
ar
X

iv
:2

40
5.

06
37

5v
1

 [
m

at
h.

N
A

]
 1

0
M

ay
 2

02
4

ACCURACY AND STABILITY OF CUR DECOMPOSITIONS WITH
OVERSAMPLING ∗

TAEJUN PARK† AND YUJI NAKATSUKASA†

Abstract. This work investigates the accuracy and numerical stability of CUR decompositions
with oversampling. The CUR decomposition approximates a matrix using a subset of columns and
rows of the matrix. When the number of columns and the rows are the same, the CUR decomposition
can become unstable and less accurate due to the presence of the matrix inverse in the core matrix.
Nevertheless, we demonstrate that the CUR decomposition can be implemented in a numerical stable
manner and illustrate that oversampling, which increases either the number of columns or rows in
the CUR decomposition, can enhance its accuracy and stability. Additionally, this work devises an
algorithm for oversampling motivated by the theory of the CUR decomposition and the cosine-sine
decomposition, whose competitiveness is illustrated through experiments.

Key words. Low-rank approximation, CUR decomposition, stability analysis, oversampling

MSC codes. 15A23, 65F55, 65G50

1. Introduction. The computation of a low-rank approximation to a matrix is
omnipresent in the computational sciences [51]. It has seen increasing popularity due
to its importance in tackling large scale problems. An important aspect of low-rank
approximation is the selection of bases that approximate the span of a matrix’s column
and/or row spaces. In this work, we consider a natural choice of using a subset of rows
and columns of the original matrix as low-rank bases, namely the CUR decomposition.
The CUR decomposition [7, 36, 47], also known as a “matrix skeleton” approximation
[26], is a low-rank approximation that approximates a matrix A as a product1

(1.1) A
m×n

≈ C
m×k

Z
k×k

R
k×n

where in MATLAB notation, C = A(:, J) is a k-subset of columns of A with J ⊆
{1, . . . ,m} being the column indices and R = A(I, :) is a k-subset of the rows of
A with I ⊆ {1, . . . , n} being the row indices. The factors C and R are subsets of
the original matrix A that inherit certain properties of the original matrix, such as
sparsity or nonnegativity, a property that is absent in the truncated SVD. They also
assist with data interpretation by revealing the important rows and columns of A. The
CUR decomposition is also memory efficient when the entries of A can be computed
or extracted quickly because we can just store the column and row indices without
explicitly storing C and R.

There are two common choices for Z, which we refer to as the core matrix:
C†AR† or A(I, J)−1 [29]. The choice Z = C†AR† minimizes the Frobenius norm
error ‖A−CZR‖F given the choice of C and R. Hence, we refer to the CUR decom-
position with this choice as CURBA (CUR with Best Approximation) for shorthand
in this work. While this choice is more robust, it involves the full matrix A to form
C†AR†, which can be costly, requiring O(mnk) operations for a dense matrix A. On
the other hand, the choice Z = A(I, J)−1, which is often called the cross approxi-
mation [13], is more efficient as we only require the overlapping entries of C and R,

∗Date: May 13, 2024
Funding: TP was supported by the Heilbronn Institute for Mathematical Research

†Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK, (park@maths.ox.ac.uk,
nakatsukasa@maths.ox.ac.uk).

1The notation Z is temporarily used to denote the core matrix instead of the traditional notation
U as we use U to denote the intersection of C and R, i.e., U = A(I, J) later.

1

http://arxiv.org/abs/2405.06375v1
mailto:park@maths.ox.ac.uk
mailto:nakatsukasa@maths.ox.ac.uk

2 TAEJUN PARK AND YUJI NAKATSUKASA

and need not even read the whole matrix A. We refer to this version of the CUR
decomposition as CURCA (CUR with Cross Approximation) for shorthand. How-
ever, this choice has the drawback that A(I, J) can be (nearly) singular, which can
lead to poor approximation error. Indeed, the ill-conditioning of A(I, J) for CURCA
becomes alarming when computing its matrix (pseudo)inverse, a concern that has
been raised in various papers [19, 38, 47]. For this reason, the related interpolative
decomposition [37] is often advocated to avoid numerical instability with CUR, es-
pecially CURCA. The aim of this paper is to address the instability of the CURCA
by demonstrating that it can be implemented in a numerically stable manner using
the ǫ-pseudoinverse in the presence of roundoff errors. The ǫ-pseudoinverse variant
takes the ǫ-pseudoinverse of A(I, J) by first truncating the singular values of A(I, J)
less than ǫ before computing its pseudoinverse, which has been explored in a related
context in [8, 12, 40, 42]. We abbreviate the CURCA with ǫ-pseudoinverse as the sta-
bilized CURCA (SCURCA for short). Furthermore, we illustrate that oversampling,
which increases either the number of columns or rows in the CURCA, can be incor-
porated to enhance its accuracy and stability. Throughout this work, we concentrate
on CURCA and take U = A(I, J) unless otherwise stated, such that CURCA can be
written as CU †R, but the analysis and the relevant counterparts regarding CURBA
can be found in Appendix A.

In the CUR decomposition, it is important to get a good set of row and column
indices as they dictate the quality of the low-rank approximation. There are many
practical methods, but they largely fall into two different categories: pivoting or sam-
pling. For pivoting based methods, we use pivoting schemes such as column pivoted
QR (CPQR) [25] or LU with complete pivoting [49] on A or the singular vectors of A
to obtain the pivots which we then use as row or column indices. For example, these
can be used on the dominant singular vectors of A to obtain the pivots and the discrete
empirical interpolation method (DEIM) is a popular example [11, 22, 47]. There are
also pivoting schemes that provide a strong theoretical guarantee [27]. Applying piv-
oting schemes directly on A can be prohibitive for large matrices, and for this reason a
number of randomized algorithms based on sketching have been proposed [19, 23, 52].
These methods “sketch” the original matrix down to a smaller-sized matrix using ran-
domization and perform the pivoting schemes there. See [19] for a comparative study
of randomized pivoting algorithms. On the other hand, for sampling based methods,
we sample the column or row indices from some probability distribution obtained
from certain information about A. For example, a popular choice is the row norms
of the dominant singular vectors of A for leverage scores [21, 36]. There are other
sampling strategies such as uniform sampling [12], volume sampling [13, 16, 17, 26],
DPP sampling [15], and BSS sampling [5, 6]. In particular, volume sampling leads to
a CUR approximation that have close-to-optimal error guarantees [13, 54]. Sampling
based methods can also be prohibitive for large matrices, so a smaller-sized proxy
of A via sketching have been proposed [20]. There is also a deterministic sampling
method for leverage scores [44] and hybrid methods such as L-DEIM [24].

The vast majority of CUR decompositions of A comes with a theoretical guarantee
that involves the term (in MATLAB notation)

(1.2)
∥∥V (J, :)−1

∥∥
2
=

1

σmin(V (J, :))
,

where V ∈ Rn×k is the k (approximate) dominant right singular vectors of A ∈
Rm×n and J ⊂ [n] with |J | = k is the set of column indices; see Theorems 2.3
and A.3. A similar term involving the left singular vectors and a row index set is

ACCURACY AND STABILITY OF CUR DECOMPOSITIONS WITH OVERSAMPLING 3

also present. The term (1.2) is usually the deciding factor for the accuracy of the
CUR decomposition and therefore, a majority of the algorithms aim at choosing a
set of indices J that would diminish the effect of (1.2). A natural way of improving
(1.2) is to oversample, that is, obtain extra indices J0 ∈ Rp distinct from J so that
V (J ∪ J0, :) ∈ R(k+p)×k becomes a rectangular matrix. By appending more rows to
V (J, :), V (J ∪J0, :) has a larger minimum singular value by the Courant-Fischer min-
max theorem, which improves the accuracy of the CUR decomposition, as we will see.
The topic of oversampling is not new, in particular, it is shown in [1] that oversampling
improves the accuracy of CURBA when the singular values decay rapidly. In the
context of sampling based methods, oversampling has been suggested for theoretical
guarantees; see e.g. [7, 12, 36]. It is easy to oversample for sampling based methods as
we can simply sample more than k indices from the given probability distribution. In
contrast, it is often difficult to oversample for pivoting based methods. This is because
we typically perform pivoting schemes on a smaller-sized surrogate X ∈ Rn×k, for
example, the sketch of A and the pivots beyond the first k indices carry little to no
information. Therefore, for pivoting based methods, usually a different strategy is
used for oversampling. In the context of DEIM, various ways of oversampling have
been suggested [9, 24, 45, 55]. Specifically, Zimmermann and Willcox [55] show that
oversampling can improve the condition number of oblique projections, and Donello
et al. [18] proves a bound for DEIM projectors2 with oversampling, which extends the
proof without oversampling from [47]. A majority of the aforementioned literature
focuses on the DEIM projector or the CURBA. However, oversampling can often be
more effective for the CURCA as we not only improve the bound involving (1.2) (see
Theorem 2.3), we also make A(I, J) a rectangular matrix when we oversample either
I or J (but not both), which improves the condition number of A(I, J) making the
CURCA more accurate when computing the pseudoinverse of A(I, J). Therefore, we
advocate oversampling when possible over the standard choice |I| = |J |.

Overview. In this work, we focus on the CURCA.3 We prove a theoretical bound
for the CURCA and its ǫ-pseudoinverse variant, the SCURCA with oversampling in
Section 2 and show that the SCURCA can be computed in a numerically stable way
in the presence of roundoff errors. In Section 3, we study oversampling of indices
for the CURCA with the purpose of improving its accuracy and numerical stability
based on the theory developed in Section 2. The setting we are interested in is when
we have row indices I and column indices J with |I| = |J | = k, how should we
oversample one of I or J . We address this question by proposing a deterministic
way of oversampling for which the rationale for our idea can be explained by the
cosine-sine (CS) decomposition. The construction could be of use in other contexts
where (over)sampling from a subspace is desired; a common task that finds use, for
example, in model reduction [11] and active learning [46]. We conclude with numerical
illustrations in Section 4, demonstrating the stability of our method in computing the
CURCA and the strength of oversampling.

Existing work. The numerical stability of the stabilized CURCA, A ≈ CU †
ǫR,

involving the ǫ-pseudoinverse has not been studied previously to our knowledge. How-
ever, there are some related works exploring the idea of ǫ-pseudoinverse in the core

2DEIM projector is given by PU = U(ΠTU)†ΠT where U ∈ Rn×k is an orthonormal matrix and
Π ∈ Rn×k is a submatrix of the identity matrix that picks k chosen rows.

3The analysis for the CURBA is also given in this work in Appendix A. However, there already
exists a numerically stable way of computing the CURBA given by the StableCUR algorithm in [1].
Furthermore, the effect of oversampling is less effective as the CURBA, A ≈ C(C†AR†)R is a more
robust and stable (but expensive) approximation than the CURCA, A ≈ CU†R; see Appendix A.

4 TAEJUN PARK AND YUJI NAKATSUKASA

matrix. The ǫ-pseudoinverse takes the core matrix U = A(I, J), truncates its sin-
gular values that are less than ǫ, and computes the pseudoinverse of the resulting
matrix. Firstly, Chiu and Demanet [12] study the ǫ-pseudoinverse in the context of
the CURCA with uniform sampling and show that when the matrix is incoherent, the
algorithm succeeds. However, this paper does not contain stability analysis, and has
the condition that the matrix needs to be incoherent. The authors in [8, 42] explore
the ǫ-pseudoinverse in the context of the symmetric Nyström method, A ≈ CU †

ǫC
T ,

applied to symmetric indefinite matrices. However, they show that the ǫ-pseudoinverse
can deteriorate the accuracy of the symmetric Nyström method when applied to sym-
metric indefinite matrices. Lastly, Nakatsukasa [40] studies the generalized Nyström
algorithm4 with ǫ-pseudoinverse and oversampling, which provides a numerically sta-
ble way of computing the generalized Nyström method and proves its stability. The
paper also demonstrates that oversampling is necessary for a stable approximation in
the generalized Nyström method.

In a related work, Hamm and Huang study the stability of sampling for CUR
decompositions in [30] and the perturbation bounds of CUR decompositions in [31].
In [30], they study the problem of determining when a column submatrix of a rank
k matrix A also has rank k. This is important as if the chosen columns or rows of
a matrix is (numerically) rank-deficient then U is also (numerically) rank-deficient,
which may cause numerical issues when computing the pseudoinverse of U . In [31],
they derive perturbation bounds for CUR decompositions under the influence of a
noise matrix. They investigate several variants of the CUR decomposition and provide
perturbation bounds in terms of the noise matrix. This work is related, but different
from our work as they investigate the accuracy of the CUR decomposition for the
perturbed matrix Ã = A + E, while we investigate the accuracy and stability for a
numerical implementation of the CURCA in the presence of rounding errors.

We review two existing algorithms for oversampling. First, Gidisu and Hochsten-
bach [24] oversample p extra indices by choosing the largest p leverage scores (row
norms of (approximate) dominant singular vectors) out of the unchosen indices. The
complexity is O(nk) for computing the leverage scores of an orthonormal matrix
V ∈ Rn×k. If we are only given an approximator that is not orthonormal then (ap-
proximate) orthonormalization needs to be done, usually at a cost of O(nk2). Second,
Peherstorfer, Drmač and Gugercin [45], iteratively select p extra indices for oversam-
pling to maximize the minimum singular value of V (J, :) in a greedy fashion. This
approach, which is called the GappyPOD+E algorithm, uses perturbation bounds on
the eigenvalues given in [34] to find the next index that maximizes the lower bound
for the minimum singular value of V (J, :). This approach is also a special case of [55].
The algorithm runs with complexity O((k + p)2k2 + nk2p) where p is the number of
indices we oversample by. Again, if V is not orthonormal to begin with, then (ap-
proximate) orthonormalization needs to be done usually at a cost of O(nk2). For a
treatment of approximate orthonormalization, see, for example [3, 4].

