. By Lemma 5.5, we already know that w− is a viscosity solution in the sense of Ishii of (1.3).

Moreover, Hη
T converges locally uniformly to HT , we also deduce that w− satisfies the subsolution

inequality HT (x,w
−,Dw−) ≤ 0 in the viscosity sense on H. In other words, w− is a stratified

solution of (1.3). But by uniqueness of such solution (see Proposition 4.6-(iii)), it follows that

w− ≡ U−
A and the result is proved.

Remark 5.7. Another proof can be obtained by performing a detailed analysis of the trajectories

involved in the definition of the values functions, proving that Uη
A → U−

A directly without using the

comparison argument. However, this analysis requires some extra assumptions on the elements (b, l)

in order to estimate the spreading of optimal trajectories. This is the approach that we use below

when η → 0. Here, on the contrary, using the comparison argument for stratified solutions yields an

easy proof. Notice however that we need hypotheses (LOC1) and (LOC2) to use such arguments.
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5.3 Asymptotics as η → 0 of U
η
A

Unfortunately, getting a similar result when η → 0 is not so easy since it requires to check that

the convergence of η-trajectories yield regular trajectories as η → 0. What seems like an obvious

result actually requires a fine proof, adapting the strategy used in [4, Lemma 5.3]. We prove this

result for compact control sets Am. To simplify the notation of the controls in the lemma below, we

do not use the notation am, and substitute it by a, although the controls belong to Am.

Lemma 5.8. Assume (HA), (HB), (HC). Let ηn → 0 and (Xn, αn) ∈ τηnAm be a sequence of η-

trajectories defined on [0, T ]. We assume that (Xn) converges uniformly to some admissible trajectory

X on [0, T ]. Then the trajectory X is regular. In other words, there exists a control, a, such that

(X, a) ∈ τ regAm .

Proof. Since X is an admissible trajectory, there exists a control α such that (X,α) ∈ τAm . Let

z ∈ H, and define

K(z) := {bH(z, α
′) : α′ ∈ Areg,m

0 (z)}.

EΥ
sing := {s ∈ [0, T ] : X(s) ∈ H and dist(bH(X(s), α(s)),K(X(s))) ≥ Υ}.

Esing := {s ∈ [0, T ] : X(s) ∈ H and dist(bH(X(s), α(s)),K(X(s))) > 0},

where dist(·) is the euclidian distance in R
N . Our aim is to prove that |Esing| = 0, which will prove

that the trajectory is regular. To this end, since Esing = ∪j∈NE
1/j
sing , it is enough to prove that for

any Υ > 0, |EΥ
sing| = 0.

Assuming that there exists Υ > 0 such that |EΥ
sing| > 0, we prove that we can find a control

α̃(·) ∈ L∞(EΥ
sing;A

m) satisfying the following conditions: for any s in EΥ
sing, ã(s) ∈ Areg,m

0 (X(s))

and

bH(X
n(s), αn(s)) = bH(X(s), ã(s)) + ςn(s) (5.7)

where ςn(·) is measurable and goes uniformly to 0 when n goes to infinity. By doing so, we prove

that we can redefine the control α so that |EΥ
sing| = 0. Indeed, by passing to the limit as n → +∞

we see that the dynamics associated to α and ã are the same on EΥ
sing, so that the trajectory X can

be also constructed by using the control ã, which is regular.

Writing αn = (αn
1 , α

n
2 , µ

n), notice that in what follows, we will not modify the parameter µn ,

only the controls αn
i , and that of course, no change is needed if Xn /∈ H.

Step 1: The first step consists in finding for each n a regular control an(·) for the trajectory Xn(·)

satisfying on ∆n := (Xn)
−1(H) ∩ EΥ

sing

bH(X
n(s), αn(s)) = bH(X

n(s), an(s)) + on(1) .