Contributions. Our main contribution lies in presenting a method for computing
the CURCA in a numerically stable manner, accompanied by an analysis that guar-
antees its stability. We show that with the ǫ-pseudoinverse in the core matrix, the
SCURCA, A ≈ CU †

ǫR, can be computed in a numerically stable manner by taking the

4The generalized Nyström method is a variant of the CURCA where instead of subsets of rows
and columns of A that approximate the row and column space of A, we have the sketches, Y TA and
AX that approximate the row and column space of A where X and Y are random embeddings. See
[40, 50] for more details.

ACCURACY AND STABILITY OF CUR DECOMPOSITIONS WITH OVERSAMPLING 5

following steps. First, we compute each row of CU †
ǫ using a backward stable under-

determined linear solver. Then we compute the SCURCA by multiplying CU †
ǫ by R.

See Section 2.2 for details. In addition to the stability analysis, we also analyze the
CURCA and its ǫ-pseudoinverse variant, SCURCA in exact arithmetic by deriving a
relative norm bound. While our analysis does not cover the stability of plain CURCA,
CU †R, we observe its stability in practice without the ǫ-truncation; see Sections 2.2
and 4.1.

Our secondary contribution involves advocating the use of oversampling for the
CURCA and for providing a deterministic algorithm to oversample row or column in-
dices. We show that oversampling improves the accuracy and stability of the CURCA
by providing a theoretical analysis that demonstrates the benefits of oversampling.
We show that oversampling should be done such that it increases the minimum singu-
lar value(s) of V (J, :) where V ∈ Rn×k is the k (approximate) dominant right singular
vectors of A and J is a set of indices with |J | = k. Our algorithm is motivated by
the cosine-sine (CS) decomposition and runs with complexity O(nk2 + nkp) where k
is the target rank and p is the oversampling parameter. Note that this complexity
only refers to the cost of the oversampling process, not the whole CUR process. We
show that our algorithm is competitive with existing algorithms and in particular,
performs similarly to the GappyPOD+E algorithm in [45], in which the oversampling
process runs with complexity O((k+ p)2k2+nk2p). The numerical experiments illus-
trate that oversampling is recommended.

Notation. Throughout, we use ‖·‖2 for the spectral norm or the vector-ℓ2 norm,
‖·‖F for the Frobenius norm and ‖·‖ for any unitarily invariant norms. We use dagger
† to denote the pseudoinverse of a matrix and JAKk to denote the best rank-k approx-
imation to A in any unitarily invariant norm, i.e., the approximation derived from
truncated SVD [33]. Unless specified otherwise, σi(A) denotes the ith largest singular
value of the matrix A. We use MATLAB style notation for matrices and vectors. For
example, for the kth to (k + j)th columns of a matrix A we write A(:, k : k + j). We
use I and J for the row and the column indices respectively and set ΠI = Im(:, I)
and ΠJ = In(:, J) so that A(:, J) = AΠJ and A(I, :) = ΠT

I A for A ∈ Rm×n. Here, Im
denotes the m×m identity matrix. Lastly, we use |I| to denote the cardinality of the
index set I and define [n] := {1, 2, ..., n}.

2. Accuracy and stability of the stabilized CURCA. In this section, we
study two topics related to the CURCA, A ≈ CU †R. We first analyze the accuracy
of the CURCA,

AIJ = A(:, J)A(I, J)†A(I, :) = AΠJ (Π
T
I AΠJ)

†ΠT
I A =: CU †R

and its ǫ-pseudoinverse variant, the SCURCA,

Aǫ
IJ = A(:, J)A(I, J)†ǫA(I, :) = AΠJ (Π

T
I AΠJ)

†
ǫΠ

T
I A = CU †

ǫR,

and show that the ǫ-truncation in the core matrix compromises the accuracy of the
CURCA only by ǫ times the condition number of the CURCA; see Remark 2.5.
We then analyze the numerical stability of SCURCA in the presence of roundoff
errors and show that SCURCA satisfies a similar bound under roundoff errors, mak-
ing the SCURCA numerically stable as long as the selected rows and columns well-
approximate the dominant row and column spaces of A; see Section 2.2.

We begin with some preliminaries: oblique projectors and standard assumptions.
In the proofs below, we frequently use oblique projectors and their properties. We

6 TAEJUN PARK AND YUJI NAKATSUKASA

use PX,Y := X(Y TX)†Y T where X ∈ Rm×k and Y ∈ Rn×ℓ to denote an oblique
projection onto the column space of X if k ≤ ℓ and Y TX has full column rank or
onto the row space of Y T if ℓ ≤ k and Y TX has full row rank. For example, the CUR
decomposition AIJ can be written as

AIJ = AΠJ (Π
T
I AΠJ)

†ΠT
I A = PAΠJ ,ΠI

A = APΠJ ,ATΠI
.

Some of the important properties of projectors [48] are
1. PX,Y PX,Y = PX,Y ,
2. PX,Y X = X if Y TX has full column rank,
3. Y TPX,Y = Y T if Y TX has full row rank,
4. ‖PX,Y ‖2 = ‖I − PX,Y ‖2 if PX,Y 6= 0, I.

Lastly, sometimes we can simplify the norm of oblique projectors, which is given by
the lemma below.

Lemma 2.1. Let PX,Y ∈ Rm×n be a projector where X ∈ Rm×k, Y ∈ Rn×ℓ and
Y TX ∈ Rℓ×k all have full column rank (so k ≤ ℓ). Then

(2.1) ‖PX,Y ‖ =
∥∥(Y TQX)†Y T

∥∥

for any unitarily invariant norm ‖·‖ where QX is an orthonormal matrix spanning
the columns of X.

Proof. Let X = QXRX be the thin QR decomposition of X . Then

‖PX,Y ‖ =
∥∥X(Y TX)†Y T

∥∥ =
∥∥QXRX(Y TQXRX)†Y T

∥∥ =
∥∥(Y TQX)†Y T

∥∥ ,

since Y TQX ∈ Rℓ×k has full column rank and RX ∈ Rk×k is nonsingular as Y TX has
full column rank.

Now, we lay out some generic assumptions that hold in our theorems below. The
assumptions are

Assumption 2.2.
1. |I| = |J | = k ≤ rank(A) where k is the target rank,
2. A(I, J) ∈ Rk×k is a non-singular matrix,
3. X(:, J) ∈ Rk×k has full row rank, where X is (any) row space approximator

of A.5

When rank(A) ≤ k and rank(A(I, J)) = rank(A), we have A = AIJ [29]. Since
A(I, J) is assumed to be non-singular, A(:, J) and A(I, :) have full column and row
rank, respectively. Under Assumption 2.2, by Lemma 2.1,

∥∥CU †
∥∥ =

∥∥QC(I, :)
†
∥∥ ,

∥∥U †R
∥∥ =

∥∥QR(J, :)
†
∥∥ ,

∥∥X(J, :)†X
∥∥ =

∥∥QX(J, :)†
∥∥

where QC , QR and QX are the orthonormal matrices spanning the columns of C,
RT and XT , respectively. We now prove the accuracy of the CURCA and its ǫ-
pseudoinverse variant, the SCURCA.

2.1. Accuracy of CUR and its ǫ-pseudoinverse variant. We prove the
accuracy of the SCURCA, Aǫ

IJ first. The accuracy for the CURCA, AIJ follows by

5The assumptions and the theorems in this section are stated in terms of row space approximators,
but similar assumptions and theorems for column space approximators can be obtained, for example,
by considering AT instead.

ACCURACY AND STABILITY OF CUR DECOMPOSITIONS WITH OVERSAMPLING 7

setting ǫ = 0. The analysis presented in this section is a key contribution and plays
an essential role for the stability analysis as we show that the SCURCA satisfies a
similar bound under roundoff errors, establishing its numerical stability.

Theorem 2.3. Let A ∈ Rm×n be a matrix, I and J be a set of row and column
indices, respectively, with |I| = |J | = k, ǫ > 0 and X ∈ Rk×n be any row space
approximator of A. Then under Assumption 2.2,

(2.2)
∥∥A−Aǫ

I∪I0,J

∥∥ ≤
∥∥QC(I ∪ I0, :)

†
∥∥
2

∥∥QX(J, :)−1
∥∥
2

(∥∥A−AX†X
∥∥+ ‖E‖

)

for any unitarily invariant norm ‖·‖ where I0 is a set of extra row indices distinct
from I with |I0| = p, and E ∈ Rkǫ×kǫ is a matrix satisfying ‖E‖2 ≤ ǫ where kǫ ≤ k is
the number of singular values of A(I∗, J) smaller than ǫ.

Proof. For shorthand, let I∗ := I ∪ I0. Let the thin SVD of A(I∗, J) ∈ R(k+p)×k

be WΣV T = [W1,W2] diag(Σ1,Σ2)[V1, V2]
T where Σ2 contains the singular values of

A(I∗, J) smaller than ǫ. Then

Aǫ
I∗J

ΠJ = AΠJ (Π
T
I∗
AΠJ)

†
ǫΠ

T
I∗
AΠJ = AΠJV1Σ

−1
1 WT

1 WΣV T

= AΠJV1V
T
1 = AΠJ −AΠJV2V

T
2 .

Therefore,

A−Aǫ
I∗J

=
(
I −AΠJ

(
ΠT

I∗
AΠJ

)†
ǫ
ΠT

I∗

)
A

= (I −AΠJ (Π
T
I∗
AΠJ)

†
ǫΠ

T
I∗
)A(I −ΠJ (XΠJ)

†X) +AΠJV2V
T
2 (XΠJ)

†X.(2.3)

Note that Pǫ
AΠJ ,ΠI∗

:= AΠJ (Π
T
I∗
AΠJ)

†
ǫΠ

T
I∗

is an oblique projector since

(Pǫ
AΠJ ,ΠI∗

)2 = AΠJV1Σ
−1
1 WT

1 WΣV TV1Σ
−1
1 WT

1 ΠT
I∗

= AΠJV1Σ
−1
1 WT

1 ΠT
I∗

= Pǫ
AΠJ ,ΠI∗

and similarly, PΠJ ,XT = ΠJ (XΠJ)
†X is an oblique projector. Now bounding the first

term of (2.3) gives
∥∥∥(I − Pǫ

AΠJ ,ΠI∗
)A(I − PΠJ ,XT)

∥∥∥ ≤
∥∥∥I − Pǫ

AΠJ ,ΠI∗

∥∥∥
2

∥∥A(I − PΠJ ,XT)
∥∥

≤
∥∥∥Pǫ

AΠJ ,ΠI∗

∥∥∥
2

∥∥A(I −X†X)(I − PΠJ ,XT)
∥∥

≤
∥∥∥Pǫ

AΠJ ,ΠI∗

∥∥∥
2

∥∥A(I −X†X)
∥∥ ∥∥I − PΠJ ,XT

∥∥
2

=
∥∥∥Pǫ

AΠJ ,ΠI∗

∥∥∥
2

∥∥PΠJ ,XT

∥∥
2

∥∥A(I −X†X)
∥∥

where in the second inequality we used XΠJ(XΠJ)
† = I, as XΠJ = X(:, J) has full

row rank by Assumption 2.2. The first term
∥∥∥Pǫ

AΠJ ,ΠI∗

∥∥∥
2
in the final expression can

be bounded by letting AΠJ = QCRC be the thin QR decomposition and noting that
ΠT

I∗
QC has full column rank, as

∥∥∥Pǫ
AΠJ ,ΠI∗

∥∥∥
2
=

∥∥QCRC(Π
T
I∗
AΠJ)

†
ǫ

∥∥
2
=

∥∥RC(Π
T
I∗
AΠJ)

†
ǫ

∥∥
2

=
∥∥(ΠT

I∗
QC)

†ΠT
I∗
QCRC(Π

T
I∗
AΠJ)

†
ǫ

∥∥
2

8 TAEJUN PARK AND YUJI NAKATSUKASA

≤
∥∥(ΠT

I∗
QC)

†
∥∥
2

∥∥ΠT
I∗
AΠJ (Π

T
I∗
AΠJ)

†
ǫ

∥∥
2

≤
∥∥(ΠT

I∗
QC)

†
∥∥
2
.

Therefore, using Lemma 2.1 on PΠJ ,XT , the first term in (2.3) can be bounded as
∥∥∥(I − Pǫ

AΠJ ,ΠI∗
)A(I − PΠJ ,XT)

∥∥∥ ≤
∥∥QC(I∗, :)

†
∥∥
2

∥∥QX(J, :)−1
∥∥
2

∥∥A(I −X†X)
∥∥ .

The second term in (2.3) can be bounded using a similar argument as
∥∥AΠJV2V

T
2 (XΠJ)

†X
∥∥ =

∥∥QCRCV2V
T
2 (XΠJ)

†X
∥∥ =

∥∥RCV2V
T
2 (XΠJ)

†X
∥∥

=
∥∥(ΠT

I∗
QC)

†ΠT
I∗
QCRCV2V

T
2 (XΠJ)

†X
∥∥

=
∥∥(ΠT

I∗
QC)

†W2Σ2V
T
2 (XΠJ)

†X
∥∥

≤
∥∥(ΠT

I∗
QC)

†
∥∥
2

∥∥W2Σ2V
T
2

∥∥ ∥∥(XΠJ)
†X

∥∥
2

=
∥∥QC(I∗, :)

†
∥∥
2

∥∥QX(J, :)−1
∥∥
2
‖Σ2‖ .

Putting everything together and letting E = Σ2, we get the desired result.

Corollary 2.4. Under the same assumptions as in Theorem 2.3,

(2.4) ‖A−AI∪I0,J‖ ≤
∥∥QC(I ∪ I0, :)

†
∥∥
2

∥∥QX(J, :)−1
∥∥
2

∥∥A−AX†X
∥∥

for any unitarily invariant norm ‖·‖.
Proof. Set ǫ = 0 in Theorem 2.3.

Remark 2.5.
1. The condition number of the CURCA is κ =

∥∥QC(I ∪ I0, :)
†
∥∥
2

∥∥QX(J, :)−1
∥∥
2
,

as indicated by (2.2). Theorem 2.3 tells us that the SCURCA, Aǫ
I∗J

is worse

than the CURCA by at most a factor κ
√
kǫ in the Frobenius norm.

2. The bound in Theorem 2.3 and Corollary 2.4 has two factors involving the
(pseudo)inverse, which is in contrast to the CURBA, C(C†AR†)R (see Ap-
pendix A) having only one factor. This makes the CURCA, AIJ usually worse
than the CURBA, which is expected as the CURCA is cheaper to compute.
However, the CURCA can still be very accurate; see for example [13, 54],
which establishes the existence of a rank-r CURCA that has error within a
factor r + 1 of the best rank-r approximation via the truncated SVD. The
second multiplicative factor in Theorem 2.3 and Corollary 2.4 comes from
the fact that AIJ is associated with the oblique projector PAΠJ ,ΠI

rather
than the orthogonal projectors CC† and R†R for the CURBA. Nonetheless,
the CURCA and the CURBA have comparable accuracy when employed with
good row and column indices and oversampling, with the CURCA being much
more computationally efficient.

3. The row space approximator X ∈ Rk×n can be chosen in various ways, for
example, the k-dominant right singular vectors of A or the row sketch of A.
The bounds in Theorem 2.3 and Corollary 2.4 can both be computed a poste-
riori when X can be computed easily. The k-dominant right singular vectors
would make the right-most term,

∥∥A−AX†X
∥∥ in the bound of Theorem

2.3 and Corollary 2.4, optimal. However, the singular vectors are often too
expensive to compute.

Theorem 2.3 and Corollary 2.4 provide a bound for the SCURCA and the CURCA,
respectively. It also demonstrates the benefit of oversampling through the extra set

ACCURACY AND STABILITY OF CUR DECOMPOSITIONS WITH OVERSAMPLING 9

of row indices I0. We obtain a pseudoinverse for
∥∥QC(I ∪ I0, :)

†
∥∥
2
instead of the ma-

trix inverse
∥∥QC(I, :)

−1
∥∥
2
with the former always being smaller. Additionally, since∥∥QC(I ∪ I0, :)

†
∥∥
2
=

∥∥A(:, J)A(I∗, J)†
∥∥
2
and we want to minimize this quantity, the

row indices I and I0 should be chosen in terms of the already-chosen columns of
A. This has been suggested and employed in other works such as [14, 19, 52, 53].
This comes with the benefit that the resulting core matrix A(I∗, J) will generally be
better-conditioned, improving the accuracy of the CURCA. For example, consider the
following 2× 2 matrix,

A =

[
ǫ 1
1 0

]

where 0 < ǫ < 1. For a rank-1 approximation of A, we need to choose a column and a
row for the CURCA. If we choose a column and a row separately in the best possible
way, we would choose the first row and the first column, giving us

A1,1 =

[
ǫ
1

]
ǫ−1

[
ǫ 1

]
=

[
ǫ 1
1 1/ǫ

]
,

which is a poor approximation as ‖A−A1,1‖F = 1/ǫ can be arbitrary large6 as ǫ → 0.
On the other hand, if we choose a column first and then a row, we choose the first
column [ǫ, 1]T and the second row as ǫ < 1, giving us

A2,1 =

[
ǫ
1

]
1−1

[
1 0

]
=

[
ǫ 0
1 0

]
,

which is a reasonable approximation as ‖A−A2,1‖F = 1 ≈ σ2(A) ≈ 1− ǫ/2.
The significance of controlling the

∥∥QC(I, :)
−1

∥∥
2
term will also be highlighted

when we analyze the numerical stability of the CUR decomposition in the subsequent
section.

2.2. Numerical Stability of the CUR decomposition. In the absence of
rounding errors, the error for the CURCA can be bounded by Theorem 2.3 and
Corollary 2.4. In this section, we derive an error bound that accounts for rounding
errors.

We use the standard model of floating-point arithmetic as in [32, Section 2.2]:

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u

where op ∈ {+,−, ∗, /} is the basic arithmetic operations and u ≪ 1, the unit round-
off, is the precision at which the computations are performed. We use fl(·) and ·̂
to denote the computed value of the expression. We define γ := p(m,n, k)u where
p(m,n, k) is a low-degree polynomial in m,n and k, and use γ to suppress any con-
stant factors and terms related to the size of the matrix and the target rank, e.g.,√
m,

√
n and k, but not σi(A) or 1/ǫ. While this may appear as an oversimplication,

this approach is standard practice in stability analysis; see e.g. [40, 41].
In this section, we denote the ith row of a matrix B as [B]i and we use C =

A(:, J), U = A(I∗, J) and R = A(I, :) for shorthand. We assume that the rows are
oversampled, i.e., I∗ = I ∪ I0 is such that the number of the oversampling indices

6The accuracy of CURBA, by contrast, is good as long as the chosen columns and rows are good
approximators for the range and co-range of A [19, Remark 1].

10 TAEJUN PARK AND YUJI NAKATSUKASA

I0 is bounded by a constant times k where k = |I| = |J | is the target rank, and
the truncation parameter ǫ satisfies ‖A‖2 ≫ ǫ > γ ‖A‖2. We begin by stating two
lemmas that will be used in the CURCA stability analysis. Lemma 2.6 proves the
perturbation bound for the projector CU †

ǫΠJ when only C and U get perturbed and
in Lemma 2.7, we prove that under perturbation on C and U , C̃Ũ †

ǫΠJ approximately
projects C onto itself. The proofs for the two lemmas can be found in Appendix C.

Lemma 2.6. Under Assumption 2.2, for any ∆C and ∆U ,

(2.5)
∥∥(C +∆C)(U +∆U)†ǫ

∥∥
2
≤

∥∥QC(I∗, :)
†
∥∥
2

(
1 +

1

ǫ
‖∆U‖2

)
+

1

ǫ
‖∆C‖2 .

Lemma 2.7. Under Assumption 2.2, for any ∆C and ∆U ,

(2.6) (C +∆C)(U +∆U)†ǫRΠJ = C + E∗

where

‖E∗‖2 ≤
∥∥(QC(I∗, :)

†
∥∥
2

(
ǫ+ 2 ‖∆U‖2 +

1

ǫ
‖∆U‖22

)
+ ‖∆C‖2

(
1 +

‖∆U‖2
ǫ

)
.

We now begin with the stability analysis. Note that the stability depends on the
specific implementation used. In the forthcoming analysis, we assume the SCURCA
Aǫ

I∗J
is computed as follows.7

1. Compute the factors Ĉ = fl(AΠJ), Û = fl(ΠT
I∗
AΠJ) and R̂ = fl(ΠT

I∗
A).

2. Solve the (rank-deficient) underdetermined linear systems,

ŝ
(1)
i = fl

(
(ÛT)†ǫ [Ĉ]Ti

)
∈ Rk+p

for all i ∈ [m], where [Ĉ]i is the ith row of Ĉ.

3. Compute matrix-vector multiply ŝ
(2)
i = fl

(
R̂T ŝ

(1)
i

)
∈ Rn.

4. Let
(
ŝ
(2)
i

)T

be the ith row of the computed CUR decomposition fl
(
Aǫ

I∗J

)
.

We now analyze each step. The first step is matrix-matrix multiplications with or-
thonormal matrices. Using the forward error bound8 for matrix-matrix multiplication
[32, Section 3.5], we obtain the following:

• Ĉ = C + EC where ‖EC‖2 ≤ γ ‖A‖2,
• Û = U + EU where ‖EU‖2 ≤ γ ‖A‖2,
• R̂ = R + ER where ‖ER‖2 ≤ γ ‖A‖2.

In many cases, these error matrices EC , EU and ER are the zeros matrix as C,U and
R are simply submatrices of the original matrix A.

In the second step, we solve the (rank-deficient) underdetermined linear systems
row by row. The error analysis for the (rank-deficient) underdetermined linear systems
can be summarized in the following theorem. The proof of Theorem 2.8 can be found
in Appendix B.

7Note that the stability crucially depends on the implementation. Other implementations are
possible, an obvious one being one that computes C(U†R) rather than (CU†)R as done here. This
is seen to work well too, although we do not have a proof.

8The error is termed the forward error as it indicates how close the computed version Ĉ is to the
exact version C [32, Section 1.5].

ACCURACY AND STABILITY OF CUR DECOMPOSITIONS WITH OVERSAMPLING 11

Theorem 2.8. Consider the (rank-deficient) underdetermined linear system,

(2.7) min
x′

‖Bǫx
′ − b‖2

where Bǫ ∈ Rm×n (m ≤ n) is (possibly) rank-deficient (rank(Bǫ) ≤ m) with singular
vales larger than ǫ and b ∈ Rm. Then assuming ǫ > γ ‖Bǫ‖2, the minimum norm
solution to (2.7) can be computed in a backward stable manner, i.e., the computed
solution ŝ satisfies

(2.8) ŝ = (Bǫ + E1)
†
(b+ E2)

where ‖E1‖2 ≤ γ ‖Bǫ‖2 and ‖E2‖2 ≤ γ ‖b‖2.
Theorem 2.8 tells us that the computed solution to a (rank-deficient) underde-

termined linear system is the exact solution to a slightly perturbed problem. Now,
using Theorem 2.8, for each i ∈ [m] we obtain

(2.9) ŝ
(1)
i =

(
(ÛT)ǫ + E

(U)
i

)† (
[Ĉ]Ti + E

(C)
i

)
,

where
∥∥∥E(U)

i

∥∥∥
2
≤ γ ‖A‖2 and

∥∥∥E(C)
i

∥∥∥
2
≤ γ ‖A‖2. It is worth emphasizing that the

backward errors E
(C)
i , E

(U)
i depend on i. Now since ǫ > γ ‖A‖2 by assumption and

σmin

(
ÛT
ǫ + E

(U)
i

)
≥ ǫ − γ ‖A‖2 by Weyl’s inequality, there exists a perturbation

Ei ∈ Rk×(k+p) with ‖Ei‖2 ≤ ǫ+ γ ‖A‖29 such that

(2.10) ŝ
(1)
i =

(
ÛT + Ei

)†

ǫ−γ‖A‖
2

(
[Ĉ]Ti + E

(C)
i

)
.

For shorthand, let Ŝ be a matrix with its ith row equal to
(
ŝ
(1)
i

)T

.

In the third step, we compute a matrix-vector product [32, Section 3.5] with R̂T ,

which gives us ŝ
(2)
i = fl

(
R̂T ŝ

(1)
i

)
= R̂T ŝ

(1)
i + Esi with

‖Esi‖2 ≤ γ
∥∥∥R̂T

∥∥∥
2

∥∥∥ŝ(1)i

∥∥∥
2

≤ γ ‖A‖2


∥∥QC(I∗, :)

†
∥∥
2

(
1 +

‖Ei‖2 + ‖EU‖2
ǫ− γ ‖A‖2

)
+

∥∥∥E(C)
i

∥∥∥
2
+ ‖EC‖2

ǫ− γ ‖A‖2




≤ γ ‖A‖2
(∥∥QC(I∗, :)

†
∥∥
2

(
1 +

(ǫ + γ ‖A‖2) + γ ‖A‖2
ǫ− γ ‖A‖2

)
+

γ ‖A‖2 + γ ‖A‖2
ǫ− γ ‖A‖2

)

≤ γ ‖A‖2
∥∥QC(I∗, :)

†
∥∥
2
,(2.11)

where Lemma 2.6 was used in the penultimate line with ∆U = EU + ET
i and ∆C =

EC +eiE
(C)
i where ei ∈ Rm is the ith canonical basis vector. In the last line of (2.11),

we used the fact that γ suppresses any low-degree polynomial in m,n and k, and
ǫ > γ ‖A‖2.

9If ÛT = W1Σ1V
T
1 +W2Σ2V

T
2 is the SVD of ÛT where Σ2 contains the singular values of ÛT

smaller than ǫ, then we can take Ei = −W2Σ2V
T
2 +E

(U)
i for each i.

12 TAEJUN PARK AND YUJI NAKATSUKASA

The following shows the expression for ŝ
(2)
i ,

ŝ
(2)
i = R̂T ŝ

(1)
i + Esi = R̂T

(
ÛT + Ei

)†

ǫ−γ‖A‖
2

(
[Ĉ]Ti + E

(C)
i

)
+ Esi

= (R+ ER)
T
(
UT + ET

U + Ei

)†
ǫ−γ‖A‖

2

(
[C + EC]

T
i + E

(C)
i

)
+ Esi .

Finally, in the fourth step, we combine ŝ
(2)
i ∈ Rn into a matrix to form Âǫ

I∗J
=

fl
(
Aǫ

I∗J

)
∈ Rm×n by setting the ith row of Âǫ

I∗J
to be

(
ŝ
(2)
i

)T

, giving us

(2.12) fl
(
Aǫ

I∗J

)
= ŜR̂ + E

where E ∈ Rm×n is a matrix with its ith row equal to ET
si

and satisfies ‖E‖2 ≤
γ ‖A‖2

∥∥QC(I∗, :)
†
∥∥
2
, since γ suppresses any low-degree polynomial in m.