Denoting by αn = (αn
1 , α

n
2 , µ

n) we set

γn1 (s) := −max{0, b1(X
n(s), αn

1 (s)) · eN}, γn2 (s) := −min{0, b2(X
n(s), αn

2 (s)) · eN} (5.8)
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and we claim that

µnγn1 (s) + (1− µn)γn2 (s) = 0, for a.e. s ∈ ∆n. (5.9)

Indeed, if αn(s) ∈ Areg,m
0 (Xn(s)), then γn1 (s) = 0 = γn2 (s) and the claim is obvious. So, assume that

αn(s) /∈ Areg,m
0 (Xn(s)). By Theorem 2.1, since Xn(s) ∈ H, we have that bH(X

n
x (s), α

n(s)) · eN = 0

almost everywhere on ∆n and we face three cases which lead to (5.9):

1. γni (s) := −bi(X
n
x (s), α

n
i (s)) · eN if µn(s) ∈ (0, 1);

2. γn1 (s) = 0 if µn(s) = 1;

3. γn2 (s) = 0 if µn(s) = 0.

Notice that since bi andXn are continuous and αn
i (·) is measurable, then γni is measurable. Moreover,

since |γni (s)| ≤ ηn almost everywhere on ∆n, it follows that

γni → 0, uniformly as n→ ∞. (5.10)

Furthermore, by construction we have approximating regular dynamics

(b1(X
n(s), αn

1 (s)) + γn1 (s)eN ) · eN ≤ 0, (b2(X
n(s), αn

2 (s)) + γn2 (s)eN ) · eN ≥ 0. (5.11)

Now, we use γni to build the regular control an(·). To do so, we define

βn(s) := min

{

δ − 2|γn1 (s)|

δ
,
δ − 2|γn2 (s)|

δ

}

.

Thanks to (5.10), we have that βn(s) → 1 when n→ ∞.

Step 2: We claim that there exists α̃n
i (s) ∈ Am

i such that

bi(X
n(s), αn

i (s)) = bi(X
n(s), α̃n

i (s)) + pni (s), (5.12)

where pni (s) := (1− βn(s)) (bi(X
n(s), αn

i (s)) + γni (s))− γni (s). Note that pni is measurable and goes

uniformly to 0 when n goes to infinity. Indeed, if βn(s) = 1, then |γn1 (s)| = 0 = |γn2 (s)|. In this case

we can take

α̃n
i (s) := αn

i (s) and pni (s) = (1− 1)(bi(X
n
x (s), α

n
i (s)) + 0)− 0 = 0.

Otherwise, assume that βn(s) 6= 1. Since κn(s) := βn(s)
γn
i (s)eN

1−βn(s) ∈ {z ∈ R
N : |z| ≤ δ

2}, for n big

enough, it follows that

βn(s) (bi(X
n(s), αn

i (s)) + γni (s)eN ) = βn(s)bi(X
n(s), αn

i (s)) + (1− βn(s))κn(s)

belongs to B(Xn(s)). This is due to (HB) and the convexity property of the images B(X(s)). In

other words, there exists α̃n
i (s) ∈ A

m
i such that

βn(s) (bi(X
n(s), αn

i (s)) + γni (s)eN ) = bi(X
n(s), α̃n

i (s)).
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Furthermore, α̃n is a regular control. Indeed, thanks to (5.11)

b1(X
n(s), α̃n

1 (s)) · eN = βn(s)(b1(X
n(s), αn

1 (s)) + γn1 (s)eN ) · eN ≤ 0

b2(X
n(s), α̃n

2 (s)) · eN = βn(s)(b2(X
n(s), αn

2 (s)) + γn2 (s)eN ) · eN ≥ 0

and thanks to Theorem 2.1 and (5.11)

µn(s)b1(X
n(s), α̃n

1 (s)) · eN + (1− µn(s))b2(X
n(s), α̃n

2 (s)) · eN

= µn(s)βn(s)b1(X
n(s), αn

1 (s)) · eN + (1− µn(s))βn(s)(b2(X
n(s), αn

2 (s))

+ βn(s)µn(s)γn1 (s) + βn(s)(1− µn(s))γn2 (s)

= 0 a.e on ∆n.

Notice that we constructed (α̃n
1 (·), α̃

n
2 (·)) pointwise for s ∈ ∆n, so that they may not necessarily

be measurable. However, thanks to a measurable selection argument (Filippov’s Lemma) we can

find measurable controls ani (·) such that

bi(X
n(s), α̃n

i (s))− pni (s) = bi(X
n(s), ani (s)).