We now state the main stability result of the CURCA with the ǫ-pseudoinverse,
Aǫ

I∗J
.

Theorem 2.9. Let 0 < ǫ ≪ 1 be a truncation parameter for the pseudoinverse
such that ǫ > γ ‖A‖2. Suppose that Aǫ

I∗J
= A(:, J)A(I∗, J)

†
ǫA(I∗, :) is computed in the

following order:
1. Compute C = A(:, J), U = A(I∗, J) and R = A(I∗, :),
2. Compute each row of CU †

ǫ using a backward stable (rank-deficient) underde-
termined linear solver,

3. Compute CU †
ǫ times R. Let fl

(
Aǫ

I∗J

)
denote the output.

Then under Assumption 2.2,

∥∥A− fl
(
Aǫ

I∗J

)∥∥
F
≤ 4

√
m

∥∥QC(I∗, :)
†
∥∥
2

∥∥QX(J, :)†
∥∥
2

(∥∥A(I −X†X)
∥∥
F
+ 2ǫ

)(2.13)

+ γ ‖A‖2
∥∥QC(I∗, :)

†
∥∥
2
.

Theorem 2.9 tells us that the bound for the computed version of the stabilized
CURCA Âǫ

IJ is at most a factor O(
√
m) worse than its exact arithmetic counterpart

Aǫ
IJ plus an error of γ ‖A‖2

∥∥QC(I∗, :)
†
∥∥
2
. More specifically, we have

∥∥A− fl(Aǫ
I∗J

)
∥∥
F
≤ 4

√
m (Bound (2.2)) + γ ‖A‖2

∥∥QC(I∗, :)
†
∥∥
2
.

Roughly, this shows that the computed error is in the same order as the error in exact
arithmetic, up to a factor O(

√
m). The factor O(

√
m) is likely an artifact of the proof

given below; in stability analysis it is common to see bounds with such overestimates,
and also standard practice to expect to observe much better performance in practice.
Throughout various parts of the proof, we loosely bound the 2-norm by the Frobenius
norm, typically because we only have information about the norms of rows or columns

of a matrix. For example in the proof of Theorem 2.9, we bound
∥∥∥Ŝ

∥∥∥
2
≤

∥∥∥Ŝ
∥∥∥
F

in

(2.15), which is likely a pessimistic overestimate.

Proof of Theorem 2.9. From the above analysis, we have

(2.12) fl
(
Aǫ

I∗J

)
= ŜR̂+ E = ŜR+ ŜER + E,

where ‖E‖2 ≤ γ ‖A‖2
∥∥QC(I∗, :)

†
∥∥
2
. Let us apply Lemma 2.7 to each row of ŜR to

obtain

ŜiRΠJ =

(
[C + EC]i +

(
E

(C)
i

)T
)
(U + EU + ET

i)
†
ǫ−γ‖A‖

2

RΠJ = [C]i + E
(P)
i ,

ACCURACY AND STABILITY OF CUR DECOMPOSITIONS WITH OVERSAMPLING 13

where
∥∥∥E(P)

i

∥∥∥
2
≤ 8ǫ

∥∥QC(I∗, :)
†
∥∥
2
. Therefore, letting E(P) be a matrix with E

(P)
i as

its ith row, we get

ŜRΠJ = C + E(P),

where
∥∥E(P)

∥∥
F

≤ 8ǫ
√
m

∥∥QC(I∗, :)
†
∥∥
2
. Now proceeding similarly to the proof of

Theorem 2.3, we obtain

A− ŜR =
(
I − ŜΠT

I∗

)
A =

(
I − ŜΠT

I∗

)
A(I −ΠJ (XΠJ)

†X)− E(P)(XΠJ)
†X

=
(
I − ŜΠT

I∗

)
A(I −X†X)(I −ΠJ (XΠJ)

†X)− E(P)(XΠJ)
†X,(2.14)

where E(P)(XΠJ)
†X satisfies

∥∥∥E(P)(XΠJ)
†X

∥∥∥
F
≤

∥∥∥E(P)
∥∥∥
F

∥∥(XΠJ)
†X

∥∥
2
≤ 8ǫ

√
m

∥∥QC(I∗, :)
†
∥∥
2

∥∥QX(J, :)†
∥∥
2
.

The first term in (2.14) can be bound by
∥∥∥I − ŜΠT

I∗

∥∥∥
2

∥∥A(I −X†X)
∥∥
F

∥∥I − ΠJ(XΠJ)
†X

∥∥
2

≤
(
1 +

∥∥∥Ŝ
∥∥∥
2

)∥∥A(I −X†X)
∥∥
F

∥∥ΠJ (XΠJ)
†X

∥∥
2

≤ 4
√
m

∥∥QC(I∗, :)
†
∥∥
2

∥∥QX(J, :)†
∥∥
2

∥∥A(I −X†X)
∥∥
F

where in the final line we used (2.11), noting that

(2.15)
∥∥∥Ŝ

∥∥∥
2
≤

∥∥∥Ŝ
∥∥∥
F
≤

√√√√
m∑

i=1

∥∥∥ŝ(1)i

∥∥∥
2

2
≤ 3

√
m

∥∥QC(I∗, :)
†
∥∥
2
.

Using (2.15), we can also bound

∥∥∥ŜER

∥∥∥
F
≤

∥∥∥Ŝ
∥∥∥
F
‖ER‖2 ≤ γ ‖A‖2

∥∥QC(I∗, :)
†
∥∥
2
.

Finally putting everything together, we obtain

∥∥A− fl(Aǫ
I∗J

)
∥∥
F
=

∥∥∥A− ŜR− ŜER − E
∥∥∥
F

≤ 4
√
m

∥∥QC(I∗, :)
†
∥∥
2

∥∥QX(J, :)†
∥∥
2

(∥∥A(I −X†X)
∥∥
F
+ 2ǫ

)

+ γ ‖A‖2
∥∥QC(I∗, :)

†
∥∥
2
.

It is natural to wonder what could go wrong without the ǫ-pseudoinverse. Two
problems may arise without the ǫ-pseudoinverse. First, the matrix U may not be
numerically full rank, so Theorem 2.8 cannot be used as ǫ > γ ‖A‖2 may no longer
hold. In addition, the two lemmas, Lemma 2.6 and Lemma 2.7 become meaning-
less as both require division by ǫ. Without the ǫ-pseudoinverse, the error bound can
become uncontrollably large, causing issues in several places in the proof of Theo-
rem 2.9. For example, the bound for the error ‖Esi‖2 in (2.11) for computing the

matrix-vector product and the bound for
∥∥∥E(P)

i

∥∥∥
2
in the proof of Theorem 2.9 may no

longer hold as they can become arbitrarily large without the ǫ-pseudoinverse. Never-
theless, in practice we observe stability without the ǫ-truncation, so we recommend a

14 TAEJUN PARK AND YUJI NAKATSUKASA

careful implementation of the pseudoinverse (without the ǫ-truncation) for practical
purposes.10 A similar observation, commenting on the role of the ǫ-pseudoinverse,
has been mentioned in [40, Section 4.2]. See Section 4.1 for numerical experiments.

In Theorem 2.9, one might question how large
∥∥QC(I∗, :)

†
∥∥
2
can be, given that it is

part of the added term, γ ‖A‖2
∥∥QC(I∗, :)

†
∥∥
2
in Theorem 2.9. This could pose a prob-

lem if
∥∥QC(I∗, :)

†
∥∥
2
grows exponentially inm or n. However, Theorem 2.9 is enough to

conclude that Aǫ
IJ is numerically stable when the indices are chosen reasonably. This

means that we first choose the column indices J , and sensibly select the row indices I∗
from the the selected columns A(:, J) such that

∥∥A(:, J)A(I∗, J)†
∥∥
2
=

∥∥QC(I∗, :)
†
∥∥
2

is bounded by a low-degree polynomial involving m,n and k; see Section 4.2. A sim-
ilar approach is also employed in other works such as [14, 19, 52, 53]. For example,
Gu-Eisenstat’s strong rank-revealing QR factorization [27] can be used on the chosen
columns A(:, J) to obtain

∥∥QC(I, :)
−1

∥∥
2
≤

√
mk, which can be reduced further with

oversampling. This also highlights the importance of oversampling. In the absence
of oversampling, poorly selected indices can make

∥∥QC(I, :)
−1

∥∥
2
exponentially large.

Therefore, oversampling can be employed to stabilize the CURCA, which we discuss
further in the following section.

3. Oversampling for the CURCA. In the previous section, we proved theo-
retical results involving the CURCA (Corollary 2.4), the stabilized CURCA (Theorem
2.3) and the stabilized CURCA in the presence of rounding errors (Theorem 2.9). All
of the results involved an oversampling parameter p and an extra set of row indices I0
and bounding

∥∥QC(I ∪ I0, :)
†
∥∥
2
was important for the accuracy and stability of the

CURCA. In this section, we discuss oversampling in the context of the CURCA and
devise an algorithm that naturally arises from the discussion.

We first describe the setting. Suppose we have obtained the row indices I and the
column indices J with |I| = |J | = k by applying some algorithm, for example, the ones
discussed in the introduction (Section 1), on a row space approximator X ∈ Rk×n of
A ∈ Rm×n.11 To have a concrete algorithm in mind for getting the set of indices I
and J , we present pivoting on a random sketch [19, 23, 52] below in Algorithm 3.1.

Algorithm 3.1 Pivoting on a random sketch ([19, Algorithm 1])

Require: A ∈ Rm×n of rank r, target rank k ≤ r (typically k ≪ min{m,n})
Ensure: Column indices J and row indices I with |I| = |J | = k

function [I, J] = Rand Pivot(A, k)
1: Draw a random embedding Ω ∈ Rk×m.
2: Set X = ΩA ∈ Rk×n, a row sketch of A
3: Apply CPQR on X. Let J be the k column pivots.
4: Apply CPQR on A(:, J)T . Let I be the k row pivots.

Algorithm 3.1 is a version of Algorithm 1 from [19], which selects the column
indices first by applying column pivoted QR (CPQR)12 on the row sketch X = ΩA
and then selects the row indices by applying CPQR on the chosen columns A(:, J)T .
Algorithm 3.1 is an example where we obtain the row indices from the already-chosen

10To be clear, implementing the ǫ-truncation does not increase the complexity and can be recom-
mended for guaranteed stability. We have simply not observed instability without the ǫ-truncation.

11A similar version for column space approximator can also be devised by considering AT instead.
In the case when X and Y are not available, for example, when the initial set of indices were obtained
using uniform sampling, R = A(I, :) and C = A(:, J) can be used as the row space approximator and
the column space approximator, respectively.

12LU with partial pivoting is also effective in practice [19].

ACCURACY AND STABILITY OF CUR DECOMPOSITIONS WITH OVERSAMPLING 15

column indices, which was recommended in the previous section. Here, the row space
approximator is the row sketch X = ΩA and the column space approximator is the
columns A(:, J). A bound for the CURCA (see Corollary 2.4) without oversampling
is given by

(3.1) ‖A−AIJ‖F ≤
∥∥QC(I, :)

−1
∥∥
2

∥∥QX(J, :)−1
∥∥
2

∥∥A−AX†X
∥∥
F

where AIJ = A(:, J)A(I, J)†A(I, :) is the CURCA and QC and QX are orthonormal
matrices spanning the columns of C and XT respectively.

Many existing algorithms focus on minimizing the first two terms on the right-
hand side of (3.1) as they control the accuracy of the CURCA. In the CURCA and
the other CUR decompositions such as the CURBA, C(C†AR†)R, we often take
|I| = |J |, however, without increasing the overall rank of the approximation, we
can oversample either I or J .13 Suppose we oversample the rows to I∗ := I ∪ I0
where |I0| = p is an extra set of row indices for oversampling. Then the first term
of the bound changes from

∥∥QC(I, :)
−1

∥∥
2
to

∥∥QC(I∗, :)
†
∥∥
2
(see Corollary 2.3). Now

σmin(QC(I∗, :)) ≥ σmin(QC(I, :)) by the Courant-Fischer min-max theorem, which
improves the bound in (3.1) as

∥∥QC(I∗, :)
†
∥∥
2
≤

∥∥QC(I, :)
−1

∥∥
2
. Now, to maximize

the effect of oversampling, we ought to find unchosen indices that enrich the trailing
singular subspace of QC(I, :), which in turn increases the minimum singular value(s)
of QC(I, :). It turns out that we can achieve this by projecting QC([m] − I, :) onto
the trailing singular subspace of QC(I, :) and use a good row selection algorithm to
choose p extra rows. Before stating the algorithm, we first motivate our rationale
behind our approach using the cosine-sine (CS) decomposition.