Thus, an(·) := (an1 (·), a
n
2 (·), µ

n(·)) ∈ Areg,m
0 (Xn(s)) is measurable. Consequently,

bH(X
n(s), α̃n(s))− pn(s) = bH(X

n(s), an(s))

where pn(s) = µn(s)pn1 (s) + (1 − µn(s))pn2 (s). Note that pn is measurable and goes uniformly to 0

when n goes to infinity since pni goes to zero as n goes to infinity.

Step 3: Since (an1 (s), a
n
2 (s), µ

n(s)) ∈ Areg,m
0 (Xn(s)), thanks to [4, Lemma 5.3] there exists a mea-

surable control ã ∈ Areg,m
0 (X(s)), i.e. a control associated to the limit trajectory, satisfying

bH(X
n(s), an(s)) = bH(X(s), ã(s)) + σn(s). (5.13)

with σn(·) measurable that goes uniformly to 0 when n goes to infinity. Therefore,

bH(X
n(s), α̃n(s)) = bH(X(s), ã(s)) + σn(s) + pn(s) ,

leading to (5.7) with ςn(s) := σn(s) + pn(s). As we said, this modification allows to associate the

trajectory X with a regular control on EΥ
sing. By doing the same procedure on each E

1/j
sing, we end

up with the fact that for some control a such that (X, a) ∈ τAm , |Esing| = 0, the trajectory (X, a)

is regular.

Next we need some assumptions on the cost and dynamics so that we can control the asymptotic

behaviour of trajectories.

Lemma 5.9. Assume (HA), (HB), (HC) and let m ∈ N∗. Assume there exist λ,C and C such that

(HD) |bi(x, α
m
i )| ≤ λ(1+ |αm

i |+ |x|) and li(x, α
m
i ) ≤ C|x|1−ǫ+C|αm

i |, ∀x ∈ R
N , αm

i ∈ Am
i , i = 1, 2.
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Let (X,α) ∈ τAm(x). Then,

lim
T→∞

Uη
Am(X(T ))e−λT = lim

T→∞
U−
Am(X(T ))e−λT = lim

T→∞
U+
Am(X(T ))e−λT = 0.

Proof. Denote U+
Am , U−

Am and Uη
Am by U for simplicity since the argument is the same for all of

them. Actually, it is enough prove it for U+
Am only.

Thanks to hypotheses (HB) and (HC), there exists a regular control α∗ = (α∗
1, α

∗
2, µ

∗) ∈ Am such

that bi(X(T ), α∗
i ) = 0. The associated trajectory is just X(t) = X(T ) for all t ≥ T . By definition

of U as the infimum and hypothesis (HD) we get

U(X(T ))e−λT ≤
l(X(T ), α∗)

λ
e−λT ≤

C|X(T )|1−ǫ + C|α∗|

λ
e−λT .

Thanks to (HD), it follows from Gronwall’s lemma on X(·) that |X(T )| ≤ |x+ c|eλT so that

U(X(T ))e−λT ≤
1

λ

(

C|x+ c|1−ǫeλ(1−ǫ)T + C̄|α∗|
)

e−λT → 0 as T → +∞ ,

which proves the result.

The following theorem states the convergence of Uη
Am to U+

Am as η goes to zero on compact

control sets.

Theorem 5.10. Under the hypotheses (HA), (HB), (HC) and (HD), it follows that

lim
η→0

Uη
Am(x) = U+

Am(x).

Proof. Let us consider a strictly positive decreasing sequence {ηn}n≥0 such that lim
n→∞

ηn = 0. We

assume that for some x ∈ R
N ,

Uηn
Am(x) < U+

Am(x), (5.14)

otherwise, there exists N ∈ N such that Uηn
Am(x) = U+

Am(x) for all n ≥ N and the result holds.

Step 1: Given T > 0, thanks to (5.14) and Theorem 5.1, there exists (Xηn
x , αηn) ∈ τηnAm(x)

satisfying

∫ T

0
l(Xηn

x (t), αηn(t))e−λtdt+Uηn
Am(X

ηn
x (T ))e−λT ≤ Uηn

Am(x)+
U+
Am(x)− Uηn

Am(x)

2
< U+

Am(x). (5.15)

Let us define

Y ηn(s) :=

∫ s

0
l(Xηn

x (t), αηn(t))dt.

Since bi(X
ηn
x , αηn) and li(X

ηn
x , αηn) are bounded in [0, T ], it follows that the curves (Xηn

x , Y ηn)(·)

are equicontinuous and uniformly bounded in [0, T ]. Therefore, by Ascoli Arzela’s Theorem, we

can extract a subsequence (Xηn
x , Y ηn)(·) which converges uniformly to ZT := (XT

x , Y
T ) in [0, T ].

Proceeding as in [4, Lemma 5.3], we find a measurable control αT (·) such that

(ẊT
x (t), Ẏ

T (t)) = (b(XT
x (t), α

T (t)), l(XT
x (t), α

T (t))) ∀t ∈ [0, T ]. (5.16)
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Thus, ((b(Xηn (t), αηn(t)), l(Xηn (t), αηn (t)))) converges weakly∗ to
(

b(XT (t), αT (t)), l(XT (t), αT (t))
)

in L∞([0, T ];RN+1). Moreover, by Lemma 5.8, we may assume that αT is regular.

Step 2: Since l(Xηn
x (t), αηn(t)) converges weakly∗ to l(XT

x (t), α
T (t)) in L∞([0, T ];R) and the ex-

ponential is in L1([0, T ];R), we obtain that

lim
n→∞

∫ T

0
l(Xηn

x (t), αηn(t))e−λtdt =

∫ T

0
l(XT

x (t), α
T (t))e−λtdt.

Thanks to hypotheses (HB) there exists a bounded control α∗
i such that bi(X

T
x (T ), α

∗
i ) = 0, which

allows to consider the trajectory XT
x (t) := XT

x (T ) associated to αT
i (t) := α∗

i for any t ≥ T . Thus,

(XT
x (·), α

T (·)) ∈ τ regAm(x) and thanks to the Dynamic Programming Principle, (5.14) and (5.15),

U+
Am(x)− U+

Am(X
T
x (T ))e

−λT ≤

∫ T

0
l(XT

x (t), α
T (t))e−λtdt

= lim
n→∞

∫ T

0
l(Xηn

x (t), αηn(t))e−λtdt

≤ lim
n→∞

(
∫ T

0
l(Xηn

x (t), αηn (t))e−λtdt+ Uηn
Am(X

ηn
x (T ))e−λT

)

≤ lim
n→∞

Uηn
Am(x) + lim

n→∞

U+
Am(x)− Uηn

Am(x)

2

≤ U+
Am(x).

(5.17)

Step 3: Taking limits in (5.17) as T goes to infinity and using Lemma 5.9, we obtain that

U+
Am(x) ≤ lim

n→∞
Uηn
Am(x) + lim

n→∞

U+
Am(x)− Uηn

Am(x)

2
≤ U+

Am(x)

which implies that

lim
n→∞

Uηn
Am(x) = U+

Am(x) ,

and the result follows by the monotonicity of Uη
Am with respect to η.

Unfortunately, we are not able to prove that the previous convergence result holds for unbounded

control sets , but at least we can prove that the η-value functions on compact control sets, Am,

converge to the value function U+
A on the unbounded control set, A.

Corollary 5.11. Under the hypotheses in Lemma 5.9, there exists a sequence (ηj ,Mj) → (0,∞) as

j → ∞, such that

lim
j→∞

U
ηj

AMj
(x) = U+

A (x).

Proof. Given j ∈ N, there exists mj such that for m ≥ mj ,

|U+
A (x)− U+

Am(x)| ≤
1

2j
.

31



Besides that, by Theorem 5.10, there exists ηj such that for η′j ≤ min{1
j , ηj}

|U+
Amj (x)− U

η′j
Amj (x)| ≤

1

2j
.

Consequently,

|U+
A (x)− U

ηj
Amj (x)| ≤ |U+

A (x)− U+
Amj (x)|+ |U+

Amj (x)− U
ηj
Amj (x)| ≤

1

2j
+

1

2j
=

1

j
.

Taking limits as j goes to ∞ then (ηj ,mj) → (0,∞), and we get the result.

6 Application to a superlinear example

The aim of this section is to give a quite general example of superlinear Hamiltonian and the

associated control problem satisfying the hypotheses (HA), (HB), (HC), (LOC1), (LOC2), which

allow to apply all the results of this article.