Let Q ∈ Rn×k be any orthonormal matrix with partition

(3.2) Q =

k[]
Q1 n1

Q2 n2

where n1, n2 ≥ k with n1 + n2 = n. Then the CS decomposition [43] gives us

(3.3) Q1 = U1CV T and Q2 = U2SV
T ,

where U1 ∈ Rn1×k, U2 ∈ Rn2×k, V ∈ Rk×k are matrices with orthonormal columns
and C = diag(c1, c2, ..., ck), S = diag(s1, s2, ..., sk) are diagonal matrices satisfying
c2i + s2i = 1 for all i. In our context, we can view QC(I, :) as Q1 and QC([m] − I, :)
as Q2. Now assume, without loss of generality, that the ci’s are in non-increasing
order so the si’s are in non-decreasing order. Then in order to increase the minimum
singular value of Q1, we could add the rows of Q2 that contribute the most to the
trailing right singular subspace of Q1, i.e., V−p = V (:, k− p+1 : k) ∈ Rk×p. By (3.3),
V−p is also the dominant right singular subspace of Q2. When we add the rows of
Q2 that lies in the subspace spanned by V−p to Q1, we can increase the minimum
singular value(s) of Q1, i.e., increase ck or the last few ci’s. Therefore we can apply
any algorithm (such as those discussed in Section 1) that finds good row indices on
Q2V−p ∈ Rn2×p and append them to Q1 to increase the minimum singular value of
Q1.

13Oversampling both the row indices I and the column indices J independently is not recom-
mended. See Section 4.3 for a further discussion.

16 TAEJUN PARK AND YUJI NAKATSUKASA

If the algorithm requires the dominant left singular vectors of Q2V−p such as in
DEIM or leverage scores sampling, we can simply scale the columns of Q2V−p using
the singular values of Q1, C = diag(c1, ..., ck) because

Q2V−p = U2,−p diag(sk−p+1, ..., sk) = U2,−p

√
1− diag(c2k−p+1, ..., c

2
k)

where U2,−p = U2(:, k − p+ 1 : k).
In light of the observation made above, we propose the following algorithm (Al-

gorithm 3.2) for oversampling indices. For simplicity, we use column pivoted QR
(CPQR) on Q2V−p in Algorithm 3.2 to obtain a good set of oversampling indices.
However, any algorithm that finds a good set of rows can replace line 4 of Algorithm
3.2.

Algorithm 3.2 Oversampling indices

Require: A full column rank matrix B ∈ Rn×k with n ≥ k, an index set I with |I| = k and an
oversampling parameter p ≤ k

Ensure: Extra indices I0 with |I0| = p

function I0 = OS(B, I, p)
1: [QB,∼] = qr(B, 0), ⊲ Skip this step if B is already orthonormal.
2: [∼,∼, V] = svd(QB(I, :)),
3: Set V−p = V (:, k − p+ 1 : k), the trailing p right singular vectors of QB(J, :).

4: Apply CPQR on (QB([m]− I, :)V−p)
T . Let I0 be the extra p indices for oversampling.

Given a full column rank matrix B, an index set I and an oversampling parameter
p(≤ k), Algorithm 3.2 finds the extra indices for oversampling by projecting QB onto
the unchosen indices [m] − I from the left and the trailing p right singular vectors
of QB(I, :) from the right and performing CPQR to obtain the extra indices I0 with
|I0| = p. When p > k, we can iterate Algorithm 3.2 to obtain at most k oversampling
indices at each iteration. We can also devise a version of Algorithm 3.2 with a tolerance
parameter 0 < ǫ < 1 rather than taking p as input; for example ǫ =

√
k/n may be a

reasonable choice (given that singular values of a O(k)×k submatrix of an n×n Haar
distributed orthogonal matrix are of this order [39]). This version uses projection onto
the trailing right singular subspace of QB(I, :) corresponding to the singular values
that are less than ǫ. While this version does not guarantee σmin (QB(I ∪ I0, :)) ≥ ǫ,
it can be applied iteratively to achieve this. To guarantee σmin (QB(I ∪ I0, :)) ≥ ǫ,
one can alternatively use the GappyPOD+E oversampling algorithm [45]. However, this
approach comes with a higher computational cost. The complexity of Algorithm 3.2
is O(nk2) where the dominant cost comes from taking the QR decomposition of B
(line 1). If B were orthonormal to begin with, then the dominant cost comes from
forming QB([m]− I, :)V−p, which costs O(nkp).

In the analysis for the CURCA in Section 2, oversampling played two roles: (i)
improve the accuracy of the CURCA (see Theorem 2.3, Corollary 2.4, Theorem 2.9),
and (ii) improve the stability of the CURCA in the presence of roundoff errors (see
Theorem 2.9). Therefore, it is important to oversample, especially if the original set
of indices are not good. For example, if the core matrix A(I, J) is (nearly) singular.
Oversampling should be done in such a way that the term

∥∥QC(I, :)
−1

∥∥
2
is reduced

further by adding an extra set of indices I0 that lie in the trailing singular subspace
of QC(I, :). Algorithm 3.2 achieves this by picking good unchosen indices from the
trailing singular subspace of QC . We further highlight the significance of oversampling
through numerical illustrations in Section 4.

ACCURACY AND STABILITY OF CUR DECOMPOSITIONS WITH OVERSAMPLING 17

4. Numerical Illustration. In this section, we illustrate the concepts discussed
in the previous sections through numerical experiments. We first discuss implemen-
tation details of (S)CURCA in MATLAB. Then we show that, without loss of gen-
erality, after selecting the rows first, the columns should be chosen based on those
rows, i.e., the rows and the columns for the CURCA should not be chosen indepen-
dently. We show that oversampling can improve the quality when the indices are
poorly selected. Additionally, we also illustrate the effectiveness of the oversampling
algorithm, Algorithm 3.2, for the CURCA and show its competitiveness against some
existing methods. In all the experiments, the best rank-k approximation error using
the truncated SVD (TSVD) is used as reference. The experiments were conducted in
MATLAB version 2021a using double precision arithmetic.

4.1. Implementation of (S)CURCA. The main concern in the computation
of the CURCA is that (i) the representation of the CURCA typically involves three
(highly) ill-conditioned matrix and (ii) we take the pseudoinverse of a (highly) ill-
conditioned matrix. When the original matrix A is low-rank and we have a good
low-rank approximation of A, then we expect C,U and R to be highly ill-conditioned.
We test three possible implementations in MATLAB,

1. A
(1)
IJ = (A(:, J)/A(I, J)) ∗ A(I, :),

2. A
(2)
IJ = A(:, J) ∗ (V/S ∗ W′) ∗ A(I, :) where [W, S, V] = svd(U, ‘econ′),

3. A
(3)
IJ = (A(:, J) ∗ V/S) ∗ (W′ ∗ A(I, :)) where [W, S, V] = svd(U, ‘econ′).

The third implementation, A
(3)
IJ is the suggested implementation of the CURCA.

We use the test matrix A ∈ R1000×100 generated using the MATLAB command,
A = randn(m, 30) ∗ randn(30, n). Note that rank(A) = 30. We choose the rows and
columns by first choosing the column indices J using column pivoted QR (CPQR) on
A and then using CPQR on the chosen columns A(:, J) to get the row indices I.

10 20 30 40 50 60 70 80 90 100
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Fig. 1. Tests for different implementations of the CURCA. We recommend the third imple-
mentation.

The results are depicted in Figure 1. First, we notice that the third implemen-

tation, A
(3)
IJ , which is the one we suggest, yields stable approximation throughout

the experiment. On the other hand, the second implementation, A
(2)
IJ suffers from

numerical errors as we lose all accuracy past the target rank 30. The reason is be-
cause we explicitly form the pseudoinverse of the core matrix A(I, J), which is highly
ill-conditioned, an observation also noted in [40]. Therefore, it is important to not
form the pseudoinverse of U = A(I, J) explicitly in the CURCA. Note also that the

18 TAEJUN PARK AND YUJI NAKATSUKASA

order in which the factors are multiplied is essential for numerical stability, as the
second and third implementations only differ by the order in which the factors are

computed. The first implementation, A
(1)
IJ may lose 1 or 2 orders of magnitude once

the target rank becomes larger than rank(A) = 30 and appear to be less stable than
the third implementation. The slash commands (/, \) in MATLAB should be used
with caution for underdetermined problems, as its backslash command applied to
numerically rank-deficient underdetermined problems output a sparse solution based
on a pivoting strategy [2, § 2.4], which can differ significantly from the minimum-
norm solution and may not satisfy the assumptions in our analysis. Note that using
the pinv command with tolerance parameter 0 for the CURCA in MATLAB, i.e.,
A(:, J) ∗ pinv(A(I, J), 0), ∗A(I, :), is equivalent to the second implementation, which
can be unstable. For the rest of the numerical experiments, we use the third imple-
mentation

(4.1) (A(:, J) ∗ V/S) ∗ (W′ ∗ A(I, :)) where [W, S, V] = svd(U, ‘econ′).

The stabilized CURCA can be implemented in such a way that the analysis in
Section 2.2 hold. One approach is to take the SVD of A(I, J) and truncate the singular
values that are less than ǫ and form the SCURCA by using the third implementation,

A
(3)
IJ with the truncated singular vectors and singular values. This implementation

is reliable and require O(k3) operations. A less expensive alternative is to use a
rank-revealing QR factorization and truncate the bottom-right corner of the upper
triangular factor and the relevant columns of the orthonormal factor corresponding
to the diagonal elements less than ǫ. In the rank-revealing QR, the diagonal elements
give a good approximation to the singular values; see for example [10, 27]. A possible
workaround without the ǫ-pseudoinverse is also discussed in [40] where we perturb the
core matrix A(I, J) by a small noise matrix such that the singular values of A(I, J)
are all larger than the unit roundoff.

4.2. Importance of not choosing rows and columns independently. In
this section, we demonstrate the importance of choosing the rows and columns that
are dependent on one another in the CURCA. If the rows and columns are chosen
independently of each other, the matrix U = A(I, J) can be (nearly) singular. In
such a scenario, we show that a sufficient amount of oversampling can remedy this
problem. We use the following synthetic test matrix:

A =

[
10−10 · randn(50, 50) randn(50, 950)

randn(950, 50) 0

]
∈ R1000×1000.

The matrix A is generated randomly with rank(A) = 100 and has a small component
in the (1, 1)-block, a zero component in (2, 2)-block and large components in the (2, 1)-
and (1, 2)-blocks. We test the following four cases:

1. Choose columns and rows independently by applying CPQR on A and AT

respectively,
2. Choose columns and rows dependently by applying CPQR on A and then

applying CPQR on the chosen columns A(:, J) to obtain the rows,
3. Apply Case 1 and additionally do row oversampling using Algorithm 3.2 with

p = k,
4. Apply Case 2 and additionally do row oversampling using Algorithm 3.2 with

p = k,
where k is the target rank.

ACCURACY AND STABILITY OF CUR DECOMPOSITIONS WITH OVERSAMPLING 19

20 40 60 80 100 120 140 160 180 200
10

-20

10
-15

10
-10

10
-5

10
0

10
5

10
10

10
15

Fig. 2. Relationship between the rows and columns in the CURCA. In Case 1, the rows and
columns are chosen independently from one another and in Case 2, we select the columns first and
then the rows were computed from the selected columns. Cases 3 and 4 correspond to Cases 1 and
2 with row oversampling (p = k), respectively.

In Figure 2, we show the importance of choosing the columns and rows in the
CURCA. When the columns and rows are chosen independently (Case 1), the resulting
CURCA can be inaccurate before the target rank becomes large enough. This is
because when we choose the columns and rows independently, we choose the first 50
rows and columns, as they are the most important, implying that the core matrix is
the small (1, 1)-block of A. Since the chosen rows and columns are O(1) and their
intersection is O(10−10), the CURCA becomes inaccurate. A similar observation has
also been made in the 2 × 2 example at the end of Section 2.1. However, when we
oversample sufficiently in Case 3, we obtain a good CUR approximation. When we
choose the rows and columns dependently in Cases 2 and 4, we have good stable
approximations. Therefore, it is highly recommended to choose the rows and columns
dependently. However, if that is not possible, a sufficient amount of oversampling is
recommended.

4.3. Oversampling algorithm comparison. In this section, we illustrate ad-
vantages of oversampling through numerical experiments. In all experiments, unless
stated otherwise, we use pivoting on a random sketch (Algorithm 3.1) with column
pivoted QR [19, 52] and the Gaussian sketch to get the initial set of k row and column
indices, where k is the target rank. We then obtain the oversampling indices using
the following algorithms:

1. OS+ P: Algorithm 3.2,
2. OS+ L: Choose p extra indices corresponding to the largest p leverage scores

out of the unchosen indices as in [24],
3. OS+ E: GappyPOD+ E algorithm in [45].

We set the number of oversampling indices to be p = 0, p = 10 and p = 0.5k.
We consider three different classes of test matrices, which are summarized below:
1. CIFAR10: The CIFAR-10 training set [35] consists of 60000 images of size

32× 32× 3. We choose 10000 random images, each flattened to a vector, and
treat it as a 10000× 3072 data matrix.

2. YaleFace64x64: Yale face is a full-rank dense matrix of size 165 × 4096
consisting of 165 face images each of size 64×64. The flattened image vectors
are centered and normalized such that the mean is zero and the entries lie

20 TAEJUN PARK AND YUJI NAKATSUKASA

within [−1, 1].
3. SNN: Random sparse non-negative matrices are test matrices used in [47, 52]

that is given by,

SNN =
r∑

j=1

sjxjy
T
j ,

where s1 ≥ · · · ≥ sr > 0 and xj ∈ Rm, yj ∈ Rn are random sparse vectors
with non-negative entries. We take m = 100000, n = 300 with

50∑

j=1

2

j
xjy

T
j +

300∑

j=51

1

j
xjy

T
j ,

where the sparse vectors xj ’s and yj’s are computed in MATLAB using the
command sprand(m, 1, 0.025) and sprand(n, 1, 0.025), respectively.

0 50 100 150 200 250 300

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a) CIFAR10 dataset with pivoting on a ran-
dom sketch with row oversampling.

0 50 100 150 200 250 300

10
-1

10
0

10
1

10
2

(b) CIFAR10 dataset with uniform sampling
with row oversampling.