We consider the following Hamiltonian:

Hi(x, u, p) = λu+ di(x)
r|p|r − fi(x), (6.1)

where r > 1, di, fi : R
N → R are continuous functions in Ωi such that

0 < di(x) ≤ |x|κ is locally Lipschitz,

0 ≤ fi(x) ≤ Cf |x|
a−ǫ + Cf ,

a ≥ (a− 1 + κ)r , λ ≥ ar .

Observe that, here, ǫ > 0 is a small constant. For instance, if the di functions are bounded and fi
are sublinear functions, we can take κ = 0 and a = 1 which allows r to be as big as we want, and

λ = 1.

6.1 The control problem

This above Hamiltonian is obtained by considering the control problem deriving from the fol-

lowing dynamics and costs:
bi(x, αi) := crdi(x)|αi|

r−2αi, ,

li(x, αi) := fi(x) + |αi|
r ,

cr =
r

r
√

(r − 1)r−1
.

Observe that bi and li satisfy hypotheses (HA), (HB) and (HC). Indeed bi(x, 0) = 0, and given

v in R
N different from zero and x ∈ R

N , there exists a control αi such that bi(x, αi) = v, where

32



αi is given by αi =
(

|v|
crdi(x)

)
1

r−1 v
|v| . This implies that R

N ⊂ BAi(x) for any x ∈ R
N . Moreover,

hypothesis (HC) is also satisfied since

lim
|αi|→∞

li(x, αi)

1 + |bi(x, αi)|
= lim

|αi|→∞

fi(x) + |αi|
r

crdi(x)|αi|r−1
= ∞ ,

uniformly on compact subsets of RN .

6.2 Convexifying the problem

Concerning the set (b, l) we face a problem here. Though the setsBi(x) = {b(x, αi) : αi ∈ Ai} and

Li(x) (defined similarly) are convex, nothing indicates that the setBLi(x) := {(bi(x, αi), li(x, αi))|αi ∈

Ai} is also convex.

In order to bypass this difficulty, we introduce the convex enveloppe of BL and solve the associ-

ated PDE problem. However, this approach requires some compactness argument to prove that by

enlarging BL we get the same Hamiltonians.

So, let us consider the convex hull of BLm
i (x) where the exponent m indicates that we are taking

the compact control sets Am := Bm(0) ⊂ R
N . We now work with BLm(x) defined as

BLm(x) :=











co (Bm
1 (x)× Lm

1 (x)) if xN > 0,

co (Bm
2 (x)× Lm

2 (x)) if xN < 0,

co((Bm
1 (x)× Lm

1 (x)) ∪ (Bm
2 (x)× Lm

2 (x))) if xN = 0.

(6.2)

We skip all the notations and details but this time, the control problem satisfies all the needed

hypotheses to get a suitable framework. We denote by H̄m
i , H̄

m
T the Hamiltonians associated to the

convex hull.

Now, in order to connect H̄m
i , H̄

m
T to Hm

i , Hm
T we need the following result:

Lemma 6.1. Let F : RN → R be a convex function and K ⊂ R
N compact. Then

sup
Λ∈co(K)

F (Λ) = sup
Λ∈K

F (Λ).

Proof. For each ǫ > 0, we consider Fǫ(Λ) := F (Λ)+ǫ|Λ|2 which is strictly convex. Notice that co(K)

is compact. The supremum of Fǫ over co(K) is attained at a point Λǫ in co(K). From Jensen’s

inequality, for a strictly convex function, we have

sup
Λ∈co(K)

Fǫ(Λ) = Fǫ

(
∫

K
Λdµǫ(Λ)

)

<

∫

K
Fǫ(Λ)dµǫ(Λ)) ≤ sup

Λ∈K
Fǫ(Λ).

So, necessarily the convex combination for Λǫ is trivial, in other words µǫ = δΛǫ and Λǫ ∈ K. Now,

sup
co(K)

F ≤ sup
co(K)

Fǫ = F (Λǫ) + ǫ|Λǫ|
2 ≤ sup

K
F + ǫ|Λǫ|

2
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and since K is compact, Λǫ → Λ∗ ∈ K at least along a subsequence. So, passing to the limit as ǫ

goes to 0, yields that

sup
co(K)

F ≤ sup
K
F.

which gives the result. The other inequality is trivial.