10 20 30 40 50 60 70 80 90 100

10
0

(c) YaleFace64x64 dataset with pivoting on a
random sketch with row (p = 0.5k) and col-
umn (p = 10) oversampling.

10 20 30 40 50 60 70 80 90 100

10
-1

(d) SNN dataset with pivoting on a random
sketch with row oversampling

Fig. 3. Comparison of different oversampling methods for various test matrices. We use
pivoting on a random sketch to obtain the initial set of indices except for Figure 3b where we use
uniform sampling. Then we oversample the row indices using the three oversampling algorithms,
OS+P, OS+L and OS+E. We also oversample column indices in Figure 3c.

The results are depicted in Figure 3. We compare different oversampling algo-
rithms for the three test matrices. We use pivoting on a random sketch (Algorithm

ACCURACY AND STABILITY OF CUR DECOMPOSITIONS WITH OVERSAMPLING 21

3.1) to obtain the initial set of indices except for Figure 3b where we use uniform
sampling; pivoting on a random sketch usually results in a good set of indices, while
uniform sampling can give a poor set of indices. Then we oversample the row indices
using the three oversampling algorithms, OS+P, OS+L and OS+E. We also oversample
column indices in Figure 3c. For Figure 3c, p = 0.5k for row oversampling and p = 10
for column oversampling.

We begin with the top two plots involving the CIFAR10 dataset, Figures 3a and
3b. We observe that as the oversampling parameter increases, the accuracy improves.
The different oversampling techniques yield a similar result with OS+L being usually
slightly worse. In Figures 3a and 3b, we observe that oversampling plays a big role
for the accuracy of the CURCA. In Figure 3a, p = 10 improves the accuracy slightly,
but when the oversampling parameter p becomes proportional to the target rank,
we make further progress and we approximately capture the singular value decay
rate. In Figure 3b, when the initial set of indices are worse, as it can be when we
perform uniform sampling, we observe that oversampling makes the approximation
more robust even when the CURCA without oversampling yields unstable results.
Therefore, oversampling helps the CURCA yield more accurate and stable results.

In Figure 3c, using the YaleFace64x64 dataset, we show what happens when we
oversample both row and column indices. In this experiment, we oversample the row
indices by p = 0.5k and the column indices by p = 10. In Figure 3c, the CURCA
can get worse with oversampling and the approximation may become unstable when
both column and row indices are oversampled. This is caused by the core matrix
A(I ∪ I0, J ∪J0) underestimating the singular values of A as oversampling in only one
of row or column indices improve the condition number of the core matrix, but when
we oversample both row and column indices, condition number of the core matrix can
become worse. This is similar to the phenomenon happening in Section 4.2, where the
CURCA can yield poor accuracy when we choose the rows and columns independently.
Therefore, we advocate oversampling in only one of row or column indices for the
CURCA. In Figure 3d, we use the SNN dataset. The effect of oversampling is less
immediate in this example, but the accuracy still improves and we are less likely to
see unstable approximation as we see in the no oversampling case near target rank 90
and 100 in Figure 3d.

Lastly, in all the experiments in Figure 3, we observe that our algorithm for
oversampling OS+ P (Algorithm 3.2) is competitive with OS+ E with OS+ L usually
being slightly worse. Therefore, Algorithm 3.2, which runs with complexity O(nk2 +
nkp) is competitive with OS+E, which run with complexity O(nk2p+ k4).

5. Conclusion. In this work, we study the accuracy and stability of the CUR
decomposition with oversampling. We prove the relative norm bounds for the CUR
decomposition, A ≈ CU †R, and its stabilized version, A ≈ CU †

ǫR. We further show
that the stabilized version satisfies a similar relative norm bound in the presence of
roundoff errors under the assumption that the rows and columns for the CUR decom-
position are chosen reasonably. This means that the rows should be selected based on
the chosen columns or vice versa; see Section 4.2. This aims to reduce the quantity∥∥QC(I, :)

−1
∥∥
2
(see Theorem 2.9), which can be further reduced by oversampling the

row indices. For a stable implementation of the CURCA, A ≈ CU †R, we recommend
the MATLAB implementation

A
(3)
IJ = (A(:, J) ∗ V/S) ∗ (W′ ∗ A(I, :)) where [W, S, V] = svd(U, ‘econ′)

or the corresponding version where QR factorization is used instead of the SVD.

22 TAEJUN PARK AND YUJI NAKATSUKASA

We also proposed how oversampling should be done. Oversampling should be
done such that it increase the minimum singular value of a certain square matrix that
is a submatrix of an orthonormal matrix; see Section 3. We suggest doing so through
projecting the unchosen rows of an orthonormal matrix onto the trailing singular
subspace of the square matrix and finding the important unchosen indices that will
enrich the trailing singular subspace; see Algorithm 3.2. Oversampling improves the
stability as the core matrix becomes rectangular and rectangular matrices are more
well-conditioned than square matrices. We recommend oversampling in one only one
of row or column indices, but not both (see Figure 3c) and choose the oversampling
parameter to be proportional to the target rank when possible. Experiments show
that the algorithm is competitive with other existing methods. Therefore, we advo-
cate oversampling for the accuracy and stability of the CUR decomposition whenever
possible.

REFERENCES

[1] D. Anderson, S. Du, M. Mahoney, C. Melgaard, K. Wu, and M. Gu, Spectral Gap Error
Bounds for Improving CUR Matrix Decomposition and the Nyström Method, in Proceed-
ings of the Eighteenth International Conference on Artificial Intelligence and Statistics,
G. Lebanon and S. V. N. Vishwanathan, eds., vol. 38 of Proceedings of Machine Learning
Research, San Diego, California, USA, 09–12 May 2015, PMLR, pp. 19–27.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, S. Ostrouchov, et al., LAPACK Users’ guide, SIAM,
1995.

[3] H. Avron, P. Maymounkov, and S. Toledo, Blendenpik: Supercharging LAPACK’s least-
squares solver, SIAM J. Sci. Comput., 32 (2010), pp. 1217–1236, https://doi.org/10.1137/
090767911.

[4] O. Balabanov and L. Grigori, Randomized Gram–Schmidt process with application to
GMRES, SIAM J. Sci. Comput., 44 (2022), pp. A1450–A1474, https://doi.org/10.1137/
20M138870X.

[5] J. Batson, D. A. Spielman, and N. Srivastava, Twice-ramanujan sparsifiers, SIAM J. Com-
put., 41 (2012), pp. 1704–1721, https://doi.org/10.1137/090772873.

[6] C. Boutsidis, P. Drineas, and M. Magdon-Ismail, Near-optimal column-based matrix recon-
struction, SIAM J. Comput., 43 (2014), pp. 687–717, https://doi.org/10.1137/12086755X.

[7] C. Boutsidis and D. P. Woodruff, Optimal CUR matrix decompositions, SIAM J. Comput.,
46 (2017), pp. 543–589, https://doi.org/10.1137/140977898.

[8] D. Cai, J. Nagy, and Y. Xi, Fast deterministic approximation of symmetric indefinite kernel
matrices with high dimensional datasets, SIAM J. Matrix Anal. Appl., 43 (2022), pp. 1003–
1028, https://doi.org/10.1137/21M1424627.

[9] K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem, The GNAT method for non-
linear model reduction: Effective implementation and application to computational fluid
dynamics and turbulent flows, J. Comput. Phys., 242 (2013), pp. 623–647, https://doi.org/
https://doi.org/10.1016/j.jcp.2013.02.028.

[10] T. F. Chan, Rank revealing QR factorizations, Linear Algebra Appl., 88-89 (1987), pp. 67–82,
https://doi.org/https://doi.org/10.1016/0024-3795(87)90103-0.

[11] S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical
interpolation, SIAM J. Sci. Comput., 32 (2010), pp. 2737–2764, https://doi.org/10.1137/
090766498.

[12] J. Chiu and L. Demanet, Sublinear randomized algorithms for skeleton decompositions, SIAM
J. Matrix Anal. Appl., 34 (2013), pp. 1361–1383, https://doi.org/10.1137/110852310.

[13] A. Cortinovis and D. Kressner, Low-rank approximation in the Frobenius norm by column
and row subset selection, SIAM J. Matrix Anal. Appl., 41 (2020), pp. 1651–1673.

[14] A. Cortinovis and L. Ying, A sublinear-time randomized algorithm for column and
row subset selection based on strong rank-revealing QR factorizations, arXiv preprint
arXiv:2402.13975, (2024).

[15] M. Dereziński and M. Mahoney, Determinantal point processes in randomized numerical
linear algebra, Notices Amer. Math. Soc., 60 (2021), p. 1, https://doi.org/10.1090/noti2202.

[16] A. Deshpande, L. Rademacher, S. S. Vempala, and G. Wang, Matrix approximation and

https://doi.org/10.1137/090767911
https://doi.org/10.1137/090767911
https://doi.org/10.1137/20M138870X
https://doi.org/10.1137/20M138870X
https://doi.org/10.1137/090772873
https://doi.org/10.1137/12086755X
https://doi.org/10.1137/140977898
https://doi.org/10.1137/21M1424627
https://doi.org/https://doi.org/10.1016/j.jcp.2013.02.028
https://doi.org/https://doi.org/10.1016/j.jcp.2013.02.028
https://doi.org/https://doi.org/10.1016/0024-3795(87)90103-0
https://doi.org/10.1137/090766498
https://doi.org/10.1137/090766498
https://doi.org/10.1137/110852310
https://doi.org/10.1090/noti2202

ACCURACY AND STABILITY OF CUR DECOMPOSITIONS WITH OVERSAMPLING 23

projective clustering via volume sampling, Theory Comput., 2 (2006), pp. 225–247, https://
doi.org/10.4086/toc.2006.v002a012.

[17] A. Deshpande and S. Vempala, Adaptive sampling and fast low-rank matrix approximation, in
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, J. Dı́az, K. Jansen, J. D. P. Rolim, and U. Zwick, eds., Berlin, Heidelberg, 2006,
Springer Berlin Heidelberg, pp. 292–303.

[18] M. Donello, G. Palkar, M. H. Naderi, D. C. Del Rey Fernández, and H. Babaee, Oblique
projection for scalable rank-adaptive reduced-order modelling of nonlinear stochastic par-
tial differential equations with time-dependent bases, Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 479 (2023), p. 20230320, https://doi.
org/10.1098/rspa.2023.0320.

[19] Y. Dong and P.-G. Martinsson, Simpler is better: a comparative study of randomized pivoting
algorithms for CUR and interpolative decompositions, Adv. Comput. Math., 49 (2023),
https://doi.org/10.1007/s10444-023-10061-z.

[20] P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff, Fast approximation
of matrix coherence and statistical leverage, J. Mach. Learn. Res., 13 (2012), pp. 3475–3506,
http://jmlr.org/papers/v13/drineas12a.html.

[21] P. Drineas, M. W. Mahoney, and S. Muthukrishnan, Relative-error CUR matrix decom-
positions, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 844–881, https://doi.org/10.1137/
07070471X.

[22] Z. Drmač and S. Gugercin, A new selection operator for the discrete empirical interpolation
method—improved a priori error bound and extensions, SIAM J. Sci. Comput., 38 (2016),
pp. A631–A648, https://doi.org/10.1137/15M1019271.

[23] J. A. Duersch and M. Gu, Randomized projection for rank-revealing matrix factorizations
and low-rank approximations, SIAM Rev., 62 (2020), pp. 661–682, https://doi.org/10.
1137/20M1335571.

[24] P. Y. Gidisu and M. E. Hochstenbach, A hybrid DEIM and leverage scores based method for
CUR index selection, in Progress in Industrial Mathematics at ECMI 2021, M. Ehrhardt
and M. Günther, eds., Cham, 2022, Springer International Publishing, pp. 147–153.

[25] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
4 ed., 2013.

[26] S. Goreinov, E. Tyrtyshnikov, and N. Zamarashkin, A theory of pseudoskeleton approxi-
mations, Linear Algebra Appl., 261 (1997), pp. 1–21, https://doi.org/https://doi.org/10.
1016/S0024-3795(96)00301-1.

[27] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869, https://doi.org/10.1137/
0917055.

[28] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), p. 217–288, https://doi.org/10.1137/090771806.

[29] K. Hamm and L. Huang, Perspectives on CUR decompositions, Appl. Comput. Harmon. Anal.,
48 (2020), pp. 1088–1099, https://doi.org/https://doi.org/10.1016/j.acha.2019.08.006.

[30] K. Hamm and L. Huang, Stability of sampling for CUR decompositions, Foundations of Data
Science, 2 (2020), pp. 83–99, https://doi.org/10.3934/fods.2020006.

[31] K. Hamm and L. Huang, Perturbations of CUR decompositions, SIAM J. Matrix Anal. Appl.,
42 (2021), pp. 351–375, https://doi.org/10.1137/19M128394X.

[32] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, second ed., 2002,
https://doi.org/10.1137/1.9780898718027.

[33] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 2 ed., 2012,
https://doi.org/10.1017/9781139020411.

[34] I. C. F. Ipsen and B. Nadler, Refined perturbation bounds for eigenvalues of Hermitian and
non-Hermitian matrices, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 40–53, https://doi.
org/10.1137/070682745.

[35] A. Krizhevsky, Learning multiple layers of features from tiny images, 2009.
[36] M. W. Mahoney and P. Drineas, CUR matrix decompositions for improved data analysis,

Proc. Natl. Acad. Sci., 106 (2009), pp. 697–702, https://doi.org/10.1073/pnas.0803205106.
[37] P.-G. Martinsson, Randomized methods for matrix computations, The Mathematics of Data,

25 (2019), pp. 187–231.
[38] P.-G. Martinsson and J. A. Tropp, Randomized numerical linear algebra: Founda-

tions and algorithms, Acta Numer., 29 (2020), p. 403–572, https://doi.org/10.1017/
s0962492920000021.

[39] E. S. Meckes, The random matrix theory of the classical compact groups, vol. 218, Cambridge

https://doi.org/10.4086/toc.2006.v002a012
https://doi.org/10.4086/toc.2006.v002a012
https://doi.org/10.1098/rspa.2023.0320
https://doi.org/10.1098/rspa.2023.0320
https://doi.org/10.1007/s10444-023-10061-z
http://jmlr.org/papers/v13/drineas12a.html
https://doi.org/10.1137/07070471X
https://doi.org/10.1137/07070471X
https://doi.org/10.1137/15M1019271
https://doi.org/10.1137/20M1335571
https://doi.org/10.1137/20M1335571
https://doi.org/https://doi.org/10.1016/S0024-3795(96)00301-1
https://doi.org/https://doi.org/10.1016/S0024-3795(96)00301-1
https://doi.org/10.1137/0917055
https://doi.org/10.1137/0917055
https://doi.org/10.1137/090771806
https://doi.org/https://doi.org/10.1016/j.acha.2019.08.006
https://doi.org/10.3934/fods.2020006
https://doi.org/10.1137/19M128394X
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1017/9781139020411
https://doi.org/10.1137/070682745
https://doi.org/10.1137/070682745
https://doi.org/10.1073/pnas.0803205106
https://doi.org/10.1017/s0962492920000021
https://doi.org/10.1017/s0962492920000021

24 TAEJUN PARK AND YUJI NAKATSUKASA

University Press, 2019.
[40] Y. Nakatsukasa, Fast and stable randomized low-rank matrix approximation, arXiv preprint

arXiv:2009.11392, (2020), https://arxiv.org/abs/2009.11392.
[41] Y. Nakatsukasa and N. J. Higham, Backward stability of iterations for computing the polar

decomposition, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 460–479, https://doi.org/10.
1137/110857544.

[42] Y. Nakatsukasa and T. Park, Randomized low-rank approximation for symmetric indefinite
matrices, SIAM J. Matrix Anal. Appl., 44 (2023), pp. 1370–1392, https://doi.org/10.1137/
22M1538648.

[43] C. Paige and M. Wei, History and generality of the CS decomposition, Linear Al-
gebra Appl., 208-209 (1994), pp. 303–326, https://doi.org/https://doi.org/10.1016/
0024-3795(94)90446-4.

[44] D. Papailiopoulos, A. Kyrillidis, and C. Boutsidis, Provable deterministic leverage score
sampling, in Proceedings of the 20th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’14, New York, NY, USA, 2014, Association for
Computing Machinery, p. 997–1006, https://doi.org/10.1145/2623330.2623698, https://
doi.org/10.1145/2623330.2623698.

[45] B. Peherstorfer, Z. Drmač, and S. Gugercin, Stability of discrete empirical interpola-
tion and gappy proper orthogonal decomposition with randomized and deterministic sam-
pling points, SIAM J. Sci. Comput., 42 (2020), pp. A2837–A2864, https://doi.org/10.1137/
19M1307391.

[46] A. Shimizu, X. Cheng, C. Musco, and J. Weare, Improved active learning via dependent
leverage score sampling, arXiv preprint arXiv:2310.04966, (2023).

[47] D. C. Sorensen and M. Embree, A DEIM induced CUR factorization, SIAM J. Sci. Comp.,
38 (2016), pp. A1454–A1482, https://doi.org/10.1137/140978430.

[48] D. B. Szyld, The many proofs of an identity on the norm of oblique projections, Numer.
Algorithms, 42 (2006), pp. 309–323, https://doi.org/10.1007/s11075-006-9046-2.

[49] L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, 1997, https://doi.org/10.
1137/1.9780898719574.

[50] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Practical sketching algorithms for
low-rank matrix approximation, SIAM J. Matrix Anal. Appl., 38 (2017), p. 1454–1485,
https://doi.org/10.1137/17m1111590.

[51] M. Udell and A. Townsend, Why are big data matrices approximately low rank?, SIAM J.
Math. Data Sci., 1 (2019), pp. 144–160, https://doi.org/10.1137/18M1183480.

[52] S. Voronin and P.-G. Martinsson, Efficient algorithms for CUR and interpolative matrix
decompositions, Adv. Comput. Math., 43 (2017), pp. 495–516, https://doi.org/10.1007/
s10444-016-9494-8.

[53] J. Xia, Making the Nyström method highly accurate for low-rank approximations, SIAM J. Sci.
Comput., 46 (2024), pp. A1076–A1101, https://doi.org/10.1137/23M1585039.

[54] N. L. Zamarashkin and A. I. Osinsky, On the existence of a nearly optimal skeleton approx-
imation of a matrix in the Frobenius norm, Dokl. Math., 97 (2018), pp. 164–166, https://
doi.org/10.1134/S1064562418020205.

[55] R. Zimmermann and K. Willcox, An accelerated greedy missing point estimation procedure,
SIAM J. Sci. Comput., 38 (2016), pp. A2827–A2850, https://doi.org/10.1137/15M1042899.

Appendix A. Analysis of the CURBA. In this section, we analyze the
CURBA,

(A.1) A
(BA)
IJ = A(:, J)

(
A(:, J)†AA(I, :)†

)
A(I, :) = C(C†AR†)R

with oversampling. For the CURBA, there exists a numerically stable algorthm given
by the StableCUR algorithm in [1]. The algorithm computes the CURBA in the
following way in MATLAB,

(A.2) [QC,∼] = qr(A(:, J), 0), [QR,∼] = qr(A(I, :)′, 0), A
(BA)
IJ = QC ∗ (Q′C ∗ A ∗ QR) ∗ Q′R.

We use this implementation of the CURBA in the experiments at the end of this
section.

We first prove a relative norm bound for the CURBA with oversampling. We make
the following standard assumptions, which is analogous to the CURCA counterpart
in Section 2.

https://arxiv.org/abs/2009.11392
https://doi.org/10.1137/110857544
https://doi.org/10.1137/110857544
https://doi.org/10.1137/22M1538648
https://doi.org/10.1137/22M1538648
https://doi.org/https://doi.org/10.1016/0024-3795(94)90446-4
https://doi.org/https://doi.org/10.1016/0024-3795(94)90446-4
https://doi.org/10.1145/2623330.2623698
https://doi.org/10.1145/2623330.2623698
https://doi.org/10.1145/2623330.2623698
https://doi.org/10.1137/19M1307391
https://doi.org/10.1137/19M1307391
https://doi.org/10.1137/140978430
https://doi.org/10.1007/s11075-006-9046-2
https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1137/17m1111590
https://doi.org/10.1137/18M1183480
https://doi.org/10.1007/s10444-016-9494-8
https://doi.org/10.1007/s10444-016-9494-8
https://doi.org/10.1137/23M1585039
https://doi.org/10.1134/S1064562418020205
https://doi.org/10.1134/S1064562418020205
https://doi.org/10.1137/15M1042899

ACCURACY AND STABILITY OF CUR DECOMPOSITIONS WITH OVERSAMPLING 25

Assumption A.1.
1. |I| = |J | = k where k is the target rank. The oversampling indices are I0

with |I0| = p1 for the rows and J0 with |J0| = p2 for the columns and they
satisfy k +max{p1, p2} ≤ rank(A).

2. A(:, J ∪ J0) has full column rank and A(I ∪ I0, :) has full row rank.
3. X(:, J) ∈ Rk×(k+p2) has full row rank, where X ∈ Rk×n is a row space

approximator of A.
4. Y (I, :) ∈ Rk×(k+p2) has full row rank, where Y ∈ Rm×k is a column space

approximator of A.

The assumption that X(:, J) and A(I, :) having a full row rank and Y (I, :) and A(:, J)
having a full column rank is generic, since most methods that pick good row and
column indices satisfy this assumption. If one of X or Y are not available then A(I, :)
or A(:, J) can be used instead, respectively.

We now prove the result for the CURBA with oversampling. The results shown
below is a simple extension of [47, Lemma 4.2] and [19, Theorem 1]. Lemma A.2
considers one-sided projection with oversampling where we project A onto the chosen
columns of A. In Theorem A.3, we consider the CURBA, C(C†AR†)R where we
project A onto the chosen rows and columns of A.

Lemma A.2. Under Assumption A.1,

(A.3)
∥∥A− CC†A

∥∥ ≤
∥∥QX(J ∪ J0, :)

†
∥∥
2

∥∥A−AX†X
∥∥

where ‖·‖ is any unitarily invariant norm and QX ∈ Rn×k is an orthonormal matrix
spanning the columns of XT .

Proof. For shorthand let J∗ = J ∪ J0 and let ΠJ∗
= In(:, J∗) ∈ Rn×(k+p) such

that C = A(:, J∗) = AΠJ∗
. We first define two oblique projectors

PX := ΠJ∗
(XΠJ∗

)†X, PC := ΠJ∗
C†A ∈ Rn×n.

Note that since C has full column rank, C†AΠJ∗
= C†C = Ik+p, and

PCPX = ΠJ∗
C†AΠJ∗

(XΠJ∗
)†X = PX .

Therefore we get

A− CC†A = A(I − PC) = A(I − PC)(I − PX) = (I − CC†)A(I − PX).

Since XΠJ∗
= X(:, J∗) has full row rank,

XPX = XΠJ∗
(XΠJ∗

)
†
X = X

and we obtain

(I − PX) = (I −X†X)(I − PX).

Now putting these together, we obtain

∥∥A− CC†A
∥∥ =

∥∥(I − CC†)A(I −X†X)(I − PX)
∥∥

≤
∥∥I − CC†

∥∥
2

∥∥A(I −X†X)
∥∥ ‖I − PX‖2

= ‖I − PX‖2
∥∥A(I −X†X)

∥∥ ,

26 TAEJUN PARK AND YUJI NAKATSUKASA

since
∥∥I − CC†

∥∥
2
= 1 as CC† is an orthogonal projector. Now since PX is an oblique

projector [48], ‖I − PX‖2 = ‖PX‖2 so the result follows by noting that

‖PX‖2 =
∥∥(XΠJ)

†X
∥∥
2
= ‖QX(J, :)‖2 .

Theorem A.3. Under Assumption A.1,
∥∥∥A−A

(BA)
I∪I0,J∪J0

∥∥∥ ≤
∥∥QX(J ∪ J0, :)

†
∥∥
2

∥∥A−AX†X
∥∥(A.4)

+
∥∥QY (I ∪ I0, :)

†
∥∥
2

∥∥A− Y Y †A
∥∥

where ‖·‖ is any unitarily invariant norm and QX ∈ Rn×k and QY ∈ Rm×k are the
orthonormal matrices spanning the columns of XT and Y , respectively.

Proof. The proof follows by Lemma A.2 and noting that

∥∥A− CC†AR†R
∥∥ ≤

∥∥A− CC†A
∥∥+

∥∥CC†A− CC†AR†R
∥∥

≤
∥∥A− CC†A

∥∥+
∥∥CC†

∥∥
2

∥∥A−AR†R
∥∥

=
∥∥A− CC†A

∥∥+
∥∥A−AR†R

∥∥
≤

∥∥QX(J, :)†
∥∥
2

∥∥A−AX†X
∥∥+

∥∥QY (I, :)
†
∥∥
2

∥∥A− Y Y †A
∥∥

where the inequality for the second term
∥∥A−AR†R

∥∥ in the final line can be shown
by considering AT in Lemma A.2.

Remark A.4.
1. The difference between Theorem A.3 and its counterpart without oversam-

pling, e.g. [19, Theorem 1], are the terms
∥∥QX(J, :)†

∥∥
2
and

∥∥QY (I, :)
†
∥∥
2

where instead of the matrix inverse, we have the pseudoinverse. This tight-
ens the bound (A.4) as

∥∥QX(J ∪ J0, :)
†
∥∥
2
≤

∥∥QX(J, :)−1
∥∥
2
,

and

∥∥QY (I ∪ I0, :)
†
∥∥
2
≤

∥∥QY (I, :)
−1

∥∥
2
,

where I0 and J0 are the extra indices for oversampling.
2. There are many possible choices for X and Y . For example, if we choose

them to be the dominant right and left singular vectors of A, then we get
the bound similar to the one in [47] involving the best rank-k approximation
since

∥∥A−AX†X
∥∥ =

∥∥A− Y Y †A
∥∥ = ‖A− JAKk‖ where JAKk is the best

rank-k approximation to A. If we choose X and Y to be the row sketch and
the column sketch (see Algorithm 3.1) then we involve the randomized SVD
error [28]. ChoosingX and Y to be the dominant singular vectors in Theorem
A.3 can be the optimal choice, but when X and Y are approximators, which
can be computed easily, the bound (A.4) can be computed a posteriori.

3. When k + min{p1, p2} ≥ rank(A) and rank(C) = rank(R) = rank(A), we
have A = CC†AR†R [29].

Theorem A.3 suggests that oversampling helps to improve the accuracy of the

CUR decomposition A
(BA)
IJ . However, the numerical simulations shown below illus-

trate that the improvement is not too significant.

ACCURACY AND STABILITY OF CUR DECOMPOSITIONS WITH OVERSAMPLING 27

0 50 100 150 200 250 300

0.1

0.15

0.2

0.25

0.3

(a) CIFAR10 dataset with pivoting on a random
sketch with row oversampling.