We apply this lemma to the Hamiltonians associated to compact control sets:

Corollary 6.2. The Hamiltonians Hm
i , H

m
T and Hm,reg

T satisfy

Hm
i = H

m
i , Hm

T = H
m
T , and Hm,reg

T = H
m,reg
T .

Proof. Thanks to Lemma 6.1, considering F (b, l) = −b · p− l and K = BLm
i (x), K = BLm

T (x) and

K = BLm,reg
T (x), respectively, we obtain the results.

The last step consists in remembering that on each compact set V ⊂ R
N , any supersolution of

the Ishii problem is actually a supersolution of Hm
i for some m ∈ N∗ while any stratified subsolution

is always a stratified subsolution of Hm
i and Hm

T .

So, provided (LOC1) and (LOC2) are satisfied, the (LCR) is enough to ensure a comparison

result. And this (LCR) can be performed by using Hm
i , Hm

T or equivalently, H̄m
i , H̄m

T .

This proves that the comparison result for stratified solutions works for the superlinear example.

And most associated results also follow.

Observe that thanks to Proposition 2.3 the supremum that defines Hi and HT are attained on

compact control sets under hypotheses (HA), (HB), (HC). From Corollary 6.2 we know that the

the Hamiltonians on compact control sets are equal to the Hamiltonias defined on the convex hull.

Therefore, the problem is well defined using the convexifying arguments.

6.3 Checking (LOC1) and (LOC2)

Checking (LOC1) and (LOC2) requires first to set some growth conditions. Let C be the set of

subsolutions of (1.3),(1.4) and supersolutions of (1.3), ω, such that for ǫ > 0

|ω(x)| ≤ Cω|x|
a−ǫ + Cω with a ≥ (a− 1 + κ)r. (6.3)

where r, κ are the constants that define the dynamic and cost functions. Lengthy but straightforward

computations show that

ψ(x) := −(1 + |x|2a)1/2 (6.4)

is a stratified subsolution of (1.3) for all a > 1/2. Moreover, (LOC1) is satisfied with uβ(x) :=

(1− β)u(x) − βψ(x). Concerning (LOC2), it is satisfied with

uβγ(x) := uβ(x)− γ(1 + |x− xβ|
2)

1
2 .
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6.4 Filippov approximations of the superlinear example.

In this subsection we consider consider Filippov approximations. Let ϕ : R → [0, 1] be a

continuous functions satisfying lim
y→∞

ϕ(y) = 1 and lim
y→−∞

ϕ(y) = 0. Let

ϕε(y) := ϕ(
y

ε
).

We extend H1 and H2 for any x ∈ R
N as follows

Hε(x, u, p) := ϕε(xN )H1(x, u, p) + (1− ϕε(xN ))H2(x, u, p), ∀x ∈ R
N . (6.5)

In the following result we prove that there exists a unique solution of the Filippov approximation

Hamiltonian, and this solution converges to the value function U−
A .

Theorem 6.3. There exists a unique locally Lipschitz continuous solution uε of (6.5) satisfying

−C(1 + |x|2a)
1
2
−ǫ − C ≤ uε(x) ≤ C(1 + |x|2a)

1
2
− ǫ

2a + C

where C > max
{

Cm,
Cf

λ ,
Cf

λ

}

. Moreover, uε converges to U−
A as ε goes to 0, locally uniformly

in R
N .

Proof. We only sketch the proof since it follows the arguments of [3]: existence of solution for (6.5)

is obtained using the Perron Method (see [2, p. 52]) in the following class of solutions:

Sε := {u solution of (6.5) : −C(1 + |x|2a)
1
2
−ǫ − C ≤ u(x) ≤ C(1 + |x|2a)

1
2
− ǫ

2a + C for all x ∈ RN}.

By standard comprison arguments, since Hǫ is continuous and coercive, we know that there is at

most one solution uǫ.

Finally, taking the limit of uε when ε goes to 0 is done as in [3, p. 31]: this limit is a viscosity

solution in the sense of Ishii of (1.3) and moreover, since it satisfies the HT subsolution inequality,

it is the unique stratified solution of (1.3). Therefore, by uniqueness the limit of uε is U−
A .
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