10 20 30 40 50 60 70 80 90 100

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

(b) YaleFace64x64 dataset with pivoting on a
random sketch with row (p = 0.5k) oversampling
and column (p = 10) oversampling.

Fig. 4. The effect of oversampling for the CURBA. We use pivoting on a random sketch
(Algorithm 3.1) to obtain the initial set of indices. Then we oversample the row indices using
the three oversampling algorithms, OS+P, OS+L and OS+E. We also oversample column indices in
Figure 4b.

The numerical results are depicted in Figure 4, illustrating the effect of oversam-
pling for the CURBA. We use pivoting on a random sketch (Algorithm 3.1) to obtain
the initial set of indices. Then we oversample the row indices using the three over-
sampling algorithms, OS+P, OS+L and OS+E as in Section 4.3. We also oversample
column indices in Figure 4b.

We start with the CIFAR10 dataset in Figure 4a. We first observe that as the over-
sampling parameter increases, the accuracy improves and the different oversampling
techniques yield a similar result. However, there is no significant improvement when
oversampling is used for the CURBA. This shows that the CURBA gives a robust
approximation and oversampling only plays a slight role in its accuracy. In Figure
4b, we used the YaleFace64x64 dataset to illustrate the effect of oversampling both
rows and columns. We observe that when we oversample both rows and columns, we
obtain a higher accuracy for the CURBA. This is expected as we are enlarging the
subspace that we project onto A, which increases the accuracy of the CURBA. This
is contrary to the CURCA, as the CURCA can become more inaccurate and unstable
when we oversample both rows and columns; see Section 4.3.

To conclude, while oversampling improves the accuracy of the CURBA, it has
less significant effect on its accuracy and stability.

Appendix B. Stability of rank-deficient systems. In this section, we
prove the stability result for solving rank-deficient underdetermined linear systems
(Theorem 2.8). The result can also be extended to rank-deficient overdetermined
problems; see Appendix B.1. Theorem 2.8 was used to derive an expression for the
computed solution to

(B.1) min
x

∥∥∥(ÛT)ǫx− [Ĉ]Ti

∥∥∥
2

for each row of Ĉ. The statement and the proof is shown below. The proof follows a
similar method outlined in [40, Section 4.1].

Theorem B.1 (Theorem 2.8). Consider the (rank-deficient) underdetermined lin-

28 TAEJUN PARK AND YUJI NAKATSUKASA

ear system,

(2.7) min
x′

‖Bǫx
′ − b‖2

where Bǫ ∈ Rm×n (m ≤ n) is (possibly) rank-deficient (rank(Bǫ) ≤ m) with singular
vales larger than ǫ and b ∈ Rm. Then assuming ǫ > γ ‖Bǫ‖2, the minimum norm
solution to (2.7) can be computed in a backward stable manner, i.e., the computed
solution ŝ satisfies

ŝ = (Bǫ + E1)
†
(b+ E2)

where ‖E1‖2 ≤ γ ‖Bǫ‖2 and ‖E2‖2 ≤ γ ‖b‖2.
Proof. First, if Bǫ has full row-rank then the statement follows by the stability

result in [32, Theorem 21.4]. If Bǫ is rank-deficient, the stability result in [32, The-
orem 21.4] cannot be invoked as it is only applicable for underdetermined full-rank
linear systems. So we project Bǫ onto its column space Qǫ to make the problem an
underdetermined full-rank linear system:

min
x′

∥∥QT
ǫ Bǫx

′ −QT
ǫ b

∥∥
2
.

Let Q̂ǫ be the computed column space of Bǫ. Then Q̂ǫ is the exact column space
of Bǫ + ∆B where ‖∆B‖2 ≤ γ ‖Bǫ‖2, Q̂T

ǫ Bǫ is numerically full-rank with singular

values larger than ǫ and Q̂ǫQ̂
T
ǫ Bǫ = Bǫ + E where ‖E‖2 ≤ γ ‖Bǫ‖2 [25, Chapter

5.4.1]. Note the following from matrix-matrix (or matrix-vector) multiplication [32,
Section 3.5],

fl(Q̂T
ǫ Bǫ) = Q̂T

ǫ Bǫ + E(1)

where
∥∥E(1)

∥∥
2
≤ γ ‖Bǫ‖2 and

fl(Q̂T
ǫ b) = Q̂T

ǫ b+ E(2)

where
∥∥E(2)

∥∥
2
≤ γ ‖b‖2. Since ˆQT

ǫ Bǫ ∈ Rrank(Bǫ)×n is a fat rectangular matrix, we
solve the following underdetermined full-rank linear system,

(B.2) min
x′

∥∥∥(Q̂T
ǫ Bǫ)x

′ − Q̂T
ǫ b

∥∥∥
2
.

Assuming γκ2(Bǫ) ≤ γ ‖Bǫ‖2 /ǫ < 1 (where κ2 denotes the 2-norm condition number),
we obtain the computed solution of (B.2), ŝ, satisfying [32, Theorem 21.4],

ŝ = fl

((
Q̂T

ǫ Bǫ

)†

Q̂T
ǫ b

)
=

(
fl(Q̂T

ǫ Bǫ) + E(3)
)†

fl(Q̂T
ǫ b)

=
(
Q̂T

ǫ Bǫ + E(1) + E(3)
)† (

Q̂T
ǫ b+ E(2)

)

=
(
Q̂ǫQ̂

T
ǫ Bǫ + Q̂ǫE

(1) + Q̂ǫE
(3)

)† (
b+ Q̂ǫE

(2)
)

=
(
Bǫ + E + Q̂ǫE

(1) + Q̂ǫE
(3)

)† (
b+ Q̂ǫE

(2)
)

ACCURACY AND STABILITY OF CUR DECOMPOSITIONS WITH OVERSAMPLING 29

where
∥∥E(3)

∥∥
2
≤ γ ‖Bǫ‖2 and we use (QA)†b = A†QT b for a tall-skinny orthonormal

matrix Q in line 3. Therefore, assuming that γ ‖Bǫ‖2 < ǫ, the computed solution of
(2.7), ŝ satisfies

(B.3) ŝ = fl(B†
ǫb) = (Bǫ + E1)

†
(b+ E2) ,

where ‖E1‖2 ≤ γ ‖Bǫ‖2 and ‖E2‖2 ≤ γ ‖b‖2.
B.1. Extension to rank-deficient overdetermined problems. Theorem 2.8

can be extended to include rank-deficient overdetermined least-sqaures problems.
Consider the rank-deficient overdetermined least-squares problem,

min
x′

‖Cǫx
′ − b‖2

where Cǫ ∈ Rm×n (m ≥ n) is a rank-deficient (rank(Cǫ) < n), tall-skinny matrix with
singular vales larger than ǫ and b ∈ Rm. Then under the same assumption as Theorem
2.8, i.e., ǫ > γ ‖Bǫ‖2, the solution to the overdetermined least-squares problem can
be computed in a backward stable manner.

The proof proceeds in the same way as Theorem 2.8, as once the tall-skinny
matrix Cǫ is projected onto its column space Wǫ, W

T
ǫ Cǫ ∈ Rrank(Cǫ)×n becomes a fat

full-rank matrix, and we are now solving the underdetermined full-rank linear system:

min
x′

∥∥∥(ŴT
ǫ Cǫ)x

′ − ŴT
ǫ b

∥∥∥
2
.

Appendix C. Two lemmas. We give the proofs for the two lemmas, Lemma
2.6 and Lemma 2.7 in this section.

Lemma C.1 (Lemma 2.6). Under Assumption 2.2, for any ∆C and ∆U ,

(C.1)
∥∥(C +∆C)(U +∆U)†ǫ

∥∥
2
≤

∥∥QC(I∗, :)
†
∥∥
2

(
1 +

1

ǫ
‖∆U‖2

)
+

1

ǫ
‖∆C‖2 .

Proof. Let C = QCRC be the thin QR factorization of C. Then

∥∥(C +∆C)(U +∆U)†ǫ
∥∥
2
≤

∥∥QCRC(U +∆U)†ǫ
∥∥
2
+
∥∥∆C(U +∆U)†ǫ

∥∥
2

=
∥∥RC(U +∆U)†ǫ

∥∥
2
+
∥∥∆C(U +∆U)†ǫ

∥∥
2

=
∥∥(ΠT

I∗
QC)

†ΠT
I∗
QCRC(U +∆U)†ǫ

∥∥
2
+
∥∥∆C(U +∆U)†ǫ

∥∥
2

≤
∥∥(ΠT

I∗
QC)

†
∥∥
2

∥∥U(U +∆U)†ǫ
∥∥
2
+

1

ǫ
‖∆C‖2

where we use (ΠT
I∗
QC)

†ΠT
I∗
QC = I for the penultimate line. The result follows by

noting that
∥∥U(U +∆U)†ǫ

∥∥
2
simplifies to

∥∥U(U +∆U)†ǫ
∥∥
2
=

∥∥(U +∆U)(U +∆U)†ǫ −∆U(U +∆U)†ǫ
∥∥
2
≤ 1 +

1

ǫ
‖∆U‖2 .

Lemma C.2 (Lemma 2.7). Under Assumption 2.2, for any ∆C and ∆U ,

(C.2) (C +∆C)(U +∆U)†ǫRΠJ = C + E∗

where

‖E∗‖2 ≤
∥∥(QC(I∗, :)

†
∥∥
2

(
ǫ+ 2 ‖∆U‖2 +

1

ǫ
‖∆U‖22

)
+ ‖∆C‖2

(
1 +

‖∆U‖2
ǫ

)
.

30 TAEJUN PARK AND YUJI NAKATSUKASA

Proof. We divide the expression into two pieces:

(C +∆C)(U +∆U)†ǫRΠJ = C(U +∆U)†ǫRΠJ︸ ︷︷ ︸
(i)

+∆C(U +∆U)†ǫRΠJ︸ ︷︷ ︸
(ii)

and treat them separately. Let the thin SVD of U +∆U be

U +∆U = WΣV T = [W1,W2]

[
Σ1

Σ2

]
[V1, V2]

T

where Σ2 contains the singular values of U +∆U smaller than ǫ and C = QCRC be
the thin QR decomposition of C.

We begin by examining the matrix (i).

C(U +∆U)†ǫRΠJ = C(U +∆U)†ǫU = C(U +∆U)†ǫ(U +∆U)− C(U +∆U)†ǫ∆U

= CV1V
T
1 − C(U +∆U)†ǫ∆U = C − CV2V

T
2 − C(U +∆U)†ǫ∆U

= C + E1

where E1 = −CV2V
T
2 − C(U +∆U)†ǫ∆U satisfies

‖E1‖2 ≤
∥∥CV2V

T
2

∥∥
2
+
∥∥C(U +∆U)†ǫ∆U

∥∥
2

≤
∥∥CV2V

T
2

∥∥
2
+
∥∥QC(I∗, :)

†
∥∥
2

(
1 +

1

ǫ
‖∆U‖

)
‖∆U‖2

by Lemma 2.6. We bound
∥∥CV2V

T
2

∥∥
2
as in the final part of the proof of Theorem

2.3.
∥∥CV2V

T
2

∥∥
2
=

∥∥RCV2V
T
2

∥∥
2
=

∥∥(ΠT
I∗
QC)

†ΠT
I∗
QCRCV2V

T
2

∥∥
2
=

∥∥(ΠT
I∗
QC)

†UV2V
T
2

∥∥
2

≤
∥∥(ΠT

I∗
QC)

†
∥∥
2

∥∥(U +∆U)V2V
T
2 −∆UV2V

T
2

∥∥
2

≤
∥∥(ΠT

I∗
QC)

†
∥∥
2
(‖W2Σ2‖2 + ‖∆U‖2)

≤
∥∥(ΠT

I∗
QC)

†
∥∥
2
(ǫ+ ‖∆U‖2) .

Therefore, (i) can be bounded as

C(U +∆U)†ǫRΠJ = C + E1

where ‖E1‖2 ≤
∥∥(QC(I∗, :)

†
∥∥
2

(
ǫ+ 2 ‖∆U‖2 + 1

ǫ
‖∆U‖22

)
.

Next, we bound the matrix (ii). Let E2 = ∆C(U +∆U)†ǫRΠJ , then

‖E2‖2 =
∥∥∆C(U +∆U)†ǫRΠJ

∥∥
2

≤ ‖∆C‖2
∥∥(U +∆U)†ǫU

∥∥
2

≤ ‖∆C‖2
(∥∥(U +∆U)†ǫ(U +∆U)

∥∥
2
+
∥∥(U +∆U)†ǫ∆U

∥∥
2

)

≤ ‖∆C‖2
(
1 +

‖∆U‖2
ǫ

)
.

Putting everything together and setting E∗ = E1 +E2, we get the desired result:

(C +∆C)(U +∆U)†ǫRΠJ = C + E∗

where

‖E∗‖2 ≤
∥∥(QC(I∗, :)

†
∥∥
2

(
ǫ+ 2 ‖∆U‖2 +

1

ǫ
‖∆U‖22

)
+ ‖∆C‖2

(
1 +

‖∆U‖2
ǫ

)
.

	Introduction
	Accuracy and stability of the stabilized CURCA
	Accuracy of CUR and its -pseudoinverse variant
	Numerical Stability of the CUR decomposition

	Oversampling for the CURCA
	Numerical Illustration
	Implementation of (S)CURCA
	Importance of not choosing rows and columns independently
	Oversampling algorithm comparison

	Conclusion
	References
	Appendix A. Analysis of the CURBA
	Appendix B. Stability of rank-deficient systems
	Extension to rank-deficient overdetermined problems

	Appendix C. Two lemmas

